文档库 最新最全的文档下载
当前位置:文档库 › 影响光合作用因素

影响光合作用因素

影响光合作用因素
影响光合作用因素

影响光合作用的因素

一、光合速率

光合速率通常是指单位时间、单位叶面积的CO2吸收量或O2的释放量,也可用单位时间、单位叶面积上的干物质积累量来表示。

(一)

1、叶龄新长出的嫩叶,光合速率很低。其主要原因有:(1)叶组织发育未健全,气孔尚未完全形成或开度小,细胞间隙小,叶肉细胞与外界气体交换速率低;(2)叶绿体小,片层结构不发达,光合色素含量低,捕光能力弱;(3)光合酶,尤其是Rubisco的含量与活性低;

(4)幼叶的呼吸作用旺盛,因而使表观光合速率降低。但随着幼叶的成长,叶绿体的发育,叶绿素含量与Rubisco酶活性的增加,光合速率不断上升;当叶片长至面积和厚度最大时,光合速率也达到最大值,以后,随着叶片衰老,叶绿素含量与Rubisco酶活性下降,以及叶绿体内部结构的解体,光合速率下降(图10-17)

依据光合速率随叶龄增长出现"低-高-低"的规律,可推测不同部位叶片在不同生育期的相对光合速率的大小。如处在营养生长期的禾谷类作物,其心叶的光合速率较低,倒3叶的光合

2、叶的结构叶的结构如叶厚度、栅栏组织与海绵组织的比例、叶绿体和类囊体的数目等

C4植物的叶片光合速率通常要大于C3植物,这与C4植物叶片具有花环结构等特性有关。许多植物的叶组织中有两种叶肉细胞,靠腹面的为栅栏组织细胞;靠背面的为海绵组织细胞。栅栏组织细胞细长,排列紧密,叶绿体密度大,叶绿素含量高,致使叶的腹面呈深绿色,且其中Chla/b比值高,光合活性也高,而海绵组织中情况则相反。生长在光照条件下的阳生植物(sun plant)叶栅栏组织要比阴生植物(shade plant)叶发达,叶绿体的光合特性好,因

同一叶片,不同部位上测得的光合速率往往不一致。例如,禾本科作物叶尖的光合速率比叶

(二)

光合产物(蔗糖)从叶片中输出的速率会影响叶片的光合速率。例如,摘去花、果、顶芽等都会暂时阻碍光合产物输出,降低叶片特别是邻近叶的光合速率;反之,摘除其他叶片,只留一张叶片与所有花果,留下叶的光合速率会急剧增加,但易早衰。对苹果等果树枝条环割,由于光合产物不能外运,会使环割上方枝条上的叶片光合速率明显下降。光合产物积累到一定的水平后会影响光合速率的原因有:(1)反馈抑制。例如蔗糖的积累会反馈抑制合成蔗糖的磷酸蔗糖合成酶的活性,使F6P增加。而F6P的积累,又反馈抑制果糖1,6-二磷酸酯酶活性,使细胞质以及叶绿体中磷酸丙糖含量增加,从而影响CO2的固定;(2)淀粉粒的影响。叶肉细胞中蔗糖的积累会促进叶绿体基质中淀粉的合成与淀粉粒的形成,过多的淀粉粒一方面会压迫与损伤类囊体,另一方面,由于淀粉粒对光有遮挡,从而直接阻碍光合膜对光的吸收。

(一)

光是光合作用的动力,也是形成叶绿素、叶绿体以及正常叶片的必要条件,光还显著地调节光合酶的活性与气孔的开度,因此光直接制约着光合速率的高低。光照因素中有光强,

1

(1).光强-光合曲线图4-26是光强-光合速率关系的模式图。

暗中叶片不进行光合作用,只有呼吸作用释放CO2 (图4-26中的OD为呼吸速率)。随着光强的增高,光合速率相应提高,当到达某一光强时,叶片的光合速率等于呼吸速率,即CO2吸收量等于CO2释放量,表观光合速率为零,这时的光强称为光补偿点(light compensation point)。在低光强区,光合速率随光强的增强而呈比例地增加(比例阶段,直线A);当超过一定光强,光合速率增加就会转慢(曲线B);当达到某一光强时,光合速率就不再增加,而呈现光饱和现象。开始达到光合速率最大值时的光强称为光饱和点(light saturation point),此点以后的阶段称饱和阶段(直线C)。比例阶段中主要是光强制约着光合速率,而饱和阶段中CO2(表观光合速率/光强)可计算表观光合量子产额。

由图4-27

光补偿点高的植物一般光饱和点也高,草本植物的光补偿点与光饱和点通常要高于木本植物;阳生植物的光补偿点与光饱和点要高于阴生植物;C4植物的光饱和点要高于C3植物。光补偿点和光饱和点可以作为植物需光特性的主要指标,用来衡量需光量。光补偿点低的植物较耐阴,如大豆的光补偿点仅0.5klx,所以可与玉米间作,在玉米行中仍能正常生长。在光补偿点时,光合积累与呼吸消耗相抵消,如考虑到夜间的呼吸消耗,则光合产物还有亏空,因此从全天来看,植物所需的最低光强必须高于光补偿点。对群体来说,上层叶片往往接受到的光强会超过光饱和点以上,而中下层叶片的光强仍处在光饱和点以下,如水稻单株叶片光饱和点40~50klx,而群体内则为60~80lx,因此改善中下层叶片光照,力求让中下层叶片接受更多的光照是高产的重要条件。

植物的光补偿点和光饱和点不是固定数值,它们会随外界条件的变化而变动,例如,当CO2浓度增高或温度降低时,光补偿点降低;而当CO2浓度提高时,光饱和点则会升高。在封闭的温室中,温度较高,CO2较少,这会使光补偿点提高而对光合积累不利。在这种情况下应适当降低室温,通风换气,或增施CO2

在一般光强下,C4植物不出现光饱和现象,其原因是:①C4植物同化CO2消耗的同化力要比C3植物高②PEPC对CO2的亲和力高,以及具有"CO2泵",所以空气中CO2浓度通常不成为C4

(2) 强光伤害-光抑制光能不足可成为光合作用的限制因素,光能过剩也会对光合作用产生不利的影响。当光合机构接受的光能超过它所能利用的量时,光会引起光合活性的降低,这个现象就叫光合作用的光抑制(photoinhibition of photosynthesis)

强常超过植物的光饱和点,很多C3植物,如水稻、小麦、棉花、大豆、毛竹、茶花等都会出现光抑制,轻者使植物光合速率暂时降低,重者叶片变黄,光合活性丧失。当强光与高温、

低温、干旱等其他环境胁迫同时存在时,光抑制现象尤为严重。通常光饱和点低的阴生植物更易受到光抑制危害,若把人参苗移到露地栽培,在直射光下,叶片很快失绿,并出现红褐色灼伤斑,使参苗不能正常生长;大田作物由光抑制而降低的产量可达15%以上。因此光抑

2、光质在太阳幅射中,只有可见光部分才能被光合作用利用。用不同波长的可见光照射植物叶片,测定到的光合速率(按量子产额比较)不一样(图4-28)。在600~680nm红光区,光合速率有一大的峰值,在435nm左右的蓝光区又有一小的峰值。可见,光合作用的作用光谱

图4-28表示的是在比例阶段弱光下光质与光合速率的关系,在这种情况下光质对光合的影响实际上是通过光化学反应起作用的。近年来采用强的单色光研究光质对植物叶片光合速率的影响,发现蓝光下的光合速率要比红光下的高,这可能与蓝光促进气孔开启有关。也有报道蓝光下生长的植物,其PEPC

在自然条件下,植物或多或少会受到不同波长的光线照射。例如,阴天不仅光强减弱,而且蓝光和绿光所占的比例增高。树木的叶片吸收红光和蓝光较多,故透过树冠的光线中绿光较多,由于绿光是光合作用的低效光,因而会使树冠下生长的本来就光照不足的植物利用光能的效率更低,"大树底下无丰草"就是这个道理。图4-29 C3植物与C4植物的光合、光呼吸/光合随照光时间变化的模式图

水层同样改变光强和光质。水层越深,光照越弱,例如,20米深处的光强是水面光强的二十分之一,如水质不好,深处的光强会更弱。水层对光波中的红、橙部分吸收显著多于蓝、绿部分,深水层的光线中短波长的光相对较多。所以含有叶绿素、吸收红光较多的绿藻分布于海水的表层;而含有藻红蛋白、吸收绿、蓝光较多的红藻则分布在海水的深层,这是海藻对光适

3、光照时间对放置于暗中一段时间的材料(叶片或细胞)照光,起初光合速率很低或为负值,要光照一段时间后,光合速率才逐渐上升并趋与稳定。从照光开始至光合速率达到稳定值这段时间,称为"光合滞后期"(lag phase of photosynthesis)或称光合诱导期。一般整体叶片的光合滞后期约30~60min,而排除气孔影响的去表皮叶片,细胞、原生质体等光合组织的滞后期约10分钟。将植物从弱光下移至强光下,也有类似情况出现。另外,植物的光呼吸也有滞后现象,在光呼吸的滞后期中光呼吸速率与光合速率会按比例上升(图4-29)。产生滞后期的原因是光对酶活性的诱导以及光合碳循环中间产物的增生需要一个准备过程,

由于照光时间的长短对植物叶片的光合速率影响很大,因此在测定光合速率时要让叶片充分预照光。

曲线上四个点对应浓度分别为CO2补偿点(C),空气浓度下细胞间隙的CO2浓度(n),与空气浓度相同的细胞间隙CO2浓度(350μl·L-1左右)和CO2饱和点(S)。Pm为最大光合速率;CE为比例阶段曲线斜率,代表羧化效率;OA光下叶片向无CO2气体中的释放速率,可代表光呼吸速率。

(二) CO2

1.CO2 CO2光合曲线(图4-30)与光强光合曲线相似,有比例阶段与饱和阶段。光下CO2浓度为零时叶片只有光、暗呼吸释放CO2。图中的OA部分为光下叶片向无CO2气体中的CO2释放速率(实质上是光呼吸、暗呼吸、光合三者的平衡值),通常用它来代表光呼吸速率。在比例阶段,光合速率随CO2浓度增高而增加,当光合速率与呼吸速率相等时,环境中的CO2浓度即为CO2补偿点(CO2 compensation point,图中C点);当达到某一浓度(S)时,光合速率便达最大值(Pm),开始达到光合最大速率时的CO2浓度被称为CO2饱和点(CO2 saturation point)。在CO2光合曲线的比例阶段,CO2浓度是光合作用的限制因素,直线的斜率(CE)受Rubisco活性及活化Rubisco量的限制,因而CE被称为羧化效率(carboxylation efficiency)。从CE的变化可以推测Rubisco的量和活性,CE大,即在较低的CO2浓度时就有较高的光合速率,也就是说Rubisco的羧化效率高。在饱和阶段,CO2已不是光合作用的限制因素,而CO2受体的量,即RuBP的再生速率则成为影响光合的因素。

由于RuBP再生受ATP供应

的影响,所以饱和阶段光合速率反映了光合电子传递和光合磷酸化活性,因而Pm被称为光合能力。

比较C3植物与C4植物CO2光合曲线(图4-31),可以看出:(1)C4植物的CO2补偿点低,在低CO2浓度下光合速率的增加比C3快,CO2的利用率高;(2) C4植物的CO2饱和点比C3植物低,在大气CO2浓度下就能达到饱和;而C3植物CO2饱和点不明显,光合速率在较高CO2浓度下还会随浓度上升而提高。C4植物CO2饱和点低的原因,可能与C4植物的气孔对CO2浓度敏感有关,即CO2浓度超过空气水平后,C4植物气孔开度就变小。另外,C4植物PEPC的Km低,对CO2亲和力高,有浓缩CO2机制,这些也是C4植物CO2饱和点低的原因。

在正常生理情况下,植物CO2补偿点相对稳定,例如小麦100个品种的CO2补偿点为52±2μl·L-1,大麦125个品种为55±2μl·L-1,玉米125个品种为1.3±1.2μl·L-1

猪毛菜(CAM植物) CO2补偿点不超过10μl·L-1。有人测定了数千株燕麦和5万株小麦的幼苗,尚未发现一株具有类似C4植物低CO2补偿点的幼苗。在温度上升、光强减弱、水分

亏缺、氧浓度增加等条件下,CO2补偿点也

2.CO2供给 CO2是光合作用的碳源,陆生植物所需的CO2主要从大气中获得。CO2从大气到达羧化酶部位的途径和所遇的阻力。

CO2从大气至叶肉细胞间隙为气相扩散,而从叶肉细胞间隙到叶绿体基质则为液相扩散,扩散的动力为. CO2浓度差;凡能提高浓度差和减少阻力的因素都可促进. CO2流通而提高光

空气中的. CO2浓度较低,约为350μl·L-1(0.035%),分压为3.5×10-5MPa,而一般C3植物的. CO2饱和点为1 000~1 500μl·L-1的3~5倍。在不通风的温室、大棚和光合作用旺盛的作物冠层内的. CO2浓度可降至200μl·L-1

于光合作用对. CO2的消耗以及存在. CO2扩散阻力,因而叶绿体基质中的. CO2浓度很低,

接近. CO2补偿点。因此,加强通风或设法增施. CO2能显著提高作物的光合速率,这对C3

(三)

光合过程中的暗反应是由酶所催化的化学反应,因而受温度影响。在强光、高. CO2浓度时温度对光合速率的影响要比弱光、低. CO2浓度时影响大(图4-32),这是由于在强光和高. CO2

光合作用有一定的温度范围和三基点。光合作用的最低温度(冷限)和最高温度(热限)是指该温度下表观光合速率为零,而能使光合速率达到最高的温度被称为光合最适温度。光合作用的温度三基点因植物种类不同而有很大的差异(表4-6)。如耐低温的莴苣在5℃就能明显地测出光合速率,而喜温的黄瓜则要到20℃时才能测到;耐寒植物的光合作用冷限与细胞结冰温度相近;而起源于热带的植物,如玉米、高粱、橡胶树等在温度降至10~5℃时,光合作用已受到抑制。低温抑制光合的原因主要是低温时膜脂呈凝胶相,叶绿体超微结构受到破坏。此外,低温时酶促反应缓慢,气孔开闭失调,这些是光合受抑的原因。

从表4-6可知,C4植物的热限较高,可达50~60℃,而C3植物较低,一般在40~50℃。乳熟期小麦遇到持续高温,尽管外表上仍呈绿色,但光合功能已严重受损。产生光合作用热限的原因:一是由于膜脂与酶蛋白的热变性,使光合器官损伤,叶绿体中的酶钝化;二是由于高温刺激了光暗呼吸,使表观光合速率迅速下降。昼夜温差对光合净同化率有很大的影响。白天温度高,日光充足,有利于光合作用的进行;夜间温度较低,降低了呼吸消耗,因此,在一定温度范围内,昼夜温差大有利于光合积累。

在农业实践中要注意控制环境温度,避免高温与低温对光合作用的不利影响。玻璃温室与塑料大棚具有保温与增温效应,能提高光合生产力,这已被普遍应用于冬春季的蔬菜栽培。(四)

水分对光合作用的影响有直接的也有间接的原因。直接的原因是水为光合作用的原料,

没有水不能进行光合作用。但是用于光合作用的水不到蒸腾失水的1%,因此缺水影响光合

水分亏缺会使光合速率下降。在水分轻度亏缺时,供水后尚能使光合能力恢复,倘若水分亏

缺严重,供水后叶片水势虽可恢复至原来水平,但光合速率却难以恢复至原有程度(图

4-33)

(1) 气孔导度下降叶片光合速率与气孔导度呈正相关,当水分亏缺时,叶片中脱落酸量增加,从而引起气孔关闭,导度下降,进入叶片的. CO2减少。开始引起气孔导度和光合速率下降的叶片水势值,因植物种类不同有较大差异:水稻为-0.2~-0.3MPa;玉米为-0.3~-0.4MPa;而大豆和向日葵则在-0.6~-1.2MPa间。

(2) 光合产物输出变慢水分亏缺会使光合产物输出变慢,加之缺水时,叶片中淀粉水解加强,糖类积累,结果会引起光合速率下降。

(3) 光合机构受损缺水时叶绿体的电子传递速率降低且与光合磷酸化解偶联,影响同化力的形成。严重缺水还会使叶绿体变形,片层结构破坏,这些不仅使光合速率下降,而且使光合

(4) 光合面积扩展受抑在缺水条件下,生长受抑,叶面积扩展受到限制。有的叶面被盐结晶被绒毛或蜡质覆盖,这样虽然减少了水分的消耗,减少光抑制,但同时也因对光的吸收

水分过多也会影响光合作用。土壤水分太多,通气不良妨碍根系活动,从而间接影响光合;雨水淋在叶片上,一方面遮挡气孔,影响气体交换,另一方面使叶肉细胞处于低渗状态,

矿质营养在光合作用中的功能极为广泛,归纳起来有以下几方面:

1.叶绿体结构的组成成分如N、P、S、Mg是叶绿体中构成叶绿素、蛋白质、核酸以及片层

膜不可缺少.

2.电子传递体的重要成分如PC中含Cu,Fe-S中心、Cytb、Cytf和Fd中都含Fe,放氧复合体不可缺少Mn2+Cl-

3.磷酸基团的重要作用构成同化力的ATP和NADPH,光合碳还原循环中所有的中间产物,

合成淀粉的前体ADPG,以及合成蔗糖的前体UDPG,这些化合物中都含有磷酸基团。

4.活化或调节因子如Rubisco,FBPase等酶的活化需要Mg2+Fe、Cu、Mn、Zn参与叶绿素的合成;K+Ca2+调节气孔开闭;K和P

肥料三要素中以N对光合影响最为显著。在一定范围内,叶的含N量、叶绿素含量、Rubisco 含量分别与光合速率呈正相关。叶片中含N量的80%在叶绿体中,施N既能增加叶绿素含量,加速光反应,又能增加光合酶的含量与活性,加快暗反应。从N素营养好的叶片中提取出的Rubisco不仅量多,而且活性高。然而也有试验指出当Rubisco含量超过一定值后,酶量就

重金属铊、镉、镍和铅等都对光合作用有害,它们大都影响气孔功能。另外,镉对PSⅡ活性有抑制作用

(六)

一天中,外界的光强、温度、土壤和大气的水分状况、空气中的. CO2浓度以及植物体的水分与光合中间产物含量、气孔开度等都在不断地变化,这些变化会使光合速率发生日变化,其中光强日变化对光合速率日变化的影响最大。在温暖、水分供应充足的条件下,光合速率变化随光强日变化呈单峰曲线,即日出后光合速率逐渐提高,中午前达到高峰,以后逐渐降低,日落后光合速率趋于负值(呼吸速率)。如果白天云量变化不定,则光合速率会随光强的变化而变化。

另外,光合速率也同气孔导度的变化相对应(图4-34A)。在相同光强时,通常下午的光合速率要低于上午的光合速率(图4-34B),这是由于经上午光合后,叶片中的光合产物有积累而发生反馈抑制的缘故。当光照强烈、气温过高时,光合速率日变化呈双峰曲线,大峰在上午,小峰在下午,中午前后,光合速率下降,呈现"午睡"现象(midday depression),且这种现象随土壤含水量的降低而加剧(图4-35)。引起光合"午睡"的主要因素是大气干旱和土壤干旱。在干热的中午,叶片蒸腾失水加剧,如此时土壤水分也亏缺,那么植株的失水大于吸水,就会引起萎蔫与气孔导性降低,进而使. CO2吸收减少。另外,中午及午后的强光、高温、低. CO2浓度等条件都会使光呼吸激增,光抑制产生,这些也都会使光合速率在中午

光合"午睡"是植物遇干旱时的普遍发生现象,也是植物对环境缺水的一种适应方式。但是"午睡"造成的损失可达光合生产的30%,甚至更多,所以在生产上应适时灌溉,或选用抗

旱品种,增强光合能力,以缓和"午睡"

光合作用知识点归纳总结

光合作用相关考点总结 知识点一、捕获光能的色素 1、提取和分离叶绿体中的色素 (1)原理:叶绿体中的色素能溶解于。叶绿体中的色素在中的溶解度不同,溶解度高的随层析液在滤纸上扩散得快;反之则慢。 (2)方法步骤: ①提取绿叶中色素:称取菠菜叶2g→剪碎置于研钵→放入少许和→加入5→迅速研磨→过滤→收集滤液(试管口用塞严) ②制备滤纸条: ③画滤液细线: ④分离色素:滤纸条轻轻插入盛有层析液的小烧杯中,滤液细线不能触及到,用培养皿盖住小烧杯。 (3)结果分析: ●无水乙醇的用途是, ●层析液的的用途是; ●二氧化硅的作用是; ●碳酸钙的作用是; ●滤纸条上的细线要求画得细而直,目的是保证层析后分离的 色素带;便于观察分析; ●分离色素时,层析液不能没及滤液细线的原因是; ●层析装置要加盖的原因是 _; ●是否可以用滤纸代替尼龙布过滤; 叶绿素主要吸收和利用胡萝卜素和叶黄素主要吸收。 1.结构与功能的关系 (1)基粒和类囊体增大了受光面积。 (2)类囊体的薄膜上分布着酶和色素,利于光反应的顺利进行。 (3)基质中含有与暗反应有关的酶。 2.色素的分布与作用 (1)分布:叶绿体中的色素都分布于类囊体的薄膜上。 (2)作用:色素可吸收、传递光能 3.影响叶绿素合成的因素 (1)光照:光是影响叶绿素合成的主要条件,在黑暗中不能合成叶绿素,因而叶片发黄。 (2)温度:温度可影响与叶绿素合成有关的酶的活性,进而影响叶绿素的合成。低温时,叶绿素分子易被破坏,而使叶子变黄。 (3)必需元素:叶绿素中含N、等必需元素,缺乏将导致叶绿素无法合成,叶变黄。 光合作用过程中物质和能量的变化 光条件光、色素、酶

光合作用的影响因素和原理的应用(含标准答案)-(1)

第23课时光合作用的影响因素和原理的应用 [目标导读] 1.通过探究光照强弱对光合作用强度的影响实验,学会研究光合作用影响因素的方法。2.联系日常生活实际,思考影响光合作用的环境因素以及光合作用原理的实践应用。3.阅读教材,了解化能合成作用。 [重难点击]影响光合作用的环境因素以及光合作用原理的实践应用。 一探究光照强弱对光合作用强度的影响 多种环境因素对光合作用有着重要的影响,其中光照的影响最为重要。 1.光合作用强度的表示方法 错误! 2.探究光照强弱对光合作用强度的影响 (1)实验原理:抽去小圆形叶片中的气体后,叶片在水中下沉,光照下叶片进行光合作用产生氧气,充满细胞间隙,叶片又会上浮。光合作用越强,单位时间内小圆形叶片上浮的数量越多。 (2)实验流程 打出小圆形叶片(30片):用打孔器在生长旺盛的绿叶上打出(直径=1cm) ↓ 抽出叶片内气体:用注射器(内有清水、小圆形叶片)抽出叶片内气体(O2)等 ↓ 小圆形叶片沉水底:将抽出内部气体的小圆形叶片放入黑暗处盛有清水 ↓的烧杯中,小圆形叶片全部沉到水底 强、中、弱三种光照处理:取3只小烧杯,分别倒入20 mL富含CO2的清水,各放入 10片小圆形叶片,用强、中、弱三种光照分别照射 ↓ 观察并记录同一时间段内各实验装置中小圆形叶片浮起的数量 (3)实验现象与结果分析:光照越强,烧杯内小圆形叶片浮起的数量越多,说明在一定范围内,随着光照强度的不断增强,光合作用强度不断增强。 3.结合细胞呼吸,人们用下面的曲线来表示光照强度和光合作用强度之间的关系,请分析: (1)说出各点代表的生物学意义

①A点:光照强度为零,只进行细胞呼吸。 ②B点:光合作用强度等于呼吸作用强度,为光补偿点。 ③C点:是光合作用达到最大值时所需要的最小光照强度,即光饱和点。 (2)说出各线段代表的生物学意义 ①OA段:呼吸作用强度。 ②AB段:随光照增强,光合作用增强,但仍比呼吸作用弱。 ③BD段:光合作用强度继续随光照强度的增强而增加,而且光合作用强度大于呼吸作用。 ④DE段:光合作用强度达到饱和,不再随光照强度的增强而增加。 归纳提炼 1.除了光照强度对光合作用有一定影响外,光谱成分也对光合作用强度有影响。红光和蓝紫光有利于光合作用,绿光不适合光合作用。太阳光中各种色光均衡,对植物最有利。 2.光合作用速率或称光合作用强度,是指一定量的植物(如一定的叶面积)在单位时间内进行光合作用生成有机物的量(通常用释放多少O2或消耗多少CO2来表示)。包括表观光合作用速率和真正光合作用速率,它们和光照强度的关系如下图: 活学活用 1.通过实验测得一片叶子在不同光照强度下CO2吸收和释放的情况如图1所示。图2所示细胞发生的情况与图1曲线中AB段(不包括A、B两点)相符的一项是() 问题导析(1)图1中A点细胞只进行细胞呼吸,与图2中的B图相对应。 (2)AB段呼吸作用强度大于光合作用强度,线粒体产生的二氧化碳除了供给叶绿体利用外,还有部分释放到细胞外,对应图2中的A图。

(完整版)光合作用知识点总结

第五章细胞的能量供应和利用 第四节能量之源——光与光合作用 一、主要知识点回顾 1、色素分类 叶绿素a 叶绿素主要吸收红光和蓝紫光 叶绿体中色素叶绿素b (类囊体薄膜)胡萝卜素 类胡萝卜素主要吸收蓝紫光 叶黄素(保护叶绿体免受强光伤害) 2、色素提取和分离实验注意事项: ⑴、丙酮的用途是提取(溶解)叶绿体中的色素; ⑵、层析液的的用途是分离叶绿体中的色素; ⑶、石英砂的作用是为了研磨充分; ⑷、碳酸钙的作用是防止研磨时叶绿体中的色素受到破坏; ⑸、分离色素时,层析液不能没及滤液细线的原因是滤液细线上的色素会溶解到层析液中; 3、光合作用是指绿色植物通过叶绿体,利用光能,把CO2和H2O转化成储存能量的有机物,并且释放出O2的过程。 4、光合作用作用过程(重点) 联系:光反应阶段与暗反应阶段既有区别又紧密联系,是缺一不可的整体,光反应为暗反应提供[H]和ATP,暗反应为光反应提供ADP+Pi,没有光反应,暗反应无法进行,没有暗反应,有机物无法合成。

条件:一定需要光 场所:类囊体薄膜, 产物:[H]、O 2和能量 光反应阶段 过程:(1)水的光解,水在光下分解成[H]和O 2 (光合作用释放的氧气全部来自水) (2)形成ATP :ADP+Pi+光能?→?酶ATP 能量变化:光能变为ATP 中活跃的化学能 条件:有没有光都可以进行 场所:叶绿体基质 暗反应阶段 产物:糖类等有机物和五碳化合物 过程:(1)CO 2的固定:1分子C 5和CO 2生成2分子C 3 (2)C 3的还原:C 3在[H]和A TP 作用下,部分还原 成糖类,部分又形成C 5 能量变化:ATP 活跃的化学能转变成化合物中稳定的化学能 5、影响光合作用的环境因素:光照强度、CO2浓度、温度、光照长短、光的成分等 (1)光照强度:在一定的光照强度范围内,光合作用的速率随着光照强度的增加而加 快。 (2)CO2浓度:在一定浓度范围内,光合作用速率随着CO2浓度的增加而加快。 (3)温度:光合作用只能在一定的温度范围内进行,在最适温度时,光合作用速率 最快,高于或低于最适温度,光合作用速率下降。 6、农业生产以及温室中提高农作物产量的方法 ⑴、控制光照强度的强弱;⑵、控制温度的高低;⑶、适当的增加作物环境中二氧化碳的 浓度;⑷、延长光合作用的时间; ⑸、增加光合作用的面积-----合理密植,间作套种;⑹、 温室大棚用无色透明玻璃;⑺、温室栽培植物时,白天适当提高温度,晚上适当降温;⑻、 温室栽培多施有机肥或放置干冰,提高二氧化碳浓度。 7、化能合成作用:利用体外环境中的某些无机物氧化分解所释放的能量制造有机物。 光 合 作 用 的 过 程

影响光合作用的因素教案

影响光合作用的因素教学设计 一、教材分析 教材上关于光合作用这一部分内容只介绍了光合色素、光合作用的原理和应用、光合作用的过程和化能合成作用,而影响光合作用的因素以及这些因素是怎样影响光合作用的,并没有过多提及。但是,在实际应用中,这些与农业生产息息相关,在历年高考中也占据了十分重要的地位,所以,这一部分的内容是不可忽略的。 二、学情分析 这节课的授课对象是高一年级的学生,是在学习了光合作用的相关知识后的一个拓展内容。虽然他们刚刚进入高中,但是已经具备了一定的逻辑思考能力。而且经过前几节课的铺垫,对光合作用相关知识也已经有了一定的理论知识基础。 三、教学目标 1、掌握光合作用过程中,外界条件的变化对光合作用的进行有着怎样 的影响。 2、通过对影响因素的分析,培养学生良好的思维品质,初步学会科学 研究的一般方法,锻炼科学探究能力。 3、能够将所学知识与实际生活相联系,更好的应用于生产生活实践, 使学生认识到生物科学的价值,从而提高对生物的兴趣。 四、教学方法设计 板书和多媒体相结合,利用板书进行上节课有关光合作用过程的回顾,并引出本节课的内容。因为课程所需要的图像比较多,所以本节课以多媒体教学为主,板书为辅。 五、教学设计 通过上节课的学习,同学们已经了解了光合作用的大致过程,那么咱们首先来回顾一下这个过程(利用板书进行一个简单的复习) 根据光合作用的过程,我们可以看到二氧化碳和光照都会影响光合作用的进行,那么它们的变化会使光合作用有怎样的改变呢?我们今天一起来探讨一下。 在探讨光合作用的变化之前,咱们先来看几个概念(PPT给出):呼吸速率、净光合速率、总(真正)光合速率,并用二氧化碳的释放、二氧化碳的吸收、氧气的释放、氧气的吸收、有机物的积累来表示上述三个概念。 了解以上几个概念,那么开始进行今天的主要内容: 1、光照强度与光合作用的关系 (1)

高中生物 必修1 光合作用 知识点全面总结 (word20页)

第三单元之—光合作用 一、叶绿体的结构与功能 (一)叶绿体的结构模型. (二)相关知识 1、.叶绿体是真核细胞进行光合作用的场所 2、叶绿体由两层膜(内膜和外膜)包围而成,内部有许多基粒,基粒和基粒之间充满了基质。 3、每个基粒都有许多个类囊体构成,类囊体薄膜上含有吸收、传递和转化光能的色素以及光反应所需的酶,是光反应的场所。 4、基质中含有暗反应所需的酶,是进行暗反应的场所。 5、光合色素的相关知识。 (1)叶绿体色素的种类及含量: 叶绿素a 叶绿素(3/4) 叶绿素b 叶绿体色素 胡萝卜素 类胡萝卜素(1/4) 叶黄素 (2)叶绿体色素的分布:叶绿体类囊体薄膜上。 (3)叶绿体色素的功能:吸收,传递(4种色素),转化光能(只有少量的叶绿素a把光能转为电能) (4)影响叶绿素合成的因素: ①光照:光是影响叶绿素合成的主要条件,一般植物在黑暗中不能合成叶绿素,因而叶片发黄。(例如韭黄,蒜黄) ②温度:温度可影响与叶绿素合成有关的酶的活性,进而影响叶绿素的合成。低温(秋末)时,叶绿素分子易被破坏,而使叶子变黄。 ③必需元素:叶绿素中含N、Mg等必需元素,缺乏N、Mg将导致叶绿素无法合成,叶变黄。另外,Fe是叶绿素合成过程中某些酶的辅助成分,缺Fe也将导致叶绿素合成受阻,叶变黄。

(5)叶绿体色素的吸收光谱: ①叶绿体中的色素只吸收可见光,而对红外光和紫外光等不吸收。 ②叶绿素a和叶绿素b主要吸收红光和蓝紫光,类胡萝卜素(胡萝卜素和叶黄素)主要吸收蓝紫光。色素对绿光吸收最少。对其他波段的光并非不吸收,只是吸收量较少。 经过色素吸收后,光谱出现两条黑带。说明:叶绿体中的色素主要吸收红光和蓝紫光。 (6)叶绿体色素的性质:易溶于酒精、丙酮和石油醚等有机溶剂,不溶于水,叶绿素的性质不稳定,易被破坏,类胡萝卜素性质相对稳定。 (7)植物叶片的颜色与所含色素的关系: 正常绿色正常叶片的叶绿素和类胡萝卜素的比例约为3∶1,且对绿光吸收最少,所以正常叶片总是呈现绿色 叶色变黄寒冷时,叶绿素分子易被破坏,类胡萝卜素较稳定,显示出类胡萝卜素的颜色,叶子变黄 叶色变红秋天降温时,植物体为适应寒冷,体内积累了较多的可溶性糖,有利于形成红色的花青素,而叶绿素因寒冷逐渐降解,叶子呈现红色 6、色素的提取和分离实验。 (1)原理解读: ①色素的提取:叶绿体中的色素溶于有机溶剂而不溶于水,可以用无水乙醇(或丙酮)作溶剂提取绿叶中的色素,而不能用水,因为叶绿体中的色素不能溶于水。 ②色素的分离原理:利用色素在层析液中的溶解度不同进行分离,溶解度大的在滤纸上扩散得快,反之则慢。从而使各种色素分离。 (2)选材:应选取鲜嫩、颜色深绿的叶片,以保证含有较多的色素。 (3)过程:省略。 (4)结果分析:

光合作用和呼吸作用知识点总结.

ATP的主要来源——细胞呼吸 细胞呼吸的概念:细胞呼吸是指有机物在细胞内经过一系列氧化分解,生成二氧化碳或其 他产物,释放能量并且生成ATP的过程。 一、实验课题探究酵母菌细胞呼吸的方式 (一)实验原理 1、酵母菌是单细胞真菌属于兼性厌氧菌。 有氧呼吸产生水和CO2 无氧呼吸产生酒精和CO2 。 2、CO2的检测方法 (1)CO2使澄清石灰水变浑浊 (2)CO2使溴麝香草酚蓝水溶液由蓝变绿再变黄 3、酒精的检测 橙色的重酪酸钾溶液在酸性下与酒精发生反应,变成灰绿色。 二)实验假设 1. 酵母菌在有氧情况下进行有氧呼吸产生:CO2 2. 无氧情况下进行无氧呼吸,产生:CO2+酒精 (三)实验用具(略) 1、NaOH的作用是什么? 2、酵母菌进行什么呼吸? 3、澄清的石灰水有什么作用? 4、如何说明CO2产生的多少? 5、如何控制无氧的条件? (四)实验结果预测 1、酵母菌在有氧和无氧情况下均产生了CO2,能使澄清石灰 水变浑浊。 2、酵母菌在有氧情况下,没有酒精生成,不能使重铬酸钾溶 液发生显色反应;在无氧情况下,生成了酒精,使重铬酸钾溶 液发生灰绿色显色反应。 3、酵母菌的有氧呼吸比无氧呼吸释放的CO2要多 (五)实验步骤 1、配制酵母菌培养液(等量原则)置于A、B锥形瓶 2、组装有氧呼吸和无氧呼吸装置图,放置在25-35 ℃、环境下培养8-9小时。 3、检测CO2的产生 4、检测酒精的产生 (1)取2支试管编号(2)各取A、B锥形瓶酵母菌培养液的滤液2毫升注入试管 (3)分别滴加0.5毫升重酪酸钾--浓硫酸溶液,轻轻震荡、混匀.A试管密封,B试管不密封.(六)观测、记录

影响光合作用的因素

影响光合作用的因素: 光合作用是在植物有机体的内部和外部的综合条件的适当配合下进行的。因此内外条件的改变也就一定会影响到光合作用的进程或光合作用强度的改变。影响光合作用强度的因素主要有光照强度、CO2浓度、温度和矿质营养。 ①光照强度:植物的光合作用强度在一定范围内是随着光照强度的增加,同化CO2的速度也相应增加,但当光照强度达到一定时,光合作用的强度不再随着光照强度的增加而增强。植物在进行光合作用的同时也在进行呼吸作用,当植物在某一光照强度条件下,进行光合作用所吸收的CO2与该温度条件下植物进行呼吸作用所释放的CO2量达到平衡时,这一光照强度就称为光补偿点,这时光合作用强度主要是受光反应产物的限制。当光照强度增加到一定强度后,植物的光合作用强度不再增加或增加很少时,这一光照强度就称为植物光合作用的光饱和点,此时的光合作用强度是受暗反应系统中酶的活性和CO2浓度的限制如图。 光补偿点在不同的植物是不一样的,主要与该植物的呼吸作用强度有关,与温度也有关系。一般阳生植物的光补偿点比阴生植物高。光饱和点也是阳生植物高于阴生植物。所以在栽培农作物时,阳生植物必须种植在阳光充足的条件下才能提高光合作用效率,增加产量;而阴生植物应当种植在阴湿的条件下,才有利于生长发育,光照强度大,蒸腾作用旺盛,植物体内因失水而不利于其生长发育,如人参、三七、胡椒等的栽培,就必须栽培于阴湿的条件下,才能获得较高的产量。 植物在进行光合作用的同时也在进行着呼吸作用,总光合作用是指植物在光照下制造的有机物的总量(吸收的CO2总量)。净光合作用是指在光照下制造的有机物总量(或吸收的CO2总量)中扣除掉在这一段时间中植物进行呼吸作用所消耗的有机物(或释放的CO2)后,净增的有机物的量。 ②温度:植物所有的生活过程都受温度的影响,因为在一定的温度范围内,提高温度可以提高酶的活性,加快反应速度。光合作用也不例外,在一定的温度范围内,在正常的光照强度下,提高温度会促进光合作用的进行。但提高温度也会促进呼吸作用。如图所示。所以植物净光合作用的最适温度不一定就是植物体内酶的最适温度。 ③CO2浓度:CO2是植物进行光合作用的原料,只有当环境中的CO2达到一定浓度时,植物才能进行光合作用。植物能够进行光合作用的最低CO2浓度称为CO2补偿点,即在此CO2浓度条件下,植物通过光合作用吸收的CO2与植物呼吸作用释放的CO2相等。环境中的CO2低于这一浓度,植物的光合作用就会低于呼吸作用,消耗大于积累,长期如此植物就会死亡。一般来说,在一定的范围内,植物光合作用的强度随CO2浓度的增加而增加,但达到一定浓度后,光合作用强度就不再增加或增加很少,这时的CO2浓度称为CO2的饱和点。如CO2浓度继续升高,光合作用不但不会增加,反而要下降,甚至引起植物CO2中毒而影响植物正常的生长发育。如图所示。 ④必需矿质元素的供应:绿色植物进行光合作用时,需要多种必需的矿质元素。如氮是催化光合作用过程各种酶以及NADP+和ATP的重要组成成分,磷也是NADP+和ATP的重要组成成分。科学家发现,用磷脂酶将离休叶绿体膜结构上的磷脂水解掉后,在原料和条件都具备的情况下,这些叶绿体的光合作用过程明显受到阻碍,可见磷在维持叶绿体膜的结构和功能上起着重要的作用。又如绿色植物通过光合作用合成糖类,以及将糖类运输到块根、块茎和种子等器官中,都需要钾。再如镁是叶绿体的重要组成成分,没有镁就不能合成叶绿素。等等。 5、有氧呼吸和无氧呼吸的比较 有氧呼吸和无氧呼吸的公共途径是呼吸作用第一阶段(糖酵解),是在细胞质基质中进行。在没有氧气的条件下,糖酵解过程的产物丙酮酸被[H]还原成酒精和CO2或乳酸等,在不同的生物体由于酶的不同,其还原的产物也不同。在有氧气的条件下,丙酮酸进入线粒体继续被氧化分解。如图。由于无氧呼吸哪有机物是不彻底的,释放的能量很少,转移到A TP中的能量就更少,还有大量的能量贮藏在不彻底的氧化产物中,如酒精乳酸等。有氧呼吸在有氧气存在的条件下能把糖类等有机物彻底氧化分解成CO2和H2O,把有机物中的能量全部释放出来,约有44%的能量转移到ATP中。所以有氧呼吸为生命活动提供的能量比无氧呼吸多得多,在进化过程中绝大部分生物选择了有氧呼吸方式,但为了适应不利的环境条件还保留了无氧呼吸方式。 6、影响呼吸作用的因素: ①温度:温度能影响呼吸作用,主要是影响呼吸酶的活性。一般而言,在一定的温度范围内,呼吸强

光合作用知识点总结

知识点一、叶绿体中的光合色素的种类、分布、颜色、作用 知识点二、光合色素提取与分离 [提取原理]叶绿体中的色素能够溶解在有机溶剂。故常用无水乙醇提取绿叶中的色素。[分离原理]叶绿体中的色素在层析液中的溶解度不同: 溶解度高的随层析液在滤纸上扩散速度快;反之,则慢。 [过程]1、研磨:CaCO3是为了保护色素;SiO2是为了研磨充分;乙醇提取色素。 2、制备滤纸条,注意一端应减去两角。 3、画滤液线时,要用力均匀,且等滤液线晾干后再画下一次,重复3-4次。 4、用纸层析法分离色素时,滤液线要在层析液的上方,不要触及层析液。 知识点三、光合作用的过程、实质

知识点五:光合作用与呼吸作用的比较 1)光 a、光强度:在一定范围内,光合作用速率随光照强度的增强而加快。 b、光质:复色光(白光)下,光合速率最快; 单色光中,红光下光合速率较快,蓝紫光次之,绿光最差。 故温室大棚常用无色透明薄膜。 2)温度 温度通过影响酶活性来影响光合速率。在一定范围内随温度升高,光合速率增大;温度过高会使酶活性下降,从而使光合速率减小。 生产中的应用:适时播种;温室栽培农作物时,白天适当升温,晚上适当降温。 3)CO2浓度 植物光合速率在一定范围内随CO2浓度增大而加快,但CO2达一定浓度时,光合速率不再增加。 生产中,常用合理密植、通风、施CO2(干冰)、施有机肥的方法,来增加CO2 (4)必需矿质元素:矿质元素会直接或间接影响光合作用。Mg等是合成叶绿素的必需元素(5)水分 水既是光合作用的原料,又是体内各种化学反应的介质。另外,水还影响气孔的开闭,间接影响CO2进入植物体,所以水对光合作用影响很大, 生产上,应合理灌溉,预防干旱。 知识点七:提高植物光能利用率的途径 1、延长光照时间:如:轮作、补充人工光照 2、增加光合作用面积:合理密植、改善株型 3、提高强光合效率(速率):?适当增加光照强度?控制温度?提高CO2浓度

光合作用-影响光合作用的因素

1.影响光合作用速率的环境因素(Ⅱ) (1)分析影响光合作用速率的内外因(从底物、条件和产物分析) (2)总结光合作用原理在农业生产方面的应用 分析影响光合作用的因素,我们要从光合作用的反应式出发,从反应物、产物和反应条件三个方面入手。 光合作用强度(光合速率):植物在单位时间内通过光合作用制造糖类的数量。用一定时间内原料消耗或产物生成的数量来定量表示。 对坐标曲线分析采用:识轴→明点→析线 一、单因子变量对光合作用影响的曲线分析 1.光照强度 (1)原理:影响光反应阶段,制约ATP及NADPH的产生,进而制约暗反应 (2)曲线 光补偿点:光合作用强度与呼吸作用强度相等时刻的光照强度。光照强度>光补偿点,植物才能生长。 光饱和点:光合作用强度达到饱和时的最低光照强度。 (3)应用:温室大棚适当提高光照强度可以提高光合作用速率。 判断光补偿点的移动 (1)光合作用增强,呼吸作用不变或减弱 若外因使光合速率大于呼吸速率,左移。 (2)光合作用不变或减弱,呼吸作用增强 若外因使光合速率小于呼吸速率,右移。

判断光饱和点的移动 植物出现光饱和点实质是强光下暗反应跟不上光反应从而限制了光合速率随着光强的增加而提高。影响暗反应的因素如CO2浓度、温度(影响酶的活性)、pH(影响酶的活性)会影响光饱和点。所以我们在分析时要抓住这一本质,如果外界因素使暗反应增强,则光饱和点右移,反之,则左移。 分析表中数据可知,若其他条件不变,当pH由9.0增大到10.0时水葫芦的光补偿点最可能(左移/右移/不移动)。光饱和点最可能(左移/右移/不移动)。 【例2】图甲表示某植物体在30℃恒温时的光合速率(以植物体对O2的吸收或释放量计算)与光照强度的关系。

(完整word版)能量之源——光与光合作用知识点

5-4 能量之源——光与光合作用 一、捕获光能的色素和结构 1、光合色素(Ⅱ) 2、叶绿体 (1)分布:植物叶肉细胞(主要) (2)结构特点 双层膜 基粒:由类囊体组成,类囊体膜上有光和色素、酶 基质:含与暗反应有关的酶 3、光合色素的提取与分离(Ⅱ) 二、光合作用探究历程(Ⅰ) 见课本P100-102 重点实验:恩格尔曼的水绵实验、鲁宾和卡门实验、卡尔文实验

三、光合作用过程 1、方程式 2、过程(Ⅲ) 常考:光照强度变化或CO2浓度变化,各物质的含量变化(如ATP、 [H]、C3、C5等)。 3、光反应、暗反应比较

四、影响光合作用强度的因素(Ⅲ) 谨记谨记:总(真)光合速率=净光合速率+呼吸速率1、光照 (1)光照强度 A点:只进行光合作用 AB段:呼吸>光合 B点:呼吸=光合 BC段:光合>呼吸 (2)光照时间 (3)光质

2、CO2浓度 3、温度 4、矿质元素 N、P、K、Mg(叶绿素关键元素)五、光合作用原理的应用(Ⅰ) 六、常考曲线图(Ⅲ) 1、夏季晴朗的一天

bc段下降的原因是,正午气温过高,气孔关闭,CO2吸收减少,使暗反应减缓。 de段下降的原因是,光照强度降低。 6点、18点时,光合作用=呼吸作用。 2、密闭容器中 AB段:CO2不断增加,CO2释放较多。呼吸作用>光合作用。BD段:CO2不断减少,CO2吸收较多。呼吸作用<光合作用 DE段:CO2不断增加,CO2释放较多。呼吸作用>光合作用 经过一昼夜,大棚内植物有机物的含量会增加。 E点的CO2含量低于A点,说明光合作用合成的有机物多于细胞呼吸消耗的有机物。

影响光合作用的因素练习题

影响光合作用的因素练习题 一、内部因素对光合作用速率的影响及应用 1.同一植物的不同生长发育阶段 曲线分析:在外界条件相同的情况下,光合作用速率由弱到强依次是___________、_________、__________ 应用:根据植物在不同生长发育阶段__________速率不同,适时、适量地提供水肥及其他环境条件,以使植物茁壮成长。 2.同一叶片的不同生长发育时期 曲线分析:随幼叶发育为壮叶,叶面积增大,叶绿体不断增多,叶绿素含量不断增加,光合速率______;老叶内叶绿素被破坏,光合速率随之______。 应用:农作物、果树管理后期适当摘除老叶、残叶及茎叶蔬菜及时换新叶,都是根据其原理,可降低其___________消耗的有机物。 二、外界因素对光合作用速率的影响及应用 1.单因子因素 (1)光照强度 ①原理分析:光照强度影响光合速率的原理是通过影响____________阶段,制约________________________的产生,进而制约__________阶段。 ②图像分析:A点时只进行_________;AB段随着光照强度的增强,________强度也增强,但是仍然小于____________强度;B点时代谢特点为__________________;BC段随着光照强度的增强,光合作用强度仍不断增强;

C点对应的光照强度为____________,限制C点的环境因素可能有_________________等。 ③完成填空后,在下面的四幅图中标出A点、AB段、B点和B点之后的氧气和二氧化碳转移方向。 ④应用分析:欲使植物正常生长,则必须使光照强度大于____点对应的光照强度;适当提高_________可增加大棚作物产量。 (2)光照面积 ①图像分析:OA段表明随叶面积的不断增大,光合作用实际量不断增大,A点 为光合作用面积的饱和点。随叶面积的增大,光合作用强度不再增加,原因是_____________________ ②OB段表明干物质量随光合作用增加而增加,而由于A点以后 不再增加,但叶片随叶面积的不断增加,(OC段)不断增加,所以干物质积累量不断(BC段)。 ②应用分析:适当间苗、修剪,合理施肥、浇水,避免徒长。封顶过早,使中下层叶子所受的光照往往在光补偿点以下,白白消耗有机物,造成不必要的浪费。 (3)CO2浓度 ①原理分析:CO2浓度影响光合作用的原理是通过影响阶段,制约生

光合作用知识点总结

5.4 能量之源----光与光合作用 一、 光合作用:绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存着能量的有机物,并释放出氧气的过程 。 叶绿体是进行光合作用的场所。在类囊体的薄膜上分布着具有吸收光能的 ,在类囊体的薄膜上和叶绿体的基质中含有许多光合作用所必需的 。 化能合成作用:某些细菌,能够利用体外环境中的某些无机物氧化时所释放的能量来制造有机物,这种合成作用叫做化能合成作用。如硝化细菌,将NH 3氧化成亚硝酸,进而氧化成硝酸,利用这两个反应释放的化学能,将CO 2和H 2O 合成糖类。 二、光合作用的探究历程: ① 普里斯特利发现,植物可以更新空气。能说明消耗CO2和产生O2吗?不能 ②由于空气组成的发现,人们明确了绿叶在光下放出的气体是氧气,吸收的是二氧化碳。 梅耶指出,植物进行光合作用时,把光能转换成化学能储存起来。 ③萨克斯把绿叶放在暗处理(饥饿处理,消耗原有淀粉)的绿色叶片,酒精去除色素后,一半曝光, 另一半遮光。过一段时间后,用碘蒸气处理叶片,发现遮光的那一半叶片没有发生颜色变化,曝光的那一半叶片则呈深蓝色。证明:绿色叶片在光合作用中产生了淀粉。 ④恩格尔曼用水绵进行光合作用的实验。巧妙之处在于:水绵的叶绿体是螺旋带状,便于观察。用好 氧细菌的聚集来确定氧气的产生部位。证明叶绿体是绿色植物进行光合作用的场所,氧是叶绿体释放出来的。 ⑤鲁宾,卡门采用同位素标记法研究了光合作用。第一组相植物提供H 218O 和CO 2,释放的是18O 2;第二 组提供H 2 O 和C 18O ,释放的是O 2。光合作用释放的氧全部来自来水。 ⑥、卡尔文用14CO 2供给小球藻进行光合作用,通过控制供给14CO 2的时间和对中间产物的分析,探明了 CO 2转化成葡萄糖的途径(CO 2→C3→葡萄糖)即卡尔文循环。 三、光合作用过程 ※※叶绿体处于不同条件下,C3、C5、[H]、ATP 以及(CH 2O)合成量的动态变化 C3的变化与其他三种物质相反。 四、影响光合作用的外界因素主要有: 1、光照强度:在一定范围内,光合速率随光照强度的增强而加快,超过光饱合点,光合速率反而会下

高一生物光合作用知识点归纳

高一生物光合作用知识点归纳 高一生物光合作用知识点归纳 光和光合作用 一、捕获光能的色素 叶绿体中的色素有4种,他们可以归纳为两大类: 叶绿素(约占3/4):叶绿素a(蓝绿色)叶绿素b(黄绿色) 类胡萝卜素(约占1/4):胡萝卜素(橙黄色)叶黄素(黄色) 叶绿素主要吸收红光和蓝紫光,类胡萝卜素主要吸收蓝紫光。白光下光合作用最强,其次是红光和蓝紫光,绿光下最弱。因为叶绿 素对绿光吸收最少,绿光被反射出来,所以叶片呈绿色。 二、实验——绿叶中色素的提取和分离 1实验原理:绿叶中的色素都能溶解在层析液(有机溶剂如无水 乙醇和丙酮)中,且他们在层析液中的溶解度不同,溶解度高的随层 析液在滤纸上扩散得快,绿叶中的色素随着层析液在滤纸上的扩散 而分离开。 2方法步骤中需要注意的问题:(步骤要记准确) 三、捕获光能的结构——叶绿体 结构:外膜,内膜,基质,基粒(由类囊体构成)。与光合作用有关的酶分布于基粒的类囊体及基质中。光合作用色素分布于类囊体 的薄膜上。吸收光能的四种色素和光合作用有关的酶,就分布在类 囊体的薄膜上。类囊体在基粒上。 叶绿体是进行光合作用的场所。它内部的巨大膜表面上,不仅分布着许多吸收光能的色素分子,还有许多进行光合作用所必须的酶。

四、光合作用的原理 植物更新空气。 植物进行光合作用时,把光能转化成化学能储存起来。 光合作用的产物除氧气外还有淀粉。 光合作用释放的氧气来自水。(同位素标记法) CO2中的碳在光合作用中转化成有机物中的碳的途径,这一途径称为卡尔文循环。 暗反应中,ATP中活跃的化学能转化为(CH2O)中稳定的化学能 联系:光反应为暗反应提供ATP和[H],暗反应为光反应提供合成ATP的原料ADP和Pi 五、影响光合作用的因素及在生产实践中的应用 (1)光对光合作用的影响 ①光的波长 叶绿体中色素的吸收光波主要在红光和蓝紫光。 ②光照强度 植物的光合作用强度在一定范围内随着光照强度的增加而增加,但光照强度达到一定时,光合作用的强度不再随着光照强度的增加而增加 ③光照时间 光照时间长,光合作用时间长,有利于植物的生长发育。 (2)温度 温度低,光合速率低。随着温度升高,光合速率加快,温度过高时会影响酶的活性,光合速率降低。

光合作用知识点归纳总结

光合作用知识点归纳总结 光合作用相关考点总结知识点一、捕获光能的色素1、提取和分离叶绿体中的色素(1)原理:叶绿体中的色素能溶解于。 叶绿体中的色素在中的溶解度不同,溶解度高的随层析液在滤纸上扩散得快;反之则慢。 (2)方法步骤:①提取绿叶中色素:称取菠菜叶2g→剪碎置于研钵→放入少许_______和_______→加入5mL______→迅速研磨→过滤→收集滤液(试管口用______塞严)②制备滤纸条:③画滤液细线:④分离色素:滤纸条轻轻插入盛有层析液的小烧杯中,滤液细线不能触及到,用培养皿盖住小烧杯。 (3)结果分析:l无水乙醇的用途是 ___________________________,l层析液的的用途是 __________________;l二氧化硅的作用是______________;l 碳酸钙的作用是_____________________________;l滤纸条上的细线要求画得细而直,目的是保证层析后分离的色素带;便于观察分析;l分离色素时,层析液不能没及滤液细线的原因是 ____________________________;l层析装置要加盖的原因是_;l是否可以用滤纸代替尼龙布过滤 ____________________________________________;叶绿素主要吸收和利用胡萝卜素和叶黄素主要吸收。 1.结构与功能的关系(1)基粒和类囊体增大了受光面积。

利于光反应的顺利进行。类囊体的薄膜上分布着酶和色素,(2) (3)基质中含有与暗反应有关的酶。 2.色素的分布与作用(1)分布:叶绿体中的色素都分布于类囊体的薄膜上。 (2)作用:色素可吸收、传递光能3.影响叶绿素合成的因素(1)光照:光是影响叶绿素合成的主要条件,在黑暗中不能合成叶绿素,因而叶片发黄。 (2)温度:温度可影响与叶绿素合成有关的酶的活性,进而影响叶绿素的合成。 低温时,叶绿素分子易被破坏,而使叶子变黄。 (3)必需元素:叶绿素中含N、Mg等必需元素,缺乏Mg将导致叶绿素无法合成,叶变黄。 光合作用过程中物质和能量的变化光反应阶段条件光、色素、酶场所光酶在类囊体的薄膜上物质变化水的分解:2H2O→ 4[H]+O2↑ATP的生成:ADP+Pi→ATP能量变化光能→ATP中的活跃化学能暗反应阶段条件酶、ATP、[H](有光、没光都行)场所叶绿体基质物质变化酶酶CO2的固定:CO2+C5→2C3ATPC3的还原:C3+[H]→(CH2O)能量变化ATP中的活跃化学能→(CH2O)中的稳定化学能3.光照和CO2浓度变化对植物细胞内C3、C5、[H]、ATP和O2及(CH2O)含量的影响考点二:与光合作用有关的曲线及分析、光合作用与呼吸作用的联系合速率,只有提高光强或CO2浓度。

光合作用知识点

光合作用和呼吸作用考点一光合作用与呼吸作用 1.光合作用和细胞呼吸关系图解 图中①~⑩依次为O 2、叶绿体、[H]、C 5 、C 6 H 12 O 6 、O 2 、 C 2H 5 OH、乳酸、细胞质基质、ATP。 3、光照和CO 2 浓度变化对光合作用物质含量变化的影响 考点二影响光合作用的环境因素及其应用 1.影响光合作用的环境因素 (1)光照强度 ②应用:阴生植物的光补偿点和光饱和点都较阳生植物低,如图中虚线所示。间作套种农作物,可合理利用光能;欲使植物正常生长,则必须使光照强度大于B点对应的光照强度;适当提高光照强度可增加大棚作物产量。 (2)CO2浓度

①曲线分析:图1中A点表示CO 2 补偿点,即光合速率等于呼吸速 率时的CO 2浓度,图2中A'点表示进行光合作用所需CO 2 的最低浓度。B和 B'点都表示CO 2 饱和点。 ②应用:在农业生产上可以通过“正其行,通其风”,增施农家肥等增大CO 2 浓度,提高光合速率。 ①温度主要通过影响与光合作用有关的酶的活性而影响光合速率。 ②曲线分析:低温使酶的活性降低,导致植物的光合速率降低;在一定 范围内随着温度的升高,酶活性升高,进而导致光合速率增大;温度过高会使酶活性降低,导致植物光合速率减小。 ③应用:冬季,温室栽培可适当提高温度;晚上可适当降低温度,以降低细胞呼吸消耗有机物。 (4)矿质元素 ①曲线分析:在一定浓度范围内,增大必需矿质元素的供应,可提高光合速率,但当超过一定浓度后,会因土壤溶液浓度过高使植物吸水困难,而导致光合速率下降。 ②应用:在农业生产上,根据植物的需肥规律,合理施肥,可以提高作物的光合作用。 (5)温度、光照强度、CO 2 浓度综合因素对光合速率的影响 关键点含义:P点时,限制光合速率的因素应为横坐标所表示的因子,随该 因子的不断加强,光合速率不断提高。当到Q点时,横坐标所表示的因子,不再是影响光合速率的因素,要想提高光合速率,可采取适当提高其他因子的措施。 2.自然环境及密封容器中植物光合作用曲线分析

光合作用知识点总结

能量之源----光与光合作用 一、光合作用:绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存着能量的有机物,并释放出氧气的过程。 叶绿体是进行光合作用的场所。在类囊体的薄膜上分布着具有吸收光能的,在类囊体的薄膜上和叶绿体的基质中含有许多光合作用所必需的。 化能合成作用:某些细菌,能够利用体外环境中的某些无机物氧化时所释放的能量来制造有机物,这种合成作用叫做化能合成作用。如硝化细菌,将NH3氧化成亚硝酸,进而氧化成硝酸,利用这两个反应释放的化学能,将CO2和H2O 合成糖类。 二、光合作用的探究历程: ①普里斯特利发现,植物可以更新空气。能说明消耗CO2和产生O2吗不 能 ②由于空气组成的发现,人们明确了绿叶在光下放出的气体是氧气,吸收的 是二氧化碳。 梅耶指出,植物进行光合作用时,把光能转换成化学能储存起来。 ③萨克斯把绿叶放在暗处理(饥饿处理,消耗原有淀粉)的绿色叶片,酒精 去除色素后,一半曝光,另一半遮光。过一段时间后,用碘蒸气处理叶片,发现遮光的那一半叶片没有发生颜色变化,曝光的那一半叶片则呈深蓝色。证明:绿色叶片在光合作用中产生了淀粉。 ④恩格尔曼用水绵进行光合作用的实验。巧妙之处在于:水绵的叶绿体是螺 旋带状,便于观察。用好氧细菌的聚集来确定氧气的产生部位。证明叶绿体是绿色植物进行光合作用的场所,氧是叶绿体释放出来的。 ⑤鲁宾,卡门采用同位素标记法研究了光合作用。第一组相植物提供H218O和 CO2,释放的是18O2;第二组提供H2 O和C18O,释放的是O2。光合作用释放的氧全部来自来水。 ⑥、卡尔文用14CO2供给小球藻进行光合作用,通过控制供给14CO2的时间和对中间产物的分析,探明了CO2转化成葡萄糖的途径(CO2→C3→葡萄糖)即卡尔文循环。 三、光合作用过程

高中生物 呼吸作用和光合作用知识点集锦 新人教版

高中生物呼吸作用和光合作用知识点集锦新人教版 一、呼吸作用 1、过程分析: (1)无氧呼吸的第二阶段是第一阶段产生的[H]将丙酮酸还原为C2H5OH 和 CO2或乳酸的过程。 (2)有氧呼吸中 H2O 既是反应物,又是生成物,且生成的H2O中的氧全部来自于O2。 (3)有氧呼吸的三个阶段的共同产物是 ATP,无氧呼吸只在第一阶段产生 ATP。 (4)有氧呼吸、无氧呼吸全过程均需要不同的酶催化;不同生物的无氧呼吸的产物不同,其原因在于催化反应的酶不同。 (5)原核生物无线粒体,有些原核生物(如硝化细菌、蓝藻)仍可进行有氧呼吸。 (6)只能进行无氧呼吸的真核生物(如蛔虫),其细胞内无线粒体。 【突破题1】(2011年潮州期末统考)细胞呼吸对生命活动意义重大,下面关于细胞呼吸的叙述正确的是( ) A.线粒体是有氧呼吸的主要场所,没有线粒体的细胞只能进行无氧呼吸 B.有叶绿体的细胞可以自行合成 ATP,因此不需要细胞呼吸提供能量 C.酵母菌无氧呼吸产生 A mol CO2,人在正常情况下消耗等量葡萄糖可形成 3A mol CO2 D.细胞呼吸中有机物的分解必须有水和氧气的参与才能释放储存的能量 外界因素分析应用图解 温度最适温度时,细胞呼吸 最强;超过最适温度呼 吸酶活性降低,甚至变 性失活,细胞呼吸受抑 制;低于最适温度酶活 性下降,细胞呼吸受抑 制①在低温下贮存蔬菜、水果 ②在大棚种植时,夜间适当降温(降低细 胞呼吸,减少有机物的消耗),提高产量

O2浓度 O2浓度低时,无氧呼吸 占优势;随 O2 浓度增 大,无氧呼吸逐渐被抑 制,有氧呼吸不断加 强;当O2浓度达到一 定值后,随O2 浓度增 大,有氧呼吸不再加强 (受呼吸酶数量、磷酸、 ADP 等因素的影响) ①利用适当降低O2浓 度等能够抑制细胞呼 吸、减少有机物消耗的 原理来延长蔬菜、水果 的保鲜时间 ②中耕松土增加根的 有氧呼吸 ③在医疗上选用透气 的消毒纱布等包扎伤 口,可抑制厌氧病原菌 的繁殖 含水量(自由水)在一定范围内,细胞呼 吸速率随含水量的增 加而加快,随含水量的 减少而减慢 在作物种子储藏时,将 种子风干,以减弱细胞 呼吸,减少有机物的消 耗 CO2浓度CO2浓度增加,呼吸速 率下降 蔬菜和水果的保鲜中, 增加 CO2浓度具有良 好的保鲜效果 矿质元素有些矿质元素是酶的 激活剂,影响与细胞呼 吸有关的酶的活性 合理施肥 图 5-3-2 (1)从甲图中可知,细胞呼吸最旺盛时的温度在___点。AB段说明:在一定温度范围内,随着温度升高,细胞呼吸_____。温度的变化主要是影响_____的活性。 (2)乙图中曲线Ⅰ表示_________呼吸类型。如果曲线Ⅱ描述的是水稻根细胞的呼吸,那么在 DE 段根细胞内积累的物质是___________。曲线Ⅱ表示的生理过程所利用的有机物主要是。 分析呼吸类型时,要根据反应式中物质变化的数量来判断 (1)无 CO2释放,细胞只进行产生乳酸的无氧呼吸。 (2)CO2产生量=O2吸收量,则只进行有氧呼吸。 (3)只产生 CO2,不消耗 O2,则只进行产生酒精和二氧化碳的无氧呼吸。 (4)CO2产生量>O2吸收量,则两种呼吸同时存在,多余的CO2来自无氧呼吸:

光合作用的影响因素和原理的应用(含答案)

第23课时 光合作用的影响因素和原理的应用 [目标导读] 1.通过探究光照强弱对光合作用强度的影响实验,学会研究光合作用影响因素的方法。2.联系日常生活实际,思考影响光合作用的环境因素以及光合作用原理的实践应用。 3.阅读教材,了解化能合成作用。 [重难点击] 影响光合作用的环境因素以及光合作用原理的实践应用。 一 探究光照强弱对光合作用强度的影响 多种环境因素对光合作用有着重要的影响,其中光照的影响最为重要。 1.光合作用强度的表示方法 ????? 单位时间内光合作用产生的有机物的量单位时间内光合作用吸收CO 2的量 单位时间内光合作用放出O 2的量 2.探究光照强弱对光合作用强度的影响 (1)实验原理:抽去小圆形叶片中的气体后,叶片在水中下沉,光照下叶片进行光合作用产生氧气,充满细胞间隙,叶片又会上浮。光合作用越强,单位时间内小圆形叶片上浮的数量越多。 (2)实验流程 打出小圆形叶片(30片):用打孔器在生长旺盛的绿叶上打出(直径=1 cm) ↓ 抽出叶片内气体:用注射器(内有清水、小圆形叶片)抽出叶片内气体(O 2)等 ↓ 小圆形叶片沉水底:将抽出内部气体的小圆形叶片放入黑暗处盛有清水 ↓ 的烧杯中,小圆形叶片全部沉到水底 强、中、弱三种光照处理:取3只小烧杯,分别倒入20 mL 富含CO 2的清水,各放入 10片小圆形叶片,用强、中、弱三种光照分别照射 ↓ 观察并记录同一时间段内各实验装置中小圆形叶片浮起的数量 (3)实验现象与结果分析:光照越强,烧杯内小圆形叶片浮起的数量越多,说明在一定范围内,随着光照强度的不断增强,光合作用强度不断增强。 3.结合细胞呼吸,人们用下面的曲线来表示光照强度和光合作用强度之间的关系,请分析:

光合作用知识点汇总

光合作用知识点汇总标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

第四节能量之源----光与光合作用 一、绿叶中色素的提取和分离 1、实验原理 (1)色素的提取:色素溶于有机溶剂而不溶于水,可用无水乙醇(丙酮)等有机溶剂提取绿叶中的色素。 (2)色素的分离:各种色素在层析液中溶解度不同,溶解度高的随层析液在滤纸上扩散得快,反之则慢,从而使各种色素相互分离。 2、实验步骤 提取绿叶中的色素:称取5 g绿色叶片,先剪碎,再加入少许二氧化硅和碳酸钙,然后加入10 mL 无水乙醇,并进行迅速、充分的研磨,然后过滤研磨液至试管中,用棉塞塞严试管口。 制备滤纸条:将干燥的定性滤纸剪成长和宽略小于试管的滤纸条,将滤纸条的一段剪去两角,并在距这一端1 cm处用铅笔画一条细的横线。 画滤液细线①用毛细吸管吸取少量滤液 ②画线 ③待滤液干后,重复2~3次分离绿叶中的色素:将3 mL 层析液倒入试管,插入滤 纸条(有滤液细线的一端朝下,滤液细线不能触及层析液),随后用棉塞塞紧试管。观察现象: 滤纸条上出现四条色素带,从上到下依次 是(颜色)橙黄色、黄色、蓝绿色、黄绿色。 3、实验结果 色素种类色素颜色色素含量溶解度扩散速度 胡萝卜素橙黄色最少最高最快 叶黄素黄色较少较高较快 叶绿素a蓝绿色最多较低最慢 叶绿素b黄绿色较多最低最慢 过程注意事项操作目的 提取色素(1)选新鲜绿色的叶片使滤液中色素含量高 (2)研磨时加无水乙醇溶解色素 (3)加少量SiO2和CaCO2研磨充分和防止色素被破坏 (4)迅速、充分研磨防止乙醇挥发,充分溶解色素 (5)盛放滤液的试管管口加棉塞防止乙醇挥发和色素氧化 过程注意事项操作目的 分离色素(1)滤纸预先干燥处理使层析液在滤纸上快速扩散 (2)滤液细线要细、齐、直使分离出的色素带平整不重叠 (3)滤液细线干燥后再画一两次使分离出的色素带清晰分明 (4)滤液细线不触及层析液防止色素直接溶解到层析液中

相关文档
相关文档 最新文档