文档库 最新最全的文档下载
当前位置:文档库 › 数学建模肖承烽

数学建模肖承烽

数学建模肖承烽
数学建模肖承烽

必有1s σ≤。既然交换数不超过1,病人比例()i t 绝不会增加,传染病不会蔓延。 群体免疫和预防 根据对SIR 模型的分析,当01s ≤时传染病不会蔓延,所以为了制止蔓延,除了提高卫生和医疗水平,是阈值1σ变大以外,另一个途径是降低0s ,这可以通过比如预防接种群体免疫的办法做到。

忽略病人比例的初始值0i ,有001s r =-。于是传染病不会蔓延的条件01s σ≤可以表为

01

1r σ

≥-

(21)

这就是说,只要通过群体免疫使初始时刻的移出者比例(即免疫者比例)0r 满足(21)式,就可以直至传染病的蔓延。

这种办法生效的前提条件是免疫者要均匀分布在全体人口,实际上是很难做到的。据估计当时在印度等国家天花传染病的接触数5σ=,由(21)式至少要有80%得人接受免疫才行。据世界卫生组织报告,即使花费大量的资金提高0r ,也因很难做到免疫者的均匀分布,使得天花直到1977年才在世界根除,而有些传染病的σ更高,根除更困难。

数值验证与估算 根据上面的分析,制止传染病蔓延的手段有两种,意识提高卫生水平和医疗水平,即降低日接触率λ,提高日治愈率μ,二是群体免疫,即提高移出者比例的初值0r (相当于降低健康者比例的初值0s )。下面做一点数值计算,验证并估量这两种办法的效果。不妨用最终未感染的健康者的比例s ∞和病人比例的最大值m i ,作为传染病蔓延程度指标。

给定不同的λ,μ,0s ,0i ,用(19)式计算s ∞,用(20)式计算m i (当01s σ≤),

表2 s ∞和m i 的计算结果

可以看出,对于一定的0s ,降低λ,提高μ,会使s ∞变大m i 变小;对于一定的λ,μ,降低0s (即提高0r )

,也会使s ∞变大(但是01s σ≤时s ∞反而小了,你能解释吗?),m

i 变小。当然01s σ≤时m i 始终等于0i ,即传染病不会蔓延。

我们看到在SIR 模型中σλμ=是一个很重要的参数,实际上λ,μ很难估计,而

当一次传染病结束以后,可以获得0s 和s ∞,在(19)式中略去很小的0i ,即有

00l n l n s s s s σ∞

-=

- (22)

当同样的传染病到来时,如果估计λ,μ没有多大变化,那么就可以用上面得到的σ分析这次传染病的蔓延过程。

模型验证 上世纪印度孟买发生的一次瘟疫中几乎所有病人都死亡了,死亡相当于移出传染系统,有关部门记录了每天移出的人数,即有了d r d t

的实际数据,Kermack 等

人用这组数据对SIR 模型做了验证

首先,由方程(12)、(14)可以得到(习题2)

()

0()r t s t s e

σ-= (23)

0(1)r

dr r s e

dt

σμ-=-- (24)

当1r σ≤时,取(24)式右端r e σ-Taylar 展开第3项,在初始值00r =下的解为

02

01()[(1)()]2

t

r t s th s αμσα?σ

=

-+-

(25)

其中222000(1)2s s i ασσ=-+,01

s th σ?α

-=

。从(25)式容易得到

2

2

202(

)

2

dr t

dt s ch αμ

αμσ?=

- (26)

然后取定参数0s ,σ等,画出(26)式的图形,如图10中的曲线,实际数据在图中用圆点表示,可以看出,理论曲线与实际数据吻合得相当不错。

被传染比例的估计 在一次传染病的传播过程中,被传染的人数比例是健康人人数比例的初始值0s 与s ∞之差,记作x ,即

x s s ∞=- (27) 当0i 很小,0s 接近于1时,由(19)式可得

1ln(1)0x x s σ

+

-

≈ (28)

取对数函数Taylor 展开的前两项有

200

1(1)02x x s s σ

σ

-

-

≈ (29)

记01

s δ

σ

=

+,δ可视为该地区人口比例超过阈值1σ的部分,当1δσ<<时(29)

式给出

001

2()2x s s σδσ

≈-

≈ (30)

这个结果表明,被传染者人数比例约为δ的2倍。对一种传染病,当该地区的卫生和医疗水平不变时,即σ不变时,这个比例就不会改变。而当阈值1σ提高时,δ减小,于是这个比例就会降低。

评注 本节介绍了传染病模型从几个方面很好的体现了模型的改进、建模的目的性、以及方法的配合。

第一,最初建立的模型1基本上不能用,修改假设后得到的模型2虽有所改进,但仍不符合实际。进一步修改假设,并针对不同情况建立模型3,4才是比较成功的。

第二,模型3,4的可取之处在于它们比较全面的达到建模的目的,即描述传播过程、分析感染人数的变化规律,预测传染病模型高潮到来时刻,度量传染病蔓延程度并

探索制止蔓延的手段。

第三,对于比较复杂的模型4,采用数值计算,图形观察与分析理论相结合的方法,先有感性认识(表1,图7,图8),再用相轨线作理论分析,最后进行数值验证和估算。可以看做计算机技术与及建模方法的巧妙结合。

5.2 经济增长模型

发展经济,提高生产力主要有以下手段:增加投资、增加劳动力、技术革新。这虽暂不考虑技术革新的作用,一是因为在经济增长的初期(如资本主义早期社会)或者在不太长的时期内,技术相对稳定,二是由于技术革新量化比较困难

本节模型将首先建立产值与资金、劳动力之间的关系,然后研究资金与劳动力的最佳分配,使投资收益最大,最后讨论如何调节资金与劳动力的增长率,使劳动生产率得到有效的增长。

1.道格拉斯(Douglas )生产函数

用()Q t 、()K t 、()L t 分别表示一区域内或部门在时刻t 的产值、资金和劳动力,他们的关系可以一般的记作

()((),()Q t F K t L t = (1)

其中F 为待定函数,对于固定的时刻t ,上述关系可写作

(,)Q F K L = (2)

为寻求F 的函数形式,引入记号

,z Q

L y K L == (3)

Z 是每个劳动力的产值,y 是每个劳动力的投资。如下的假设是合理的:z 随着y 的增加

而增长,但增长的速度递减。进而简化地把这个假设表示为

(),(),01z cg y g y y α

α==<< (4)

显然函数()g y 满足上面的假设,常数0c >可着成技术的作用。由(3)、(4)即可得到(2)式中F 的具体形式为

1,01Q cK L

α

α

α-=<< (5)

由(5)式容易知道Q 有如下性质

2

2

22,0,,0Q Q Q Q

K L K L

????>

?=

?,K Q 表示单位资金创造的产值;L Q Q L

?=

?,L Q 表示单位劳动力创造的

产值,则从(5)式可得

,

1,K L K L KQ LQ KQ LQ Q Q

Q

αα==-+= (7)

(7)式可解释为:α是资金在产值中占有的份额,1α-是劳动力在产值中占有的份额。于是α的大小直接反映了资金、劳动力二者对于创造产值的轻重关系。

(5)式是经济学中著名的Cobb-Douglas 生产函数,他经受了资本主义社会一些实际数据的检验。更一般形式的生产函数表为

,0,1Q cK L αβ

αβ=<< (8)

2.资金与劳动力的最佳分配

这里将根据生产函数(5)式讨论,怎样分配资金和劳动力,使生产创造的效益最大。

假定资金来自于贷款,利率为r 。每个劳动力需支付工资w ,于是当资金K 、劳动力L 产生产值Q 时,得到的效益为

S Q rK wL =-- (9)

问题转化为求资金与劳动力的分配比例K L (即每个劳动力占有的资金),使效益S 最大。

这个模型用微分法即可解得

K L

Q r Q w

= (10)

再利用(7)式,有

1K w L r

α

α

=

?

- (11)

这就是资金与劳动力的最佳分配。从(11)式可以看出,当α,w 变大,r 变小时,分配比例K L 变大,这是符合常识的

3.劳动生产率的条件

常用的衡量经济的增长的指标,一是总产值()Q t ,二是每个劳动力的产值

()()()z t Q t L t =,这个模型讨论()K t ,()L t 满足什么条件才能使()Q t ,()z t 保持增长

首先需要对资金和劳动力的增加作出合理的简化假设:

1)投资增长率与产值成正比,比例系数0λ>,即用一定比例扩大再生产; 2)劳动力的相对增长率为常数μ,μ可以是负数,表示劳动力减少。 这两个条件的数学表达式分别为

,0dK Q dt

λλ=> (12)

dL L dt

μ= (13)

方程(13)的解是

0()t

L t L e

μ= (14)

将(4)、(5)代入(12)式得

dK c L y dt

α

λ= (15)

注意到(3)式,有=,再用(13)式可得

dK dy L

L y dt

dt

μ=+ (16)

比较(15)、(16)得到关于=的方程

dy y c y dt

α

μλ+= (17)

这是著名的Bernoulli 方程,它的解是

1

(1)010

(){

[1(1)]}t

K c y t e

K αμαλ

μ

μ

---=-- (18)

以下是根据(18)式研究()Q t ,()z t 保值增长的条件。 1)()Q t 增长,即

0d Q d t >,由Q cLy α

=及(13)(17)式可算得

21

1[(1)]dQ dy cL y

c L y cL y

c y

dt

dt

α

α

αα

αμλαμα--=+=+-

(19)

将其中y 以(18)式代入,可知条件

0d Q d t

>等价于

(1)00

1[1]1t

K e

K αμμ

α

---<

- (20)

因为上式右端大于1,所以当0μ≥(及劳动力不减少)时(20)式恒成立,而当0

μ<(20)式成立的条件是

00

1ln[(1)(1)](1)K t K αμ

αμ

<

--- (21)

说明劳动力减少,()Q t 只能在有限的时间内保持增长,但应注意,若(21)式中的00

(1)(1)1K K αμ

--≥,则不存在增长的时段

2)()z t 增长,即

0dz dt

>,由z cy

α

=知相当于

dy dt

>,由方程(17)知,当0μ≤时

刻条件恒成立;而当0μ> 时有(18)式可得

dy dt

>等价于

(1)00

(1)0t

K e

K αμμ

---> (22)

显然,此式成立的条件为00

1K K μ

<即

这个条件的含义是,劳动力增长率小于初始投资增长率

00K K μ< (23)

评注 Douglas 生产函数是计量经济学中重要的模型,本节给出它的一个简洁的建模课程,在此基础上讨论资金与劳动力的最佳分配,是一个静态模型。而利用微分方程研究劳动生产率增长的条件,是一个动态模型,虽然他推导过程稍繁,但其结果却相当简明,并且可以给出合理的解释

5.3 正规战和游击战

早在第一次世界大战期间,https://www.wendangku.net/doc/aa4489148.html,nchester 就提出了几个预测战争结局的数学模型,其中有描述传统的正规战争的,也有考虑稍微复杂的游击战争的,以及双方分别使用正规部队和游击部队的所谓混合战争。后来人们对这些模型做了改进和进一步的解释,用以分析历史上一些著名的战争,如第二次世界大战中的美日硫磺岛之战和1975年结束的越南战争。

Lanchester 提出的模型非常简单的,他只考虑双方兵力的多少和战斗力的强弱,并且,当时使用的只是枪炮之类的武器。病例因战斗减员和非战斗减员而减少,又可由后备力量的增援而增加;战斗力即杀伤对方的能力,则与射击率(单位时间内射击次数)、射击命中率以及战争的类型(正规战、游击战)等有关。这些模型当然没有考虑交战双方的政治、经济、社会等因素。而仅靠战场上兵力的优劣是很难估计战争胜负的,所以我们认为用这些数据判断整个战争的结局是不可能的,但是对于局部战役来说或许还有参考价值。更重要的是,建模思路和方法为我们借助数学模型讨论社会科学领域中的实

际问题提供了可以借鉴的示例

【31,39】

一般战争模型 用()x t 和()y t 表示甲乙交战双方时刻t 的兵力,不方式为双方的士兵人数,假设:

1.每一方的战斗减员率取决于双方兵力和战斗力,甲乙方的战斗减员率分别用

(,)f x y 和(,)f x y 表示。

2.每一方的非战斗减员率(由疾病、逃跑等因素引起)只与本方的兵力成正比。

3.甲乙双方的增援率是给定的函数,分别用()u t 和()v t 表示。 由此可以写出关于()x t ,()y t 的微分方程为

()(,)(),0{

()(,)(),0

x t f x y x u t y t g x y x v t ααββ=--+>=--+> (1)

下而针对不同的战争类型讨论战斗减员率f ,g 的具体表示形式,并分析影响战争结局的因素。

正规战争模型 甲乙双方都用正规军作战,我们只需分析甲乙的战斗减员率

(,)f x y

甲方士兵公开活动,处于乙方每一个士兵的监视和杀伤力范围内,一旦甲方某个士兵被杀伤,乙方火力立即集中在其余士兵身上,所以甲方的战斗减员率只与乙方兵力有关,可以简单的假设f 与y 成正比。即f ay =。a 表示乙方平均每个士兵对甲士兵的杀伤率(单位时间的杀伤数),称为乙方的战斗有效系数。a 可以进一步分解为y y a r p =,其中y r 是乙方的射击率(每个士兵单位时间内射击次数),y p 是每次射击的命中率。

类似的有g bx =,并且甲方的战斗有效系数x x b r p =,x r 和x p 是甲方的射击率和命中率。于是在这个模型中方程(1)化为

()(){

()()

x t ay x u t y t bx x v t αβ=--+=--+ (2)

在分析战争结局时忽略非战斗减员这一项(与战斗减员,这项很小),并且假设双方都没有增援。记双方的始终兵力分别是0x 和0y ,方程(2)简化为

第1节 数学建模与数学探究

第1节数学建模与数学探究 【内容要求】 数学建模活动是对现实问题进行数学抽象,用数学语言表达问题、用数学方法构建模型解决问题的过程.主要包括:在实际情境中从数学的视角发现问题、提出问题,分析问题、构建模型,确定参数、计算求解,检验结果、改进模型,最终解决实际问题.数学建模活动是基于数学思维运用模型解决实际问题的一类综合实践活动,是高中阶段数学课程的重要内容. 【基本过程】 数学建模活动的基本过程如下: 数学探究活动是围绕某个具体的数学问题,开展自主探究、合作研究并最终解决问题的过程.具体表现为:发现和提出有意义的数学问题,猜测合理的数学结论,提出解决问题的思路和方案,通过自主探索、合作研究论证数学结论.数学探究活动是运用数学知识解决数学问题的一类综合实践活动,也是高中阶段数学课程的重要内容. 【过程解读】 掌握建模基本过程,会对实际问题进行问题分析,善于合理假设. ·问题分析也常称为模型准备或问题重述.由于数学模型是建立数学与实际现象之

间的桥梁,因此,首要的工作是要设法用数学的语言表述实际现象.所谓问题重述是指把实际现象尽量地使用贴近数学的语言进行重新描述.为此,要充分了解问题的实际背景,明确建模的目的,尽可能弄清对象的特征,并为此搜集必需的各种信息或数据.要善于捕捉对象特征中隐含的数学因素,并将其一一列出.至此,我们便有了一个很好的开端,而有了这个良好的开端,不仅可以决定建模方向,初步确定用哪一类模型,而且对下面的各个步骤都将产生影响. ·模型假设(即合理假设)是与问题分析紧密衔接的又一个重要步骤.根据对象的特征和建模目的,在问题分析基础上对问题进行必要的、合理的取舍简化,并使用精确的语言作出假设,这是建模至关重要的一步.这是因为,一个实际问题往往是复杂多变的,如不经过合理的简化假设,将很难于转化成数学模型,即便转化成功,也可能是一个复杂的难于求解的模型从而使建模归于失败.当然,假设作得不合理或过分简单也同样会因为与实际相去甚远而使建模归于失败.一般地,作出假设时要充分利用与问题相关的有关学科知识,充分发挥想象力和观察判断力,分清问题的主次,抓住主要因素,舍弃次要因素. 【实际意义】 数学建模的实际意义 1.在一般工程技术领域,数学建模仍然大有用武之地. 在以声、光、热、力、电这些物理学科为基础的诸如机械、电机、土木、水利等工程技术领域中,数学建模的普遍性和重要性不言而喻,虽然这里的基本模型是已有的,但是由于新技术、新工艺的不断涌现,提出了许多需要用数学方法解决的新问题;高速、大型计算机的飞速发展,使得过去即便有了数学模型也无法求解的课题(如大型水坝的应力计算,中长期天气预报等)迎刃而解;建立在数学模型和计算机模拟基础上的CAD技术,以其快速、经济、方便等优势,大量地替代了传统工程设计中的现场实验、物理模拟等手段. 2.在高新技术领域,数学建模几乎是必不可少的工具. 无论是发展通讯、航天、微电子、自动化等高新技术本身,还是将高新技术用于传统工业去创造新工艺、开发新产品,计算机技术支持下的建模和模拟都是经常使用的有效手段.数学建模、数值计算和计算机图形等相结合形成的计算机软件,已经被固化于产品中,在许多高新技术领域起着核心作用,被认为是高新技术的特征之一.

数学建模-大学生就业问题

2010-2011第二学期 数学建模课程设计 2011年6月27日-7月1日 题目大学生就业问题 第 11 组组员1 组员2 组员3 组员4 姓名 学号 0808060217 0808060218 0808060219 0808060220 专业信计0802 信计0802 信计0802 信计0802 成绩

论文摘要 本文讨论了在新的形势下大学生的就业问题。20世纪90年代以来,我国出现了一种前所未有的现象,有着“天之骄子”美誉的大学生也开始面临失业问题。大学生就业难问题已受到普遍关注。大学生毕业失业群体正在不断扩大,已成为我国扩大社会就业,构建和谐稳定社会的急需解决的社会问题。 本文针对我国现有的国情,综合考虑了高校毕业生的就业率和高校招生规模的扩大之间的关系,建立了定量分析的微分方程模型,随后又建立了了离散正交曲线拟合模型对得出的结果进行了检验,并分析模型得出的结果得合理性。最终得到生源数量与失业率之间的拟合多项式和拟合曲线,并预测出了未来高校招生规模的变化趋势。 在找到大学生失业规律以后,本文还具体的对毕业生的性别、出生地对失业的影响做出了定量分析。 关键词:大学生就业微分方程模型多项式曲线拟合MATLAB软件 1、问题重述 大学生就业问题:如果我们将每年毕业的大学生中既没有找到工作又没有继续深造的情况视为失业,就可以用失业率来反映大学生就业的状况。下面的表中给出了某城市的大学生失业数占城市总失业人数的比率,比率的计算是按照国际劳工组织的定义,对16岁以上失业人员进行统计的结果。 表 1

请建立相应的模型对大学生就业状况进行分析找出其中的规律并讨论下面两个问题: (1)、就业中是否存在性别歧视; (2)、学生的出生对就业是否有影响。 2、模型假设 2.1在本次研究中做出以下假设: (1)、假设毕业生求职时竞争是公平的; (2)、假设考研等继续深造的毕业生属于已就业人群; (3)、假设每个毕业生都有就业或者继续深造的意图 (4)、假设就业率和失业率之和为1; (5)、假设本文搜集的数据全部真实可靠; 2.2 在定量分析性别、出生地对失业的影响时还要做以下假设: (1)、假设毕业生就业情况只受性别、出生地等因素的影响; (2)、假设具有上述同等条件的毕业生间就业机会相同 (3)、假设附件中的数据信息均合理; 3、问题分析 3.1 对问题的分析 若要分析新失业群体产生的主要原因,并就其重要性给出各种因素的排序,就需要对搜集的数据进行整理,并进行系统的分析,划分为不同的体系和矛盾,然后我们考虑用Logistic模型分析。 为了得到新失业群体对高校招生生源的影响和预测未来高校招生规模的变

数学建模与计算机的重要性

数学建模与计算机的联系及重要性 摘要:在当今科技发达的今天,计算机已经得到了广泛的应用,也为数学建模的计算提供了有力工具。本文浅谈了数学建模与计算机在人类生产和生活中的重要性。 关键词:数学建模计算机重要性 当今社会计算机已经被广泛的应用了,在计算机的协助下许多问题的求解变得简单、方便、快捷。而数学建模是把现实世界中的实际问题加以提炼,抽象为数学模型,求出模型的解,验证模型的合理性,并用该数学模型所提供的解答来解释现实问题。在科技迅猛发展的今天计算机和数学建模在人类的生存和发展中都具有举足轻重的作用。 一、数学建模与计算机息息相关 其一、我们在模型求解时,有些计算单纯的用纸和笔是难以完成的,这就需要利用计算机上机计算、编制软件、绘制图形等,当结果通过计算机算出后也必须通过打印机随时进行输出。其二、数学建模的学习对计算机能力的培养也起着极大推动作用,如报考计算机方向的研究生时,对数学的要求非常高;在进行计算机科学的研究时,也要求有极强的数学功底才能写出具有相当深度的论文,计算机科学的发展也是建立在数学基础之上的,许多为计算机的发展方面做出杰出贡献的人,在数学方面也颇有造诣。我们在遇到一些实际问题时往往需要计算机和数学建模同时应用才能解决问题,否则问题将无法进行。数学问题与计算机通常采用一些数学软件(lingo,Matlab,MathCAD 等等)的命令来描述算法,既简单又容易操作。例如下面有这样一道

题就是利用数学软件lingo 求解的。 例1 某工厂有两条生产线,分别用来生产M 和P 两种型号的产品,利润分别为200元每个和300元每个,生产线的最大生产能力分别为每日100和120,生产线没生产一个M 产品需要1个劳动日(1个工人工作8小时称为1个劳动日)进行调试、检测等工作,而每个P 产品需要2个劳动日,该工厂每天共计能提供160个劳动日,假如原材料等其他条件不受限制,问应如何安排生产计划,才能使获得的利润最大? 解 设两种产品的生产量分别为1x 和2x ,则该问题的数学模型 为: 目标函数 12max 200300z x x =+ 约束条件 1212100,120,160, 0,1,2. i x x x x x i ≤??≤??+≤??≥=? 编写LINGO 程序如下: MODEL: SETS: SHC/1,2 /:A,B,C,X; YF/1,2,3 /:J; ENDSETS DATA: A=1,2 ; B=100,120; C=200,300; ENDDATA

什么是数学模型与数学建模

1. 什么是数学模型与数学建模 简单地说:数学模型就是对实际问题的一种数学表述。 具体一点说:数学模型是关于部分现实世界为某种目的的一个抽象的简化的数学结构。 更确切地说:数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。数学结构可以是数学公式,算法、表格、图示等。 数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程(见数学建模过程流程图)。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻划并"解决"实际问题的一种强有力的数学手段。 2.美国大学生数学建模竞赛的由来: 1985年在美国出现了一种叫做MCM的一年一度大大学生数学模型(1987年全称为Mathematical Competition in Modeling,1988年改全称为Mathematical Contest in Modeling,其所写均为MCM)。这并不是偶然的。在1985年以前美国只有一种大学生数学竞赛(The william Lowell Putnam mathematial Competition,简称Putman(普特南)数学竞赛),这是由美国数学协会(MAA--即Mathematical Association of America的缩写)主持,于每年12月的第一个星期六分两试进行,每年一次。在国际上产生很大影响,现已成为国际性的大学生的一项著名赛事。该竞赛每年2月或3月进行。 我国自1989年首次参加这一竞赛,历届均取得优异成绩。经过数年参加美国赛表明,中国大学生在数学建模方面是有竞争力和创新联想能力的。为使这一赛事更广泛地展开,1990年先由中国工业与应用数学学会后与国家教委联合主办全国大学生数学建模竞赛(简称CMCM),该项赛事每年9月进行。

大学生就业问题数学模型

重庆交通大学学生实验报告 实验课程名称数学模型课程设计 开课实验室数学实验室 学院 XXX级 XXX 专业 1 班 开课时间 2013 至 2014 学年第 2 学期设计题目大学生就业问题

2013 年 12月 大学生就业问题 摘要:近年来,我国高校毕业生数量逐年增多,加之当前金融危机的影响,毕业生的就业形势受到前所未有的挑战,甚至出现了所谓“毕业即失业”的说法。因此大学生毕业后能否顺利就业,已成为全社会普遍关注的热点问题。大学生就业难不仅有社会原因,也有大学生自身的原因。如何解决大学生就业难的问题不仅关系到大学生的切身利益,更关系到社会的和谐稳定,需要政府、企业、高校和大学生共同的努力。本文从大学生自身,企业和社会三个大方面方面进行了分析和论述,从而总结出相关的结论及解决大学生就业难题的可行方法。 关键词大学生就业 Matlab 数据拟合 一、问题重述 据中国媒体援引人力和社会保障部的最新统计数据,二零一零年全国高校毕业生为630万人,比去年的611万多19万人,加上往届未能就业的,需要就业的毕业生数量很大,高校毕业生就业形势十分严峻。 随着九十年代末大学扩招和教育产业化政策推行以来,大学生人数的增幅远远超过经济增长所需要的人才增长,大学生就业不难才是怪事,"毕业即失业"成为中国大学生的普遍现象。 尽管如此,中国教育部决定继续扩大全日制专业学位硕士研究生招生规模,努力培养更多高层次、应用型人才。表面上看,研究生扩招能提高大学生学历层次,可以缓解就业难。但是,如果不清理高等教育积弊,扩招研究生来应对就业难将是饮鸩止渴,使就业矛盾更加突出。 现在大学生就业难的问题,是由许多原因造成的,既有社会原因,也有历史原因。 请用数学建模的方法从以下几个侧面探讨大学生就业问题: (1)利用网上大学生就业统计数据建立大学生就业供需预测模型,利用所建模型对2012年就业形势进行预测; (2)分析影响大学生就业的主要因素,建立就业竞争力评价模型,利用所建模型评估你的竞争力;

数学建模的作用意义

数学建模的背景: 人们在观察、分析和研究一个现实对象时经常使用模型,如展览馆里的飞机模型、水坝模型,实际上,照片、玩具、地图、电路图等都是模型,它们能概括地、集中地反映现实对象的某些特征,从而帮助人们迅速、有效地了解并掌握那个对象。数学模型不过是更抽象些的模型。 当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子(称为数学模型),然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个全过程就称为数学建模。 近半个多世纪以来,随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用,而且以空前的广度和深度向经济、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,所谓数学技术已经成为当代高新技术的重要组成部分。 不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并计算求解。人们常常把数学建模和计算机技术在知识经济时代的作用比喻为如虎添翼。 数学建模日益显示其重要作用,已成为现代应用数学的一个重要领域。为培养高质量、高层次人才,对理工、经济、金融、管理科学等各专业的大学生都提出“数学建模技能和素质方面的要求”。 数学建模在现代社会的一些作用 (1)在一般工程技术领域,数学建模仍然大有用武之地。在以声、光、热、力、电这些物理学科为基础的诸如机械、电机、土木、水利等工程技术领域中,数学建模的普遍性和重要性不言而喻,虽然这里的基本模型是已有的,但是由于新技术、新工艺的不断涌现,提出了许多需要用数学方法解决的新问题;高速、大型计算机的飞速发展,使得过去即便有了数学模型也无法求解的课题(如大型水坝的应力计算,中长期天气预报等)迎刃而解;建立在数学模型和计算机模拟基础上的CAD技术,以其快速、经济、方便等优势,大量地替代了传统工程设计中的现场实验、物理模拟等手段。(2)在高新技术领域,数学建模几乎是必不可少的工具。无论是发展通讯、航天、微电子、自动化等高新技术本身,还是将高新技术用于传统工业去创造新工艺、开发新产品,计算机技术支持下的建模和模拟都是经常使用的有效手段。数学建模、数值计算和计算机图形学等相结合形成的计算机软件,已经被固化于产品中,在许多高新技术领域起着核心作用,被认为是高新技术的特征之一。在这个意义上,数学不再仅仅作为一门科学,它是许多技术的基础,而且直接走向了技术的前台。国际上一位学者提出了“高技术本质上是一种数学技术”的观点。 (3)数学迅速进入一些新领域,为数学建模开拓了许多新的处女地。随着数学向诸如经济、人口、生态、地质等所谓非物理领域的渗透,一些交叉学科如计量经济学、人口控制论、数学生态学、数学地质学等应运而生。一般地说,不存在作为支配关系的物理定律,当用数学方法研究这些领域中的定量关系时,数学建模就成为首要的、关键的步骤和这些学科发展与应用的基础。在这些领域里建立不同类型、不同方法、不同深浅程度模型的余地相当大,为数学建模提供了广阔的新天地。马克思说过,一门科学只有成功地运用数学时,才

2017年研究生数学建模竞赛A题

2017年中国研究生数学建模竞赛A题 无人机在抢险救灾中的优化运用 2017年8月8日,四川阿坝州九寨沟县发生7.0级地震,造成了不可挽回的人员伤亡和重大的财产损失。由于预测地震比较困难,及时高效的灾后救援是减少地震损失的重要措施。无人机作为一种新型运载工具,能够在救援行动中发挥重要作用。为提高其使用效率,请你们解决无人机优化运用的几个问题。 附件1给出了震区的高程数据,共有2913列,2775行。第一行第一列表示(0,0)点处的海拔高度值(单位:米),相邻单元格之间的距离为38.2米,即第m行第n列单元格中的数据代表坐标(38.2(m-1), 38.2(n-1))处的高度值。震区7个重点区域的中心位置如下表所示(单位:千米): 除另有说明外,本题中的无人机都假设平均飞行速度60千米/小时,最大续航时间为8小时,飞行时的转弯半径不小于100米,最大爬升(俯冲)角度为±15°,与其它障碍物(含地面)的安全飞行距离不小于50米,最大飞行高度为海拔5000米。所有无人机均按规划好的航路自主飞行,无须人工控制,完成任务后自动返回原基地。 问题一:灾情巡查 大地震发生后,及时了解灾区情况是制订救援方案的重要前提。为此,使用无人机携带视频采集装置巡查7个重点区域中心方圆10公里(并集记为S)以 内的灾情。假设无人机飞行高度恒为4200米,将在地面某点看 无人机的仰角大于60°且视线不被山体阻隔视为该点被巡查。 若所有无人机均从基地H(110,0)(单位:千米)处派出,且完成任

务后再回到H,希望在4小时之内使区域S内海拔3000米以下的地方尽可能多地被巡查到,最少需要多少架无人机?覆盖率是多少?每架无人机的飞行路线应如何设计?在论文中画出相应的飞行路线图及巡查到的区域(不同的无人机的飞行路线图用不同的颜色表示)。 进一步,为及时发现次生灾害,使用无人机在附件1给出的高度低于4000米的区域(不限于S)上空巡逻。问最少需要多少架无人机、如何设定每架无人机的飞行时间、路线,才能保证在72小时内,上述被巡查到的地方相邻两次被巡查的时间间隔不大于3小时(无人机均需从H出发并在8小时内回到H,再出发的时间间隔不小于1小时)? 问题二:生命迹象探测 使用无人机携带生命探测仪搜索生命迹象,能够给灾后救援提 供准确的目标定位。拟从基地H(110,0),J(110,55)(单位:千米)处 总共派出30架无人机(各15架),任务完成后回到各自的出发地。 探测仪的有效探测距离不超过1000米,且最大侧视角(探测仪到可 探测处的连线与铅垂线之间的夹角)为60度。请你们规划它们的飞 行路线,使附件1所给出的全区域内海拔3000米以下部分能被探测到的面积尽可能大,且使从第一架无人机飞出到最后一架完成任务的无人机回到基地的时间间隔尽量短。 问题三:灾区通信中继 大地震发生后,地面电力设施被破坏,灾区通信中断。太阳能无人机(白天不受续航能力限制,其余条件同前述)可以作为地面移动终端之间的通信中继,为灾区提供持续的通信保障(地面终端只能与无人机进行通信,无人机之间只要不超过最大通信距离就可以互相通信,地面与地面之间的通信由无人机转接)。假设无人机在空中飞行时,可与距离3000米以内的移动终端通信,无人机之间的最大通信距离为6000米,问最少需要多少架无人机、每架无人机的飞行路线如何,才能保证在白天12小时内,附件2中的任意两个地面终端之间都能实现不间断通信(作为中继的无人机之间的切换时间忽略不计,地面终端的移动距离不超过2千米)? 问题四:无人机对地的数据传输 指挥中心拟从H派出3架无人机携带通信装备向灾区内的72个地面终端(分布见附件2)发送内容不同,总量均为500M(1M按106比特计算)的数据。设每台通信装备的总功率是5瓦,可同时向不超过10个地面终端发送数据。数据传输过程可以简化为:当地面终端i看无人机的仰角大于30°、距离不超过3000米且没有山体阻隔时,如果无人机当前服务用户少于10

数学建模常用方法

数学建模常用方法 建模常用算法,仅供参考: 1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必 用的方法) 2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用M a t l a b作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通 常使用L i n d o、L i n g o软件实现) 4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种 暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计 算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用) 10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文 中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用M a t l a b进行处理) 一、在数学建模中常用的方法: 1.类比法 2.二分法 3.量纲分析法 4.差分法 5.变分法 6.图论法 7.层次分析法 8.数据拟合法 9.回归分析法 10.数学规划(线性规划、非线性规划、整数规划、动态规划、目标规划) 11.机理分析 12.排队方法

关于数学建模教学活动的研究

关于数学建模教学活动的研究 【摘要】基于数学建模教学活动的实践,本文分析 了目前学校数学建模活动现状以及建模课程设计存在的问题。以数学建模小组活动形式,对数学基础课程的知识体系进行调整,研究数学建模活动与高校数学基础课程内容设计之间的关系。教学内容和授课方式的改进,将对提高数学基础课程的教学质量和建模参赛学生的成绩起关键性的作用。 【关键词】数学建模;基础课程 一、现状及存在的问题 最近一些年来,数学建模活动日益受到国家和教育部的重视。教育部连续多年委托全国大学生数学建模竞赛组委会组织全国性的数学建模竞赛活动。可以说,参与数学建模的积极性和所取得的成绩,越来越成为评价一所高校数学教学和科研水平的重要指标;数学建模活动本身也已经成为高校展现自我风采,树立学校形象的重要舞台。除了社会层面的积极影响外,数学建模活动对于推动高校内部的教学改革也起到了至关重要的作用。数学建模将抽象理论与社会实践相结合,不仅提高了学生学习数学的积极性、主动性,而且调动了教师不断提高自身业务水平,积极参与教学改革的动力。 目前数学建模活动在各高校有着广泛而良好的师生基

础。学校老师参与的积极性也很高。每年都有参赛队伍获得国家和地区的数学建模竞赛大奖,为学校赢得了荣誉。然而,在取得巨大成绩的同时,我们也应该看到,数学建模活动还存在一定的改进和提升空间。这主要体现在以下三个方面。 第一,目前数学建模相关课程设置存在一定的局限,主要表现在课程数量较少,并且大部分是以大班选修课的形式授课,因此难以挖掘优秀的数学建模人才,难以做到有针对性的教育和对优秀学生的重点培养。第二,既有的建模课程一般采用单独讲授建模相关知识的方式,而与现有的数学基础课程如高等数学、线性代数、概率论等内容分离。第三,关于数学建模的课外活动匮乏,致使参加全国数学建模大赛的参赛队伍都是赛前集中培训,缺乏系统连贯的日常积累。 基于数学建模活动的实际情况,通过组建数学建模课外活动小组的方式,达到以下目的:第一,将数学学习从课堂延伸到课外,帮助同学将课堂所学的抽象数学知识,在课下得以应用。从社会实际问题出发,让学生亲自参与到问题解决的过程中。第二,在活动中,教师研究课外活动组织形式的有效性,增强学生间、师生间的有效互动,进而提高学生自主创新能力。第三,研究数学建模活动对基础课程体系改革的辅助作用,使之成为数理知识体系改革的有利工具。 二、数学建模活动与数学基础教学内容关系的研究 数学基础课程和数学建模活动之间存在着密不可分的

数学模型课程设计一

课程设计名称: 设计一:MATLAB 软件入门 指导教师: 张莉 课程设计时数: 8 课程设计设备:安装了Matlab 、C ++软件的计算机 课程设计日期: 实验地点: 第五教学楼北902 课程设计目的: 1. 熟悉MA TLAB 软件的用户环境; 2. 了解MA TLAB 软件的一般目的命令; 3. 掌握MA TLAB 数组操作与运算函数; 4. 掌握MATLAB 软件的基本绘图命令; 4. 掌握MA TLAB 语言的几种循环、条件和开关选择结构。 课程设计准备: 1. 在开始本实验之前,请回顾相关内容; 2. 需要一台准备安装Windows XP Professional 操作系统和装有数学软件的计算机。 课程设计内容及要求 要求:设计过程必须包括问题的简要叙述、问题分析、实验程序及注释、实验数据及结果分析和实验结论几个主要部分。 1. 采用向量构造符得到向量[1,4,7,,31] 。 //a=[1:3:31] 2. 随机产生一向量x ,求向量x 的最大值。 // a=rand(1,6) max(a) 3. 利用列向量(1,2,3,,6)T 建立一个范德蒙矩阵A ,并利用位于矩阵A 的奇数行偶数列的元素建立一个新的矩阵B ,须保持这些元素的相对位置不变。 4. 按水平和竖直方向分别合并下述两个矩阵: 100234110,5670018910A B ????????==???????????? 5. 当100n =时,求1121n i y i ==-∑的值。 6. 一个三位整数各位数字的立方和等于该数本身则称该数为水仙花数。输出全部水仙花数。 7. 求[1000,2000]之间第一个被17整除的整数。 8. 用MATLAB 绘制两条曲线,[0,2]x π∈,以10 π为步长,一条是正弦曲线,一条是余弦曲线,线宽为6个象素,正弦曲线为绿色,余弦曲线为红色,线型分别为实线和虚线,并给所绘的两条曲线增添图例,分别为“正弦曲线”和“余弦曲线”。

2017年中国研究生数学建模竞赛题

2017年中国研究生数学建模竞赛D题 基于监控视频的前景目标提取 视频监控是中国安防产业中最为重要的信息获取手段。随着“平安城市”建设的顺利开展,各地普遍安装监控摄像头,利用大范围监控视频的信息,应对安防等领域存在的问题。近年来,中国各省市县乡的摄像头数目呈现井喷式增长,大量企业、部门甚至实现了监控视频的全方位覆盖。如北京、上海、杭州监控摄像头分布密度约分别为71、158、130个/平方公里,摄像头数量分别达到115万、100万、40万,为我们提供了丰富、海量的监控视频信息。 目前,监控视频信息的自动处理与预测在信息科学、计算机视觉、机器学习、模式识别等多个领域中受到极大的关注。而如何有效、快速抽取出监控视频中的前景目标信息,是其中非常重要而基础的问题[1-6]。这一问题的难度在于,需要有效分离出移动前景目标的视频往往具有复杂、多变、动态的背景[7,8]。这一技术往往能够对一般的视频处理任务提供有效的辅助。以筛选与跟踪夜晚时罪犯这一应用为例:若能够预先提取视频前景目标,判断出哪些视频并未包含移动前景目标,并事先从公安人员的辨识范围中排除;而对于剩下包含了移动目标的视频,只需辨识排除了背景干扰的纯粹前景,对比度显著,肉眼更易辨识。因此,这一技术已被广泛应用于视频目标追踪,城市交通检测,长时场景监测,视频动作捕捉,视频压缩等应用中。 下面简单介绍一下视频的存储格式与基本操作方法。一个视频由很多帧的图片构成,当逐帧播放这些图片时,类似放电影形成连续动态的视频效果。从数学表达上来看,存储于计算机中的视频,可理解为一个3维数据,其中代表视频帧的长,宽,代表视频帧的帧数。视频也可等价理解为逐帧图片的集合,即,其中为一张长宽分别为 的图片。3维矩阵的每个元素(代表各帧灰度图上每个像素的明暗程度)为0到255之间的某一个值,越接近0,像素越黑暗;越接近255,像素越明亮。通常对灰度值预先进行归一化处理(即将矩阵所有元素除以255),可将其近似认为[0,1]区间的某一实数取值,从而方便数据处理。一张彩色图片由R(红),G(绿),B(蓝)三个通道信息构成,每个通道均为同样长宽的一张灰度图。由彩色图片

第1章 数学建模与误差分析

第1章数学建模与误差分析 1.1 数学与科学计算 数学是科学之母,科学技术离不开数学,它通过建立数学模型与数学产生紧密联系,数学又以各种形式应用于科学技术各领域。数学擅长处理各种复杂的依赖关系,精细刻画量的变化以及可能性的评估。它可以帮助人们探讨原因、量化过程、控制风险、优化管理、合理预测。近几十年来由于计算机及科学技术的快速发展,求解各种数学问题的数值方法即计算数学也越来越多地应用于科学技术各领域,相关交叉学科分支纷纷兴起,如计算力学、计算物理、计算化学、计算生物、计算经济学等。 科学计算是指利用计算机来完成科学研究和工程技术中提出的数学问题的计算,是一种使用计算机解释和预测实验中难以验证的、复杂现象的方法。科学计算是伴随着电子计算机的出现而迅速发展并获得广泛应用的新兴交叉学科,是数学及计算机应用于高科技领域的必不可少的纽带和工具。科学计算涉及数学的各分支,研究它们适合于计算机编程的数值计算方法是计算数学的任务,它是各种计算性学科的联系纽带和共性基础,兼有基础性和应用性的数学学科。它面向的是数学问题本身而不是具体的物理模型,但它又是各计算学科共同的基础。 随着计算机技术的飞速发展,科学计算在工程技术中发挥着愈来愈大的作用,已成为继科学实验和理论研究之后科学研究的第三种方法。在实际应用中所建立的数学模型其完备形式往往不能方便地求出精确解,于是只能转化为简化模型,如将复杂的非线性模型忽略一些因素而简化为线性模型,但这样做往往不能满足精度要求。因此,目前使用数值方法来直接求解较少简化的模型,可以得到满足精度要求的结果,使科学计算发挥更大作用。了解和掌握科学计算的基本方法、数学建模方法已成为科技人才必需的技能。因此,科学计算与数学建模的基本知识和方法是工程技术人才必备的数学素质。 1.2 数学建模及其重要意义 数学,作为一门研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和人们生活的实际需要密切相关。用数学方法解决工程实际和科学技术中的具体问题时,首先必须将具体问题抽象为数学问题,即建立起能描述并等价代替该实际问题的数学模型,然后将建立起的数学模型,利用数学理论和计算技术进行推演、论证和计算,得到欲求解问题的解析解或数值解,最后用求得的解析解和数值解来解决实际问题。本章主要介绍数学建模基本过程和求解数学问题数值方法的误差传播分析。 1.2.1 数学建模的过程 数学建模过程就是从现实对象到数学模型,再从数学模型回到现实对象的循环,一般通过表述、求解、解释、验证几个阶段完成。数学建模过程如图1.2.1所示,数学模型求解方法可分为解析法和数值方法,如图1.2.2所示。 表述是将现实问题“翻译”成抽象的数学问题,属于归纳。数学模型的求解方法则属于演绎。归纳是依据个别现象推出一般规律;演绎是按照普遍原理考察特定对象,导出结论。演绎利用严格的逻辑推理,对解释现象做出科学预见,具有重要意义,但是它要以归纳的结论作为公理化形式的前提,只有在这个前提下

2017年中国研究生数学建模竞赛E题

2017年中国研究生数学建模竞赛E题 多波次导弹发射中的规划问题 随着导弹武器系统的不断发展,导弹在未来作战中将发挥越来越重要的作用,导弹作战将是未来战场的主要作战样式之一。 为了提高导弹部队的生存能力和机动能力,常规导弹大都使用车载发射装置,平时在待机地域隐蔽待机,在接受发射任务后,各车载发射装置从待机地域携带导弹沿道路机动到各自指定发射点位实施发射。每台发射装置只能载弹一枚,实施多波次发射时,完成了上一波次发射任务的车载发射装置需要立即机动到转载地域(用于将导弹吊装到发射装置的专门区域)装弹,完成装弹的发射装置再机动至下一波次指定的发射点位实施发射。连续两波次发射时,每个发射点位使用不超过一次。 某部参与作战行动的车载发射装置共有24台,依据发射装置的不同大致分为A、B、C三类,其中A、B、C三类发射装置的数量分别为6台、6台、12台,执行任务前平均部署在2个待机地域(D1,D2)。所属作战区域内有6个转载地域(Z01~ Z06)、60个发射点位(F01~ F60),每一发射点位只能容纳1台发射装置。各转载地域最多容纳2台发射装置,但不能同时作业,单台转载作业需时10分钟。各转载地域弹种类型和数量满足需求。相关道路情况如图1所示(道路节点J01~J62),相关要素的坐标数据如附件1所示。图1中主干道路(图中红线)是双车道,可以双车通行;其他道路(图中蓝线)均是单车道,只能在各道路节点处会车。A、B、C三类发射装置在主干道路上的平均行驶速度分别是70公里/小时、60公里/小时、50公里/小时,在其他道路上的平均行驶速度分别是45公里/小时、35公里/小时、30公里/小时。 部队接受发射任务后,需要为每台车载发射装置规划每个波次的发射点位及机动路线,要求整体暴露时间(所有发射装置的暴露时间之和)最短。本问题中的“暴露时间”是指各车载发射装置从待机地域出发时刻至第二波次发射时刻为止的时间,其中发射装置位于转载地域内的时间不计入暴露时间内。暂不考虑发射装置在发射点位必要的技术准备时间和发射后发射装置的撤收时间。

系统的描述与数学建模

系统的描述与数学建模 [摘要]数学建模就是利用数学方法将系统的文字语言描述转化成数学方式表达。由于影响系统的因素多种多样,当用数学表达系统时,我们要求尽可能要使得数学建模既能从本质上反映系统,又能使得系统的数学模型具有简单性。 [关键词]系统的建模数学建模 数学建模就是利用数学方法将系统的文字语言描述转化成数学方式表达。由于影响系统的因素多种多样,当用数学表达系统时,我们要求尽可能要使得数学建模既能从本质上反映系统,又能使得系统的数学模型具有简单性。一个极其复杂的数学模型对于分析系统毫无帮助。 为了说明这种数学建模的方法,我们举一个简单的例子。比如我们研究某一地区人口的健康状况。假定在我们的研究时段内没有人口的自然死亡,按照自然规律人口总是以一定的概率,变成亚健康、或者患上某种轻疾病、或者患上重疾病。在一定的环境和医疗条件下,部分亚健康者和患者会得以康复,这是一种简单运算的系统描述,并没有具体地给出定量表达。为了能用数学的方法表达这个描述,我们按照以下方式将人口分类:(1)健康人。(2)亚健康人。(3)患轻病人。(4)患重病人。 根据上面的关系和一些假定条件,我们可以得到相应的微分方程,至于方程的详细导出我们以后再讨论。这里我们需要指出,前面我们只是一种说明性的举例,在实际建模过程中,要依赖于系统所在的环境,按照前面方法得到的应是确定性模型,在随机环境中,上面所述的量应当对应成相应状态的概率。 再比如排队系统,是最常见的一种系统,这类系统主要描述顾客到达,接受服务然后离开这一过程。系统由顾客与服务员两个单元组成。这类问题主要由以下四个因素决定:(1)顾客来到窗口的频率。(2)窗口的个数。(3)排队规则。(4)服务时间分布;所以我们必须对它们作适当的假定。 在单个服务台的排队系统模型M/M/1,即系统只设一个服务台床的情况。假定顾客是相互独立地到达系统,而且顾客到达系统的间隔时间服从负指数分布 F(t)=1-e -λt (输入过程),又服务窗为每一位顾客的服务时间也同时服从负指 数分布H(t)=1-e -μt (运行方式)。对这种最简单的排队模型,我们将依照不同的系统规则确定排队系统所满足的微分方程。 M/M/1损失制排队模型是指系统内只设一个服务窗,系统容量为1(即有一个排队位置而无排队等待位置),顾客到达和窗口服务时间均为负指数分布,且

(精心整理)全国名校小学数学结题报告小学数学建模教学的实践与研究

《小学数学建模教学的实践与研究》结题报告 一、研究的背景及意义 (一)从数学自身发展看数学建模的重要性 “数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。”现实世界是数学的丰富源泉,也是数学应用的归宿。任何数学概念都可以在现实中找到它的原型,同样要解决实际问题就必需建立数学模型,从此意义上讲,数学建模和数学一样,有着古老的历史。例如,欧几里德几何就是一个古老的数学模型。今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化、数量化,需建立大量的数学模型。正如新课标中描述的“数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值”。可以说数学即模型,有数学应用的地方就有数学建模。 (二)从数学课程改革发展看数学建模教学 数学教育改革是当今世界关注的热门话题。目前国际数学界普遍赞同,通过开展数学建模活动和在数学教学中推广使用现代化技术来推动数学教育改革。大学生的数学建模科技活动在全世界造成了巨大的影响,对数学教育起了很好的推动作用。随着我国基础教育课程改革的深入,数学建模活动已扩展到义务教育阶段,数学建模已成为小学数学学习的目标。《数学课程标准》(2011年版)在课程设计思路中提出:“在呈现作为知识与技能的数学结果的同时,重视学生已有的经验,使学生体验从实际背景中抽象出数学问题、构建数学模型、寻求结果、解决问题的过程。”国内外的专家、学者也都认为应该让中、小学生对数学和数学的作用作全面了解,让更多的学生了解和运用数学的思想和方法解决实际问题,“还数学的本来面貌”,使“数学能力成为人们取胜的法宝”(姜伯驹)。 (三)从学生学习和发展角度看数学建模活动 学生不仅要学习数学知识,更要学习数学思想和方法。而数学建模是一种基本的数学思想,是解决数学问题的有效形式。学生亲自经历模型建立的“再创造”过程,有利于学生的多种感官参与,获得丰富的感性认识,形成清晰表象,符合小学生的直观思维特征;能够引发学生对数学学习的兴趣,克服对数学的畏惧心理,提高数学学习的效率,并有助于培养学生初步学会运用数学的思维方式去观察和分析现实社会,解答日常生活中的问题,进而形成勇于探索、勇于创新的科学精神。正如刘应明院士所说的“如果学生能够自己动手用数学知识去解决几个问题,哪怕是很简单的问题,那么,数学在他们心目中的价值以及他们对数学的兴趣就会显著上升。而且这样做对于培养他们的创新意识等等,也都是十分有益的”。 基于上述认识,我确立“小学数学建模教学的实践与研究”这一课题,试图在小学数学教学中加强数学建模思想方法的实践和应用,培养小学生的建模意识和能力,提高学生的数学素养。 二、研究分析 (一)概念界定 1.数学模型(Mathematic Model):为了一定的目的对现实原型作抽象、简化后,采用形式化的数学符号和语言所表述出来的数学结构。它是数学符号、数学式子以及数量关系对现实原型简化的本质的描述。 2.数学建模(Mathematical Modelling):把现实世界中的实际问题加以提炼,抽象为数学模型,求出模型的解,验证模型的合理性,并用该数学模型所提供的解答来解释现实问题。数学知识的这一运用过程也就是数学建模。 3.小学数学建模:主要是指小学数学学习中,用“模型思想”来指导着数学教学,不断让学生经历从具体事例或现实原型出发逐步抽象、概括建立起某种模型并进行解释和运用,从而加深对数学的理解和感受,提升数学学习能力。

环境数模课程设计说明书

2016《环境数学模型》课程设计说明书 1.题目 活性污泥系统生化反应器中底物降解与微生物增长数学模型的建立 2.实验方法与结果 2.1.实验方法 2.1.1.工艺流程与反应器 本设计采用的工艺流程如下图所示: 图2-1 活性污泥系统工艺流程图 本设计工艺采用活性污泥法处理污水,工艺的主要反应器包括生化反应器和沉淀池。污水通过蠕动泵恒速加到生化反应器中,反应器内活性污泥和污水在机械搅拌设备和鼓风曝气设备的共同作用下充分接触,并在氧气充足的条件下进行反应。经处理后,污泥混液通过管道自流到沉淀池中,在里面实现泥水分离。分离后的水通过溢流堰从周边排出,直接被排放到下水道系统,沉淀下来的污泥则通过回流泵,全部被抽回进行回流。 系统运行过程中,进出水流量、进水质量、污水的停留时间、生化反应器的容积、机械搅拌设备转轴转速、鼓风曝气装置的曝气风量气速、污泥回流量等参数在系统运行的过程中都保持不变。待系统持续运行一周稳定后再取样进行分析。 实验的进水为实验室配置的污水,污水分别以葡萄糖、尿素、磷酸二氢钾为碳源、氮源和磷源,其中C:N:P=100:40:1(浓度比),TOC含量为200mg/L。生化反应器内污泥混液的容量为12L,污水停留时间为6h。系统运行时间为两周,第一周是调适阶段,第二周取样测试,测得的数据作为建模的原始数据。 表2-1 污水中各营养物质的含量 2.1.2.取样方法

每隔24h取一次样,通过虹吸管取样。每次取样时,先取进水和出水水样用于测水体的COD指标,其中进水直接取配得的污水溶液,出水取沉淀池上清液。取得的水样过膜除去水中的悬浮固体和微生物,保存在5ml玻璃消解管中,并在4℃下冷藏保存。 取完用于测COD的水样后,全开污泥回流泵,将沉淀池中的污泥全部抽回生化反应器(由于实验装置的原因,沉淀池排泥管易堵,污泥易积聚在沉淀池中,为更准确测定活性污泥的增长情况,在此实验中将泥完全抽回后再测定),待搅拌均匀后,取5ml污泥混液于干净、衡重的坩埚中,待用于测污泥混液的SS。 2.1. 3.分析方法 本实验一共分析进出水COD和污泥混液SS两个指标。其中COD采用《水质快速消解分光光度法》(HJ/T 399-2007)方法进行分析,SS采用《水质悬浮物的测定重量法》(GB 11901-89)方法进行分析。 准确取2ml经过膜处理的水样于5mlcod消解管中,以重铬酸钾为氧化剂,硫酸银-浓硫酸为催化剂,硫酸汞为抗氯离子干扰剂,按一定比例与水样混合均匀。将消解管放在COD 消解仪中,在150℃条件下消解2h。待经消解的溶液冷却后,以空白样为参比液,在COD 分析仪上读出待测水样的COD值,记录数据。 将装在已衡重称重的坩埚中的污泥混液放在烘箱中,在105℃温度下烘3h以上,保证污泥中的水分被充分除去。坩埚冷却后衡重称重,记录干污泥的质量,求得活性污泥的SS。 实验过程的所有样品都设置两个平行样,最后结果取平行样的算术平均值。 2.2.实验结果 2.2.1.实验数据 实验测得数据如下表: 表2-2 活性污泥系统水质分析结果 2.2.2.数据分析

第十五届华为杯中国研究生数学建模竞题—B题

2018年中国研究生数学建模竞赛B 题 光传送网建模与价值评估 1. 背景 2009年诺贝尔物理学奖授予了英籍华人高锟(Charles K. Kao )博士,以表彰他对光纤通信发展所做出的贡献,诺贝尔奖委员会在给公众的公开信中写到: “当诺贝尔物理学奖宣布的时候,世界大部分地方几乎瞬间收到了这条信息…文字、语音和视频信号沿着光纤在世界各地来回传输,几乎瞬时地被微小而便捷的设备接收,人们已经把这种情况当做习惯。光纤通信正是整个通信领域急速发展的前提。” 从诞生至今,50多年里基于数字光纤通信技术的光传送网构建起了全球通信的骨架。从城市内的传输,直到跨越大洋的传输,光传送网为人类提供了大容量、高可靠性和低能耗的信息传输管道,人类对通信容量的追求也成为光传送技术发展的源源不断的动力。 光传送网的规划与建设是运营商、设备商以及政府必须考虑的课题。光传送的基本规律是——在相同技术条件下传输的容量会随着传输距离增加而减小。网络规划者需要在有限资源的条件下,综合考虑传输距离,传输容量、网络拓扑等各种因素,以最大化网络的价值。本课题中,请你们站在上述角度,从底层物理出发为光传送链路建模,制定光传送网规划,探索光传送网有关规律。 本课题的内容包括: 1) 对光传送链路进行简单建模 2) 制定光传送网的规划,并探讨网络的价值 3)改进调制格式 2. 问题-1:光传送链路建模 现代数字传输系统可认为是对0101二进制序列进行编码传输的系统,1个二进制的0或1称为1个比特(bit )。无论是语音、视频还是任何类型的消息,都可以数字化为一串串”0101…”的二进制比特序列,经编码并调制为某个“载体信号”后,再经过特定的“信道”(信息的通道)传输到目的地。图1中给出了简化的模型。在光纤通信中,光纤就是信道,光纤传输的光波就是信息的载体。信道中无法避免的噪声可能导致最终接收的二进制序列中比特出错,即产生误码。 接收机解调制噪声信号接收 信号 发送序列 0101010...接收序列0101110...发射机 编码调制 图1 简化后的数字传输模型 二进制序列通常需要将K 个比特作为一个“符号”进行传输,每个符号有个不同状

相关文档
相关文档 最新文档