文档库 最新最全的文档下载
当前位置:文档库 › 三相异步电动机双向启动反接制动控制系统

三相异步电动机双向启动反接制动控制系统

三相异步电动机双向启动反接制动控制系统
三相异步电动机双向启动反接制动控制系统

高级电工技能考核准备通知单

一、试题名称:三相异步电动机双向启动反接制动控制系统

五、考场准备

1.考场宽敞明亮,无环境干扰。

2.设8个考位,每个考位不小于5m2。

3.380V动力电源。

六、考评人员要求

1.热爱本职工作,遵守考评各项规则及要求。

2.考评员必须具备技师、高级技师或中级专业技术职务及以上资格,同时经过专门的培训、考核,取得资格证,对鉴定工作熟悉。

3.现场考评员与应试人员的比例为3:1。

4.依据评分标准打分,考评员之间不得商量。

5.统计员做好分数统计及保密工作,评分记录表不得更改。

高级电工技能考核试题

一、试题名称:三相异步电动机双向启动反接制动控制系统

二、操作程序规定说明

1.操作内容:

①准备工作;

②按图安装线路;

③通电前的检查;

④通电试车。

2.技术要求:

①线路图安装正确;

②选线正确,工艺美观;

③元件布局合理,安装牢固;

④通电试车,要求试车一次成功。

3.附图:

三相鼠笼异步电动机双向启动反接制动控制线路图

三、考核时间

1.准备5min。

2.正式操作90min。

四、考核评分

1.考评员负责考场事务。

2.采用百分制:满分100分,60分合格。

3.考评员对本工种有熟练的检测经验,执检公正准确。

五、考核评分记录表

集团公司职业技能鉴定统一试卷

高级电工考核评分记录表

准考证号:姓名:性别:单位:………………………………装订线…………………………………………

评分记录表

考评员:统计员:年月日

他励直流电动机的反接制动(电机与拖动课程设计)

引言 直流电动机以其结构复杂、价格较贵、体积较大、维护较难而使其应用受到了影响。随着交流电动机变频调速系统的发展,在不少应用领域中已为交流电动机所取代。但是直流电动机又以起动转矩大、调速性能好、制动控制方便而著称,因此,在工业等应用领域中仍占有一席之地。本课题将讨论他励电动机的基本结构、工作原理以及反接制动的原理及机械制动。

.专业整理. 1 课程设计的目的及内容 电机与拖动是电气专业的一门重要专业基础课。它主要是研究电机与电力拖动的基本原理,以及它与科学实验、生产实际之间的联系。通过学习使学生掌握常用交、直流电机、变压器及控制电机的基本结构和工作原理;掌握电力拖动系统的运行性能、分析计算,电动机选择及实验方法等。 电机与拖动课程设计是理论教学之后的一个实践环节,通过完成一定的工程设计任务,学会运用本课程所学的基本理论解决工程技术问题,为学习后续有关课程打好必要的基础。 本设计主要研究他励直流电动机的反接制动。 .学习帮手.

辽宁工程技术大学课程设计 2 2 他励直流电动的基本结构 图2-1 直流电动机结构图 图2 他励直流电动机的基本结构 2.1定子 直流电机的定子由以下几部分组成: 主磁极 换向磁极(简称换向极) 机座 端盖 2.2转子 电枢铁心 电枢绕组 换向器 风扇等 电枢绕组电枢磁扼定子磁扼 换向极绕组换向极 底脚 激磁绕组 极身极掌电枢槽电枢齿

.专业整理. .学习帮手. 3 他励直流电动机的工作原理 3.1直流电动机的工作原理图 图3-1 直流电动机的工作原理图 图中N 和S 是一对固定不动的磁极,用以产生所需要的磁场。在N 极S 极之间有一个可以绕轴旋转地绕组。直流电机的这一部分称为电枢。如图3-1所示将电枢绕组通过电刷接到直流电源上,绕组的转轴与机械负载相连,这是便有电流从电源的正极流出,经电刷A 流入电枢绕组,然后经电刷B 流回电源的负极。载流的转子(即电枢)导体将受到电磁力f 的作用a BLI f 。 3.2他励直流电动机的运行分析 M Uf + -+ -Ua I a I f 图3-2 它励电动机 电枢电路中它励电动机的电枢和励磁绕组分别由两个独立的直流电源供电。它励电动机的电路如图三所示。在励磁电压f U 的作用下,励磁绕组中通过励磁电流f I ,从而产生 N S A B a d b c i +-e n U + -i

城轨车辆制动控制系统

第六章制动控制系统 制动控制系统是空气制动系统的核心,它接受司机或自动驾驶系统(ATO)的指令,并采集车上各种与制动有关的信号,将指令与各种信号进行计算,得出列车所需的制动力,再向动力制动系统和空气制动系统发出制动信号。动力制动系统进行制动时将实际制动力的等值信号反馈给制动控制系统,制动控制系统通过运算协调动力制动和空气制动的制动量。空气制动系统将制动系统发来的制动力信号经流量放大后使执行部件产生相应的制动力。这就是制动控制系统的主要功能。 6.1 制动控制系统的组成 如图6.1制动控制系统主要由电子制动控制单元(EBCU)、空气制动单元(BCU)和电气指令单元等组成。 图6.1制动控制系统的组成 6.1.1 电子制动控制单元 在电子技术和微机技术的迅猛发展下,列车的制动控制由微机综合列车运行中的所有参数,经过判断和运算,给制动系统发出精确的指令。以微机为中心的电子控制装置被称为电子制动控制单元(EBCU)、微机制动控制单元(MBCU)

或制动控制电子装置(BCE)等。 它有一下主要功能: (1)接受司机控制器或ATO的指令,与牵引控制系统协调列车的制动和缓解。 (2)将接收到的动力制动实际值经 EP转换,将电信号转换成气动信号发送给空气制动控制单元。 (3)控制供气系统中空气压缩机组的工作周期,监控主风缸输出压力等参数。 (4)在列车制动过程中始终收集列车所有轮对速度传感器发来的速度参数,对轮对在制动过程中出现的滑行进行监视。 (5)对列车制动时的各种参数和故障进行监视与记录。 6.1.2空气制动控制单元 空气制动控制单元是制动系统中电气制动和空气制动的联系点,也是电子、电子信号与气动信号的转换点。在过去论述中称为中继阀或EP。 (一)EP 由电磁线圈、铁芯、顶杆和活塞等组成。当它的电磁线圈没有励磁时,铁芯和连杆落在阀底,通路阻断或通路与大气连通。当线圈励磁,铁芯被吸引上移,推动顶杆和活塞上移,通路与储风缸压力空气连通。 (二)中继阀 它上部是给排阀,下部是腔室。腔室中是活塞和膜板,活塞和膜板带动有空心通路的顶杆上下移动。 中继阀也是一个将电信号转换成压力空气的电磁阀,只是电信号的变化不是励磁电流的变化,而是通过电磁阀励磁线圈和消磁状态的不同组合,将多个电信号输入转换成对应空气压力输出。 (三)空重车调整阀 空重车调整阀的作用是根据车辆载重的变化,即根据乘客的多少,输出一个空气压力信号,并通过中继阀使单元制动机风缸保持一个恒定的制动力。 空重车调整阀的输入是车辆二系弹簧的空气压力信号。考虑到车辆载重的不平衡,一般采取前后转向架对角的两个空气弹簧压力为输入信号,这样就能比较准确地使空重车调整阀的输出压力信号与乘客负载成一定比例关系。

#交流异步电动机制动的几种方式附原理案例

交流异步电动机制动的几种方式附原理案列 工业变频2009-06-16 16:00:42 阅读4628 评论1 字号:大中小订阅 一、再生回馈制动 再生回馈制动是在外加转矩的作用下,转子转速超过同步转速,电磁转矩改变方向成为制动转矩的运行状态。再生回馈制动与反接制动和能耗制动不同,再生回馈制动不能制动到停止状态。 二、反接制动 反接制动是在电机定子三根电源线中的任意两根对调而使电机输出转矩反向产生制动,或者在转子电路上串接较大附加电阻使转速反向,而产生制动。 三、能耗制动 电机在正常运行中,为了迅速停车,在电机定子线圈中接入直流电源,在定子线圈中通入直流电流,形成磁场,转子由于惯性继续旋转切割磁场,而在转子中形成感应电势和电流,产生的转矩方向与电机的转速方向相反,产生制动作用,最终使电机停止。于惯性继续旋转切割磁场,而在转子中形成感应电势和电流,产生的转矩方向与电机的转速方向相反,产生制动作用,最终使电机停止。 1.能耗制动的原理 如果三相异步电动机定子绕组断开三相电源后,则电机内无磁通势。从而电磁转矩=0, 电动机在负载转矩作用下,自然停车,这是自然制动过程。 能耗制动的电路原理图如图5.22所示,三相异步电动机定子绕组切断三相交流电源后(1K 断开),同时,在定子绕组任意两相上接入直流电流( 也称直流励磁电流),即接通开 关2K,从而在电机内形成一个不旋转的空间位置固定的磁通势,最大幅值为。在三相交流电源切断后的瞬间,电动机转子由于机械惯性其转速不能突变,而继续维持原 逆时针方向旋转。此时,直流电流产生的空间固定不转的磁通势相对于旋转的转子是一个旋转磁通势;旋转方向为顺时针,转速大小为。这种相对运动导致了转子绕组有 感应电动势,并产生电流和电磁转矩,根据左手定则可知,的方向与磁通势 相对于转子的旋转方向是一样的,但与转速的方向相反,电动机处于制动运行状态, 电机转速迅速下降,直到转速时,磁通势与转子相对静止,=0, =0, , 减速过程结束,电动机将停转,实现了快速制动停车。如果负载是反抗性负载,则 电机转速将停车。如果负载是位能性负载,则电机转速时必须立即用机械抱

三相异步电动机常见的制动方法

三相异步电动机常见的制动方法 作者:骑着乌龟追蚂蚁,2007-5-31 10:47:00 发表于:《变频器与调速论坛》共有11人回复,1096次点击加为好友查看播客发送留言 最近公司在安装大型的行车,原理图上有电动机的几种制动方式,我在网上查了一下,与大家分享一下. 三相异步电动机切除电源后依惯性总要转动一段时间才能停下来。而生产中起重机的吊钩或卷扬机的吊蓝要求准确定位;万能铣床的主轴要求能迅速停下来。这些都需要对拖动的电动机进行制动,其方法有两大类:机械制动和电力制动。 1.机械制动 采用机械装置使电动机断开电源后迅速停转的制动方法。如电磁抱闸、电磁离合器等电磁铁制动器。 (1)电磁抱闸断电制动控制电路 电磁抱闸断电制动控制电路如图1所示.合上电源开关QS和开关K,电动机接通电源,同时电磁抱闸线圈YB得电,衔铁吸合,克服弹簧的拉力使制动器的闸瓦与闸轮分开,电动机正常运转。断开开关电动机失电,同时电磁抱闸线圈YB也失电,衔铁在弹簧拉力作用下与铁芯分开,并使制动器的闸瓦紧紧抱住闸轮,电动机被制动而停转。图中开关K可采用倒顺开关、主令控制器、交流接触器等控制电动机的正反转,满足控制要求。倒顺开关接线示意图如图2所示。这种制动方法在起重机械上广泛应用,如行车、卷扬机、电动葫芦(大多采用电磁离合器制动)等。其优点是能准确定位,可防止电动机突然断电时重物自行坠落而造成事故。 (2)电磁抱闸通电制动控制电路 电磁抱闸断电制动其闸瓦紧紧抱住闸轮,若想手动调整工作是很困难的。因此,对电动机制动后仍想调整工件的相对位置的机床设备就不能采用断电制动,而应采用通电制动控制,其电路如图3所示。当电动机得电运转时,电磁抱闸线圈无法得电,闸瓦与闸轮分开无制动作用;当电动机需停转按下停止按钮SB2时,复合按钮SB2的常闭触头先断开切断KM1线圈,KM1主、辅触头恢复无电状态,结束正常运行并为KM2线圈得电作好准备,经过一定的行程SB2的常开触头接通KM2线圈,其主触头闭合电磁抱闸的线圈得电,使闸瓦紧紧抱住闸轮制动;当电动机处于停转常态时,电磁抱闸线圈也无电,闸瓦与闸轮分开,这样操作人员可扳动主轴调整工件或对刀等。 机械制动主要采用电磁抱闸、电磁离合器制动,两者都是利用电磁线圈通电后产生磁场,使静铁芯产生足够大的吸力吸合衔铁或动铁芯(电磁离合器的动铁芯被吸合,动、静摩擦片分开),克服弹簧的拉力而满足工作现场的要求。电磁抱闸是靠闸瓦的摩擦片制动闸轮.电磁离合器是利用动、静摩擦片之间足够大的摩擦力使电动机断电后立即制动。 2.电力制动 电动机在切断电源的同时给电动机一个和实际转向相反的电磁力矩(制动力矩)使电动迅速停止的方法。最常用的方法有:反接制动和能耗制动。 (1)反接制动。在电动机切断正常运转电源的同时改变电动机定子绕组的电源相序,使之有反转趋势而产生较大的制动力矩的方法。反接制动的实质:使电动机欲反转而制动,因此当电动机的转速接近零时,应立即切断反接转制动电源,否则电动机会反转。实际控制中采用速度继电器来自动切除制动电源。

直流电动机的反接制动

烟台南山学院 电机与拖动课程设计题目直流电动机的反接制动 姓名: XXX 所在学院:计算机与电气自动化学院 所学专业:自动化 班级:自动化XXXX 学号: XXXXXXXXXXX 指导教师:XXX 完成时间: 2013.12.20

目录 绪论 (1) 第一章直流电动机的制动 (2) 1.1 制动的定义 (2) 1.2 制动的目的 (2) 1.3 制动的分类 (2) 1.4 各种制动的特点 (2) 第二章直流电动机反接制动的工作原理 (3) 2.1 电压反向反接制动——迅速停机 (3) 2.1.1 制动原理 (3) 2.1.2 机械特性 (3) 2.1.3 特性分析 (4) 2.1.4 适用场合 (5) 2.2 电动势反向反接制动——下放重物 (5) 2.2.1 制动原理 (5) 2.2.2 机械特性 (5) 2.2.3 特性分析 (6) 2.2.4 适用场合 (7) 第三章反接制动制动电阻的计算 (8) 3.1 电枢电阻的计算 (8) 3.2 相关参数的计算 (8) 3.3 迅速停机 (8) 3.4 下放重物(以800r/min下放重物) (8) 结论 (9) 总结 (10) 参考文献 (11)

绪论 直流电动机是将直流电能转换为机械能的电动机。因其优良的起动、调速和制动性能而在电力拖动中得到广泛应用。 直流电动机按励磁方式分为他励、并励、串励和复励四种。 直流电动机有三种制动状态:能耗制动、反接制动(电压反向反接和电动势反向反接)和回馈制动。 本文在直流电动机的结构与工作原理的基础上,给出了电机制动的定义,对电机制动的方法进行了简单介绍,并着重介绍了他励直流电动机反接制动的工作原理、特点及使用条件。

三相异步电动机反接制动课件

1.10 三相鼠笼式异步电动机制动控制线路 1.反接制动控制 三相交流异步电动机的反接制动是通过改变定子绕 组中的电流相序,使其产生一个与转子旋转方向相 反的电磁力矩来实现的。对于单方向旋转的电动机, 当转速下降到零时,应迅速切断电动机电源,否则 电动机将反向转动。因此,在控制线路中应有检测 速度的元件。在反接制动时,电动机定子绕组流过 的电流相当于全压直接起动的两倍,因此在制动过 程中在定子线路中串入电阻以降低制动电流。

1.10 三相鼠笼式异步电动机制动控制线路 右图为三相交流异 步电动机单向反接制 动控制线路。合上电 源开关QS,按下起动 按钮SB2,接触器 KM1线圈通电并自锁, 电动机起动,当转速 达到120r/min以上时, 速度继电器KV的常开 触点闭合,为制动做 好准备。

1.10 三相鼠笼式异步电动机制动控制线路 需要停机时,按下停止复合按钮SB1,KM1断电其 主触点打开,KM2通电并自锁其主触点通过反接制 动电阻R,使电动机得到反相序电源,形成反接制 动。当转速下降至100r/min以下时KV的常开触点打 开,切断KM2线圈支路,使电动机断电,制动过程 结束。图中KM1和KM2之间有电气互锁。

1.10 三相鼠笼式异步电动机制动控制线路 下图为三相交流异步电动机双向反接制动控制线路。 图中R既是反接制动电阻,也是起动限流电阻。KV1 和KV2分别是速度继电器KV的正转和反转常开触点。 合上电源开关QS,按下正转起动按钮SB2,中间继 电器K3得电并自锁,其常闭触点断开,K4线圈不能 得电,K3常开触点闭合,KM1线圈得电,KM1主触 点闭合,电动机串电阻降压起动。当电动机转速达到 一定值时,KV1闭合,K1得电自锁。这时由于K1、 K3的常开触点闭合,KM3得电,KM3主触点闭合,

直流电动机的反接制动课程设计报告书

1 综述 直流电动机是将直流电能转换为机械能的电动机。因其优良的起动、调速和制动性能而在电力拖动中得到广泛应用。 直流电动机按励磁方式分为他励、并励、串励和复励四种。 直流电动机有三种制动状态:能耗制动、反接制动(电压反向反接和电动势反向反接)和回馈制动。 本文在直流电动机的结构与工作原理的基础上,给出了电机制动的定义,对电机制动的方法进行了简单介绍,并着重介绍了他励直流电动机反接制动的工作原理、特点及使用条件。

2 直流电动机的制动2.1 制动的定义

制动,就是让电动机产生一个与转子转向相反的电磁转矩,以使电力拖动系统迅速停机或稳定放下重物。这时电机所处的状态称为制动状态,这时的电磁转矩为制动转矩。 2.2 制动的目的 在生产过程中,经常需要采取一些措施使电动机尽快停转,或者从某高速降到某低速运转,或者限制位能性负载在某一转速下稳定运转,这就是电动机的制动问题。 2.3 制动的分类 实现制动有两种方法,机械制动和电磁制动。 电磁制动是使电机在制动时使电机产生与其旋转方向相反的电磁转矩,其特点是制动转矩大,操作控制方便。 现代通用电机的电磁制动类型有能耗制动、反接制动和回馈制动。 2.4 各种制动的特点 1)反接制动:设备简单,制动迅速,准确性差,制动冲击力强。 2)能耗制动:制动准确度高,需直流电源,设备投入费用高。 3)回馈制动:经济性好,将负载的机械能转换为电能反送电网,但应用范围不广。电容制动对高速、低速运转的电动机均能迅速制动,能量损耗小设备简单,一般用语10KW以下的小容量电动机,可适用于制动频繁的场合。

3 直流电动机反接制动的工作原理 以他励直流电动机为例。 他励电动机反接制动的特点是使U a 与E的作用方向变为一致,共同产生电枢电 流I a ,于是由动能转换而来的电功率EI a 和由电源输入的电功率U a I a 一起消耗在电 枢电路中。 具体实现的方法有两种,分别用于不同的场合。

电动机反接制动(资源借鉴)

他励直流电动机反接制动仿真 一、 工作原理 直流电动机的反接制动分为电压反向的反接制动和倒拉反接制动。电压反向反接制动作用用于电动机的快速停机,而倒拉反接制动用于低速下放位能负载。反接制动就是通过调换电动机电枢电压方向以改变电枢电流方向,从而使电动机的电磁转矩方向发生改变,最终实现电动机制动。 当电动机在电动运转状态下以稳定的转速n 运行时候,如图1-1所示,为了使工作机构迅速停车,可在维持励磁电流不变的情况下,突然改变电枢两端外施电压的极性,并同时串入电阻,如图1-2所示。由于电枢反接这样操作,制动作用会更加强烈,制动更快。电机反接制动时候,电网供给的能量和生产机械的动能都消耗在电阻Ra+Rb 上面。 M E Ia T n - Uf ( a )电动状态 图1-1 制动前的电路图 M E Ia n -T Uf Rb (b)制动状态 图1-2 制动后的电路图 同时也可以用机械特性来说明制动过程。电动状态的机械特性如下图三的特性1 n 与T 的关系为

T C C R C U C I R U C E n I R U E I C T n C T E a E a E a a a E a a a a T E 2 E Φ-Φ=Φ-=Φ= -=Φ=Φ= 电压反向反接制动时,n 与T 的关系为 其机械特性如图1-3中的特性2。设电动机拖动反抗性恒转矩负载,负载特性如图1-3中的特性3。 T T L n 2 31 b a c o n o T L 图1-3 反接制动迅速停机过程 制动前,系统工作在机械特性1与负载特性3的交点a 上,制动瞬间,工作点平移到特性2上的b 点,T 反向,成为制动转矩,制动过程开始。在T 和L T 的共同作用下,转速n 迅速下降,工作点沿特性2由b 移至c 点,这是0=n ,应立 即断开电源,使制动过程结束。否则电动机将反向起动,到d 点去反向稳定运行。 电压反向反接制动的效果与制动电阻b R 的大小有关,b R 小,制动过程短,停机快,但制动过程中的但制动过程中的最大电枢电流,即工作于b 点时的电枢电流ab I 不得超过aN a I I )0.25.1(max -=。由图1-3可知,只考虑绝对值时 b ab I R R E U a b a ++= )(2 T C C R R C U n T E b a E a Φ +-Φ-=

第七章 汽车制动防抱死系统

第七章汽车制动防抱死系统 制动防抱死系统功用、基本组成及控制方式 1、ABS功用 制动防抱死系统(简称ABS,Anti-lock Brake System),是汽车上的一种主动安全装臵。其作用就是防止汽车制动时车轮抱死拖滑,并把车轮的滑移率保持在Sp左右的一定范围内,以提高汽车制动过程中的方向稳定性、转向控制能力和缩短制动距离,使汽车制动更为安全有效。 ABS的优点: (1)制动时保持方向稳定性(图7-1)。控制车轮滑动率基本在20%附近,有效防止汽车侧滑、甩尾、调头等现象发生。 图7-1 保持方向稳定性 (2)制动时保持转向控制能力,如图7-2。不会出现汽车前轮抱死产生的方向失控事故。 图7-2 保持转向控制能力 (3)缩短制动距离(松散的沙土和积雪较深的路面除外)(图7-3)。保持制动力在最佳的范围内。 图7-3 缩短制动距离 (4)减少轮胎磨损。车轮保持在既滚又滑的状态,克服车轮抱死造成的轮胎杯型磨损和轮胎面磨损不均匀的缺点。 (5)减少驾驶员紧张情绪。传统制动系统进行制动时,驾驶员往往产生一种紧张情绪,缺乏安全感。

装备ABS 与未装备ABS 汽车相比,各项安全指标的下降百分比见图7-4。 图7-4 安全指标比较 2、ABS 基本组成及控制原理 制动防抱死系统是在常规制动装臵的基础上增加一电子控制系统,一般由传感器、电子控制器(ECU)和执行器(制动压力调节器)组成(图7-5)。 图7-5 ABS 基本组成及控制原理示意图 传感器感受系统控制所需的汽车行驶状态参数,并将运动物理量转换成为电信号。电子控制器根据传感器信号及其内部存储信号,经过计算、比较和判断后,向执行器发出控制指令,同时监控系统的工作状况。执行器则根据ECU 的指令,依靠由电磁阀及相应的液压控制阀组成的液压调节系统对制动系统实施增压、保压或减压的操作(图7-6),让车轮始终处于理想的运动状态。 a )增压

汽车电子感应制动控制系统简介

汽车制动系统经历了从传统机械制动到液压防抱死制动系统ABS,再到电子制动控制 系统EBS。如今又出现了一种全新的制动理念,它是集成了电子控制系统和电液制动 力增压器的一种新型汽车制动技术,即汽车电子感应制动控制系统(Sensotronic Brake Control),简称SBC。 电子感应制动控制系统SBC最早是由博世公司提出来的。在20世纪90年代,博世公司推出了一项名为“Brake 2000”的研究项目,该项目主要是让其最前沿的开发 部门,开始有关进一步改进汽车制动系统的研究,目标是研究一种反应速度更快、制 动效果更显著的制动系统,电子感应制动控制系统SBC就是因为这种要求而诞生的。 SBC电子感应控制系统是世界上第一套完全线控的制动系统(Brake-by-Wire),首 先装载于高档车奔驰SL500,在最新Maybach 62中也装备了SBC系统。 SBC系统的构成 传统制动器工作原理是:驾驶员踩下制动踏板,推动与制动调压器及制动主缸相 连的活塞连杆。制动主缸根据踏板力的大小,在制动管路上形成相应的制动压力,在 机械和液力相结合的作用下,通过制动缸推动制动钳压向制动盘。由于中间传递机构 复杂,制动的反应速度比较慢。 在电子感应制动控制系统中,电子元件将替代当前制动系统中大量使用的机械元件,把制动踏板和执行机构分离开来,由于大大减少了中间元件,因此反应速度就大 幅提高。右图所示为在奔驰车上应用的SBC系统,它由传感器、ECU(电子控制单元)与执行器(液压控制单元)等构成。传感器用来测量制动主缸内的压力以及制动踏板 运动的速度,如果监测到驾驶员开始制动,就发送信号给ECU。SBC系统的制动力是 由电子控制的电机来实现的。电机带动高压储能器,使制动液以很高的压力进入制动 系统,快速而准确地完成汽车制动。 为了让驾驶员能够有真实的制动感觉,SBC系统还带有一个踏板行程模拟器,它 连接在制动主缸上,用弹簧力和液压力来推动制动踏板运动。制动踏板感觉是可调节的,以满足不同的要求。

电动机反接制动

她励直流电动机反接制动仿真 一、 工作原理 直流电动机的反接制动分为电压反向的反接制动与倒拉反接制动。电压反向反接制动作用用于电动机的快速停机,而倒拉反接制动用于低速下放位能负载。反接制动就就是通过调换电动机电枢电压方向以改变电枢电流方向,从而使电动机的电磁转矩方向发生改变,最终实现电动机制动。 当电动机在电动运转状态下以稳定的转速n 运行时候,如图1-1所示,为了使工作机构迅速停车,可在维持励磁电流不变的情况下,突然改变电枢两端外施电压的极性,并同时串入电阻,如图1-2所示。由于电枢反接这样操作,制动作用会更加强烈,制动更快。电机反接制动时候,电网供给的能量与生产机械的动能都消耗在电阻Ra+Rb 上面。 E Uf ( a )电动状态 图1-1 制动前的电路图 E Uf (b)制动状态 图1-2 制动后的电路图 同时也可以用机械特性来说明制动过程。电动状态的机械特性如下图三的特性1 n 与T 的关系为

T C C R C U C I R U C E n I R U E I C T n C T E a E a E a a a E a a a a T E 2 E Φ -Φ=Φ-=Φ= -=Φ=Φ= 电压反向反接制动时,n 与T 的关系为 其机械特性如图1-3中的特性2。设电动机拖动反抗性恒转矩负载,负载特性如图1-3中的特性3。 T T L n 2 31 b a c o n o T L 图1-3 反接制动迅速停机过程 制动前,系统工作在机械特性1与负载特性3的交点a 上,制动瞬间,工作点平移到特性2上的b 点,T 反向,成为制动转矩,制动过程开始。在T 与L T 的共同作用下,转速n 迅速下降,工作点沿特性2由b 移至c 点,这就是0=n ,应立即断开 电源,使制动过程结束。否则电动机将反向起动,到d 点去反向稳定运行。 电压反向反接制动的效果与制动电阻b R 的大小有关,b R 小,制动过程短,停机快,但制动过程中的但制动过程中的最大电枢电流,即工作于b 点时的电枢电流 ab I 不得超过aN a I I )0.25.1(max -=。由图1-3可知,只考虑绝对值时 b ab I R R E U a b a ++= 式中,E b =E a 。由此求得电压反接制动的制动电阻为 )(2 T C C R R C U n T E b a E a Φ+-Φ-=

电动机反接制动讲课教案

电动机反接制动

他励直流电动机反接制动仿真 一、工作原理 直流电动机的反接制动分为电压反向的反接制动和倒拉反接制动。电压反向反接制动作用用于电动机的快速停机,而倒拉反接制动用于低速下放位能负载。反接制动就是通过调换电动机电枢电压方向以改变电枢电流方向,从而使电动机的电磁转矩方向发生改变,最终实现电动机制动。 当电动机在电动运转状态下以稳定的转速n 运行时候,如图1-1所示,为了使工作机构迅速停车,可在维持励磁电流不变的情况下,突然改变电枢两端外施电压的极性,并同时串入电阻,如图1-2所示。由于电枢反接这样操作,制动作用会更加强烈,制动更快。电机反接制动时候,电网供给的能量和生产机械的动能都消耗在电阻Ra+Rb 上面。 E Uf ( a )电动状态 图1-1 制动前的电路图

E Uf (b)制动状态 图1-2 制动后的电路图 同时也可以用机械特性来说明制动过程。电动状态的机械特性如下图三的特性1 n 与T 的关系为 T C C R C U C I R U C E n I R U E I C T n C T E a E a E a a a E a a a a T E 2 E Φ-Φ=Φ-=Φ= -=Φ=Φ= 电压反向反接制动时,n 与T 的关系为 其机械特性如图1-3中的特性2。设电动机拖动反抗性恒转矩负载,负载特性如图1-3中的特性3。 )(2 T C C R R C U n T E b a E a Φ+-Φ-=

T T L n 231 b a c o n o T L 图1-3 反接制动迅速停机过程 制动前,系统工作在机械特性1与负载特性3的交点a 上,制动瞬间,工作点平移到特性2上的b 点,T 反向,成为制动转矩,制动过程开始。在T 和L T 的共同作用下,转速n 迅速下降,工作点沿特性2由b 移至c 点,这是0=n ,应立即断开电源,使制动过程结束。否则电动机将反向起动,到d 点去反向稳定运行。 电压反向反接制动的效果与制动电阻b R 的大小有关,b R 小,制动过程短,停机快,但制动过程中的但制动过程中的最大电枢电流,即工作于b 点时的电枢电流ab I 不得超过aN a I I )0.25.1(max -=。由图1-3可知,只考虑绝对值时 b ab I R R E U a b a ++= 式中,E b =E a 。由此求得电压反接制动的制动电阻为 a a b a b R I E U R -+≥ max

6 三相异步电动机制动控制电路的安装与调试

《机床电气线路安装与维修》电子教案(项目六) 【项目名称】 三相异步电动机制动控制电路的安装与调试 【教学目标与要求】 一、知识目标 1.了解速度继电器的结构,理解其工作原理; 2. 理解三相异步电动机制动控制电路工作原理; 3.掌握制动概念。 二、能力目标 1.能够识别、选择、安装、使用速度继电器; 2.三相异步电动机反接制动控制电路线路安装与调试; 3. 电路一般故障排除 三、素质目标 1. 培养学生解决实际问题的工作能力; 2. 具备安全生产和环保意识等职业素养。 四、教学要求 学会三相异步电动机制动控制电路安装、调试及一般故障排除。 【教学重点】 速度继电器的文字和图形符号、使用及故障检测方法,制动的概念,三相异步电动机制动控制电路安装、调试及一般故障排除。 【难点分析】 三相异步电动机制动控制电路分析,故障原因及排除。 【分析学生】 1.具备识读电路图的能力和基本操作技能; 1

2.能熟练使用电工常用仪器仪表和工具; 3.学生对低压电器比较熟悉,但还需要通过电路安装、调试来进一步熟悉低压电器。【教学设计思路】 教学方法:演示法、讲练法、归纳法;做中教、做中学、做中评。 【教学资源】 常用低压电器、常用电工仪器仪表、常用电工工具;维修电工实训装置。 【教学安排】 利用6学时完成本项目 教学步骤:教师演示常用电工仪器仪表、常用电工工具使用方法,讲解常用低压电器工作原理及使用方法;讲解三相异步电动机制动控制电路工作原理;学生分组进行线路的安装、调试,独立完成故障排除,教师指导安装、调试、排故并评定学生成绩。 【教学过程】 一、复习旧课 已学的低压电器;常用电工仪器仪表及电工工具的使用方法;电路安装、调试、故障排除的方法;元器件安装、线路布线及检查的方法。 二、导入新课 当电动机需要停机时,就要断开电源,但是由于电动机转子转动的惯性作用,电动机不会马上停止转动,而是需要转动一段时间才会完全停下来。这种情况对于那些需要电动机立即停止的生产机械是不适宜的,比如万能铣床需要立即停转、起重机吊钩需要准确定位等,另外停车需要的时间长也会使生产效率下降。为了满足生产机械的即时停车和提高生产效率,就需要对电动机进行制动。本项目学习三相异步电动机制动控制电路的安装、调试、运行及故障排除。 三、新课教学 1.元器件的认识、安装与使用 掌握速度继电器的文字符号和图形符号,了解其工作原理,学会安装与使用方法。 2

三相异步电动机反接制动综合练习(精)

三相异步电动机反接制动控制线路 一、填空题 1、速度继电器主要作用是以旋转速度的快慢为指令信号,与接触器配合实现对电动机的控制,故又称为继电器。 2、速度继电器的动作转速一般不低于r/min,复位转速约在r/min。 3、虽然能耗制动能量消耗较小,但其较长,且需要附加电源设备,制动力较。对于一些制动要求迅速,系统惯性较大的场合则不能满足要求,需采用制动的方法。 4、反接制动是依靠改变电动机定子绕组的______来产生制动力矩,迫使电动机迅速停转的。在反接制动中常利用______在制动结束时自动切断电源,以防止电动机反向启动运转。 5、反接制动时,旋转磁场与转子的相对转速为______,致使定子绕组中的电流一般约为电动机额定电流的______倍左右。因此这种制动方法适用于______KW 以下小容量电动机的制动,并且对______KW以上的电动机进行反接制动时,需在定子回路中串入______,以限制反接制动电流 6、反接制动经常用于、等主轴的制动控制。 7、速度继电器是一种可以按照被控电动机的高低接通或断开控制电路的电器。其主要作用是与配合使用实现对电动机的制动,故又称为反接制动继电器。 8、速度继电器主要根据电动机的、及电压、电流来选用。 9、反接制动时,由于旋转磁场与转子的很高,故转子绕组中很大,致使定子绕组中的电流也很大,一般约为电动机额定电流的倍左右。因此,反接时,需在定子回路中串入电阻R,以限制反接制动电流, 二、选择题 1、速度继电器的主要作用是实现对电动机的()。 A、运行速度限制 B、速度计量 C、反接制动控制 2、电动机反接制动电流比直接起动电流大,其原因是旋转磁场以()的速度切割转子导体,故感应电动势大。 A、(n s-n) B、 n s C、n D、(n s+n) 3、在三相笼式电动机的反接制动控制电路中,为了避免电动机反转,需要用到()。 A、制动电阻 B、中间继电器 C、直流电源 D、速度继电器 4、异步电动机的反接制动是指改变()。 A、电源电压 B、电源电流 C、电源相序 D、电源频率

三相异步电动机的三种制动方式

三相异步电动机的三种制动方式 最经济:回馈制动 最迅速:反接制动 能制停:能耗制动 时间:2010-04-27 16:47来源:作者:点击:次 三相异步电动机与直流电动机一样,也有再生回馈制动、反接制动和能耗制动三种方式。它们的共同点是电动机的转矩M与转速n的方向相反,以实现制动。此时电动机由轴上吸收机械能,并转换成电能。 一、再生回馈制动 再生回馈制动是在外加转矩的作用下,转子转速超过同步转速,电磁转矩改变方向成为制动转矩的运行状态。再生回馈制动与反接制动和能耗制动不同,再生回馈制动不能制动到停止状态。 以下是再生回馈制动存在: (1)当电网的频率突然下降或者电机的极数突然增高,电机可能工作在发电状态,此时的电机将机械能转变成电能回馈给电网。如图1,当电机在电动状 点,在突然变极或者变频时,电机的工作特性会突然在a 态下运行时工作于P 1 线段部分(蓝线部分),电机的转矩突然变负,其制动作用,直到最后重新稳定工作于P 点为止,电机又回到电动状态。 2 图1 (2)当电机在位能负载(如吊车、提升机)的作用下,使其转速n高于同

步转速n ,此时,电机的输出转矩变负,电机由轴上吸收机械能,当电机的转 点),矩(制动转矩)与负载的位能转矩相平衡时,电机既稳定运行(如图2中P 3 此时电机以高于同步转速的速度运行。在转子电路中串入不同的电阻,可得到不同的人为机械特性,并可得到不同的稳定速度,串入的电阻越大,稳定速度越高,一般在回馈制动时不串入电阻,以免转速过高。 图2 二、反接制动 反接制动是在电机定子三根电源线中的任意两根对调而使电机输出转矩反向产生制动,或者在转子电路上串接较大附加电阻使转速反向,而产生制动。 (1)电源两相反接的反接制动: 点稳定运行,为使电机停转,将定子三根电源线如图3所示,电机原在P 1 中的任意两根对调,使旋转磁场反向,电机的转矩反向,起制动作用,电机运行在a线段。当电机制动停止时,应及时将电机与电网分离,否则电机会反转。 电源两相反接反接制动的优点是制动效果强,缺点是能量损耗大,制动准确度差。

直流电机制动方式

直流电机制动方式 直流电机的制动,有机械制动,再生制动,能耗制动,反接制动机械制动就是抱闸,是电动的抱闸。反接制动:当切断正向电源后,立即加上反向电源,使电动机快速停止,当电动机速度降到零时,装在电动机轴上的“反接继电器”立即发出信号,切断反向电源,防止电动机真的反转。 1、能耗制动。指运行中的直流电机突然断开电枢电源,然后在电枢回路串入制动电阻,使电枢绕组的惯性能量消耗在电阻上,使电机快速制动。由于电压和输入功率都为0,所以制动平衡,线路简单; 2、反接制动。为了实现快速停车,突然把正在运行的电动机的电枢电压反接,并在电枢回路中串入电阻,称为电源反接制动。制动期间电源仍输入功率,负载释放的动能和电磁功率均消耗在电阻上,适用于快速停转并反转的场合,对设备冲击力大。 3、倒拉反转反接制动适用于低速下放重物。制动时在电路串入一个大电阻,此时电枢电流变小,电磁转矩变小。由于串入电阻很大,可以通过改变串入电阻值的大小来得到不同的下放速度。 反接制动时,切换极性相反的电源电压,使电枢回路内产生反向电流:反接制动时,从电源输入的电功率和从轴上输入的机械功率转变成的电功率一起消耗在电枢回路制动电阻上。

4、回馈制动。电动状态下运行的电动机,在某种条件下会出现由负载拖动电机运行的情况,此时出现 n >n0、Ea >U、 Ia 反向,电机由驱动变为制动。从能量方向看,电机处于发电状态——回馈制动状态。 正向回馈:当电机减速时,电机转速从高到低所释放的动能转变为电能,一部分消耗在电枢回路的电阻上,一部分返回电源; 反向回馈:电机拖位能负载(如下放重物)时,可能会出现这种状态。重物拖动电机超过给定速度运行,电机处于发电状态。电磁功率反向,功率回馈电源。

电动机可逆运行反接制动的控制电路的PLC程序设计

可编程序控制器 课程设计报告 学校:哈尔滨理工大学荣成学院院系:电气信息系 专业班级 学号: 姓名:

电动机可逆运行反接制动的控制电路的 PLC 程序设计 一、任务要求 1、 分析电动机可逆运行、反接制动的控制电路,做出程序框图,根 据电气控制原理图做出I/O 地址分配图,做出PLC 硬件接线图。 2、 将电气控制电动机的可逆运行、反接制动的控制电路改造成 PLC 控制,用S7— 200编写可你运行、反接制动PLC 程序梯形图。 3、 按照电路图接好PLC 控制电动机可逆运行、反接制动的控制电路 的电路板。 4、利用实验室现有可编程控制器进行模拟实验 】、系统总体方案 1、工作原理图: 图1 电气控制电动机的可逆运行、反接制动的控制线路 v V 0 甲 电子开发社区 https://www.wendangku.net/doc/ae4449582.html,

2、线路工作原理: 1)正向起动控制过程 按下起动按钮SB2中间继电器KA3线圈通电动做并自锁,K3的动合触点闭合使接触器KM1线圈通电,KM1的主触点闭合,电动机在定子绕组串电阻R环境降降压起动。当转速上升到必定值时,速率继电器KS动做,动合触点KS1闭合,中间继电器KA1线圈通电动做并自锁,KA1的动合触点闭合,KM3线圈通电动做,KM3的动合主触点闭合,切除电阻R电动机在全电压下正转运行。 2)停机控制过程 按停机按钮SB1, KA3及KM1线圈相继断电,触点复位,电动机正向 电源被断开,因为电动机转速还较高,速率继电器KS1的动合触点KS1仍闭合,中央继电器KA1线圈保持通电状态。KM1断电后,动断触电的闭合使反转接触器KM2线圈通电,接通电动机反向电源,进行反接制动。同时,因为中央继电器KA3线圈断电,接触器KM3断电,电阻R被串进主电路,限定了反接制动电流。电动机转速迅速下降,当转速降到小于100r/min时,KS1的动合触点KS1断开复位,KA1线圈断电,KM2线圈也断电,反接制动完毕。 3)反向启动控制过程 按反背起动按钮SB3其起动过程和停机过程和正转时相似。 三、PLC型号选择及其PLC元器件分布 1、PLC型号选择CPU224

汽车制动系统论文

汽车制动系统论文

贵州航天职业技术学院毕业论文(设计)题目汽车制动系统故障分析 系别:汽车工程系 专业:汽车检测与维修技术 班级: 2015级汽检一班 学生姓名: 学号: A153GZ0311001008 指导教师: 冉煜

摘要 摘要正文:汽车制动系统是汽车的一个重要组成部分,直接影响汽车的安全性。据相关资料介绍,在由于汽车本身造成的交通事故中,制动故障引起的事故占45%。可见,制动系统是保证行车安全的重要系统。制动系统作用是:使行驶中的汽车按照驾驶员的要求进行强制减速甚至停车;使已停驶的汽车在各种道路条件下(包括在坡道上)稳定驻车;使下坡行驶的汽车速度保持稳定。汽车制动系统是指为了在技术上保证汽车的安全行驶,提高汽车的平均速度等,而在汽车上安装制动装置专门的制动机构。一般来说汽车制动系统包括行车制动装置和停车制动装置两套独立的装置。其中行车制动装置是由驾驶员用脚来操纵的,故又称脚制动装置。停车制动装置是由驾驶员用手操纵的,故又称手制动装置。 关键词:制动系统、故障分析 1

目录 1 制动系统的历史 (1) 2 制动系统的组成、工作原理 (2) 3 制动器的分类 (3) 4 液压制动系统的故障诊断分析 (4) 5 气压制动系统的故障诊断分析 (5) 6 汽车液压制动系统与气压制动系统对比 (6) 总结 (7) 1

1 制动系统的历史 最原始的制动控制只是驾驶员操纵一组简单的机械装置向制动器施加作用力,这时的车辆的质量比较小,速度比较低,机械制动虽已满足车辆制动的需要,但随着汽车自质量的增加,助力装置对机械制动器来说已显得十分必要。这时,开始出现真空助力装置。1932年生产的质量为2860kg的凯迪拉克V16车四轮采用直径419.1mm的鼓式制动器,并有制动踏板控制的真空助力装置。林肯公司也于1932年推出V12轿车,该车采用通过四根软索控制真空加力器的鼓式制动器。 随着科学技术的发展及汽车工业的发展,尤其是军用车辆及军用技术的发展,车辆制动有了新的突破,液压制动是继机械制动后的又一重大革新。器。克莱斯勒的四轮液压制动器于1924年问世。通用和福特分别于1934年和1939年采用了液压制动技术。到20世纪50年代,液压助力制动器才成为现实。 20世纪80年代后期,随着电子技术的发展,世界汽车技术领域最显著的成就就是防抱制动系统(ABS)的实用和推广。ABS集微电子技术、精密加工技术、液压控制技术为一体,是机电一体化的高技术产品。它的安装大大提高了汽车的主动安全性和操纵性。防抱装置一般包括三部分:传感器、控制器(电子计算机)与压力调节器。传感器接受运动参数,如车轮角速度、角加速度、车速等传送给控制装置,控制装置进行计算并与规定的数值进行比较后,给压力调节器发出指令。 1936年,博世公司申请一项电液控制的ABS装置专利促进了防抱制动系统在汽车上的应用。1969年的福特使用了真空助力的ABS制动器;1971年,克莱斯勒车采用了四轮电子控制的ABS装置。这些早期的ABS装置性能有限,可靠性不够理想,且成本高。1979年,默本茨推出了一种性能可靠、带有独立液压助力器的全数字电子系统控制的ABS制动装置。1985年美国开发出带有数字显示微处理器、复合主缸、液压制动助力器、电磁阀及执行器“一体化”的ABS防抱装置。随着大规模集成电路和超大规模集成电路技术的出现,以及电子信息处理技术的高速发展,ABS以成为性能可靠、成本日趋下降的具有广泛应用前景的成熟产品。1992年ABS的世界年产量已超过1000万辆份,世界汽车ABS的装用率已超过20%。一些国家和地区(如欧洲、日本、美国等)已制定法规,使ABS成为汽车的标准设备。 1

三相异步电动机常见的制动方法与应用

三相异步电动机常见的制动方法与应用 三相异步电动机切除电源后依惯性总要转动一段时间才能停下来。而生产中起重机的吊钩或卷扬机的吊蓝要求准确定位;万能铣床的主轴要求能迅速停下来。这些都需要对拖动的电动机进行制动,其方法有两大类:机械制动和电力制动。 1.机械制动 采用机械装置使电动机断开电源后迅速停转的制动方法。如电磁抱闸、电磁离合器等电磁铁制动器。 (1)电磁抱闸断电制动控制电路 电磁抱闸断电制动控制电路如图1所示。合上电源开关QS和开关K,电动机接通电源,同时电磁抱闸线圈YB得电,衔铁吸合,克服弹簧的拉力使制动器的闸瓦与闸轮分开,电动机正常运转。断开开关电动机失电,同时电磁抱闸线圈YB也失电,衔铁在弹簧拉力作用下与铁芯分开,并使制动器的闸瓦紧紧抱住闸轮,电动机被制动而停转。图中开关K可采用倒顺开关、主令控制器、交流接触器等控制电动机的正反转,满足控制要求。倒顺开关接线示意图如图2所示。这种制动方法在起重机械上广泛应用,如行车、卷扬机、电动葫芦(大多采用电磁离合器制动)等。其优点是能准确定位,可防止电动机突然断电时重物自行坠落而造成事故。 图1 电磁抱闸断电制动控制电路

图2 (2)电磁抱闸通电制动控制电路 电磁抱闸断电制动其闸瓦紧紧抱住闸轮,若想手动调整工作是很困难的。因此,对电动机制动后仍想调整工件的相对位置的机床设备就不能采用断电制动,而应采用通电制动控制,其电路如图3所示。当电动机得电运转时,电磁抱闸线圈无法得电,闸瓦与闸轮分开无制动作用;当电动机需停转按下停止按钮SB2时,复合按钮 SB2的常闭触头先断开切断KM1线圈,KM1主、辅触头恢复无电状态,结束正常运行并为KM2线圈得电作好准备,经过一定的行程SB2的常开触头接通 KM2线圈,其主触头闭合电磁抱闸的线圈得电,使闸瓦紧紧抱住闸轮制动;当电动机处于停转常态时,电磁抱闸线圈也无电,闸瓦与闸轮分开,这样操作人员可扳动主轴调整工件或对刀等。 图3 电磁抱闸通电制动控制电路 机械制动主要采用电磁抱闸、电磁离合器制动,两者都是利用电磁线圈通电后产生磁场,使静铁芯产生足够大的吸力吸合衔铁或动铁芯(电磁离合器的动铁芯被吸合,动、静摩擦片分开),克服弹簧的拉力而满足工作现场的要求。电磁抱闸是靠闸瓦的摩擦片制动闸轮.电磁离合器是

相关文档
相关文档 最新文档