文档库 最新最全的文档下载
当前位置:文档库 › 2020届全国高考数学重难点微专题突破 直线的参数方程的几何意义

2020届全国高考数学重难点微专题突破 直线的参数方程的几何意义

2020届全国高考数学重难点微专题突破

2020届全国高考数学复习备考建议

一、2020届全国高考数学继续坚持以习近平新时代中国特色社会主义思想为指引,坚持“一体四层四翼”的命题指导思想,注重顶层设计,明确“立德树人、服务选才、引导教学”这一高考核心功能;明确“必备知识、关键能力、学科素养、核心价值”四层考查内容以及“基础性、综合性、应用性、创新性”四个方面的考查要求,强化对空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力、应用意识和创新意识的全面考查。

二、回归课本,夯实基础知识和基本技能.课本是根基,在进行复习时,要回归课本,发挥课本例题或习题的作用,注重基础,抓牢基础,充分利用课本弄清问题的来龙去脉,对知识追根溯源。全面系统掌握高考数学基础知识、基本技能和基本数学思想方法,进一步强化数学学科核心素养,聚力共性通法。

三、把握复习重心,不忽略边缘线知识.在复习过程中应在核心考点函数与导数、三角函数、解三角形、数列、立体几何、解析几何、概率与统计、选考内容等主干知识上花主要精力,同时,不要忽略一些边缘性的知识。

四、命题者依然坚守“重视通性通法,淡化技巧”。因此高考数学备考复习必须遵循教学规律,认真钻研《高考数学考试说明》,重视通性通法的教学,从海量题目的众多解法中分析选择通法,着眼于传授和培养学生分析解决某一类问题的一般方法,从而提高学生的一般解题能力,对那些带规律性、全局性和运用面广的方法,应花大力气,深入研究,务必使学生理解深刻,掌握透彻。只有这样才能得到“做一题,学一法,会一类,通一片”的功效,从而为大面积提高高考数学复习质量奠定坚实的基础。

五、重视数学思想方法的指引。数学思想方法是对数学知识内容及其所使用的方法的本质认识,它蕴涵于具体的内容与方法之中,又经过提炼与概括,成为理性认识,它直接支配数学教学的实践活动,数学概念的掌握、数学理论的建立、解题方法的运用、具体问题的解决,无一不是数学思想方法的体现与应用。数学思想方法是数学学科的精髓和灵魂,常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想等。

六、从近几年高考数学评卷情况来看,大部分考生对基础知识、基本技能掌握较好,文、理平均分比较稳定。存在主要问题有:数学语言的表述不严谨,数学方法与数学思想的运用不够灵活,使用数学知识解决实际问题的能力较薄弱,如2018年全国卷理科20题,很多考生不能从实际问题的背景材料中提取有效的数据信息.因此,在教学过程中要高度重视独立思考、逻辑推理、数学应用、数学阅读和表达等关键能力的培养,特别重视运用数学方法解决实际问题的教学。

七、不要盲目追求题量,而应注重引导学生经历数学知识的发生过程,以及问题的发现、提出、分析和解决的全过程,充分挖掘典型问题的内在价值与迁移功能,培养学生思维的灵活性与创新性。

八、要充分利用高三的各种形式的考试和练习,优化答题策略、思考答题技巧,培养好的答题习惯和

书写习惯。特别要重视文字语言,数学语言及文字表术,规范性书写等细节,在细节中取成绩。

九、补充数学发展历史,增厚数学文化底蕴。高考数学要求重视“数学文化”教学。近些年高考已经考了秦九韶多项式求值算法和《九章算术》中的“更相减损术”和古希腊数学。我们要积极挖掘这方面的数学文化背景与高中数学知识的内在联系。可以参考《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《夏侯阳算经》、《缀术》、《张丘建算经》、《五曹算经》、《五经算术》、《缉古算经》等算经十书及《四元玉鉴》、《算学启蒙》、《数书九章》、《测圆海镜》等古典数学名著,从中选取与高中数学有密切联系的具有代表性的案例,每周挤出一小节时间,让学生感受中国古代数学文化历史背景,进一步体会中国古代数学文化之精髓。

一、直线参数方程的几何意义概述:

1、过定点),(000y x M 、倾斜角为α的直线l 的参数方程为(t 为参数),其中t 表示直线

l 上以定点0M 为起点,

任意一点(),M x y 为终点的有向线段M M 0的数量,若0t >,则0M M 的方向向上;若0t <,则0M M 的方向向下;若0t =则点0M 与点M 重合.

2、t 的几何意义是直线上点M 到的0M 距离即0M M . 二、参数的性质及应用

易得参数t 具有如下的性质:若直线l 上两点A 、B 所对应的参数分别为B A t t ,,

性质1、,A B 两点到0M 的距离分别为.|||,|B A t t 则

。 例:在直角坐标系中,直线的参数方程为(为参数),再以原点为极点,以正半轴

为极轴建立坐标系,并使得它与直角坐标系有相同的长度单位,在该极坐标系中圆的方程为. (1)求圆的直角坐标方程;

(2)设圆与直线交于点、,若点的坐标为,求的值.

【答案】

(1)

(2)

【掌握练习】

1、在直角坐标系中,直线过点,其倾斜角为,圆的参数方程为

为参数. 再以原点为极点,以正半轴为极轴建立极坐标系,并使得它与直角坐标系有相同的长度单位.

(1)求圆的极坐标方程;

(2)设圆与直线交于点,求的值.

【答案】

(1)

(2)9

【解析】

(1)消去参数可得圆的直角坐标方程式为

由极坐标与直角坐标互化公式得化简得

高中数学极坐标与参数方程大题(详解)

参数方程极坐标系 解答题 1.已知曲线C:+=1,直线l:(t为参数) (Ⅰ)写出曲线C的参数方程,直线l的普通方程. (Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值. +=1 , , 的距离为 则 取得最小值,最小值为 2.已知极坐标系的极点在直角坐标系的原点处,极轴与x轴的正半轴重合,直线l的极坐标方程为: ,曲线C的参数方程为:(α为参数). (I)写出直线l的直角坐标方程; (Ⅱ)求曲线C上的点到直线l的距离的最大值. 的极坐标方程为: cos=

∴ y+1=0 ( d= 的距离的最大值. 3.已知曲线C1:(t为参数),C2:(θ为参数). (1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线; (2)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:(t为参数)距离的最小值. :(化为普通方程得:+ t=代入到曲线 sin =,),﹣

4.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立直角坐标系,圆C的极坐标方程为 ,直线l的参数方程为(t为参数),直线l和圆C交于A,B两点,P是圆C 上不同于A,B的任意一点. (Ⅰ)求圆心的极坐标; (Ⅱ)求△PAB面积的最大值. 的极坐标方程为,把 ,利用三角形的面积计算公式即可得出. 的极坐标方程为,化为= 把 ∴圆心极坐标为; (t , = 距离的最大值为 5.在平面直角坐标系xoy中,椭圆的参数方程为为参数).以o为极点,x轴正半轴为极轴建立极坐标系,直线的极坐标方程为.求椭圆上点到直线距离的最大值和最小值.

直线参数方程t的几何意义44095

1、直线参数方程的标准式 (1)过点P 0(00,y x ),倾斜角为α的直线l 的参数方程是 ???+=+=α αsin cos 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,) P 0P=t ∣P 0P ∣=t 为直线上任意一点. (2)若P 1、P 2是直线上两点,所对应的参数分别为t 1、t 2, 则P 1P 2=t 2-t 1 ∣P 1P 2∣=∣t 2-t 1∣ (3) 若P 1、P 2、P 3是直线上的点,所对应的参数分别为t 1、t 2、t 3 则P 1P 2中点P 3的参数为t 3=221t t +,∣P 0P 3∣=221t t + (4)若P 0为P 1P 2的中点,则t 1+t 2=0,t 1·t 2<0 2、直线参数方程的一般式 过点P 0(00,y x ),斜率为a b k = 的直线的参数方程是 ???+=+=bt y y at x x 00 (t 为参数) 点击直线参数方程: 一、直线的参数方程 问题1:(直线由点和方向确定) 求经过点P 0(00,y x ),倾斜角为α的直线l 设点P(y x ,)是直线l 上任意一点,(规定向上的 方向为直线L 的正方向)过点P 作y 轴的平行线,过 P 0作x 轴的平行线,两条直线相交于Q 点. 1)当P P 0与直线l 同方向或P 0和P 重合时, P 0P =|P 0P| 则P 0Q =P 0Pcos α Q P =P 0Psin α 2)当P P 0与直线l 反方向时,P 0P 、P 0Q 、Q P 同时改变符号 P 0P =-|P 0P| P 0Q =P 0Pcos α Q P =P 0Psin α 仍成立 设P 0P =t ,t 为参数, 又∵P 0Q =0x x -, 0x x -=tcos α Q P =0y y - ∴ 0y y -=t sin α 即???+=+=α α sin cos 00t y y t x x 是所求的直线l 的参数方程 ∵P 0P =t ,t 为参数,t 的几何意义是:有向直线l 上从已知点P 0(00,y x )到点 P(y x ,)的有向线段的数量,且|P 0P|=|t| ①当t>0时,点P 在点P 0的上方; x y ,) x

高考数学重点题型:参数取值题型与分析

高考数学重点题型:参数取值题型与分析 (Ⅰ)参数取值问题的探讨 一、若在等式或不等式中出现两个变量,其中一个变量的范围已知,另一个变量的范围 为所求,且容易通过恒等变形将两个变量分别置于等号或不等号的两边,则可将恒成立问题转化成函数的最值问题求解。 例1.已知当x ∈R 时,不等式a+cos2x<5-4sinx+45-a 恒成立,求实数a 的取值范 围。 分析:在不等式中含有两个变量a 及x ,其中x 的范围已知(x ∈R ),另一变量a 的范 围即为所求,故可考虑将a 及x 分离。 解:原不等式即:4sinx+cos2x<45-a -a+5 要使上式恒成立,只需45-a -a+5大于4sinx+cos2x 的最大值,故上述问题转 化成求f(x)=4sinx+cos2x 的最值问题。 f(x)= 4sinx+cos2x=-2sin2x+4sinx+1=-2(sinx -1)2+3≤3, ∴45-a -a+5>3即45-a >a+2 上式等价于 ?? ? ??->-≥-≥-2)2(450 450 2a a a a 或???≥-<-04502a a ,解得≤54a<8. 说明:注意到题目中出现了sinx 及cos2x ,而cos2x=1-2sin2x,故

若把sinx 换元成t,则 可把原不等式转化成关于t 的二次函数类型。 另解:a+cos2x<5-4sinx+45-a 即 a+1-2sin2x<5-4sinx+45-a ,令sinx=t,则t ∈[-1,1], 整理得2t2-4t+4-a+45-a >0,( t ∈[-1,1])恒成立。 设f(t)= 2t2-4t+4-a+45-a 则二次函数的对称轴为t=1, ∴ f(x)在[-1,1]内单调递减。 ∴ 只需f(1)>0,即45-a >a -2.(下同) 例2.已知函数f(x)在定义域(-∞,1]上是减函数,问是否存在实数k ,使不等式 f(k -sinx)≥f(k2-sin2x)对一切实数x 恒成立?并说明理由。 分析:由单调性与定义域,原不等式等价于k -sinx ≤k2-sin2x ≤1对于任意x ∈R 恒成 立,这又等价于 ? ????----≥+-----+≤)2()21(sin 41)1(sin 12222x k k x k 对于任意x ∈R 恒成立。 不等式(1)对任意x ∈R 恒成立的充要条件是k2≤(1+sin2x)min=1,即-1≤k ≤1----------(3) 不等式(2)对任意x ∈R 恒成立的充要条件是k2-k+41 ≥[(sinx -21)2]max=49 ,

高中数学全参数方程知识点大全

高考复习之参数方程 一、考纲要求 1.理解参数方程的概念,了解某些常用参数方程中参数的几何意义或物理意义,掌握参数方 程与普通方程的互化方法.会根据所给出的参数,依据条件建立参数方程. 2.理解极坐标的概念.会正确进行点的极坐标与直角坐标的互化.会正确将极坐标方程化为 直角坐标方程,会根据所给条件建立直线、圆锥曲线的极坐标方程.不要求利用曲线的参数 方程或极坐标方程求两条曲线的交点. 二、知识结构 1.直线的参数方程 (1)标准式 过点Po(x 0,y 0),倾斜角为α的直线l(如图)的参数方程是 ? ? ?+=+=a t y y a t x x sin cos 00 (t 为参数) (2)一般式 过定点P 0(x 0,y 0)斜率k=tg α= a b 的直线的参数方程是 ?? ?+=+=bt y y at x x 00(t 不参数) ② 在一般式②中,参数t 不具备标准式中t 的几何意义,若a 2 +b 2 =1,②即为标准式,此 时, | t |表示直线上动点P 到定点P 0的距离;若a 2+b 2 ≠1,则动点P 到定点P 0的距离是 22b a +|t |. 直线参数方程的应用 设过点P 0(x 0,y 0),倾斜角为α的直线l 的参数方程是 ? ??+=+=a t y y a t x x sin cos 00 (t 为参数) 若P 1、P 2是l 上的两点,它们所对应的参数分别为t 1,t 2,则 (1)P 1、P 2两点的坐标分别是 (x 0+t 1cos α,y 0+t 1sin α) (x 0+t 2cos α,y 0+t 2sin α); (2)|P 1P 2|=|t 1-t 2|; (3)线段P 1P 2的中点P 所对应的参数为t ,则 t= 2 2 1t t + 中点P 到定点P 0的距离|PP 0|=|t |=|2 2 1t t +| (4)若P 0为线段P 1P 2的中点,则 t 1+t 2=0.

椭圆的参数方程中参数的几何意义

椭圆: 椭圆(Ellipse)是平面内到定点F1、F2的距离之和等于常数(大于|F1F2|)的动点P的轨迹,F1、F2称为椭圆的两个焦点。其数学表达式为:|PF1|+|PF2|=2a(2a>|F1F2|)。 椭圆是圆锥曲线的一种,即圆锥与平面的截线。 椭圆的周长等于特定的正弦曲线在一个周期内的长度。 椭圆的参数方程中参数的几何意义: 红点M的轨迹是椭圆,M(x,y)=(|OA|cosφ,|OB|sinφ) 所以离心角φ就是那条倾斜直线的角。 周长 椭圆周长计算公式:L=T(r+R) T为椭圆系数,可以由r/R的值,查表找出系数T值;r为椭圆短半径;R为椭圆长半径。 椭圆周长定理:椭圆的周长等于该椭圆短半径与长半径之和与该椭圆系数的积(包括正圆)。 几何关系 点与椭圆 点M(x0,y0)椭圆x^2/a^2+y^2/b^2=1; 点在圆内:x02/a2+y02/b2<1; 点在圆上:x02/a2+y02/b2=1; 点在圆外:x02/a2+y02/b2>1; 跟圆与直线的位置关系一样的:相交、相离、相切。

直线与椭圆 y=kx+m① x2/a2+y2/b2=1② 由①②可推出x2/a2+(kx+m)2/b2=1 相切△=0 相离△<0无交点 相交△>0可利用弦长公式:设A(x1,y1)B(x2,y2) 求中点坐标 根据韦达定理x1+x2=-b/a,x1x2=c/a 代入直线方程可求出(y1+y2)/2=可求出中点坐标。 |AB|=d=√(1+k2)[(x1+x2)2-4x1*x2]=√(1+1/k2)[(y1+y2)2-4y1y2] 手绘法 1、:画长轴AB,短轴CD,AB和CD互垂平分于O点。 2、:连接AC。 3、:以O为圆心,OA为半径作圆弧交OC延长线于E点。 4、:以C为圆心,CE为半径作圆弧与AC交于F点。 5、:作AF的垂直平分线交CD延长线于G点,交AB于H点。 6、:截取H,G对于O点的对称点H’,G’⑺:H,H’为长轴圆心,分别以HA、H‘B为半径作圆;G,G’为短轴圆心,分别以GC、G‘D为半径作圆。

(完整)2020年高考理科数学《坐标系与参数方程》

2020年高考理科数学《坐标系与参数方程》 【题型归纳】 题型一 曲线的极坐标方程 例1 、在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求C 1,C 2的极坐标方程; (2)若直线C 3的极坐标方程为θ=π4 (ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积. 【答案】(1)C 1的极坐标方程为ρcos θ=-2,C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0; (2)面积为12 . 【解析】(1)因为x =ρcos θ,y =ρsin θ,所以C 1的极坐标方程为ρcos θ=-2, C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0. (2)将θ=π4 代入ρ2-2ρcos θ-4ρsin θ+4=0, 得ρ2-32ρ+4=0,解得ρ1=22,ρ2= 2.故ρ1-ρ2=2,即|MN |= 2. 由于C 2的半径为1,所以△C 2MN 的面积为12 . 【易错点】互化公式:x =ρcos θ,y =ρsin θ,ρ2=x 2+y 2,tan θ=y x (x ≠0),要注意ρ,θ的取值范围及其影响. 【思维点拨】1.进行极坐标方程与直角坐标方程互化的关键是抓住互化公式:x =ρcos θ,y =ρsin θ,ρ2 =x 2+y 2,tan θ=y x (x ≠0),要注意ρ,θ的取值范围及其影响,灵活运用代入法等技巧. 2.由极坐标方程求曲线交点、距离等几何问题时,如果不能直接用极坐标解决,可先转化为直角坐标方程,然后求解. 题型二 参数方程及其应用 例2、已知曲线C :x 24+y 29=1,直线l :? ????x =2+t ,y =2-2t (t 为参数). (1)写出曲线C 的参数方程,直线l 的普通方程; (2)过曲线C 上任一点P 作与l 夹角为30°的直线,交l 于点A ,求|P A |的最大值与最小值. 【答案】(1)2x +y -6=0;(2)最大值为2255,最小值为255. 【解析】(1)曲线C 的参数方程为? ????x =2cos θ,y =3sin θ(θ为参数).直线l 的普通方程为2x +y -6=0. (2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为

直线的参数方程的几何意义

课 题 直线的参数方程的几何意义 教学目标 要 求 与直线的参数方程有关的典型例题 教学重难点 分 析 与直线的参数方程有关的典型例题 教 学 过 程 知识要点概述 过定点),(000y x M 、倾斜角为α的直线l 的参数方程为?? ?+=+=α α sin cos 00t y y t x x (t 为参数), 其中t 表示直线l 上以定点0M 为起点,任意一点M (x ,y )为终点的有向线段M M 0的数量, 的几何意义是直线上点到M 的距离.此时,若t>0,则 的方向向上;若t<0,则 的方向向下;若t=0,则点与点M 重合. 由此,易得参数t 具有如下 的性质:若直线l 上两点A 、B 所对应的参数分别为 B A t t ,,则 性质一:A 、B 两点之间的距离为||||B A t t AB -=,特别地,A 、B 两点到0M 的距离分别为.|||,|B A t t 性质二:A 、B 两点的中点所对应的参数为 2 B A t t +,若0M 是线段A B 的中点,则 0=+B A t t ,反之亦然。

精编例题讲练 一、求直线上点的坐标 例1.一个小虫从P (1,2)出发,已知它在 x 轴方向的分速度是?3,在y 轴方向的分速度是4,问小虫3s 后的位置Q 。 分析:考虑t 的实际意义,可用直线的参数方程? ?? ? ?x = x 0 +at ,y = y 0 +bt (t 是参数)。 解:由题意知则直线PQ 的方程是? ????x = 1 ? 3 t , y = 2 + 4 t ,其中时间t 是参数,将t =3s 代入得Q (?8,12)。 例2.求点A (?1,?2)关于直线l :2x ?3y +1 =0的对称点A ' 的坐标。 解:由条件,设直线AA ' 的参数方程为 ? ?? ??x = ?1 ? 2 13 t , y = ?2 + 313 t (t 是参数), ∵A 到直线l 的距离d = 5 13 , ∴ t = AA ' = 10 13 , 代入直线的参数方程得A ' (? 3313,413 )。 点评:求点关于直线的对称点的基本方法是先作垂线,求出交点,再用中点公式,而此处则是充分利用了参数 t 的几何意义。 二 求定点到过定点的直线与其它曲线的交点的距离 例1.设直线经过点 (1,5),倾斜角为 , 1)求直线和直线的交点到点的距离; 2)求直线和圆 的两个交点到点 的距离的和与积. 解:直线的参数方程为( t 为参数)

高中数学 《参数方程的概念》教案 新人教A版选修4-4

参数方程 目标点击: 1.理解参数方程的概念,了解某些参数的几何意义和物理意义; 2.熟悉参数方程与普通方程之间的联系和区别,掌握他们的互化法则; 3.会选择最常见的参数,建立最简单的参数方程,能够根据条件求出直线、圆锥曲线等常用曲线的一些参数方程并了解其参数的几何意义; 4.灵活运用常见曲线的参数方程解决有关的问题. 基础知识点击: 1、曲线的参数方程 在取定的坐标系中,如果曲线上任意一点的坐标x,y 都是某个变数t 的函数,?? ?==)()(t g y t f x (1) 并且对于t 的每一个允许值,由方程组(1)所确定的点M(x,y)都在这条曲线上,那么方程组(1)叫做这条曲线的参数方程. 联系x 、y 之间关系的变数叫做参变数,简称参数. 2、求曲线的参数方程 求曲线参数方程一般程序: (1) 设点:建立适当的直角坐标系,用(x,y)表示曲线上任意一点M 的坐标; (2) 选参:选择合适的参数; (3) 表示:依据题设、参数的几何或物理意义,建立参数与x ,y 的关系 式,并由此分别解出用参数表示的x 、y 的表达式. (4) 结论:用参数方程的形式表示曲线的方程 3、曲线的普通方程 相对与参数方程来说,把直接确定曲线C 上任一点的坐标(x,y )的方程F (x,y )=0叫做曲线C 的普通方程. 4、参数方程的几个基本问题 (1) 消去参数,把参数方程化为普通方程. (2) 由普通方程化为参数方程. (3) 利用参数求点的轨迹方程. (4) 常见曲线的参数方程. 5、几种常见曲线的参数方程 (1) 直线的参数方程 (ⅰ)过点P 0(00,y x ),倾斜角为α的直线的参数方程是 ? ??+=+=αα s i n c o s 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,) 为直线上任意一点. (ⅱ)过点P 0(00,y x ),斜率为a b k =的直线的参数方程是 ???+=+=bt y y at x x 00 (t 为参数) (2)圆的参数方程

【高考冲刺】2020年高考数学(理数) 坐标系与参数方程 大题(含答案解析)

【高考复习】2020年高考数学(理数) 坐标系与参数方程 大题 1.在平面直角坐标系xOy 中,⊙O 的参数方程为? ?? ?? x =cos θ, y =sin θ(θ为参数),过点(0,-2) 且倾斜角为α的直线l 与⊙O 交于A ,B 两点. (1)求α的取值范围; (2)求AB 中点P 的轨迹的参数方程. 2.平面直角坐标系xOy 中,倾斜角为α的直线l 过点M(-2,-4),以原点O 为极点,x 轴的正 半轴为极轴,建立极坐标系,曲线C 的极坐标方程为ρsin 2 θ=2cos θ. (1)写出直线l 的参数方程(α为常数)和曲线C 的直角坐标方程; (2)若直线l 与C 交于A ,B 两点,且|MA|·|MB|=40,求倾斜角α的值.

3.在直角坐标系xOy 中,已知倾斜角为α的直线l 过点A(2,1).以坐标原点为极点,x 轴的正 半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρ=2sin θ,直线l 与曲线C 分别交于P ,Q 两点. (1)写出直线l 的参数方程和曲线C 的直角坐标方程; (2)若|PQ|2 =|AP|·|AQ|,求直线l 的斜率k. 4.在直角坐标系xOy 中,曲线C 1的参数方程为?? ? x =3cos α, y =3sin α (α为参数),以坐标原点O 为 极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρcos ? ????θ+π4=3 2. (1)求曲线C 1的普通方程和曲线C 2的直角坐标方程; (2)若点M 在曲线C 1上,点N 在曲线C 2上,求|MN|的最小值及此时点M 的直角坐标.

高考数学专题—参数方程

高考数学专题——参数方程 一、基本知识要求 1.参数方程和普通方程的互化 (1通过消去参数,从参数方程得到普通方程. (2)寻找变量x ,y 中的一个与参数t 的关系,令x =f (t ),把它代入普通方程,求出另一个变 数与参数的关系y =g (t ),那么? ????x =f (t ), y =g (t )就是曲线的参数方程,在参数方程与普通方程的 互化中,必须使x ,y 的取值范围保持一致. 2.直线、圆和圆锥曲线的参数方程形式 直线参数方程:{x =x 0+t cos α y =y 0+t sin α (t 为参数) 圆的参数方程:{x =x 0+acos θ y =y 0+asin θ (θ为参数且0≤θ<2π) 椭圆的参数方程:{x =m cos t y =n sin t (t 为参数且0≤t <2π) 抛物线的参数方程:{x =2pt 2 y =2pt (t 为参数) 二、常考题型要求 常考题型:共4种大题型(包含参数方程与普通方程转化问题、求距离问题、 直线参数方程t 的几何意义、与动点有关的取值范围和最值问题) 1、参数方程与普通方程互化问题:(1)参数方程中可通过代入法、加减法、平方法等直接消去参数时,则直接消参;(2)参数方程中参数为角时,则通过构造sin 2θ+cos 2θ=1消去参数。 例1、【2020年高考全国II 卷理数】[选修4—4:坐标系与参数方程] 已知曲线C 1,C 2的参数方程分别为 C 1:(θ为参数),C 2:(t 为参数).

(1)将C1,C2的参数方程化为普通方程; 【解析】(1)的普通方程为. 由的参数方程得,,所以. 故的普通方程为. 例2、【2020·广东省高三其他(理)】在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为=(>0),过 点的直线的参数方程为(t为参数),直线与曲线C相交 于A,B两点. (Ⅰ)写出曲线C的直角坐标方程和直线的普通方程; 【答案】(Ⅰ), 【解析】(Ⅰ)根据可将曲线C的极坐标方程化为直角坐标,两式相减消去参数得直线的普通方程为. 得,由韦达定理有.解之得:或(舍去) 试题解析:(Ⅰ)由得, ∴曲线的直角坐标方程为. 直线的普通方程为. 例3、【2020·山西省太原五中高三其他(理)】在直角坐标系中,曲线的参数方程为 (为参数).以为极点,轴的正半轴为极轴建立极坐标系,直线的

椭圆的参数方程中参数的几何意义

椭圆的参数方程中参数的几何意义: 红点M的轨迹是椭圆,M(x,y)=(|OA|cosφ,|OB|sinφ) 所以离心角φ就是那条倾斜直线的角。 周长 椭圆周长计算公式:L=T(r+R) T为椭圆系数,可以由r/R的值,查表找出系数T值;r为椭圆短半径;R为椭圆长半径。 椭圆周长定理:椭圆的周长等于该椭圆短半径与长半径之和与该椭圆系数的积(包括正圆)。 几何关系 点与椭圆 点M(x0,y0)椭圆x^2/a^2+y^2/b^2=1; 点在圆内:x02/a2+y02/b2<1; 点在圆上:x02/a2+y02/b2=1; 点在圆外:x02/a2+y02/b2>1; 跟圆与直线的位置关系一样的:相交、相离、相切。 直线与椭圆 y=kx+m① x2/a2+y2/b2=1② 由①②可推出x2/a2+(kx+m)2/b2=1 相切△=0 相离△<0无交点

相交△>0可利用弦长公式:设A(x1,y1)B(x2,y2) 求中点坐标 根据韦达定理x1+x2=-b/a,x1x2=c/a 代入直线方程可求出(y1+y2)/2=可求出中点坐标。 |AB|=d=√(1+k2)[(x1+x2)2-4x1*x2]=√(1+1/k2)[(y1+y2)2-4y1y2] 手绘法 1、:画长轴AB,短轴CD,AB和CD互垂平分于O点。 2、:连接AC。 3、:以O为圆心,OA为半径作圆弧交OC延长线于E点。 4、:以C为圆心,CE为半径作圆弧与AC交于F点。 5、:作AF的垂直平分线交CD延长线于G点,交AB于H点。 6、:截取H,G对于O点的对称点H’,G’⑺:H,H’为长轴圆心,分别以HA、H‘B为半径作圆;G,G’为短轴圆心,分别以GC、G‘D为半径作圆。 用一根线或者细铜丝,铅笔,2个图钉或大头针画椭圆的方法:先画好长短轴的十字线,在长轴上以圆点为中心先找2个大于短轴半径的点,一个点先用图钉或者大头针栓好线固定住,另一个点的线先不要固定,用笔带住线去找长短轴的4个顶点。 此步骤需要多次定位,直到都正好能于顶点吻合后固定住这2个点,用笔带住线,直接画出椭圆:使用细铜丝最好,因为线的弹性较大画出来不一定准确。

高考极坐标与参数方程大题题型汇总(附详细答案)

高考极坐标与参数方程大题题型汇总 1.在直角坐标系xoy 中,圆C 的参数方程1cos (sin x y ? ?? =+??=?为参数) .以O 为极点,x 轴的非负半轴为极轴建立极坐标系. (1)求圆C 的极坐标方程; (2)直线l 的极坐标方程是 C 的交点为 O 、P ,与直线l 的交点为Q ,求线段PQ 的长. 解:(1)圆C 的普通方程是22(1)1x y -+=,又cos ,sin x y ρθρθ==; 所以圆C 的极坐标方程是2cos ρθ=. ---5分 (2)设11(,)ρθ为点P 的极坐标,则有 设22(,)ρθ为点Q 的极坐标,则有 由于12θθ=,所以,所以线段PQ 的长为2. 2.已知直线l 的参数方程为431x t a y t =-+??=-? (t 为参数),在直角坐标系xOy 中,以O 点为极 点, x 轴的非负半轴为极轴,以相同的长度单位建立极坐标系,设圆M 的方程为 26sin 8 ρρθ-=-. (1)求圆M 的直角坐标方程; (2)若直线l 截圆M a 的值. 解:(1)∵2 222268(36si )n 81x y y x y ρρθ+--=-?=-?+-=, ∴圆M 的直角坐标方程为2 2 (3)1x y +-=;(5分)

(2)把直线l的参数方程 4 31 x t a y t =-+ ? ? =- ? (t为参数)化为普通方程得:34340 x y a +-+=, ∵直线l截圆M所得弦长 为,且圆M的圆心(0,3) M到直线l的距 离 |163|19 522 a d a - ===?=或 37 6 a=,∴ 37 6 a=或 9 2 a=.(10分)3.已知曲线C的参数方程为 ?? ? ? ? + = + = α α sin 5 1 cos 5 2 y x (α为参数),以直角坐标系原点为极点,Ox轴正半轴为极轴建立极坐标系。 (1)求曲线c的极坐标方程 (2)若直线l的极坐标方程为 ρ (sinθ+cosθ)=1,求直线l被曲线c截得的弦长。 解:(1)∵曲线c的参数方程为 ?? ? ? ? + = + = α α sin 5 1 cos 5 2 y x (α为参数) ∴曲线c的普通方程为(x-2)2+(y-1)2=5 将? ? ? = = θ ρ θ ρ sin cos y x 代入并化简得: ρ =4cosθ+2sinθ 即曲线c的极坐标方程为 ρ =4cosθ+2sinθ (2)∵l的直角坐标方程为x+y-1=0 ∴圆心c到直线l的距离为d=2 2 =2∴弦长为22 5-=23 4.已知曲线C: 2 21 9 x y += ,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为 sin() 4 π ρθ-= (1)写出曲线C的参数方程,直线l的直角坐标方程; (2)设P是曲线C上任一点,求P到直线l的距离的最大值.

直线的参数方程(t的几何意义)复习教案

二轮复习:选修4-4 直线的标准参数方程t 的几何意义应用 一.考纲要求: 参数方程 1. 了解参数方程,了解参数的意义; 2. 能选择适当的参数写出直线、圆和圆锥曲线的参数方程。 二. 一轮知识课前回顾(请同学们独立默写完成) 1. 过点,倾斜角为的直线标准参数方程为____________________ 其中t 的意义如下: 设,则是直线方向上的单位向量, 若M 为直线上任一点,则, ,即直线上动点M 到定点的距离,等于直线标准参数方程中参数t 的__________ 即 ?? ?+=+=)(为参数t Bt n y At m x 为直线标准参数方程的条件为:①=+22B A __________ ②______>0 2.直线的非标准参数处理方案 ①转为________方程解决问题. ②转为标准参数方程: 如: 将直线:(为参数)的方程化为标准参数方程____________________ 3.已知过点M 0(x 0,y 0)的直线的参数方程为:(为参数),点M 、N 为直线l 上相异两点,点M 、N 所对应的参数分别为、, 请根据下列图象判断、的符号以及用、表示下列线段长度: (2) (3) 请用、表示线段长度: 4.若点Q 是线段MN 的中点,则点Q 对应的参数t=_________ ()000,y x M αl ()ααsin ,cos =e l ______=l e t M M =0_________=()000,y x M l ???? ?= 方向向下 ,若方向向上 若M M M M 000______,||l 222x t y t =+??=-? t l ???+=+=α α sin cos 00t y y t x x t 1t 2t 1t 2t 1t 2t ()11t 2t

高考数学参数方程所有经典类型

高考数学参数方程所有经典类型(必刷题) 1.极坐标系与直角坐标系xoy 有相同的长度单位,以原点O 为极点,以x 轴正半轴为 极轴.已知直线l 的参数方程为1222 x t y ?=+????=??(t 为参数),曲线C 的极坐标方程为 2sin 8cos ρθθ=. (Ⅰ)求C 的直角坐标方程; (Ⅱ)设直线l 与曲线C 交于,A B 两点,求弦长||AB . 2.已知直线l 经过点1 (,1)2P ,倾斜角α=6 π,圆C 的极坐标方程为)4πρθ=-. (1)写出直线l 的参数方程,并把圆C 的方程化为直角坐标方程; (2)设l 与圆C 相交于两点A 、B ,求点P 到A 、B 两点的距离之积. 3.在平面直角坐标系xOy 中,已知曲线1C :cos sin θθ=??=? x y (θ为参数),将1C 上的所有 和2倍后得到曲线2C .以平面直角坐标系xOy 的原点O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l :sin )4ρθθ+=. (1)试写出曲线1C 的极坐标方程与曲线2C 的参数方程; (2)在曲线2C 上求一点P ,使点P 到直线l 的距离最小,并求此最小值. 4.在直角坐标系xoy 中,直线l 的方程为40x y -+=,曲线C 的参数方程为

x 3cos y sin ααα ?=??=??(为参数). (1)已知在极坐标系(与直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为(4,)2π ,判断点P 与直线l 的位置关系; (2)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值. 5.在平面直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐V 标方程为πcos =13ρθ? ?- ??? ,M ,N 分别为曲线C 与x 轴、y 轴的交点. (1)写出曲线C 的直角坐标方程,并求M ,N 的极坐标; (2)求直线OM 的极坐标方程. 6.(本小题满分10分)选修4-4:坐标系与参数方程 已知曲线 (为参数),(为参数). (1)化 的方程为普通方程; (2)若上的点P 对应的参数为为上的动点,求中点到直线 (为参数)距离的最小值.

2013届高考数学第一轮专题复习测试卷第二讲 参数方程

第二讲 参数方程 班级________ 姓名________ 考号________ 日期________ 得分________ 一?选择题:(本大题共6小题,每小题6分,共36分,将正确答案的代号填在题后的括号内.) 1.判断以下各点,哪一个在曲线2 3 14 32 x t t y t t ?=++??=-+?? (t 为参数)上( ) A.(0,2) B.(-1,6) C.(1,3) D.(3,4) 解析:∵x=1+t 2 +t 4 =2 213124t ? ?++ ?? ?≥∴点(0,2),(-1,6)不在曲线上 对于点(1,3),当x=1时,t=0,y=2. ∴点(1,3)不在曲线上, 验证知(3,4)在曲线上,选D. 答案:D 2.能化为普通方程x 2+y-1=0的参数方程为 ( ) 2 .12.A .2 x sint x tan B y tan y cos t x cos x C D y sin y t θθφ φ==???? =-=???=?=?? ?==??? 。 解析:由x 2+y-1=0,知x∈R,y≤1. 排除A ?C ?D,只有B 符合. 答案:B 3.若直线的参数方程为1223x t y t =+?? =-? (t 为参数),则直线的斜率为( ) 2233 (3) 3 2 2 A B C D -- 解析:由参数方程,消去t,得3x+2y-7=0.

∴直线的斜率k=- . 答案:D 4.过点M(2,1)作曲线C: 4 4 x cos y sin θ θ = ? ? = ? (θ为参数)的弦,使M为弦的中点,则此弦所在直线的方程为 ( ) A.y-1=- (x-2) B.y-1=-2(x-2) C.y-2=- (x-1) D.y-2=-2(x-1) 解析:由于曲线表示的是圆心在原点,半径为r=4的圆,所以过点M的弦与线段OM垂直, ∵k OM = , ∴弦所在直线的斜率是-2, 故所求直线方程为y-1=-2(x-2). 答案:B 5.(2010·安徽)设曲线C的参数方程为 23 13 x cos y sin θ θ=+ ? ? =-+ ? (θ为参数),直线l的方程为x-3y+2=0,则曲线C上到直线l距离为 10 的点的个数为( ) A.1 B.2 C.3 D.4 解析:曲线C表示以(2,-1)为圆心,以3为半径的圆,则圆心C(2,-1)到直线l的距离d=3 10 =<, 所以直线与圆相交.所以过圆心(2,-1)与l平行的直线与圆的2个交点满足题意,又 10 ,故满足题意的点有2个. 答案:B 6.(2010·上海)直线l的参数方程是 12 2 x t y t =+ ? ? =- ? (t∈R),则l的方向向量d可以是( ) A.(1,2) B.(2,1) C.(-2,1) D.(1,-2)

专题:直线参数方程中t的意义理解(高中数学精华)

专题:直线参数方程中的几何意义几点分析与解析 一. 知识点概述: ★ 若倾斜角为α的直线过点)(00y x M ,,t 为参数,则该直线的参数方程可写为 为参数,t t y y t x x ?? ?+=+=α α sin cos 00 ★ 若直线过点M ,直线与圆锥曲线交于两点P 、Q ,则 |MP|、|MQ|的几何意义就是:||||||||21t MQ t MP ==,; |MP|+|MQ|的几何意义就是:=+||||MQ MP |t ||t |21+; |MP|·|MQ|的几何意义就是:||||||21t t MQ MP ?=?; |PQ|的几何意义就是:2122121214)(|||PQ ||||PQ |t t t t t t t t ?-+= -=-=,即. ★ 若过点M )(00y x ,、倾斜角为α的直线l 与圆锥曲线交于A 、B 两点,则弦的中点坐标公式为: ??? ??? ?+++=+=+++=+=2)sin ()sin (22)cos ()cos (2201021'201021'ααααt y t y y y y t x t x x x x 或??? ??? ?++=+++=+=++=+++=+=) (22)()(2)(22) ()(2212022012021'211021011021't t p y t p y t p y y y y t t p x t p x t p x x x x ,21p p ,为常数,均不为零 (其中 中点M 的相应参数为t ,而22 1t t t +=,所以中点坐标也为:? ??+=+=t p y y t p x x 2010 ) ★ 若过点M )(00y x ,、倾斜角为α的直线l 与圆锥曲线交于A 、B 两点,且M 恰为弦AB 中点, 则中点M 的相应参数:2 2 1t t t += =0 (因为???+=+=t p y y t p x x 200 100,而21p p ,均不为0,所以t=0) 体会一:教学中一定要讲清楚直线参数方程的推导过程,并且一定要强调其中参数T 的由来。 实际上由新课程标准人教A 版数学选修课本中坐标系与参数方程的内容我们知道,平面内过定点),(000y x p 、倾斜角为α的直线l 的参数方程的标准形式为?? ?+=+=α α sin cos 00t y y t x x (t 为参数),其中t 表示直线l 上以定点0p 为起点,任 意一点P (x ,y )为终点的有向线段P P 0的数量,当P 点在0p 上方时t 为正,当P 点在0p 下方时t 为负。 体会二:教学中必须要强调参数T 的几何意义及两个结论的引导应用示范。 实际上在教学中我们知道,由直线参数方程的推导过程及向量模的几何意义等知识,很容易得参数t 具有如下的

新课标高考数学极坐标与参数方程分类汇编

2011-2017新课标《坐标系与参数方程》分类汇编 1. 【2011年新课标】在直角坐标系xOy 中,曲线C 1的参数方程为2cos 22sin x y α α =?? =+?(α为参数),M 是C 1上的动点,P 点满足OP → =2OM → ,P 点的轨迹为曲线C 2. (1)求C 2的方程; (2)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3 πθ=与C 1的异 于极点的交点为A ,与C 2的异于极点的交点为B ,求|AB |. 【答案】 (1)设P (x , y ),则由条件知(,)22x y M . 由于M 点在C 1上,所以2cos 222sin 2 x y αα ?=????=+??, 即4cos 44sin x y α α =??=+?,从而C 2的参数方程为4cos 44sin x y αα=??=+?(α为参数). (2)曲线C 1的极坐标方程为4sin ρθ=,曲线C 2的极坐标方程为8sin ρθ=. 射线3 π θ= 与C 1的交点A 的极径为14sin 3 π ρ=,射线3 πθ= 与C 2的交点B 的极径 为28sin 3 π ρ=. 所以21||||AB ρρ-== 2. 【2012年新课标】已知曲线1C 的参数方程是)(3sin y 2cos x 为参数??? ???==,以坐标原 点为极点,x 轴的正半轴为极轴建立坐标系,曲线2C 的坐标系方程是2=ρ,正方形ABCD 的顶点都在2C 上,且,,,A B C D 依逆时针次序排列,点A 的极坐标为 (2,)3 π (1)求点,,,A B C D 的直角坐标; (2)设P 为1C 上任意一点,求2 2 2 2 PA PB PC PD +++的取值范围. 【答案】 (1)依题意,点A ,B ,C ,D 的极坐标分别为5411(2,),(2,),(2,),(2,)3636ππππ . 所以点A ,B ,C ,D 的直角坐标分别为 、( 、(1,- 、1)-. (2) 设()2cos ,3sin P ?? ,则222222||||||||(12cos )3sin )PA PB PC PD ??+++=-+

高考数学参数方程大题

高考数学参数方程大题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高三最后一题 1、以平面直角坐标系的原点为极点,x 轴正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,设点A 的极坐标为)6 ,2(π ,直线l 过点A 且与极轴成角 为 3π,圆C 的极坐标方程为)4 cos(2πθρ-=. (1)写出直线l 参数方程,并把圆C 的方程化为直角坐标方程; (2)设直线l 与曲线圆C 交于B 、C 两点,求AC AB .的值. 【答案】(1)直线l C 的直角坐标方程为02222=--+y x y x ;(2 2、已知曲线C 的参数方程为31x y α α ?=+??=+??(α为参数),以直角坐标系原点 为极点,x 轴正半轴为极轴建立极坐标系. (1)求曲线C 的极坐标方程,并说明其表示什么轨迹. (2)若直线的极坐标方程为1 sin cos θθρ -= ,求直线被曲线C 截得的弦长. 【答案】(1)6cos 2sin ρθθ=+(2 3、在直角坐标系xOy 中,直线l 的参数方程为t t y t x (22522 5??? ??? ?+=+ -=为参数),若以 O 点为极点,x 轴正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为 θρcos 4=。 (1)求曲线C 的直角坐标方程及直线l 的普通方程; (2)将曲线C 上各点的横坐标缩短为原来的 2 1 ,再将所得曲线向左平移1个单位,得到曲线1C ,求曲线1C 上的点到直线l 的距离的最小值 【答案】(1)() 422 2 =+-y x ,052=+-y x (2 )

直线参数方程t的几何意义

利用直线参数方程t 的几何意义 1、直线参数方程的标准式 (1)过点P 0(00,y x ),倾斜角为α的直线l 的参数方程是 ? ??+=+=αα s i n c o s 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,) P 0P=t ∣P 0P ∣=t 为直线上任意一点. (2)若P 1、P 2是直线上两点,所对应的参数分别为t 1、t 2, 则P 1P 2=t 2-t 1 ∣P 1P 2∣=∣t 2-t 1∣ (3) 若P 1、P 2、P 3是直线上的点,所对应的参数分别为t 1、t 2、t 3 则P 1P 2中点P 3的参数为t 3=221t t +,∣P 0P 3∣=2 21t t + (4)若P 0为P 1P 2的中点,则t 1+t 2=0,t 1·t 2<0 2、直线参数方程的一般式 过点P 0(00,y x ),斜率为a b k =的直线的参数方程是 ? ??+=+=bt y y at x x 00 (t 为参数) 点击直线参数方程: 一、直线的参数方程 问题1:(直线由点和方向确定) 求经过点P 0(00,y x ),倾斜角为α的直线l 设点P(y x ,)是直线l 上任意一点,(规定向上的 方向为直线L 的正方向)过点P 作y 轴的平行线,过 P 0作x 轴的平行线,两条直线相交于Q 点. 1)当P P 0与直线l 同方向或P 0和P 重合时, P 0P =|P 0P | 则P 0Q =P 0Pcos α Q P =P 0Psin α 2)当P P 0与直线l 反方向时,P 0P 、P 0Q 、Q P P 0P =-|P 0P | P 0Q =P 0Pcos α Q P =P 0Psin α 仍成立 设P 0P =t ,t 为参数, 又∵P 0Q =0x x -, 0x x -=tcos α Q P =0y y - ∴ 0y y -=t sin α 即? ??+=+=ααsin cos 00t y y t x x 是所求的直线l 的参数方程 ∵P 0P =t ,t 为参数,t 的几何意义是:有向直线l 上从已知点P 0(00,y x )到点 P(y x ,)的有向线段的数量,且|P 0P |=|t| ①当t>0时,点P 在点P 0的上方; ②当t =0时,点P 与点P 0重合; ③当t<0时,点P 在点P 0的下方; x l

相关文档
相关文档 最新文档