文档库 最新最全的文档下载
当前位置:文档库 › 时间同步方案说明

时间同步方案说明

时间同步方案说明
时间同步方案说明

由于中国联通的WCMA属于异步通信系统,只需要支持频率同步,因此可采用同步以太技术。未来LTE阶段可根据需求采用1588v2技术实现时间同步。

1588v2必须逐跳支持,唯一可以穿越的网络为:只处理波长转换、不处理电层信号、任意时刻1588v2路径上的收发光纤对称的波分设备。华为公司的OTN系列传输产品和MSTP Hybrid系列传输产品已经全面支持1588v2,新建的网络如果同时有CX、ATN、OTN、MSTP Hybrid设备,推荐逐跳1588v2。这种方式更可靠,性能稳定。如果存在不支持1588v2的第三方网络,并且仍然要求承载网络传递时间到基站,也可以选择在不支持1588v2的网络边缘分别设置BITS。

1.1 时钟同步以太方案建议

同步以太技术类似于SDH实现,只有ETH端口才支持。通过物理芯片和锁相环技术提取ETH码流中的时钟信息,性能稳定、技术成熟。同步以太继承了SDH物理时钟同步的一些机制,SSM和扩展SSM。在复杂的时钟网络中,启动标准SSM 协议可以避免时钟互跟以及实现时钟保护,启动扩展SSM 协议可以避免时钟成环。

图表19 同步以太方案原理

对于3G/LTE基站,一般都支持ETH接口通过同步以太从接入设备获取时钟;对于2G基站(E1接口),ATN可以对E1进行retiming(再定时)后通过E1将频率传递给基站;对于不支持同步以太,也没有E1业务接口的基站,可以专门为时钟配置E1传递频率,或者接入设备的E1接入到基站的外时钟口也可以。

同步以太整网的规划:

(1)需要配置双BITS,实现时钟源设备级保护;

(2)核心节点:通过外时钟口2Mbit从外接BITS获取时钟同步;

(3)核心节点、汇聚层、落地节点CX/ATN:逐点支持同步以太,使能SSM;

(4)全网启用扩展SSM协议,增强时钟网的保护能力。扩展SSM协议要为每一个从时钟子网外部引入的时间源分配一个独立的时钟源ID(扩展SSM为可选项);

(5)全网要合理规划时钟同步网,避免时钟互锁、时钟环的形成。对于时钟长链要考虑给予时钟补偿(G.803):传送链路中的G.812从时钟数量不超过10个,两个

G.812从时钟之间的G.813时钟数量不超过20个,G.811,G.812之间的G.813的时钟

数量也不能超过20个,G.813时钟总数不超过60个。

图20 同步以太部署方案

同步以太应用组网限制:

(1)使用子卡必须支持同步以太功能;

(2)CPOS和E1子卡暂不支持SSM功能(SDH同步);

(3)不支持在光口子卡上插光转电模块进行以太同步;

(4)组网要求:必须逐跳支持

1.2 1588v2时间同步方案建议

华为公司1588v2主要遵循如下标准开发:IEEE Std 1588TM –2008、中国移动TD无线系统高精度时间同步技术规范(1588v2协议规范)、中国移动TD无线系统高精度时间同步技术规范(1PPS+ToD时间接口规范)。

1588V2是目前组网唯一能够提供的时间同步方案,如下图所示,主备BITS一般与基站控制器共机房,就近能够接入RSG设备最好。华为公司的BITSV6或者BITSV3都可以作为时间源。推荐BITS配置为OC模式,通过ETH口接入RSG. 1PPS+ToD没有国际标准,只有中国移动公司的标准,并且存在秒脉冲状态(代表时钟质量)和Clockclass(1588V2中的时钟质量)转化的问题,不推荐。另外,基站最好支持1588V2,能够与网络设备对接,否则使

用1PPS+ToD 同样存在异常商互通困难的问题。

图表 21 1588v2部署方案

推荐1588v2逐跳BC (Boundary Clock )模型组网,因TC (Transparent Clock )模型故障定位困难,如无特殊需要,可测试但不建议商用。

华为公司为中国联通建议的时间同步具体方案是1588v2 ACR 方案,参考的相关标准有IEEE1588V2, ITU-T G.8265, G.8265.1。

1588 ACR 部署时,Master 和Slave 的SIP (Source IP )优先选择为设备的Loopback 地址,可以实现链路级保护。如下图,对同一个Slave ,可以配置至少两个Master ,实现主备保护。 IP RNC RSG1RSG2NodeB eNB

S-GW/MME NPE 2Mbit/s 2Mbit/s Master Master BTS Backup 图表 22 1588 ACR 部署方案

1588 ACR 要求Master/Slave 之间IP 可达。如果存在IGP 协议层次化部署,以主推的IS-IS 协议为例,如默认情况下汇聚环路由(Level-2)不会通过SPE 发送给UPE ,所以这里要将NPE (1588 ACR Master )的Loopback 地址通过SPE 渗透到接入环UPE 上。默认情况下Level-1路由是可以渗透到Level-2的,也可以通过手工配置。

由于ACR 技术的同步性能依赖于中间网络的QoS 性能,因此在部署ACR 时,需要对中间网络做一定的约束。

● 可以支持的穿越中间网络类型:PSN (特指Router&Switch&Gpon )网络、波分、SDH 、

华为公司微波;

● PDV :要求PDV 在 16ms 以内;

● 针对各种网络还要满足特殊要求:

PSN 网络:

1)支持G.8261定义的场景;

2)丢包率:小于0.5%;

3)QoS:最高优先级;

4)跳数小于10跳(10个网元),长期流量小于80%.

波分网络:

无特殊要求;

SDH网络:

1)SDH网络要求是VC4/VC3颗粒的封装,不支持VC12颗粒的封装;

2)要求ACR报文中间只上下1次SDH网络,不能多次重复上下。

微波网络:

1)微波是Packet微波;TDM微波同SDH;

2)QoS:最高优先级;

3)要求微波的带宽在100M以上,跳数少于等于2跳(3个网元),长期流量小于80%.

1.3 华为1588v2部署优化技术介绍

1588v2在工程上面临的最大问题是收发光纤长度不对称,光纤不对称主要影响1588v2 时间同步精度,对1588v2频率同步没有影响。1米的偏差引入的延时约5ns,按照1588v2时间计算公式,若累计有400米的光纤不对称,将产生1us时间误差,达不到基站等的时间精度要求。

1588v2应用于电信网络中的另一个难点是,常见的光纤割接和熔接操作会引入新的光纤收发长度不对称,每次操作都需要通过仪表测量等方式进行光纤非对称补偿校准。

在实际部署时,业界目前主要有3种光纤不对称解决方案,下面分别介绍:

1.3.1 单纤双向

设备直接采用单纤双向光模块,收发都在同一根物理光纤上传输,从根本上彻底解决双纤收发链路延时不对称的问题,不需要进行测量和补偿。单纤双向方案中,由于收发波长不同引起的双向链路延时不对称一般比较小,且可以由设备自动计算和补偿。根据G.652的定义,可以计算出FE单纤双向引入的时间误差约为每公里1.06ns,GE单纤双向引入的时间误差约为每公里0.544ns,远远小于普通双纤1米2.5ns的时间误差。采用单纤双向光模块后,无论是开局还是维护,都不用下站测量。

1.3.2 仪表逐点测量

在开局和维护过程中,采用1588仪表逐点测量设备的1588时间同步精度,根据测量到

的时间同步精度反推出光纤不对称,然后进行补偿;也可以采用OTDR仪表直接测量每一对光纤的不对称,然后进行补偿。由于OTDR仪表测量要断业务,且不能直接看到1588同步的结果,因此一般倾向直接采用1588V2仪表进行测量。

华为自研便携仪表,内置GPS,快速搜星,相比传统测量仪表及测量手段节省50+% 时间,该仪表已经通过杭州移动、菲律宾Globe等局点验证。

图表 1 便携仪表

1.3.3 环网自动测量

采用普通双纤光模块,开局时通过仪表逐点测量完成光纤不对称补偿。在维护阶段,对于环形组网,则可以通过环网自动测量来避免光纤故障、跳接时重新下站测量,减少后期维护的工程量。其基本原理是利用1588V2的BMC功能,环网断纤后,会自动倒换到备用路径,环上各节点的时间同步精度仍然维持在可用的范围内,此时如果断纤处的光纤重新接上,设备可以先自动测量新光纤是否存在不对称的情况,将测量结果上报网管,然后在网管上根据计算结果进行补偿,之后再倒换回之前的主用路径。

图表24 环网自动测量方案

NTP网络时间服务器(时间同步装置)使用手册

NTP网络时间服务器使用手册 北京华人开创科技发展有限公司 2012年10月

第一部分NTP网络时间服务器说明书 一、产品功能 NTP网络时间服务器是一款安全可靠的高精度的网络时间服务器。安装简便(天线放置时能提示可见卫星数),接口可支持以太网10/100Mbps和串口(波特率可设置),用户可修正精度(依据天线长度、串口线长度、客户端软件开销等),网络时间精度1~10mS(秒服务能力3000次/秒),串口时间精度8.33uS。 本产品运行具有较强的健壮性,当授时模块某一时段失效或天线失灵时,系统能自动启用守时机制(4小时内,精度影响甚微),确保NTP服务器能连续可靠工作。当授时模块或天线转为正常时,系统能自行将时间同步精度恢复。 二、产品外观 2.1前视板 2.2后视板

三、产品安装 3.1 连接天线 天线连接到“天线-主”口。 3.2 连接电源 将220V电源线连到AC220V座上或将电源适配器(7.5V~12V)接到DC口上。也可以同时接上,提高供电可靠性。 3.3 LAN网口 支持10/100Mbps以太网,NTP遵循SNTP4.0协议,符合RFC2030要求。 四、开机 4.1 加电 打开电源开关,液晶屏会显示“初始化中。。。。。”、“卫星数:X”。根据卫星数多少、捕获时间,调整天线的位置,最好确保可见卫星数10个以上。 4.2 指示灯说明 报警灯--GPS时间无效 时统1—NTP模块工作 4.3 液晶屏说明 左大部为时间显示,严格按秒脉冲同步(误差小于10uS)。 右上角为系统工作状态指示,第1个字符表示时区(B-北京时间,G-格林威治时间,U-其它时区),但当出现“L”时,意味着NTP进入守时状态;第2个字符表示串口和无线口同步时刻(R-每秒,S-即时5分钟内同步,F-深夜2:00开始8分钟同步);第3个字符表示NTP网口设置与否(N-NTP网口打开,空白-NTP网口关闭)。默认方式显示“BRN”。 右下角指示同步方式和时间精度修正值,第1个字符表示同步方式(T-尾同步,H-头同步);第2~4个字符表示以10ms、1ms、us为单位的精度修正值。缺省配置为“T000"。 五、设备参数设置 关于参数设置,根据显示屏提示,由功能键操作来实施。当显示屏信息提示时,若及时“按”键,表示不选该功能;若2秒内不按“功能键”,默认当前参数选择。首次按下功能键,首先显示“校准时刻:”。 5.1 校准时刻(跳过) 按键跳过该选项转5.2,否则进入该子项选择,依次可选“实时校准”、“即时校准”、“定时校准”、“守时参与校准”、“不再校准”。 注:“实时”指,UART每秒发送时间;

PLC时间控制

揭阳职业技术学院 毕业论文(设计) 题目:基于PLC的学校作息时间控制系统学生姓名王东指导教师廖兴展 系(部)机电工程系专业电气自动化 班级 091学号 09454114 提交日期201 年月日答辩日期 201 年月日 201 年月日

基于PLC的学校作息时间控制系统 摘要 本文介绍一种用三菱PLC控制学校的作息时间控制系统,详细地阐述了系统组成、系统硬件接线和系统软件设计,并详细介绍了系统工作原理。该系统具有外设电路配置简单、扩展方便、操作容易、可靠性高、实用性强等特点,集电铃、路灯、宿舍楼道照明灯、教室楼道照明灯、广播、宿舍大门开启关闭、宿舍网络连接断开,实现了作息时间无人控制的自动化、科学化管理与操作。 关键词:作息时间控制 PLC I/O接线软件设计

Abstract This article introduced that one kind the daily schedule controlsystem which controls with PLC, elaborated in detail the systemcomposition, the system hardware wiring and the system softwaredesign, and introduced the system principle of work in detail. Thissystem has the peripheral device electric circuit disposition to besimple, the expansion is convenient, the operation is easy, thereliability is high, usability strong and so on characteristics,collection electric bell, street light, dormitory lamp, classroomlamp, music broadcast automatic control in a body, , has realized the daily schedulenobody control automation, the scientific management and theoperation. key word:Daily schedule control; PLC; I/Owiring; Software design

域内时间同步设置

域内各个服务器的时间保持一致,是一个很重要而又往往又容易被人忽略的问题,如果时间不同步或出现异常,往往会出现以下问题: 1. 服务器上应用程序Server端无法获取准确的日期,导致反馈给客户端的日期时间不准确 2. 系统日志上时间不正确,无法通过时间点查找错误信息 3. VPN用户无法连接网络,导致无法正常工作 4. Failover Cluster无法正常启动或切换 … 以下内容,我们会介绍如下获取修改系统时间,如何设置成与时间服务器同步,并介绍各个常用的与时间有关的命令。 一.常见命令 1. 修改当前计算机时间 使用time命令,同时会要求您重设时间 如果不需要设置时间,则直接回车即可 这个命令仅限于粗糙的时间调整。 2. 获取当前计算机的日期及时间信息 在Windows HyperV中,用户无法看到图形界面的日期与时间信息,但可以通过以下命令进行查看: a) 在命令行中输入timedate.cpl, 系统自动弹出日期,时间设置窗口,可以在此位置进行设置 b) 在命令行中输入net time [url=file:///]\\IP[/url]地址或计算机名称,此命令还可以查看其他计算机的当前时间,例如: net time [url=file:///]\\3.242.107.129[/url], 如果是域内计算机,想查看当前域的整体时间net time /domain:shinseifin

3. 显示时区 a) Timedate.cpl b) W32tm /tz 显示本地计算机时区设置 4. 很多时间我们想知道,当前域内的计算机是从哪个服务器同步的时间,可以用如下命令: W32tm /monitor /computers:计算机名称 或者w32tm /monitor /domain:域名 结果如下

硬盘录像机服务器时间同步方法

P C、硬盘录像机时间同步设置一.原理:利用NTP服务实现。NTP服务器【Network Time Protocol(NTP)】是用来使计算机时间同步化的一种协议,它可以使计算机对其服务器或时钟源(如石英钟,GPS等等)做同步化,它可以提供高精准度的时间校正(LAN上与标准间差小于1毫秒,WAN上几十毫秒),且可介由加密确认的方式来防止恶毒的协议攻击。 二.如何使局域网内的电脑时钟同步 首先要在互联网上寻找一台或几台专门提供时间服务的电脑(以下称为“主时间服务器”),在百度和Google里搜索一下,时间服务器还是很多的,笔者推荐pool.ntp.org这个地址。其次设置局域网时钟服务器。选择单位中能上外网的一台电脑,让它与主时间服务器同步,然后把它设为局域网内部的时间服务器(以下称为时间服务器),以后局域网内所有电脑依它为准进行时间校对。 最后设置客户端。如果客户机为win2000、XP或Linux系统,不需要安装任何软件。如客户机为Win98系统时要根据时间服务器类型的不同而区别对待:如果时间服务器选用SNTP协议进行时钟同步,则Win98机上需安装一个sntp客户端软件,如时间服务器由Windows电脑通过netbios协议提供,则Win98上也不需要安装任何软件。 三.如何设置时间服务器 以下分Win2000、XP分别介绍,而且只介绍sntp服务的架设。 1.Windows2000、XP做时间服务器 第一步:指定主时间服务器。在DOS里输入“net time /setsntp:pool.ntp.org”,这里我们指定pool.ntp.org是主时间服务器。

第二步:与主时间服务器同步。先关闭windows time服务,再开启该服务。在DOS里输入“net stop w32time”、“net start w32time”。 第三步:设置电脑的Windows time服务的启动方式为自动,在“管理工具”的“服务”界面下完成(xp系统默认是自动)。 注意:这台windows主机不能加入任何域,否则无法启动windows time服务。此时,这台windows电脑已经是互联上主时间服务器的客户了,以后每次电脑启动时,都会自动与主时间服务器校对时间。如果网络不通,电脑也会过45分钟后再次自动校对时间。需要提醒的是电脑的时钟与标准时间误差不能超过12个小时,否则不能自动校对,只有手动校正了。 第四步:使这台电脑成为局域网内的时间服务器。用“regedit”打开注册表,把 “HKEY_LOCAL_MACHINE/SYSTEM/CurrentControlSet/Services/W32Time/Paramet ers”中的 LocalNTP改为1即可。 四.如何设置客户端 客户端的主要任务是连接到局域网内的时间服务器,以保持电脑的时钟与服务器同步。同样分Windows2000、XP几种情况介绍。 1.Windows2000主机 执行设置时间服务器时的前三步即可。 2.WindowsXP主机 可以按Windows2000主机的方法设置,也可双击任务栏右下角的时钟图标,打开“日期时间属性”对话框,在“Internet时间”卡片上选中“自动与Internet 时间服务器同步”,并在服务器上填入内部时间服务器的IP地址即可。

电铃系统-----基于单片机

湖南信息职业技术学院毕业(论文)设计 答辩申请书 课题电铃系统设计 一、课题(论文)提纲 二、内容摘要 三、参考文献 注:学生凭此申请书和设计(论文)样文参加答辩

湖南信息职业技术学院教务处制 目录 摘要: (3) 关键词 (3) 一、绪论................................................................................................................ 错误!未定义书签。 二、总体方案设计 (8) 2.1芯片比较 (8) 2.1.1 单片机选型 (8) 2.1.2 液晶显示模块的选择 (8) 2.1.3 时钟芯片的选择 (10) 2.1.4 语音芯片的选择 (11) 2.2总体设计与系统原理 (13) 三、硬件设计 (13) 3.1、单片机部分 (13) 3.1.1 STC89C52 (13) 2.1.2单片机硬件资源分配 (16) 3.2、液晶显示模块 (17) 3.3、时钟芯片部分 (23) 3.4、电源与复位电路部分 (24) 3.4.1 电源部分 (24) 2.4.2复位电路 (24) 3.2、电铃和音乐芯片部分 (25) 3.3、按键部分 (25) 四、软件设计 (26) 五、系统调试与仿真图 (29) 5.1、软件调试 (29) 5.2、系统调试 (23) 5.3、仿真图 (30) 六、总结................................................................................................................ 错误!未定义书签。参考文献................................................................................................................ 错误!未定义书签。

时间同步监测装置(TMU)简介

YJD-3000时钟同步监测单元(TMU) 1. 装置说明 时钟同步监测单元采用模块化结构设计,可以通过多种接口板接入现场的各类不同的对时信号。同时该装置以网络方式通过数据网与中心端核心时钟建立时间同步关系,获取精确时间。该装置通过对接入的多种时间信号和中心端核心时钟的时间参考信号进行时间对比,并将该信息通过数据网上报至监控中心,实现主要的时间精度监测功能,同时还将上报时钟监测装置的本体工作状态等信息。监控中心通过专用的监测平台软件对各厂站上报的监测信息进行统一分析和后期处理,并以多种形式提供良好的管理界面环境。 装置功能如下: ●具备NTP/PTP/ E1接口,通过SDH或数据网与中心时钟系统进行对时, 获取中心站的参考时间; ●支持厂站时钟系统的主钟(含主备)、扩展时钟输入测量,将输入的各类 型信号与获取的中心站时间基准做比较,测量差值,并通过数据网方式 上报中心; ●支持厂站端监控系统(总控单元)、RTU、相量测量装置(PMU)、AVC子 站、电能量远方终端等被授时设备的时间测量; ●支持装置本体状态上报; ●支持中心以NTP、PTP 、E1方式监测本体时间精度; ●具备多种对时输入监测接口,支持对差分、TTL、光纤、节点、串口等方 式的B码、脉冲、报文等多种对时信号进行实时精度测量; ●具备多种对时输出接口,支持差分、TTL、光纤、节点、串口等方式的B 码、脉冲、报文等多种对时信号; ●具有多路开入量接口,可接入主钟、备钟、扩展装置等状态量,包括: 时钟失锁、电源失电等; ●可作为独立时钟同步系统使用,利用数据网实现时间同步网功能; ●当地数据显示功能; ●时钟同步监测单元采用嵌入式系统; ●支持厂站自动化监控系统的日脉冲引发的SOE报文接收并统计出偏差值 上报中心站;

HDTSS-1000时间同步装置说明书

目录 一、时间同步系统简介 (3) 二、遵循的主要标准 (4) 三、时间同步系统主要技术指标 (5) 四、产品选型指南 (9) 五、主时钟使用方法 (11) 5.1 主时钟工作状态LED指示 (11) 5.2 按键说明 (12) 5.3 按键操作 (13) 5.4系统工作状态 (13) 5.5 主时钟背板示意图及各插件板说明 (17) 5.5.1 电源板 (17) 5.5.2 告警板 (18) 5.5.3 CPU板 (18) 5.5.4 TTL电平输出板 (19) 5.5.5 OC60VDC输出板 (20) 5.5.6 OC250VDC输出板 (22) 5.5.7 RS232板 (23) 5.5.8 RS485板 (24) 5.5.9 PTP板 (25) 5.5.10 GPS时钟源输入板(B码和天线输入) (25) 5.5.11 BD时钟源板(B码和天线输入)(单、双向可选) (26) 5.5.12 IRIG-BDC-FIBER FC(820nm)板 (27) 5.5.13 IRIG-BDC-FIBER SC(1310nm)板 (27) 5.5.14 IRIG-BAC 输出板 (28)

一、时间同步系统简介 HDTSS-1000时间同步系统是上海汉鼎电力科技有限公司研发的高精度、高可靠性的时间同步系统;可以接收卫星(GPS、北斗)时间信号(北斗模块单、双向可选)、外部IRIG-B、网络NTP/PTP时间信号采用先进的“时间驯服算法”,对本地晶振进行驯服,实现高精度的守时功能。 HDTSS-1000时间同步系统由主时钟和从时钟(不带GPS和北斗)组成。一般地,每台主时钟可以独立应用于一个最小系统,如小规模的发电站或者变电站、或者主站MIS系统。主时钟和从时钟均由可互换的插件板组成,可根据现场需要灵活更换或扩展不同的插件板来满足实际应用。对于分布式应用场合,则需增加插件板或从时钟(不带GPS和北斗)共同构成一个系统来满足需求。 主时钟和从时钟(不带GPS和北斗)之间的时标信号连接支持双光纤信道与RS485信道,确保扩展时钟(不带GPS和北斗)时间基准信号的稳定性。 时间同步系统时间基准信号多输入、双主机或从时钟冗余、双时标信号传输信道构成了一个强壮、稳定和可靠授时网络。 主时钟和从时钟(不带GPS和北斗)均支持互换性结构的内部守时模块,守时精度可以根据用户需要在5×10-9(恒温晶振:0.13us/分钟、191us/天)~2×10-11(铷原子频标: 1.2ns/分钟、1.728us/天)之间选择,主机和扩展时钟均可自动适应不同精确度和稳定度等级的守时模块,无需重新设计硬件或者软件,确保产品的通用性、稳定性。 主时钟和从时钟的所有工作参数均通过软件实现就地或远方的管理与设置,不存在跳线帽、电位器、旋钮等不可靠的硬件环节。 提供了对全网时间同步系统各组成部分进行在线监控、参数配置与功能管理的网管软件系统,简化了现场服务、管理与维护工作。

基于单片机的作息时间控制钟系统设计

课 设 计 任 务 书

摘 要 片 机 作 息 时 间 控 制 系 统 设 计 的 目 的 和 意 义: 着 计 算 机 技 术 的 发 展 和在控制系统中的广泛应用,以及设备向小型化、智能化发展,作为高新技术之一的单片机以其体积小、功能强、价格低廉、使用灵活等优势,显示出了很强的生命力。进入21世纪以来,开发推出单片机的公司很多,各种高性能单片机芯片市场也异常活跃,新技术的不断采用,更加使单片机的种类、性能以及应用领域不断扩大和提高。因其功耗低,超高型,低成本,功能完整,在国内越来越受到用户的重视和广泛使用。 随着科技的进步和技术不断的提升。一块大而复杂的模拟电路花费了您巨大的精力,繁多的元器件增加了您的成本。而现在,只需要一块几厘米见方的单片机,写入简单的程序,就可以使您以前的电路简单很多。相信您在使用并掌握了单片机技术后,不管在您今后开发或是工作上,?一定会带来意想不到的惊喜。?以AT89S52为核心控制器件的作息时间控制钟,由键盘、声音输出模块、电源转换模块和存储模块四部分组成。它利用AT89S52的定时/计数器来计算时间,并用存储器记录数据,保证了系统的可靠性。

AT89S52单片机是整个设计的核心控制器件,根据从键盘接受的数据控制整个系统的工作流程。整体性好,人性化强、可靠性高,实现了对时间控制的智能化,摆脱了传统由人来控制时间的长短的不便,是现代学校必不可少的设备。 本次校园作息时间控制系统主要用于学校,对一些以24小时为周期的开关量进行自动控制。如上下课打铃及扩音设备的开与关。采用AT89S52单片机来实现对上述开关量的控制,利用24C02芯片来存储数据,设有六位数码管、可以实时显示时间、系统还设有输入键盘,用以修改实时时钟,体现了系统简单、工作稳定可靠、价廉、控制时间精确及系统体积小等优点。 关键词:作息时间控制; AT89S52; 24C02 目录 1 绪论 (1) 背景介绍.................................................. 作息时间控制钟概述 (1) 2 硬件介绍 (2) 硬件仿真环境介绍 (2) 系统整体设计 (2) 控制钟硬件设计 (3) 系统整体电路图 (4) 3作息时间控制钟软件设计 (6) 总体介绍 (6) 软件环境介绍 (6) 流程图介绍 (6) 系统主程序 (6) 系统数据读写子程序 (10) 显示子程序 (14) 报警扫描子程序 (19) 键盘扫描子程序 (20) 设置时钟子程序 (22) T1定时器中断子程序 (25) 4 系统调试 (28) 5结论 (29) 6附录 (24) 参考文献 (30) 主要元件列表 (31) 1 绪论 背景介绍 随着计算机技术的发展和在控制系统中的广泛应用,以及设备向小型化、智能化发展,作为高新技术之一的单片机以其体积小、功能强、价格低廉、使用灵活等优势,显示出了很强的生命力。进入21世纪以来,开发推出单片机的公司很多,各种高性能单片机芯片市场也异常活跃,新技术的不断采用,更加使单片机的种类、性能以及应用领域不断

工程项目管理系统测试方案

工程项目管理系统测试 方案 标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

工程项目管理系统测试方案 (模块测试阶段) 1.试用人员账号信息

2.人员分工 3.测试项目

4.测试用例(其他分公司按照潍坊公司用例进行,只需要更改项目编号和名称)潍坊公司用例一(分成多个任务的情况) (1)立项 项目编号:07TWF2SB0001 项目名称:潍坊电信昌乐机房改造工程 项目经理:朱汇川 项目类型:设备工程 项目概况:潍坊电信昌乐机房改造工程(介绍项目的情况) 立项时间:2007-08-01

(2)任务分解 01:领料 计划开始时间:2007-08-01 计划结束时间:2007-08-02 任务描述:到电信仓库领取工程用料(可以根据情况自由填写)02:施工 计划开始时间:2007-08-03 计划结束时间:2007-08-08 任务描述:工程施工(可以根据情况自由填写) 03:验收 计划开始时间:2007-08-09 计划结束时间:2007-08-09 任务描述:工程验收(可以根据情况自由填写) (3)计划 领料阶段人力计划:张三 领料阶段材料计划:电力电缆:RVV1-16 20M 甲方提供 电力电缆:RVV1-25 20M 甲方提供 电力电缆:RVV1-35 20M 甲方提供

电力电缆:RVV1-50 20M 甲方提供 交流排:5个单价40元/个自购 光纤跳线:单模一米 20条 20元/条自购领料阶段成本计划:计划材料费:自动生成 计划工作和福利费:自动生成 计划折旧费:100 计划办公费:100 计划差旅费:0 计划车辆使用费:100 计划费用合计:自动生成 施工阶段人力计划:张三、李四 施工阶段材料计划: 施工阶段成本计划:计划材料费:自动生成 计划工作和福利费:自动生成 计划折旧费:100

ad域配置时间服务器

ad域配置时间服务器 PDC如何设置外部服务器为权威服务器。将PDC的时间源同步服务器更改为公司内部的另外一台服务器(192.168.1.250),其他Linux服务器是用192.168.1.250这台服务器作为权威时间源服务器的 1.如何在PDC上设置将权威时间源服务器设置为19 2.168.1.250 2.如何检查PDC的时间服务器已经更改为192.168.1.250 3.如果检查PDC跟权威时间服务器192.168.1.250已经同步了 4.域内的其它DC不用做任何设置,就可以跟PDC保持时间同步了吧,客户 端也无需做任何操作吧,谢谢! 环境:Windows Server 2008 DC ,多Site 回答:根据您的描述,您知道如果在域环境中配置时间服务器。 首先,我们知道在域环境下时间同步非常重要,默认情况下如果DC之间或者DC 和client之间的时间差超过5分钟,那么Kerberos验证就是会失败(默认时间可以修改)。因此正确的配置时间架构将非常重要,一般来说我们按以下架构图来配置时间同步。 活动目录时间服务 在域环境中,PDC(拥有PDC Emulator 这个FSMO角色的DC)默认情况下是该域的权威时间服务器。 按照以上的时间同步层次图,一般情况下我们建议您将顶端的PDC(如果是多域环境,则选择根域的PDC)的时间源服务器指向外部可靠的时间源比如 https://www.wendangku.net/doc/a74480914.html,。

1.您可以通过以下命令设置时间同步源: o w32tm /config /manualpeerlist:/syncfromflags:MANUAL o详细配置信息请参考: ?Synchronize the Time Server for the Domain Controller with an External Source ?https://www.wendangku.net/doc/a74480914.html,/en-us/library/cc784553 (v=ws.10).aspx 2.您可以在PDC上运行以下命令查看时间同步(延迟)情况: o W32tm /monitor 3.将DC设置为可信任的时间源,那么该域中的其他DC和client将会从该 DC上进行时间同步。命令为: o W32tm /config /reliable:YES 您可以在任何一台DC或client上用win32tm查询时间同步源: W32tm /query /source 如果域内的普通DC或client时间源设置不对,用w32tm /config /syncfromflags:DOMHIER 命令设置成域时间架构,然后在用 w32tm /resync 重新同步。 相关windows时间服务的资料,供您参考: How the Windows Time Service Works https://www.wendangku.net/doc/a74480914.html,/en-us/library/cc773013(v=WS.10).aspx W32tm https://www.wendangku.net/doc/a74480914.html,/en-us/library/bb491016.aspx How to configure an authoritative time server in Windows Server https://www.wendangku.net/doc/a74480914.html,/kb/816042 Registry entries for the W32Time service https://www.wendangku.net/doc/a74480914.html,/kb/223184 梅晓江微软全球技术支持中心 ad域配置时间服务器的相关文章请参看 域客户端设置时间

时间同步,各种配置方法

ntp时间同步,各种配置方法 1 Windows xp NTP服务器的配置(2003配置方式一样) 1) 首先需要关闭作为NTP服务器的windows系统自带的防火墙,否则将同步不成功。 2) 单击“开始”,单击“运行”,键入 regedit,然后单击“确定”。 找到下面的注册表项然后单击它: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W32Time\Config\ 在右窗格中,右键单击“AnnounceFlags”,然后单击“修改”。 在“编辑 DWORD 值”对话框中的“数值数据”下,键入 5,然后单击“确定”。 3) 启用 NTPServer。 a. 找到并单击下面的注册表子项: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W32Time\TimeProviders\NtpServe r\ b. 在右窗格中,右键单击“Enabled”,然后单击“修改”。 c. 在“编辑 DWORD 值”对话框中的“数值数据”下,键入 1,然后单击“确定”。

4) 关闭NTP client 找到并单击下面的注册表子项: a) HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W32Time\TimeProviders\Ntpclien t\ b) 在右窗格中,右键单击“Enabled”,然后单击“修改”。 c) 在“编辑 DWORD 值”对话框中的“数值数据”下,键入 0,然后单击“确定”。 5) 退出注册表编辑器。 在命令提示符处,键入以下命令以重新启动 Windows 时间服务,然后按 Enter: net stop w32time && net start w32time 2 Windows(2003、XP)系统的NTP同步配置 2.1 Windows客户端的设置 1) 首先需要关闭作为NTP客户端的windows系统自带的防火墙,否则将同步不成功。 2) 设定同步时间间隔,在“开始”菜单→“运行”项下输入“Regedit”进入注册表编辑器。展开 [ HKEY_LOCAL_MACHINESYSTEMCurrentControlSetServicesW32TimeTimeProvidersNtpClient ] 分支,并双击

GPS卫星同步时钟说明书16K-(2)解析

GPS卫星同步时钟 说 明 书 烟台国芯电子科技有限公司

选型手册 型号配置说明机箱结构 TD-2000 2路RS-232串口,2路RS-485串口,天线 长30米,智能型1U19〞上架式优质铝合金机箱 TG-2000B8 2路RS-232串口,2路RS-485串口,8路 IRIG-B码输出,天线长30米,智能型1U19〞上架式优质铝合金机箱 TG-2000B16 2路RS-232串口,2路RS-485串口,16路 IRIG-B码输出,天线长30米,智能型2U19〞上架式优质铝合金机箱 TG-2000B24 2路RS-232串口,2路RS-485串口,24路 IRIG-B码输出,天线长30米,智能型2U19〞上架式优质铝合金机箱 TG-2000B32 2路RS-232串口,2路RS-485串口,32路 IRIG-B码输出,天线长30米,智能型2U19〞上架式优质铝合金机箱 TG-2000B40 2路RS-232串口,2路RS-485串口,40路 IRIG-B码输出,天线长30米,智能型2U19〞上架式优质铝合金机箱 TG-2000B48 2路RS-232串口,2路RS-485串口,48路 IRIG-B码输出,天线长30米,智能型2U19〞上架式优质铝合金机箱 TG-2000M8 2路RS-232串口,2路RS-485串口,8路 脉冲输出,天线长30米,智能型1U19〞上架式优质铝合金机箱

一.简介 TD系列GPS卫星同步时钟系选用美国专业公司制造的GPS 卫星信号接收机,经二次开发研制的高科技产品。产品广泛应用于电力、民航、铁路、交通调度、数字电视、实时通信网络等需要授时或校时领域。因采用卫星星载原子钟作为时间标准,无累积误差,所以是当今世界首选的高精度对时设备(相当于原子钟)。 系统采用12通道高品质GPS接收机,具有并行跟踪12颗卫星的能力,一旦初始化完成,即使锁定一颗卫星也能实现授时功能,因此系统具有强大的抗干扰能力。 产品设计符合《静态继电保护装置及安全自动装置通用技术条件》、《华东电网时间同步系统技术规范》、《广东电网变电站GPS时间同步系统技术规范》及《电力系统的时间同步系统技术规范》。装置软硬件采用多项抗干扰措施,符合电磁兼容标准。 二.产品主要功能 1.可显示和输出北京时间、协调世界时(UTC)及其它任何时区时、分、秒、

电铃使用说明书

1、概述 目前在皮带运输巷和提升运输巷使用的信号装置大致有两类,一类是传统的隔爆型电磁式电铃;另一类是组合式声光信号电铃,其中有一些具有单工对讲功能。后者在技术和功能上都有了较大发展,但要实现多水平信号区分、二级传送、安全灯自动转换等功能仍需要增设大量电缆及隔爆型三通、四通等,投资大、故障率高。针对目前这种状况,我们研制生产了KXT23型数显通信声光信号装置。 该产品结构上为隔爆兼本安型设计,采用单片微控制器及调制解调技术,仅需一条四芯信号电缆,即能实现发出声、光信号、单工对讲、自动区分多水平、二级传送、红绿灯转换等功能。技术领先、设计合理、一机多用。可应用于皮带机巷和轨道运输巷,是目前声光信号装置中理想的更新换代产品。 2、主要技术参数 3、主要功能 3.1、发出声光信号、数显打点数功能 在等机状态下,按下信号装置的“信号按钮”,联线上的各装置,均发出声光信号,并数字显示打点数(二级传送除外)。 3.2、自动实现二级传送功能 将车房的信号装置,设置为二级传送状态(将DTP2开关中“1”拨到数字侧,“2”拨到ON侧),井口发出打点信号时,车房及其它水平相应发出声光信号,并显示打点数;当其它水平打点时,车房的信号装置,只有灯光及数字显示,而不发出打点声,也无127V电压输出,无须使用双联按钮,自动实现二级传送。 3.3、对讲呼叫功能 在待机状态下,可实现单工对讲及呼叫功能。按下信号装置对讲按钮,联线的所有信号装置均能听到讲话及呼叫,松开对讲按钮,信号装置均处于接收状态。

注:在绞车运行时,应禁止对讲呼叫,以免影响司机操作。 3.4、多水平数显功能 将每台信号装置设置一个编码(如井口为“1”,一水平为“2”,车房不设置等),按下信号装置“信号按钮”后,其它所有联机装置都数显打点位置的编码,同时根据编码的不同而发出不同的音调,无须增加任何电缆及设备,自动实现多水平的信号区分。 3.5、安全灯自动转换功能 在轨道运输中当绞车起动时,可对车房信号装置输入36V电压信号或工作闸继电器常开接点信号,每个水平都可自动实现安全灯转换,而无需重新架设电缆。 3.6、打点信号电压输出功能 本装置可输出与打点信号同步的电压信号,当设置为二级传送状态时,只有DIP8编码为“1”的信号装置发出的信号,H、I端子才有127V电压输出,编码不为“1”的信号装置发出的信号,H、I端子无127V电压输出。 当不用二级传送时,任意位置发出信号,H、I端子均有127V电压输出。4、结构原理 原理框图见附图<一>。 该装置为隔爆兼本安型设计,由隔爆腔、本安腔、电源板、主机板构成。采用单片微控制器及调制解调技术,以实现声音、数字信号的传输及各种控制功能。 对讲声音,由送话器经过放大送主处理器,然后通过调制解调器加到电源线上,接收机把电源线上的信号经调制解调器,通过主处理器,把声音信号还原出来。经功率放大后,驱动扬声器发声。 位置数据信号通过打点控制,使主处理器经调制解调器把信号送入电源线上,接收机则把信号经调制解调器送入主处理器,主处理器经过运算后送入位置

xxx系统总体测试方案

xxx系统总体测试 方案

XXX系统测试方案

编制:日期:年月日审核:日期:年月日 批准:日期:年月日 版本历史

目录 1 概述 ..................................... 错误!未定义书签。 1.1 目的................................ 错误!未定义书签。 1.2 测试范围............................ 错误!未定义书签。 1.3 进入条件............................ 错误!未定义书签。 1.4 测试参考文档........................ 错误!未定义书签。 2 约定 ..................................... 错误!未定义书签。 2.1 测试目标............................ 错误!未定义书签。 2.2 测试完成标准........................ 错误!未定义书签。 2.3 暂停标准和再启动标准................ 错误!未定义书签。 2.4 错误级别定义........................ 错误!未定义书签。 2.5 测试工作流程........................ 错误!未定义书签。 3 测试策略 ................................. 错误!未定义书签。 3.1 系统架构............................ 错误!未定义书签。 3.2 测试编码规则........................ 错误!未定义书签。 3.3 测试人员架构........................ 错误!未定义书签。 4 测试方法 ................................. 错误!未定义书签。

解决局域网内的时间同步问题

解决局域网时间同步问题,建立自己的时间服务器(在xp上测试通过)因为种种原因,客户端管理电脑时间会与服务器的时间不一致,造成很多软件不能正常工作或者说获取的前端数据有时间差。一台台修改时间,自然很不方便。目前用的比较多的办法就是NET TIME命令,来同步局域网其他一台机器,。经过我们自己反复试验,终于成功设置好了自己的时间服务器,完全可以用XP自带的windows time 服务来自动更新时间。无须借用其他程序。现将方法公布!目前测试过XP可以做服务器。 1. 将服务器类型更改为NTP。为此,请按照下列步骤操作: a. 单击“开始”,单击“运行”,键入regedit,然后单击“确定”。 b. 找到并单击下面的注册表子项: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W32Time\Parameters\Type c. 在右窗格中,右键单击“Type”,然后单击“修改”。 d. 在“编辑值”的“数值数据”框中键入NTP,然后单击“确定”。 2. 将AnnounceFlags 设置为5。为此,请按照下列步骤操作: a. 找到并单击下面的注册表子项: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W32Time\Config\AnnounceFlags b. 在右窗格中,右键单击“AnnounceFlags”,然后单击“修改”。 c. 在“编辑DWORD 值”的“数值数据”框中键入5(原为十六进制a),然后单击“确定”。 3. 启用NTPServer。为此,请按照下列步骤操作: a. 找到并单击下面的注册表子项: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W32Time\TimeProviders\NtpServer b. 在右窗格中,右键单击“Enabled”,然后单击“修改”。 c. 在“编辑DWORD 值”的“数值数据”框中键入1(原为十六进制),然后单击“确定”。 进服务-停止windows time 服务,再启动windows time 服务。这样时间服务器就配置完毕 客户机设置: 注册表项MaxPosPhaseCorrection 路径HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W32Time\Config 十进制修改为999999999(原为十六进制d2f0) 注册表项MaxNegPhaseCorrection 路径HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W32Time\Config 十进制修改为999999999(原为十六进制d2f0)

恒宇GPS--HY-8000GPS时间同步系统说明书(NEW)

HY-8000 卫星时间同步系统 使用手册 烟台远大恒宇科技有限公司

目录 1.装置的用途及特点 (1) 1.1 用途 (1) 1.2 特点 (1) 2.技术指标 (3) 2.1 物理参数 (3) 2.2 环境条件 (4) 2.3 电磁兼容性 (4) 2.4 供电电源 (5) 2.5 平均无故障间隔时间MTBF (5) 2.6 时间信号输入输出接口 (6) 2.7 标准时钟装置核心GPS接收器的指标 (7) 2.8 输出信号定时精度指标 (8) 2.9 接口规范 (9) 2.10 告警信号 (13) 2.11 卫星失步时内部守时钟精度的稳定度 (13) 2.12 引用标准 (14) 3.HY-8000 GPS时间同步系统组成和模块介绍 (15) 3.1 HY-8000 GPS时间同步系统组成 (15) 3.2 装置的结构和模块介绍 (16) 3.3 工作状态指示 (38) 3.3.1 标准时间同步钟本体指示灯 (38) 3.3.2 GPS卫星同步时钟指示灯 (39) 4.装置的安装及操作说明 (40) 4.1 GPS天线的安装说明 (40) 4.2北斗天线安装说明 (42) 4.3 装置的安装位置 (42) 4.4 投入及运行 (42) 4.5 安装避雷器 (44) 5.装置的故障与维修 (44) 5.1 告警 (44) 5.2 时间信号的保持和切换 (45) 5.3 可维修性 (45) 5.4 安全性 (45) 5.5 装置的维修 (46) 6.附录一、HY-8000系列 GPS时间同步系统选型表 (47)

HY-8000 GPS时间同步系统 1.装置的用途及特点 HY-8000 GPS时间同步系统是根据《华东电网统一时钟系统技术规范》、《广东电网变电站GPS时间同步系统技术规范》和《上海电网GPS时间同步系统技术原则和运行管理规定》设计的时间同步系统,它由标准时间同步钟本体和时标信号扩展装置组成,可集中或单独组屏。时标信号扩展装置包括脉冲、时间报文、DCF77、B码和NTP扩展模块,扩展装置可根据实际需要组合。该系统利用GPS(全球卫星定位系统)、北斗或IRIG-B(DC)码发送的秒同步信号和时间信息,向电力系统各种系统和自动化装置(如调度自动化系统、微机继电保护装置、故障录波器、事件顺序记录装置、远动装置、计算机数据交换网、雷电定位系统等)提供精确的时间信息和时间同步信号。 1.1 用途 HY-8000 GPS时间同步系统主要用途如下: 1、为电力系统提供标准时间和时间同步信号 2、用作各级电力公司(电力局)机关和所属调度所、发电厂、变电站等单位的 挂钟。 1.2 特点 1、与外同步时钟信号同步精度高,同步精度优于±0.2μs。 采用多同步源自适应同步技术,同步精度优于±0.2μs。 2、采用冗余结构 支持双GPS热备和双IRIG-B热备且装备有高精度守时时钟。标准时间同步钟本体可同时接入GPS和1路IRIG-B码外同步信号,互为备用。时标信号扩展装置可同时接入2路IRIG-B码外同步信号,互为备用。主时钟和信号扩展装置都可采用了冗余化装置,保证了GPS时间同步系统的可靠性和稳定性。 3、模块化设计,多种输出接口,使用灵活方便。

基于单片机控制的电铃控制器

基于单片机控制的电铃控制器 一.设计要求 (一)基本功能 1.显示:可以显示星期、时、分和秒 2.打铃:每天可设置20次,打铃持续时间每次1-90秒可调,每次打铃的间隔 时间1-99 分钟可调. 3.铃声:内置蜂鸣器可以发出监控声音 (二)性能: 时间日误差< 1.5秒 (三)扩展功能: 1.可设定单/双休息日不打铃 2.随季节变化,每天自动调整开与关的时间

目录 1引言 (1) 2总体设计方案 (1) 2.1设计思路 (1) 2.2总体设计框图 (1) 2.3设计方案 (1) 3设计原理分析 (2) 3.1按键功能 (2) 3.2状态指示 (2) 3.3打铃控制 (2) 3.4电路原理图 (2) 4程序流程框图 (3) 4.1总体程序流程图 (3) 4.2主程序流程图 (3) 4.3校时程序流程图 (4) 4.4时钟打铃程序流程图 (4) 5心得与体会 (5) 参考文献 (5) 附录 (6)

基于单片机控制的电铃控制器 摘要:该设计介绍了一种以AT89c51单片机为核心,以七段数码管显示星期、时、分和秒,发光二极管作为指示灯标志及按键较时、定时的自动打铃器。 关键词:单片机电铃自动数码管 1引言 基于目前传统电铃噪音大,声音刺耳,不符合人们追求绿色环保的要求,我们采用89c51单片机设计了一套自动打铃系统。单片机(Single-Chip Microcomputer SCM)技术的应用,不但降低了生产成本,同时也方便了消费者,使操作简洁、安全。单片机的应用使许多复杂的事情,都能够简单、方便的实现了。用单片机控制的自动打铃器,充分发挥单片机体积小,价格便宜,功耗低,可靠性好等特点,充分发挥了单片机的控制优势。本打铃器可用于作息时间控制,方便了广大师生。 2总体设计方案: 2.1设计思路 利用单片机及其定时器设计的一个时钟,在每次毫秒加1的计时过程中,都与设定的打铃时间作比较,如果相等就输出打铃信号,不等则返回。如此反复运行。 2.2总体设计框图 键盘电路复位电路 数码管显示 状态指示 打铃信号AT89S51 图1 总体设计框图 2.3设计方案 根据设计任务的基本要求,设计了由单片机(AT89S51)作为主控器件,七段数码管作为显示电路,七个按键组成的按键操作电路,七个发光二极管组成的状态指示电路,以及三极管、蜂鸣器组成的报警提示电路和继电器组成的打铃信号输出电路构成的自动打铃器。 除了以上的硬件电路外,还充分利用软件、硬件相结合,充分发挥单片机设计的优势。使设计更具特色。 系统可分成三部分,即时钟电路、时间显示电路、控制电路,而时钟电路起控制主导作用。

相关文档