文档库 最新最全的文档下载
当前位置:文档库 › 圆周运动绳杆模型专题训练

圆周运动绳杆模型专题训练

圆周运动绳杆模型专题训练
圆周运动绳杆模型专题训练

圆周运动中的临界问题

专题训练

一.两种模型:

(1)轻绳模型:一轻绳系一小球在竖直平面内做圆周运动.小球能到达最高点(刚好做圆周运动)的条件是小球的重力恰好提供向心力,即mg =m r

v 2,这时的速度是做圆周运动的最小速度

v min = . (绳只能提供拉力不能提供支持力). 类此模型:竖直平面内的内轨道

(2)轻杆模型:一轻杆系一小球在竖直平面内做圆周运动,小球能到达最高点(刚好做圆周运动)的条件是在最高点的速度 . (杆既可以提供拉力,也可提供支持力或侧向力.) ①当v =0 时,杆对小球的支持力 小球的重力; ②当0

③当v

=gr 时,杆对小球的支持力 于零; ④当v >

gr 时,杆对小球提供 力. 类此模型:竖直平面内的管轨道.

1、圆周运动中绳模型的应用 【例题1】长L =0.5m 的细绳拴着小水桶绕固定轴在竖直平面内转动,筒中有质量m =0.5Kg 的水,问:(1)在最高点时,水不流出的最小速度是多少?(2)在最高点时,若速度v =3m/s ,水对筒底的压力多大?

【训练1】游乐园里过山车原理的示意图如图所示。设过山车的总质量为m ,由静止从高为h 的斜轨顶端A 点开始下滑,到半径为r 的圆形轨道最高点

B 时恰好对轨道无压力。求在圆形轨道最高点B 时的速度大小。

【训练2】.杂技演员在做水流星表演时,用绳系着装有水的水桶,在竖直平面内做圆周运动,若水的质量m =0.5 kg ,绳长l=60cm ,求:

(1)最高点水不流出的最小速率。 (2)水在最高点速率v =3 m /s 时,水对桶底的压力.

2、圆周运动中的杆模型的应用

【例题2】一根长l =0.625 m 的细杆,一端拴一质量m=0.4 kg 的小球,使其在竖直平面内绕绳的另一端做圆周运动,求:

(1)小球通过最高点时的最小速度;

(2)若小球以速度v 1=3.0m /s 通过圆周最高点时,杆对小球的作用力拉力多大?方向如何?

v

R

【训练3】如图所示,长为L 的轻杆一端有一个质量为m 的小球,另一端有光滑的固定轴O ,现给球一初速度,使球和杆一起绕O 轴在竖直平面内转动,不计空气阻力,则( ) A.小球到达最高点的速度必须大于gL B.小球到达最高点的速度可能为0

C.小球到达最高点受杆的作用力一定为拉力

D.小球到达最高点受杆的作用力一定为支持力

【训练4】如图所示,在竖直平面内有一内径为d 的光滑圆管弯曲而成的环形轨道,环形轨道半径R 远远大于d ,有一质量为m 的小球,直径略小于d ,可在圆管中做圆周运动。若小球恰能在圆环轨道中完成圆周运动,则小球在通过最高点时 受到轨道给它的作用力为___________。若小球通过圆环轨道 最高点时速度恰为gL ,则小球在通过最高点时受到轨道给 它的作用力为___________。

【训练5】如图所示,用一连接体一端与一小球相连,绕过O 点的水平轴在竖直平面内做圆周运动,设轨道半径为r ,图中P 、Q 两点分别表示小球轨道的最高点和最低点,则以下说法正确的是( )

A.若连接体是轻质细绳时,小球到达P 点的速度可以为零

B.若连接体是轻质细杆时,小球到达P 点的速度可以为零

C.若连接体是轻质细绳时,小球在P 点受到细绳的拉力可能为零

D.若连接体是轻质细杆时,小球在P 点受到细杆的作用力为拉力, 在Q 点受到细杆的作用力为推力

二、水平面内的圆周运动临界问题

【例题3】如图所示,一个光滑的圆锥体固定在水平桌面上,其轴线沿竖直方向,母线与轴线之间的夹角为θ=30°,一条长为L 的绳(质量不计),一端固定在圆锥体的顶点O 处,另一端拴着一个质量为m 的小物体(物体可看作质点),物体以速率v 绕圆锥体的轴线做水平匀速圆周运动。

⑴当v =

1

6

gL 时,求绳对物体的拉力; ⑵当v =3

2

gL 时,求绳对物体的拉力。

O L m

L m

O θ

基础巩固、

1.如图6-11-5所示,细线的一端有一个小球,现给小球一初速度,使小球绕细线另一端O 在竖直平面内转动,不计空气阻力,用F 表示球到达最高点时细线对小球的作用力,则F 可能 ( )

A .是拉力

B .是支持力

C .等于零

D .可能是拉力,可能是支持力,也可能等于零

2.(1999年 全国)如图6-11-6所示,细杆的一端与小球相连,可绕过O

点的水平轴自由转动,现给小球一初速度,使它做圆周运动,图中a 、b 分别表

示小球轨道的最低点和最高点,则杆对球的作用力可能是 ( )

A .a 处为拉力,b 处为拉力

B .a 处为拉力,b 处为推力

C .a 处为推力,b 处为拉力

D .a 处为推力,b 处为推力

3.长为L 的轻杆,一端固定一个小球,另一端与光滑的水平轴相连。现给小球一个初

速度,使小球在竖直平面内做圆周运动,已知小球在最高点时的速度为v ,则下列叙述正确的是 ( )

A .v

B .v 由零逐渐增大,向心力也逐渐增大

C .v 由零逐渐增大,杆对小球的弹力也逐渐增大

D .v

4.质量为m 的小球在竖直平面内的圆形轨道的内侧运动,经过最高点而不脱离轨道的临界速度为v ,当小球以2v 的速度经过最高点时,对轨道的压力是 ( )

A .0

B .mg

C .3mg

D .5mg

5.长为L 的细绳一端拴一质量为m 的小球,小球绕细绳另一固定端在竖直平面内做圆周运动并恰能通过最高点,不计空气阻力,设小球通过最低点和最高点时的速度分别为1v 和

2v ,细线所受拉力分别为1F 、2F ,则 ( )

A .1v

B .2v = 0

C . 1F = 5mg

D .2F = 0

6.质量可忽略,长为L 的轻棒,末端固定一质量为m

的小球,要使其绕另一端点在竖

图6-11-5

图6-11-6

直平面内做圆周运动,那么小球在最低点时的速度v 必须满足的条件为 ( )

A .v

B .v

C .v ≥

D .v

7.如图6-11-7所示,一个高为h 的斜面,与半径为R 的圆形轨道平滑地连接在一起。现有一小球从斜面的顶端无初速地滑下,若要使小球通过圆形轨道的顶端B 而不落下,则斜面的高度h 应为多大?

8.如图6-11-8所示,杆长为L ,杆的一端固定一质量为m 的小球,杆的质量忽略不计,整个系统绕杆的另一端O 在竖直平面内作圆周运动,求:

(1)小球在最高点A 时速度A v 为多大时,才能使杆对小球m 的作用力为零?

(2)小球在最高点A 时,杆对小球的作用力F 为拉力和推力时的临界速度是多少?

(3)如m = 0.5kg, L = 0.5m, A v = 0.4m/s, 则在最高点A 和最低点B 时, 杆对小球m 的作用力各是多大? 是推力还是拉力?

【拓展提高】

9.如图6-11-9所示,固定在竖直平面内的光滑圆弧形轨道ABCD ,其A 点与圆心等高,D 点为轨道最高点,DB 为竖直线,AC 为水平线,AE 为水平面,今使小球自A 点正上方某处由静止释放,且从A 点进入圆形轨道运动,通过适当调整释放点的高度,总能保证小球最终通过最高点D ,

则小球在通过D 点后 ( )

A .会落到水平面AE 上

B .一定会再次落到圆轨道上

C .可能会落到水平面AE 上

D .可能会再次落到圆轨道上

10.如图6-9-10所示,半径为R ,内径很小的光滑半圆管竖直放置,AB 段平直,质量为m 的小球以水平初速度0v 射入圆管。

(1)若要小球能从C 端出来,初速度0v 多大?

(2)在小球从C 端出来瞬间,对管壁压力有哪几种典型情况,初速度0v 各应满足什么条件?

图6-11-8

v

6-11-9

圆周运动中绳模型和杆模型的一般解析

圆周运动中绳模型和杆模型的一般解析 一:绳模型:若已不可伸长的绳子长L ,其一端栓有一质量m 的小球(可看成质点)。现使绳子拉着小球绕一点O 做匀速圆周运动,则(1)小球恰好通过最高点的速度v 。 (2)当能通过最高点时,绳子拉F 。 解:(1)小球恰能通过最高点的临界条件是绳子没有拉力, 则对小球研究,其只受重力mg 作用, 故,由其做圆周运动得: L v m mg 2= 故 gL v = (2)由分析得,当小球到最高点时速度gL v v =>'时, 则,mg L mv F -=2 ' 而,当gL v v =<'时,那么小球重力mg 大于其所需向心力,因此小球做向心运动。 二:杆模型:若一硬质轻杆长L ,其一端有一质量m 的小球(可看成质点)。现使杆和小球绕一点O 做匀速圆周运动, 则 (1)小球恰好通过最高点的速度v 。 (2)当能通过最高点时,杆对小球的作用力F 。 解:(1)因为杆具有不可弯曲不可伸长的性质,所以小球在最高点,当速度为0时,恰好能通过。 (2)①由绳模型可知,当小球通过最高点速度gL v =时,

恰好有绳子拉力为0,则同理可知,当杆拉小球到最高点时, 若小球速度gL v =时,小球所需向心力恰好等于重力mg , 故,此时杆对小球没有作用力。 ②当小球通过最高点时速度gL v >时, 则小球所需向心力比重力mg 大,所以此时杆对小球表现为拉力,使小球不至于做离心运动 故对小球有, L mv mg F 2=+ ③同理,当小球通过最高点时速度gL v <时, 则小球所需向心力小于重力mg ,所以此时小球对杆有压力作用,有牛顿第三定律得,杆对小球表现为支持力作用, 故对小球有, L mv F mg 2=-

圆周运动的三种模型

一、圆锥摆模型: 如图所示:摆球的质量为 m ,摆线长度为L ,摆动后摆球做圆周运动,摆线与竖直方向成 分析, 正交分法解 得: 竖直方向: ________________ 水平方向: F<= _______ 最终得 F 合= _________ 用力的合成法得 F 合= _________ 。半径 r = _______ ,圆周运动 F 向= _________ = ________ , 由F 合=卩向可得V= ________ , 3= ______ 圆锥摆是物理学中一个基本模型,许多现象都含有这个模型。分析方法同样适用自行车, 摩托车,火车转弯,飞机在水平面内做匀速圆周飞行等在水平面内的匀速圆周运动的问题。 力的合力提供向心力,向心力方向水平。 1、小球在半径为 R 的光滑半球内做水平面内的匀速圆周运动,试分析图中 的夹角)与线速度 V ,周期T 的关系。(小球的半径远小于 R ) 2、如图所示,用一根长为 1= 1m 的细线,一端系一质量为 m = 1kg 的小球(可视为质点),另一端固定在一光 滑锥体顶端,锥面 9 3时, 圆周运动的三种模型 共同点是由重力和弹 0 (小球与半球球心连线跟竖直方向 细线的张力为T 。求(取g = 10m/s 2,结果可用根式表示): (1 )右要小球离开锥面,则小球的角速度 30至少为多大? (2)若细线与竖直方向的夹角为 60°则小球的角速度 3Z 为多大?

二.轻绳模型 (一)轻绳模型的特点: 1. 轻绳的质量和重力不计; 2. 只能产生和承受沿绳方向的拉力; (二)轻绳模型在圆周运动中的应用 小球在绳的拉力作用下在竖直平面内做圆周运动的临界问题: 1?临界条件:小球通过最高点,绳子对小球刚好没有力的作用,由重力提供向心力: ______ = _____ ,v 临界= 2?小球能通过最高点的条件: v ____ v 临界(此时,绳子对球产生 —力) 3. 不能通过最高点的条件: v v 临界(实际上小球还没有到最高点时,就脱离了轨道) 练习: 质量为m 的小球在竖直平面内的圆形轨道的内侧运动,经过最高点而不脱离轨道的临界速度为 v ,当小球以2v 的速度经过最高点时,对轨道的压力是( ) A . 0 B. mg C .3mg D 5mg (一)轻杆模型的特点: 1. 轻杆的质量和重力不计; 2. 能产生和承受各方向的拉力和压力 (二 )轻杆模型在圆周运动中的应用 轻杆的一端连着一个小球在竖直平面内做圆周运动,小球通过最高点时,轻杆对小球产生弹力的情况: 1. 小球能通过最高点的最小速度 v= ___ ,此时轻杆对小球的作用力 N= ___ ( 2 2. 当 _______ =m v 临界(轻杆对小球的作用力 N= 0 ), V 临界 __ j gR (即0v 临界)时,有

圆周运动的三种模型

圆周运动的三种模型 一、圆锥摆模型: 如图所示:摆球的质量为m,摆线长度为L ,摆动后摆球做圆周运动,摆线与竖直方向成θ角,对小球受力 分析, 正交分法解得:竖直方向:水平方向:F X=最终得F合=。 用力的合成法得F合=。半径r=,圆周运动F向==,由F合=F向可得V=,ω= 圆锥摆是物理学中一个基本模型,许多现象都含有这个模型。分析方法同样适用自行车, 摩托车,火车转弯,飞机在水平面内做匀速圆周飞行等在水平面内的匀速圆周运动的问题。共同点是由重力和弹力的合力提供向心力,向心力方向水平。 1、小球在半径为R 的光滑半球内做水平面内的匀速圆周运动,试分析图中θ(小球与半球球心连线跟竖直方向的夹角)与线速度V ,周期T 的关系。(小球的半径远小于R) 2、如图所示,用一根长为l=1m的细线,一端系一质量为m=1kg的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=37°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为T。求(取g=10m/s2,结果可用根式表示): (1)若要小球离开锥面,则小球的角速度ω0至少为多大? (2)若细线与竖直方向的夹角为60°,则小球的角速度ω'为多大?

二.轻绳模型 (一)轻绳模型的特点: 1. 轻绳的质量和重力不计; 2. 只能产生和承受沿绳方向的拉力; (二)轻绳模型在圆周运动中的应用 小球在绳的拉力作用下在竖直平面内做圆周运动的临界问题: 1. 临界条件:小球通过最高点,绳子对小球刚好没有力的作用,由重力提供向心力: = ,v 临界 = 2. 小球能通过最高点的条件: v v 临界(此时,绳子对球产生 力) 3. 不能通过最高点的条件: v v 临界 (实际上小球还没有到最高点时,就脱离了轨道) 练习: 质量为m 的小球在竖直平面内的圆形轨道的内侧运动,经过最高点而不脱离轨道的临界速度为v ,当小球以2v 的速度经过最高点时,对轨道的压力是( ) A . 0 B. mg C .3mg D 5mg 三.轻杆模型: (一)轻杆模型的特点: 1.轻杆的质量和重力不计; 2.能产生和承受各方向的拉力和压力 (二)轻杆模型在圆周运动中的应用 轻杆的一端连着一个小球在竖直平面内做圆周运动,小球通过最高点时,轻杆对小球产生弹力的情况: 1. 小球能通过最高点的最小速度v= ,此时轻杆对小球的作用力N= ( N 为 力) 2. 当 =R v m 2临界 ( 轻杆对小球的作用力N= 0 ),gR v 临界 3 当 (即0v 临界)时,有 =R v m 2 (轻杆对小球的作用力N 为 力) 练习: 半径为R=0.5m 的管状轨道,有一质量为m=3kg 的小球在管状轨道内部做圆周运动,通过最高点时小球的速率是2m/s ,g=10m/s2 ,则( ) A. 外轨道受到24N 的压力 B. 外轨道受到6N 的压力 C. 内轨道受到24N 的压力 D. 内轨道受到 6N 的压力

大全圆周运动模型

圆周运动模型 一、匀速圆周运动模型 1.随盘匀速转动模型 1.如图,小物体m 与圆盘保持相对静止,随盘一起做匀速圆周运动,则物体的受力情况是: A .受重力、支持力、静摩擦力和向心力的作用 B .摩擦力的方向始终指向圆心O C .重力和支持力是一对平衡力 D .摩擦力是使物体做匀速圆周运动的向心力 2. 如图所示,质量为m 的小物体系在轻绳的一端,轻绳的另一端固定在转轴上。轻绳长度为L 。现在使物体在光滑水平支持面上与圆盘相对静止地以角速度 做匀速圆周运动,求: (1)物体运动一周所用的时间T ; (2)绳子对物体的拉力。 3、如图所示,MN 为水平放置的光滑圆盘,半径为1.0m ,其中心O 处有一个小孔,穿过小孔的细绳两端各系一小球A 和B ,A 、B 两球的质量相等。圆盘上的小球A 作匀速圆周运动。问 (1)当A 球的轨道半径为0.20m 时,它的角速度是多大才能维持B 球静止? (2)若将前一问求得的角速度减半,怎样做才能使A 作圆周运动时B 球仍能保持静止? 4、如图4所示,a 、b 、c 三物体放在旋转水平圆台上,它们与圆台间的动摩擦因数均相同,已知a 的质量为2m ,b 和c 的质量均为m ,a 、b 离轴距离为R ,c 离轴距离为2R 。当圆台转动时,三物均没有打滑,则:(设最大静摩擦力等于滑 动摩擦力)( ) A.这时c 的向心加速度最大 B .这时b 物体受的摩擦力最小 C.若逐步增大圆台转速,c 比b 先滑动 D .若逐步增大圆台转速,b 比a 先滑动 5、如右图所示,某游乐场有一水上转台,可在水平面内匀速转动,沿半径方向面对面手拉手坐着甲、乙两个小孩,假设两小孩的质量相等,他们与盘间的动摩擦因数相同,当圆盘转速加快到两小孩刚好还未发生滑动时,某一时刻两小孩突然松手,则两小孩的运动情况是( ) A .两小孩均沿切线方向滑出后落入水中 B .两小孩均沿半径方向滑出后落入水中 C .两小孩仍随圆盘一起做匀速圆周运动,不会发生滑动而落入水中 D .甲仍随圆盘一起做匀速圆周运动,乙发生滑动最终落入水中 6、线段OB=AB ,A 、B 两球质量相等,它们绕O 点在光滑的水平面上以相同的角速度转动时,如图4所示,两段线拉力之比T AB :T OB =______。 2.转弯模型 1.火车在水平轨道上转弯时,若转弯处内外轨道一样高,则火车转弯时:[ ] A .对外轨产生向外的挤压作用 B .对内轨产生向外的挤压作用 C .对外轨产生向内的挤压作用 D .对内轨产生向内的挤压作用 2.火车通过半径为R 的弯道,已知弯道的轨道平面与水平面的夹角为θ,要使火车通过弯道时对内外轨道不产生挤压,求火车通过弯道时的速度? O ω ω m

专题一圆周运动绳杆模型

专题一:《圆周运动中的临界问题》 一.两种模型: (1)轻绳模型:一轻绳系一小球在竖直平面内做圆周运动.小球能到达最高点(刚好做圆周运 动)的条件是小球的重力恰好提供向心力,即mg =m r v 2 ,这时的速度是做圆周运动的最小速度v min = . (绳只能提供拉力不能提供支持力). 类此模型:竖直平面内的内轨道 (2)轻杆模型:一轻杆系一小球在竖直平面内做圆周运动,小球能到达最高点(刚好做圆周运动)的条件是在最高点的速度 . (杆既可以提供拉力,也可提供支持力或侧向力.) ①当v =0 时,杆对小球的支持力 小球的重力; ②当0gr 时,杆对小球提供 力. 类此模型:竖直平面内的管轨道. 1、圆周运动中绳模型的应用 【例题1】长L =0.5m 的细绳拴着小水桶绕固定轴在竖直平面内转动,筒中有质量m =0.5Kg 的水,问:(1)在最高点时,水不流出的最小速度是多少?(2)在最高点时,若速度v =3m/s ,水对筒底的压力多大? 【训练1】游乐园里过山车原理的示意图如图所示。设过山车的总质量为m ,由静止从高为h 的斜轨顶端A 点开始下滑,到半径为r 的圆形轨道最高点 B 时恰好对轨道无压力。求在圆形轨道最高点B 时的速度大小。 【训练2】.杂技演员在做水流星表演时,用绳系着装有水的水桶,在竖直平面内做圆周运动,若水的质量m =0.5 kg ,绳长l=60cm ,求: (1)最高点水不流出的最小速率。 (2)水在最高点速率v =3 m /s 时,水对桶底的压力. 2、圆周运动中的杆模型的应用 【例题2】一根长l =0.625 m 的细杆,一端拴一质量m=0.4 kg 的小球,使其在竖直平面内绕绳的另一端做圆周运动,求: (1)小球通过最高点时的最小速度; (2)若小球以速度v 1=3.0m /s 通过圆周最高点时,杆对小球的作用力拉力多大?方向如何?

圆周运动中的几种模型

圆周运动中的几种模型 一.轻绳模型 (一). 轻绳模型的特点: 1. 轻绳的质量和重力不计; 2. 只能产生和承受沿绳方向的拉力; (二).轻绳模型在圆周运动中的应用 小球在绳的拉力作用下在竖直平面内做圆周运动的临界问题: 1. 临界条件:小球通过最高点,绳子对小球刚好没有力的作用,由重力提供向心力: 2. 小球能通过最高点的条件:(当时,绳子对球产生拉力) 3. 不能通过最高点的条件:(实际上小球还没有到最高点时,就脱离了轨道) 例:质量为m的小球在竖直平面内的圆形轨道的内侧运动,经过最高点而不脱离轨道的临界速度为v ,当小球以2v的速度经过最高点时,对轨道的压力是() A . 0 B. mg C .3mg D 5mg

分析:内侧轨道只能对小球产生向下的压力,其作用效果同轻绳一样,所以其本质是轻绳模型 当小球经过最高点的临界速度为v ,则 当小球以 2v的速度经过最高点时,轨道对小球产生了一个向下的压力N ,则 因为所以 根据牛顿第三定律,小球对轨道压力的大小也是,故选 c. 二.轻杆模型: (一). 轻杆模型的特点: 1.轻杆的质量和重力不计; 2.能产生和承受各方向的拉力和压力 (二). 轻杆模型在圆周运动中的应用 轻杆的一端连着一个小球在竖直平面内做圆周运动,小球通过最高点时,轻杆对小球产生弹力的情况: 1. 小球能通过最高点的临界条件:v=0 ,N=mg ( N为支持力) 2. 当时,有( N为支持力)

3 当时,有(N=0 ) 4 当时,有(N 为拉力) 例:半径为R=0.5m 的管状轨道,有一质量为m=3kg的小球在管状轨道内部做圆周运动,通过最高点时小球的速率是2m/s ,g=10m/s2 ,则() A. 外轨道受到24N的压力 B. 外轨道受到6N的压力 C. 内轨道受到24N 的压力 D. 内轨道受到 6N的压力 分析:管状轨道对小球既有支持力又有压力,所以其本质属于杆模型: 当小球到最高点轨道对其作用力为零时:有 则, =>2m/s 所以,内轨道对小球有向上的支持力,则有 代入数值得: N=6N 根据牛顿第三定律,小球对内轨道有向下的压力大小也为6N ,故选 D 三.圆锥摆模型: 圆锥摆模型在圆周运动中的应用:

圆周运动中绳模型和杆模型的一般解析

圆周运动中绳模型和杆模型的一般解析 -CAL-FENGHAI.-(YICAI)-Company One1

圆周运动中绳模型和杆模型的一般解析 一:绳模型:若已不可伸长的绳子长L ,其一端栓有一质量m 的小球(可看成质点)。现使绳子拉着小球绕一点O 做匀速圆周运动,则(1)小球恰好通过最高点的速度v 。 (2)当能通过最高点时,绳子拉F 。 解:(1)小球恰能通过最高点的临界条件是绳子没有拉力, 则对小球研究,其只受重力mg 作用, 故,由其做圆周运动得: L v m mg 2= 故 gL v = (2)由分析得,当小球到最高点时速度gL v v =>'时, 则,mg L mv F -=2 ' 而,当gL v v =<'时,那么小球重力mg 大于其所需向心力,因此小球做向心运动。 二:杆模型:若一硬质轻杆长L ,其一端有一质量m 的小球(可看成质点)。现使杆和小球绕一点O 做匀速圆周运动, 则 (1)小球恰好通过最高点的速度v 。 (2)当能通过最高点时,杆对小球的作用力F 。 解:(1)因为杆具有不可弯曲不可伸长的性质,所以小球在最高点,当速度为0时,恰好能通过。

(2)①由绳模型可知,当小球通过最高点速度gL v =时,恰好有绳子拉力为0,则同理可知,当杆拉小球到最高点时, 若小球速度gL v =时,小球所需向心力恰好等于重力mg , 故,此时杆对小球没有作用力。 ②当小球通过最高点时速度gL v >时, 则小球所需向心力比重力mg 大,所以此时杆对小球表现为拉力,使小球不至于做离心运动 故对小球有, L mv mg F 2=+ ③同理,当小球通过最高点时速度gL v <时, 则小球所需向心力小于重力mg ,所以此时小球对杆有压力作用,有牛顿第三定律得,杆对小球表现为支持力作用, 故对小球有, L mv F mg 2=-

竖直平面内的圆周运动 绳 杆模型 学校学案

竖直平面内的圆周运动(绳、杆模型)学习目标: 1、加深对向心力的认识,会在绳、杆两类问题中分析向心力的来源。 2、知道两类问题的“最高点”、“最低点”临界条件。 注意知识点: 1、对于物体在竖直平面内做的圆周运动是一种典型的变速曲线运动,该类运动常有临界问题,并伴有“最大”、“最小”、“刚好”等词语,常分析两种模型:绳模型、杆模型。两种模型过最高点的临界条件不同,其实质原因主要是: (1)“绳”(或圆轨道内侧)不能提供支撑力,只能提供拉力。 (2)“杆”(或在圆环状细管内)既能承受压力,又能提供支撑力。 一、绳模型: 如图所示小球在细绳的约束下,在竖直平面内做圆周运动,小球质量为m,绳长为R,1、在最低点时,对小球受力分析,小球受到重力、绳 的拉力。由牛顿第二定律得:向心力由重力mg和拉力 F的合力提供: F-mg =2v m R 得:F =mg+2v m R

在最低点拉力大于重力 2、在最高点时,我们对小球受力分析如图,小球受到 重力、绳的拉力。可知小球做圆周运动的向心力由重力 mg和拉力F共同提供: F+mg =2v m R 在最高点时,向心力由重力和拉力共同提供, v越大,所需的向心力越大,重力不变,因此大力就越大;反过来,v越小,所需的向心力越小,重力不变,因此拉力也就越小。如果v不断减小,那么绳的拉力就不断减小,在某时刻绳的拉力F 就会减小到0,这时小球的向心力最小F 向 =mg,这时只有重力提供向心力。故:(1)小球能过最高点的临界条件:绳子(或轨道)对小球刚好没有力的作用 ,只有重力提供向心力,小球做圆周运动刚好能过最高点。 mg =2v m R v 临界 =Rg (2)小球能过最高点条件:v≥Rg (当v >Rg时,绳对球产生拉力或轨道对球产生压力,向心力由重力和绳的拉力共同提供) (3)不能过最高点条件:v

圆周运动-圆盘模型.

圆周运动——圆盘模型 1、如图所示,水平转盘上放有质量为m的物块,当物块到转轴的距离为r时,连接物块和转轴的绳刚好被拉直(绳中张力为零),物块与转盘间最大静摩擦力是其重力的k倍,求: 2、(1)转盘的角速度为时绳中的张力T1; (2)转盘的角速度为时绳中的张力T2。 2、如图所示,在匀速转动的圆盘上,沿直径方向上放置以细线相连的A、B两个 小物块。A的质量为,离轴心,B的质量为,离轴心 ,A、B与盘面间相互作用的摩擦力最大值为其重力的0.5倍,试求:(1)当圆盘转动的角速度为多少时,细线上开始出现张力? (2)欲使A、B与盘面间不发生相对滑动,则圆盘转动的最大角速度为多大?()

3、如图11所示,在匀速转动的圆盘上,沿半径方向放置以细线相连的质量均为 m的A、B两个小物块。A离轴心r 1=20 cm,B离轴心r 2 =30 cm,A、B与圆盘面 间相互作用的最大静摩擦力为其重力的0.4倍,取g=10 m/s2。 (1)若细线上没有张力,圆盘转动的角速度ω应满足什么条件? (2)欲使A、B与圆盘面间不发生相对滑动,则圆盘转动的最大角速度多大? (3)当圆盘转速达到A、B刚好不滑动时,烧断细线,则A、B将怎样运动? 4、如图所示,在水平圆盘上沿半径方向放置用细线相连的质量均为m的A、B 两个物块(可视为质点).A和B距轴心O的距离分别为r A=R,r B=2R,且A、B 与转盘之间的最大静摩擦力都是f m,两物块A和B随着圆盘转动时,始终与圆盘保持相对静止.则在圆盘转动的角速度从0缓慢增大的过程中,下列说法正确的是() A.B所受合外力一直等于A所受合外力 B.A受到的摩擦力一直指向圆心 C.B受到的摩擦力一直指向圆心 D.A、B两物块与圆盘保持相对静止的最大角速度为 5、如图所示,在绕竖直轴匀速转动的水平圆盘盘面上,离轴心r=20cm处放置一小物块A,其质量为m=2kg,A与盘面间相互作用的静摩擦力的最大值为其重力的k倍(k=0.5),试求

竖直面圆周运动的绳球,杆球模型

类型题: 竖直面上圆周运动 (1)绳球模型(外轨道模型):如图所示,没有物体支撑的小球,在竖直平面内做圆周运动过最高点的情况: ①临界条件:小球达最高点时绳子的拉力(或轨道的弹力)刚好等于零,小球的重力提供其做圆周运动的向心力,即r mv mg 2临界 = ?rg =临界υ(临界υ是小球通过最高点的最小速度,即临界速度) 。 ②能过最高点的条件:临界υυ≥。 此时小球对轨道有压力或绳对小球有拉力mg r v m N -=2 ③不能过最高点的条件:临界υυ<(实际上小球还没有到最高点就已脱离了轨道)。 (2)杆球模型(双层轨道模型):如图所示,有物体支持的小球在竖直平面内做圆周运动过最高点的情况: ①临界条件:由于硬杆和管壁的支撑作用,小球恰能达到最高点的临界速度0=临界υ。 ②图(a )所示的小球过最高点时,轻杆对小球的弹力情况是: 当v=0时,轻杆对小球有竖直向上的支持力N ,其大小等于小球的重力,即N=mg ; 当0N>0。 当rg = υ时,N=0; 当v>rg 时,杆对小球有指向圆心的拉力mg r v m N -=2 ,其大小随速度的增大而增大。 ③图(b )所示的小球过最高点时,光滑硬管对小球的弹力情况是: 当v=0时,管的下侧内壁对小球有竖直向上的支持力,其大小等于小球的重力,即N=mg 。 当0N>0。 当v=gr 时,N=0。 G F F G F G 绳

(完整版)最全圆周运动模型

圆周运动模型 一、匀速圆周运动模型 1.随盘匀速转动模型 1.如图,小物体m 与圆盘保持相对静止,随盘一起做匀速圆周运动,则物体的受力情况是: A .受重力、支持力、静摩擦力和向心力的作用 B .摩擦力的方向始终指向圆心O C .重力和支持力是一对平衡力 D .摩擦力是使物体做匀速圆周运动的向心力 2. 如图所示,质量为m 的小物体系在轻绳的一端,轻绳的另一端固定在转轴上。轻绳长度为 L 。现在使物体在光滑水平支持面上与圆盘相对静止地以角速度 做匀速圆周运动,求: (1)物体运动一周所用的时间T ; (2)绳子对物体的拉力。 3、如图所示,MN 为水平放置的光滑圆盘,半径为1.0m ,其中心O 处有一个小孔,穿过小孔的细绳两端各系一小球A 和B ,A 、B 两球的质量相等。圆盘上的小球A 作匀速圆周运动。问 (1)当A 球的轨道半径为0.20m 时,它的角速度是多大才能维持B 球静止? (2)若将前一问求得的角速度减半,怎样做才能使A 作圆周运动时B 球仍能保持静止? 4、如图4所示,a 、b 、c 三物体放在旋转水平圆台上,它们与圆台间的动摩擦因数均相同,已知a 的质量为2m ,b 和c 的质量均为m ,a 、b 离轴距离为R ,c 离轴距离为2R 。当圆台转动时,三物均没有打滑,则:(设最大静摩擦力等于滑动摩擦力)( ) A.这时c 的向心加速度最大 B .这时b 物体受的摩擦力最小 C.若逐步增大圆台转速,c 比b 先滑动 D .若逐步增大圆台转速,b 比a 先滑动 5、如右图所示,某游乐场有一水上转台,可在水平面内匀速转动,沿半径方向面对面手拉手坐着甲、乙两个小孩,假设两小孩的质量相等,他们与盘间的动摩擦因数相同,当圆盘转速加快到两小孩刚好还未发生滑动时,某一时刻两小孩突然松手,则两小孩的运动情况是( ) A .两小孩均沿切线方向滑出后落入水中 B .两小孩均沿半径方向滑出后落入水中 C .两小孩仍随圆盘一起做匀速圆周运动,不会发生滑动而落入水中 D .甲仍随圆盘一起做匀速圆周运动,乙发生滑动最终落入水中 6、线段OB=AB ,A 、B 两球质量相等,它们绕O 点在光滑的水平面上以相同的角速度转动时,如图4所示,两段线拉力之比T AB :T OB =______。 2.转弯模型 1.火车在水平轨道上转弯时,若转弯处内外轨道一样高,则火车转弯时:[ ] A .对外轨产生向外的挤压作用 B .对内轨产生向外的挤压作用 C .对外轨产生向内的挤压作用 D .对内轨产生向内的挤压作用 2.火车通过半径为R 的弯道,已知弯道的轨道平面与水平面的夹角为θ,要使火车通过弯道时对内外轨道不产生挤压,求火车通过弯道时的速度? O ω ω m

竖直平面内的圆周运动绳、杆模型)学校学案

竖直平面内的圆周运动杆模型) 学习目标: 1、加深对向心力的认识,会在绳、杆两类问题中分析向心力的来源。 2、知道两类问题的“最高点”、“最低点”临界条件。 注意知识点: 1、对于物体在竖直平面内做的圆周运动是一种典型的变速曲线运动,该类运动常有临界问题,并伴有 “最大”、“最小”、“刚好”等词语,常分析两种模型:绳模型、杆模型。两种模型过最高点的临界 条件不同,其实质原因主要是: (1)“绳”(或圆轨道内侧)不能提供支撑力,只能提供拉力。 (2)“杆”(或在圆环状细管内)既能承受压力,又能提供支撑力。 一、绳模型:如图所示小球在细绳的约束下,在竖直平面内做圆周运动,小球质量为 1、在最低点时,对小球受力分析,小球受到重力、绳的拉力。由牛顿第二定律得:向心力由重力mg和拉力F的合力提供: 2 2 F-mg=m V得:F =mg+m—R R 在最低点拉力大于重力 2、在最高点时,我们对小球受力分析如图,小球受到重力、绳的拉 力。可知小球做圆周运动的向心力由重力mg和拉力F共同提供: 2 F+mg= m —R 在最高点时,向心力由重力和拉力共同提供,v越大,所需的向心力越大,重力不变,因此大 力就越大;反过来,v越小,所需的向心力越小,重力不变,因此拉力也就越小。如果v不断减小,那么绳的拉力就不断减小,在某时刻绳的拉力F就会减小到0,这时小球的向心力最小F向=mg,这时 只有重力提供向心力。故: (1)小球能过最高点的临界条件:绳子(或轨道)对小球刚好没有力的作用,只有重力提供向心力,小球做圆周运动刚好能过最高点。 2 __________________________ mg= m - v临界=..』Rg R (2 )小球能过最高点条件:-> .Rg (当-> ,Rg时,绳对球产生拉力或轨道对球产生压力,向心力由重力和绳的拉力共同提供) (3)不能过最高点条件:v < ■ Rg (实际上球还没有到最高点时,就脱离了轨道) 二、杆模型: m绳长为R, 如图,小球在轻杆的约束下在竖直平面内做匀速圆周运动,小球质量为1、在最低点时,对小球受力分析,向心力的来源是向心力由重力 2 合力提供,由牛顿第二定律得:F+mg= m R m杆长为R, mg和拉力F的 在最低点情况和绳模型一样 2、在最高点时,我们对小球受力分析如图,杆的弹力F N有可能是拉力,也可能是支持力。

课时分层作业50 匀速圆周运动的数学模型 函数y=Asin(ωx+φ)的图象

课时分层作业(五十) 函数y =A sin(x +φ) (建议用时:60分钟) [合格基础练] 一、选择题 1.下列表示函数y =sin ? ????2x -π3在区间???? ??-π2,π上的简图正确的是( ) A [当x =π时,y =sin ? ???? -π3=-32排除B 、D. 当x =π 6 时y =sin 0=0,排除C ,故选A.] 2.把函数y =sin ? ? ???2x -π4的图象向左平移π8个单位长度,所得到的图象对应的 函数是( ) A .奇函数 B.偶函数 C .既是奇函数也是偶函数 D.非奇非偶函数 A [y =sin ? ????2x -π4=sin ?????? 2? ????x -π8,向左平移π8个单位长度后为y = sin ???? ?? 2? ????x -π8+π8=sin 2x ,为奇函数.] 3.同时具有性质“(1)最小正周期是π;(2)图象关于直线x =π 3对称;(3)在???? ?? -π6,π3上单调递增”的一个函数是( )

A .y =sin ? ???? x 2+π6 B .y =cos ? ? ???2x +π3 C .y =sin ? ?? ??2x -π6 D .y =cos ? ?? ??2x -π6 C [由(1)知T =π=2πω,ω=2,排除A.由(2)(3)知x =π 3时,f (x )取最大值,验证知只有C 符合要求.] 4.已知函数f (x )=A sin(ωx +φ)+B 的一部分图象如图所示,若A >0,ω>0,|φ|<π 2,则( ) A . B =4 B .φ=π 6 C .ω=1 D .A =4 B [由函数图象可知f (x )min =0,f (x )max =4. 所以A =4-02=2,B =4+0 2=2. 由周期T =2πω=4? ???? 5π12-π6知ω=2. 由f ? ????π6=4得2sin ? ???? 2×π6+φ+2=4, sin ? ?? ?? π3+φ=1,又|φ|<π2,故φ=π6.] 5.已知函数f (x )=cos ? ? ???ωx -π6(ω>0)的相邻两个零点的距离为π2,要得到y =f (x )的图象,只需把y =cos ωx 的图象( ) A .向右平移π 12个单位 B .向左平移π 12个单位 C .向右平移π 6个单位 D .向左平移π 6个单位 A [由已知得2πω=2×π 2,故ω=2. y =cos 2x 向右平移π12个单位可得y =cos 2? ????x -π12=cos ? ? ? ??2x -π6的图象.]

高考物理模型之圆周运动模型

高考物理模型之圆周运 动模型 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第二章 圆周运动 解题模型: 一、水平方向的圆盘模型 1. 如图1.01所示,水平转盘上放有质量为m 的物块,当物块到转轴的距离为r 时,连接物块和转轴的绳刚好被拉直(绳上张力为零)。物体和转盘间最大静摩擦力是其正压力的μ倍,求: (1)当转盘的角速度ωμ12=g r 时,细绳的拉力F T 1。 (2)当转盘的角速度ωμ232=g r 时,细绳的拉力F T 2。 图2.01 解析:设转动过程中物体与盘间恰好达到最大静摩擦力时转动的角速度为ω0,则μωmg m r =02,解得ωμ0= g r 。 (1)因为ωμω102=g r ,所以物体所需向心力大于物与盘间的最大静摩擦力,则细绳将对物体施加拉力F T 2,由牛顿的第二定律得:F mg m r T 222+=μω,解得F mg T 22=μ。

2. 如图2.02所示,在匀速转动的圆盘上,沿直径方向上放置以细线相连的 A 、 B 两个小物块。A 的质量为m kg A =2,离轴心r cm 120=,B 的质量为m kg B =1,离轴心r cm 210=,A 、B 与盘面间相互作用的摩擦力最大值为其重力的0.5倍,试求: (1)当圆盘转动的角速度ω0为多少时,细线上开始 出现张力? (2)欲使A 、B 与盘面间不发生相对滑动,则圆盘转 动的最大角速度为多大( g m s =102/) 图2.02 解析:(1)ω较小时,A 、B 均由静摩擦力充当向心力,ω增大, F m r =ω2可知,它们受到的静摩擦力也增大,而r r 12>,所以A 受到的静摩擦力先达到最大值。ω再增大,AB 间绳子开始受到拉力。 由F m r fm =1022ω,得:ω011111 055===F m r m g m r rad s fm ./ (2)ω达到ω0后,ω再增加,B 增大的向心力靠增加拉力及摩擦力共同来提供,A 增大的向心力靠增加拉力来提供,由于A 增大的向心力超过B 增加的向心力,ω再增加,B 所受摩擦力逐渐减小,直到为零,如ω再增加,B 所受的摩擦力就反向,直到达最大静摩擦力。如ω再增加,就不能维持匀速圆周运

高中物理 圆周运动中的“双星模型”

圆周运动中的“双星模型” 宇宙中往往会有相距较近,质量可以相比的两颗星球,它们离其它星球都较远,因此其它星球对它们的万有引力可以忽略不计。在这种情况下,它们将各自围绕它们连线上的某一固定点O做同周期的匀速圆周运动。如图6所示,这种结构叫做双星.双星问题具有以下两个特点: ⑴由于双星和该固定点O 总保持三点共线,所以在相同时间内转过的角度必相等,即双星做匀速圆周运动的角速度必相等,因此周期也必然相同。 ⑵由于每颗星的向心力都是由双星间相互作用的万有引力提供的,因此大小必然相等, 由可得,可得,,即固定点O离质量大的星较近。 列式时须注意:万有引力定律表达式中的r表示双星间的距离,按题意应该是L,而向心力表达式中的r表示它们各自做圆周运动的半径,在本题中为r1、r2,千万不可混淆。 【例1】神奇的黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案之一是观测双星系统的运动规律.天文学家观测河外星系大麦哲伦云时,发现了LMCX-3双星系统,它由可见星A和不可见的暗星B构成。两星视为质点,不考虑其它天体的影响,A、B围绕两者连线上的O点做匀速圆周运动,它们之间的距离保持不变,如图1所示。引力常量为G,由观测能够得到可见星A的速率v和运行周期T。 如图1 (1)可见星A所受暗星B的引力F A可等效为位于O点处质量为m’的星体(视为质点)对它的引力,设A和B的质量分别为m1、m2,试求m’(用m1、m2表示); (2)求暗星B的质量m2与可见星A的速率v、运行周期T和质量m1之间的关系式; (3)恒星演化到末期,如果其质量大于太阳质量m s的2倍,它将有可能成为黑洞。若可见星A的速率v=2.7×105m/s,运行周期T=4.7π×104s,质量m1=6m s,试通过估算来判断暗星B有可能是黑洞吗?(G=6.67×10-11N·m2/kg2,m s=2.0×1030kg)

最全圆周运动模型

圆周运动模型 一、匀速圆周运动模型 1随盘匀速转动模型 1如图,小物体 m 与圆盘保持相对静止,随盘一起做匀速圆周运动,则物体的受力情况是: A. 受重力、支持力、静摩擦力和向心力的作用 B .摩擦力的方向始终指向圆心 C.重力和支持力是一对平衡力 D .摩擦力是使物体做匀速圆周运动的向心力 2. 如图所示,质量为 m 的小物体系在轻绳的一端,轻绳的另一端固定在转轴上。轻绳长度为 L 。现在使物体在光滑水平支持面上与圆盘相对静止地以角速度 「做匀速圆周运动,求: (1) 物体运动一周所用的时间 T ; (2) 绳子对物体的拉力。 3、如图所示,MN 为水平放置的光滑圆盘,半径为 1.0m ,其中心0处有一个小孔,穿过小孔的细绳两端各系一小 球A 和B, A 、B 两球的质量相等。圆盘上的小球 A 作匀速圆周运动。问 (1 )当A 球的轨道半径为0.20m 时,它的角速度是多大才能维持 B 球静止? (2 )若将前一问求得的角速度减半,怎样做才能使 A 作圆周运动时 B 球仍能保持静止? 4、如图4所示,a 、b 、c 三物体放在旋转水平圆台上 ,它们与圆台间的动摩擦因数均相同,已知 a 的质量为2m b 和c 的质量均为 m a 、b 离轴距离为R, c 离轴距离为2R 。当圆台转动时,三物均没有打滑,^Z(设最大静摩擦力等于滑 动摩擦力)( ) A. 这时c 的向心加速度最大 B .这时b 物体受的摩擦力最小 C.若逐步增大圆台转速, c 比b 先滑动 D ?若逐步增大圆台转速, b 比a 先滑动 5、如右图所示,某游乐场有一水上转台,可在水平面内匀速转动,沿半径方向面对面手拉手坐着甲、乙两个小孩,假 设两小孩的质量相等, 他们与盘间的动摩擦因数相同, 当圆盘转速加快到两小孩刚好还未发生滑动时, 某一时刻两小孩 突然松手,则两小孩的运动情况是 ( ) A. 两小孩均沿切线方向滑岀后落入水中 B. 两小孩均沿半径方向滑岀后落入水中 C. 两小孩仍随圆盘一起做匀速圆周运动,不会发生滑动而落入水中 D. 甲仍随圆盘一起做匀速圆周运动,乙发生滑动最终落入水中 6、线段OB=AB A 、B 两球质量相等,它们绕 O 点在光滑的水平面上以相同的角速度转动时,如图 4所示,两段线 拉力之比 T AB : T OB = _____ 。 2. 转弯模型 1. 火车在水平轨道上转弯时,若转弯处内外轨道一样高,则火车转弯时: [] A.对外轨产生向外的挤压作用 B .对内轨产生向外的挤压作用 C.对外轨产生向内的挤压作用 D .对内轨产生向内的挤压作用 2. 火车通过半径为 R 的弯道,已知弯道的轨道平面与水平面的夹角为 0,要使火车通过弯道时对内外轨道不产生 挤压,求火车通过弯道时的速度? 图 4

高一物理圆周运动绳模型和杆模型

高一物理圆周运动绳模 型和杆模型 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

圆周运动中绳模型和杆模型的一般解析一.绳模型: 若已不可伸长的绳子长L,其一端栓有一质量m的小球(可看成质点)。现使绳子拉着小球绕一点O做匀速圆周运动,则 (1)小球恰好通过最高点的速度v (2)当能通过最高点时,绳子拉F。 解:(1)小球恰能通过最高点的临界条件是绳子没有拉力, 则对小球研究,其只受重力mg作用, 故,由其做圆周运动得:?mg=mv2/L 故 v=√(gL?) (2)由分析得,当小球到最高点时速度v’﹥v=√(gl)时,F=mv’^2 /L-mg 而,当v’

(2)①由绳模型可知,当小球通过最高点速度v=√(gL)时,恰好有绳子拉力为0,则同理可知,当杆拉小球到最高点时,? 若小球速度v=√(gL)时,小球所需向心力恰好等于重力mg,?故,此时杆对小球没有作用力。 ②当小球通过最高点时速度v>√(gL)时,? ????则小球所需向心力比重力mg大,所以此时杆对小球表现为拉力,使小球不至于做离心运动? 故对小球有,? F+mg=mv2 /L? ?? ③同理,当小球通过最高点时速度v<√(gL)时,??????则小球所需向心力小于重力mg,所以此时小球对杆有压力作用,有牛顿第三定律得,杆对小球表现为支持力作用,故对小球有, mg-F=mv2/L

匀速圆周运动专题整理完整版本

常见的圆周运动模型 物体做匀速圆周运动时,向心力才是物体受到的合外力.物体做非匀速圆周运动时,向心力是合外力沿半径方向的分力(或所有外力沿半径方向的分力的矢量和).具体运动类型如下。 一、匀速圆周运动模型及处理方法 1.随盘匀速转动模型(无相对滑动,二者有共同的角速度) 例4. 如图所示,质量为m 的小物体系在轻绳的一端,轻绳的另一端固定在转轴上。轻绳长度为L 。现在使物体在光滑水平支持面上与圆盘相对静止地以角速度ω(1)物体运动一周所用的时间T ; (2)绳子对物体的拉力。 2。火车转弯模型(或汽车拐弯外侧高于内侧时) 汽车做匀速圆周运动,向心力由重力与斜面对汽车的支持力的合 力提供,且向心力的方向水平,向心力大小F 向=mg tan θ,根据牛顿第二 定律:F 向=m v 2 R , tan θ=h d , 例.在高速公路的拐弯处,通常路面都是外高内低.如图所示,在某路段汽车向左拐弯,司机左侧的路面比右侧的路面低一些.汽车的运动可看作是做半径为R 的圆周运动.设内外路面高度差为h ,路基的水平宽度为d ,路面的宽度为L .已知重力加速度为g .要使车轮与路面之间的横向摩擦力(即垂直于前进方向)等于零,则汽车转弯时的车速应等于( ) A. gRh L B. gRh d C. gRL h D. gRd h B 对. 3。圆锥摆模型 小球在水平面内是匀速圆周运动,重力和拉力合力提供向心力θtan mg 例6.如图所示,用细绳系着一个小球,使小球在水平面内做匀速圆周运动,不计空气阻力,关于小球受力有以下说法,正确的是( ) A.只受重力 B.只受拉力 C.受重力.拉力和向心力 D.受重力和拉力 4.双星模型 练习.如图所示,长为L 的细绳一端固定,另一端系一质量为m 的小球。给小球一个合适O ω θ

匀速圆周运动模型整合

传动系统 1、如图所示的皮带传动装置中,右边两轮粘 在一起且同轴,A、B、C三点均是各轮边缘 上的一点,半径RA =RC =2RB,皮带不打滑, 则:线速度vA: vB:vC = __________;向心加速度aA : aB : aC = __________ 飞檐走壁 3、如图所示,一光滑的圆锥内壁上,一个小球在 水平面内做匀速圆周运动,如果要让小球的运动 轨迹离锥顶远些,则下列各物理量中,不会引起 变化的是 A.小球运动的线速度B.小球运动的角速度 C.小球的向心加速度D.小球运动的周期 4、如图所示,竖直固定的锥形漏斗内壁是光滑的,内 壁上有两个质量相等的小球A和B,在各自不同的水 平面做匀速圆周运动,以下说法正确的是: A.V A>VB B.ωA>ωB C.aA>aB D.压力NA>NB 圆锥摆 5、如图所示的圆锥摆中,摆球在水平面上作匀速圆周运动,关于摆球的受力情况,下列说法中正确的是() A.摆球受重力、拉力和向心力的作用; B.摆球受拉力和向心力的作用; C.摆球受拉力和重力的作用; D.摆球受重力和向心力的作用。 6、在圆锥摆中,已知绳子长度为L ,绳子转动过程中与竖直方向的夹角为θ,试求小球做圆周运动的周期。 汽车过桥 7、如图所示,当汽车通过拱桥顶点的速度为10m/s 时,车对桥顶的压力为车重的3/4,如果要使汽车在粗 糙的桥面行驶至桥顶时,不受摩擦力作用,则汽车通 过桥顶时的速度应为多大 8、质量为m的物体,沿半径为R的圆形轨道滑下,如图 所示,当物体通过最低点B时速度为V0,已知物体和轨道间的动摩擦因数μ,则物体滑过B点时受到的摩擦力大小为多少. 转盘 9、如图所示,A、B、C三个物体放在旋转圆台上,动摩擦因数均为μ,A的质量是2m,B和C的质量均为m,A、B离轴为R,C离轴为2R。当圆台旋转时,则() A.若A、B、C均未滑动,则C的向心加速度最大

相关文档
相关文档 最新文档