文档库 最新最全的文档下载
当前位置:文档库 › 980MPa级高强钢焊接接头HAZ的组织和性能

980MPa级高强钢焊接接头HAZ的组织和性能

980MPa级高强钢焊接接头HAZ的组织和性能
980MPa级高强钢焊接接头HAZ的组织和性能

焊接接头的组成

1、焊接接头的组成,影响焊接接头组织和性能的因素。 (1)接头组成:包括焊缝、熔合区和热影响区。 (2)组织1)焊缝区接头金属及填充金属熔化后,又以较快的速度冷却凝固后形成。焊缝组织是从液体金属结晶的铸态组织,晶粒粗大,成分偏析,组织不致密。 但是,由于焊接熔池小,冷却快,化学成分控制严格,碳、硫、磷都较低,还通过渗合金调整焊缝化学成分,使其含有一定的合金元素,因此,焊缝金属的性能问题不大,可以满足性能要求,特别是强度容易达到。 2)熔合区熔化区和非熔化区之间的过渡部分。熔合区化学成分不均匀,组织粗大,往往是粗大的过热组织或粗大的淬硬组织。其性能常常是焊接接头中最差的。 熔合区和热影响区中的过热区(或淬火区)是焊接接头中机械性能最差的薄弱部位,会严重影响焊接接头的质量。 3)热影响区被焊缝区的高温加热造成组织和性能改变的区域。低碳钢的热影响区可分为过热区、正火区和部分相变区。 (1)过热区最高加热温度1100℃以上的区域,晶粒粗大,甚至产生过热组织,叫过热区。过热区的塑性和韧性明显下降,是热影响区中机械性能最差的部位。 (2)正火区最高加热温度从Ac3至1100℃的区域,焊后空冷得到晶粒较细小的正火组织,叫正火区。正火区的机械性能较好。 (3)部分相变区最高加热温度从Ac1至Ac3的区域,只有部分组织发生相变,叫部分相变区。此区晶粒不均匀,性能也较差。在安装焊接中,熔焊焊接方法应用较多。焊接接头是高温热源对基体金属进行局部加热同时与熔融的填充金属熔化凝固而形成的不均匀体。根据各部分的组织与性能的不同,焊接接头可分为三部分。, 在焊接发生熔化凝固的区域称为焊缝,它由熔化的母材和填充金属组成。而焊接时基体金属受热的影响(但未熔化)而发生金相组织和力学性能变化的区域称为热影响区。熔合区 是焊接接头中焊缝金属与热影响区的交界处,熔合区一彀很窄,宽度为0.1~0.4mm。(3)影响焊接接头性能的因素焊接材料焊接方法焊接工艺 2、减少焊接应力常采用的措施有哪些? (1)选择合理的焊接顺序(2)焊前预热(3)加热“减应区”(4)焊后热处理 3焊接变形的基本形式有哪些?消除焊接变形常用的措施有哪些? (1)焊接变形1)收缩变形2)角变形3)弯曲变形4)波浪形变形5)扭曲变形 (2)措施1)合理设计焊接构件 2)采取必要的技术措施①反变形法②加裕量法③刚性夹持法④选择合 理的焊接顺序⑤采用合理的焊接方法

3第三章 焊接接头的组织和性能

第3章焊接接头的组织和性能 ?焊接熔池的结晶特点:非平衡结晶、联生结晶和竞争成长以及成长速度动态变化。 联生结晶:一般情况下,以柱状晶的形式由半熔化的母材晶粒向焊缝中心成长,而且成长的取向与母材晶粒相同,从而形成所谓的联生结晶。(焊缝的柱状晶是从半熔化的母材晶粒开始成长的,其初始尺寸等于焊缝边界母材晶粒的尺寸,因而可以预料,在焊接热循环的作用下,晶粒易过热粗化的母材,其焊缝柱状晶也会发生粗化。) 竞争成长:只有最优结晶取向与温度梯度最大的方向(即散热最快的方向,亦即熔池边界的垂直方向)相一致的晶粒才有可能持续成长,并一直长到熔池中心。 ?焊接熔池的结晶形态:主要存在两种晶粒,柱状晶粒(有明显方向性)和少量的等轴晶粒。 其中,柱状晶粒是通过平面结晶、胞状结晶、胞状树枝结晶或树枝状结晶所形成。等轴晶粒一般是通过树枝状结晶形成的。具体呈何种形态,完全取决于结晶期间固-液界面前沿成分过冷的程度。 熔池结晶的典型形态:(1)平面结晶:固-液界面前方液相中的温度梯度G很大,液相温度曲线T不与结晶温度曲线T 相交,因而液相中不存在成分过冷(实际温度低于结晶温度) L 区。 在短距离内相交,形成较小的成分过冷(2)胞状结晶:液相温度曲线T与结晶温度曲线T L 区。断面呈六角形胞状形态。 (3)胞状树枝结晶:随固-液界面前方液相中的温度梯度G的减小,液相温度曲线T与结晶温 相交的距离增大,所形成的成分过冷区增大。 度曲线T L (4)树枝状结晶:当固-液界面前方液相中的温度梯度G进一步减小时,液相温度曲线T 与结晶温度曲线T 相交的距离进一步增大,从而形成较大的成分过冷区。 L (5)等轴结晶:自由成长,几何形状几乎对称。 随着成分过冷程度的增加,依次出现平面晶(形成较缓慢)、胞状晶、胞状树枝晶、树枝晶、等轴晶形态。 影响成分过冷的主要因素:熔池金属中溶质含量W、熔池结晶速度R、液相温度梯度G。 溶质含量W增加,成分过冷程度增大;结晶速度R越快,成分过冷程度越大;温度梯度G越大,成分过冷程度越小。 随晶体逐渐远离焊缝边界而向焊缝中心生长,温度梯度G逐渐减小,结晶速度R逐渐增大,溶质含量逐渐增加,成分过冷区液逐渐加大,因而结晶形态将依次向胞状晶、胞状树枝晶及树枝晶发展。熔池中心附近可能导致等轴晶粒的形成。 ?焊缝的相变组织: 1、低碳钢焊缝的相变组织。 (1)铁素体和珠光体。冷却速度越快,焊缝金属中珠光体越多,而且组织细化, 显微硬度增高。采用多层焊或对焊缝进行焊后热处理,也可破坏焊缝的柱状晶,得 到细小的铁素体和少量珠光体,从而起到改善焊缝组织的性能。 (2)魏氏组织。由过热导致。焊缝含碳量和冷却速度处在一定范围内时产生,更易在粗晶奥氏体内形成。 2、低合金钢焊缝的相变组织。低合金钢焊缝中可能形成铁素体F、珠光体P、贝氏体 B、马氏体M。 (1)铁素体F:先共析铁素体GBF、侧板条铁素体FSP、针状铁素体AF、细晶铁素体FGF。

焊接接头的组织

焊接接头的组织 一、实验目的 1.掌握焊接接头各区域典型的金相组织。 2.熟悉焊接接头各区域的性能变化。 二、实验设备及材料 1.金相显微镜。 2.焊接试样。 3.预磨机 4.抛光机 三、实验原理 熔化焊是局部加热的过程,焊缝及其附近的母材都经历一个加热和冷却的过程。焊接热过程将引起焊接接头组织和性能的变化,从而影响焊接质量。 焊接接头组织由焊缝金属和热影响区两部分组成。现以低碳钢为例,根据焊缝横截面的温度分布曲线,结合铁碳合金相图,对焊接接头各部分的组织和性能变化加以说明,见图13-1。 1.焊缝金属 焊缝区的金属在焊接时处于完全熔化状态,它的结晶是从熔池底壁上许多未熔化的晶粒开始的。因结晶时各个方向冷却速度不同,垂直于熔合线方向冷却速度最大,所以晶粒由垂直于熔合线向焙池中心生长,最终呈柱状晶,如图13-2所示。熔池中心最后结晶,聚集了等轴状低熔点合金和夹杂物,并可能在此处形成裂纹。 焊缝金属结晶后,其成分是填充材料与熔化母材混合后的 平均成分。在随后的冷却过程 中,若发生相变,则上述组织均 要发生不同程度的转变。对低碳 钢来说,焊缝组织大部分是柱状的铁素体加少量的珠光体。 2.热影响区 热影响区是指焊缝两侧因焊接热作用而发生组织和性能变化的区域。按受热影响的大小,热影响区可分为熔合区、过热区、正火区和部分相变区。 1)熔合区 熔合区是焊缝和基体金属的交界区,相当于加热到固相线和液相线之间的区域。由于该区域温度高,基体金属部分熔化,所以也称为“半熔化区”。熔化的金属凝固成铸态组织,未熔化金属因温度过高而长大成粗晶粒。此区域在显微镜下一般为2~3 个晶粒 图13-1 低碳钢焊接接头组织变化示意图 1-熔合区;2-过热区;3-正火区;4-部分相变区

高强钢通用焊接工艺

高强钢焊接通用工艺 一、适用范围 本工艺适用于本公司已通过焊接工艺评定的船用高强钢的焊接,对于尚未做过焊接工艺评定的高强度钢不在本通用工艺适用范围内。 二、工艺内容 1.焊接材料的选用及焊接方法 1.1.焊接方法主要采用埋弧自动焊,CO 气体保护焊及手工电弧焊。 2 焊丝TWE-711,1.2.焊接材料采用自动焊丝H10Mn2G(牌号为BHM-5),焊剂HJ331,CO 2焊条TL-507。定位焊采用手工电弧焊。自动焊丝在焊前需经100℃保温,手工焊条及焊剂需经350℃~400℃烘焙1~2个小时后方可保温使用。以上材料一旦受潮,则禁止使用。 2.定位焊及装配要求 2.1.定位焊装配时要避免强力装配,对接错边量不得超过1mm,定位焊缝长度为50mm, 角焊缝的焊喉厚度应小于正式焊缝的厚度,严禁在非焊接处引弧。正式焊接前焊道两侧10mm及坡口内均应打磨干净,不得有油污、水份、毛刺、铁锈等杂物,定位焊缝若有裂纹,则在正式焊接前要求彻底去除。 2.2.装配马板、起吊马板及加强排等的焊缝应离开正式焊缝的边缘不少于30mm。拆除时, 不允许用锤击法拆除,只能用气割拆除后用碳刨铲平,不得损伤母材表面,然后用砂轮磨平。 2.3.因所用的船用钢板均为高强钢,所以所有的焊接,无论是正式焊接还 ...... ....................是定位焊接, 包括补焊,均应在焊前进行预热,预热温度为 ...℃。 ....................120 3.焊接要求及施工工艺 3.1.高强钢的长直焊缝对接采用埋弧自动焊,采用多层多道焊。正面焊缝焊3层7~8道, 反面焊缝焊2层5道。正面焊缝焊完后,反面焊缝碳刨清根,用8mm碳棒扣槽8mm(出白为止),再采用自动焊接。为减少焊接变形,焊正面焊缝时放5mm的反变形,焊反面焊缝时加马板固定。在焊接时需控制焊接线能量,保持层间温度在120℃左右。 焊接坡口见图3-1,焊接参数见附表1。 3.2.每焊完一道焊缝后,需将焊渣清理干净,并检查焊缝中有无气孔、裂纹等缺陷,如 有上述缺陷,必须将其彻底清除后,方可继续焊接下一道焊缝。 3.3.高强钢其它各种位置的对接采用手工电弧焊及CO2气体保护焊,手工焊条为 TL-507,焊丝为TWE-711及Supercored81-K2。Supercored81-K2焊丝仅用于大于60mm厚的高强钢的对接焊。25mm及以下的钢板之间的对接采用CO2衬垫焊,开V型坡口;大于25mm的钢板之间的对接采用CO2焊,开双面不对称X型坡口。为防止焊接收缩引起焊接变形,在焊前需加排,加强排的规格为-20×200×300,间隔150mm。焊完一面焊缝后,将排移到另一面。坡口详见图3-2。焊接参数详见附表2。

影响焊接接头组织与性能的因素分析

影响焊接接头组织与性能的因素分析 1.材料的匹配 材料的匹配主要是指焊接材料(包括焊剂)的选用,焊接材料将直接影响接头的组织和性能。通常情况下,焊缝金属的化学成分及力学性能与母材相近。但考虑到铸态焊缝的特点和焊接应力的作用,焊缝的晶粒比较粗大并有存在偏析,产生裂纹、气孔和夹渣等焊接缺陷的可能性,因此常通过调整焊缝金属的化学成分以改善焊接接头的性能。 2. 指定母材和焊材时,焊接热输入量,焊接层数,道数,层间温度都有影响。一般来说,热输入不要太大,焊接层数多一些,焊层偏薄一些,热输入量是指热源功率与焊接速度之比。热输入量的大小,不仅影响过热区晶粒粗大的程度,而且直接影响到焊接热影响区的宽度。热输入量越大,则焊接接头高温停留时间越长,过热区越宽,过热现象也越严重,晶粒也越粗大,因而塑性和韧性下降也越严重,甚至会造成冷脆。因此,应尽量采用较小的热输入量,以减小过热区的宽度,降低晶粒长大的程度。在低温钢焊接时尤为重要,应严格控制热输入量,防止晶粒粗化而降低低温冲击韧性。 3要控制好焊接的层间温度,层间温度主要影响的是相变区间,也就是说,不同的层间温度会造成不同的相变温度与相转变时间从而得到不同比例的相组织。一般来说,层间温度过高,会使晶粒长大,强度指标会偏低。低合金钢焊材的层间温度以控制在150℃±15℃为宜。

4另外每一焊道间一定要清理干净,见金属光泽。如果是不锈钢,还应注意冷却速率,注意t-800/500区间不能停留太久。 5.熔合比 熔合比是指在焊缝金属中局部熔化的母材所占的比例。熔合比对焊缝性能的影响与焊接材料和母材的化学成分有关。当焊接材料与母材的化学成分基本相近且熔池保护良好时,熔合比对焊缝的熔合区的性能没有明显的影响。当焊接材料与母材的化学成分不同时,如碳、合金元素和硫、磷等杂质元素的含量不同,那么,在焊缝中紧邻熔合区的部位化学成分变化比较大,变化的幅度与焊接材料同母材间化学成分的差异及熔合比有关。化学成分相差越大,熔合比越大,则变化幅度也越大,不均匀程度及其范围也增加,从而使该区组织变得较为复杂,在一定条件下还会出现不利的组织带,导致性能大大下降。 在生产实践中,为了调节熔合比的大小,除了调节焊接线能量及其他工艺参数(如焊件预热温度、焊条直径等)以外,调节焊接坡口的大小,对熔合比有较大的影响。因为不开坡口,熔合比最大;坡口越大,熔合比就越小。 6.焊接工艺方法 在选择焊接工艺方法时,应根据其对焊接接头组织和性能的影响,结合其他要求综合考虑。 7.焊后热处理 (1)消氢处理消氢处理主要是为了加速氢的扩散逸出,防止产生延迟裂纹。其加热温度很低,不会使焊接接头的组织和性能发生变化。

超高强钢焊接注意事项

超高强钢焊接注意事项 为了降低结构自重、提高承载能力,低合金高强度钢在工矿机械上的应用越来越受重视。近年来屈服强度> 800MPa超高强度钢在国内的工程机械上被普遍采用,以满足工程机械向大型化、轻量化、高效能化方向发展的需求。由于超高强钢合金系统复杂、淬硬性较大,焊接时容易产生冷裂纹;此外超高强钢强度级别高,焊接过程中容易导致包括焊 接热影响区在内的焊接接头脆化。因此防止焊接冷裂纹产生、确保焊接接头具有优良的力学性能是该系列钢材的焊接技 术关键。 焊接材料的选择和匹配超高强度钢由于强度提高,钢材塑性、韧性相应下降。如果仍采用等强原则,选用高组配的焊接接头,焊缝的韧性不容易保证,将可能导致由于焊缝金属韧性不足引起低应力脆性破坏。因此高强钢焊接应采用等韧性原则,选择焊缝韧性不低于基体金属的低组配焊接接头比较合理。采用低强的焊缝金属并不总是意味着焊接接头的强度一定低于母材。根据多年来的焊接接头力学性能试验经验,只要焊缝金属的强度不低于母材的87%,仍可保证接头与母材等强。 当焊接较厚的超高强度钢板材时,在焊缝的不同部位应匹配不同强度级别的焊接材料。即:根部焊道采用低强度焊材打底、

填充与盖面焊道采用高强度焊材;对角焊而言通常采用低强焊材。选用低强焊接材料比选择高强焊接材料的优点在于,焊缝金属的塑韧性储备大、焊接接头延伸性能好,使接头产生裂纹的可能性减小。 超高强钢焊接时应选用超低氢焊接材料,熔敷金属的含氢量应不超过5 ml/100 g(水银法),以尽量减少焊接过程中由焊接材料带入焊接接头的氢含量。同时为了避免吸潮,焊接材料应根据规定进行储存,使用前按要求重新烘焙。预热温度的确定实际焊接过程中应特别重视对超高强度钢对接焊缝和根 部焊道的预热。钢板越厚,预热的必要性越大。预热温度与钢板的当量板厚相关,此外,预热温度应根据实际情况进行相应调整: (1)如果环境湿度大或温度低于5℃ ,则预热温度应再增加25℃ ;如果工件属刚性固定,预热温度也应相应增加; (2)在当量板厚小于极限值,工件温度低于5℃或空气湿度大于65%时,应将工件预热至50~80℃。焊接热输入控制焊接热输入量的变化将改变焊接冷却速度,从而影响焊缝金属及热影响区的组织组成,并最终影响焊接接头的力学性能及抗裂性。为了避免超高强钢焊接时产生焊接冷裂纹和焊缝热影响区韧性的降低,必须严格控制焊接热输入量,控制焊接冷却速度以得到理想的焊缝及焊接热影响区金相组织。冷却时间t8 /5是决定焊后超强钢的性能和焊接接头性能的一个

焊缝接头组织的金相观察与分析

焊缝接头组织的金相观察与分析 一、实验说明 焊接是工业生产中用来连接金属材料的重要加工方法。根据工艺特点不同,焊接方法又分为许多种,其中熔化焊应用得最广泛。 熔化焊的实质就是利用能量高度集中的热源,将被焊金属和填充材料快速熔化,热后冷却结晶而形成牢固接头。 由于熔化焊过程的这一特点,不仅焊缝区的金属组织与母材组织不一样,而且靠近焊缝区的母材组织也要发生变化。这部分靠近焊缝且组织发生了变化的金属称为热影响区。热影响区内,和焊缝距离不一样的金属由于在焊接过程中所达到的最高温度和冷却速度不一样,相当于经受了不同规范的热处理,因而最终组织也不一样。 以低碳钢为例,根据热影响区内各区段在焊接过程中所达到的最高温度范围,依次分为熔合区(固相线一液相线),过热区(1100℃——固相线);完全正火区(AC3——1100℃);不完全旺火区(AC1~AC3)。对易淬火钢而言,还会出现淬火组织。 焊接结构的服役能力和工作可靠性,既取决于焊缝区的组织和质量,也取决于热影响区的组织和宽窄。因此对焊接接头组织进行金相观察与分析已成为焊接生产与科研中用以评判焊接质量优劣,寻找焊接结构的失效原因的一种重要手段。 本实验采用焊接生产中应用最多的低碳钢为母材,用手工电弧施焊,然后对焊接接头进行磨样观察。 二、实验目的 1、学会正确截取焊接接头试样。 2、认识焊缝区和热影响区各区段的组织特征。 3。深刻领会熔化焊焊接过程特点。 三、实验设备及器材 1、施焊设备及器材(手弧焊机、结422焊条,面罩)。 2、200×100×8mmA3钢板一块。施焊前用牛头刨床沿其长度方向中心线刨一条深2mm,宽4~5mm的弧形槽。 3、砂轮切割机一台。 4、钳工工具一套。 5,制备金相试样的全部器材。 6、金相显微镜若干台。 四、实验方法与步骤 1、在钢板上沿刨槽用F4mm结422焊条一根施焊。焊接电流取140~150A。 2、待钢板冷至室温后,用砂轮切割机截取试样。截取部位如下图所示,切割时须用水冷却。以防止组织发生变化(图中虚线为砂轮切割线,两端30mm长焊缝舍弃不用)。 焊接接头金相试样取样位置示意图 3、依照实验一步骤3所述方法截下的焊缝接头制备成金相试样。注意磨制面应选择与焊缝走向垂直的横截面。 4、在金相显微镜上观察制备好的焊接接头试样。光用低倍镜镜头(放大150倍)观察焊缝区及热影响区全貌,再用高倍镜镜头(450倍)逐区进行观察,注意识别各区的金相组织特征, 并画出草图。 五、实验报告要求 1、明确实验目的。

高强钢超长超厚板现场焊接工法

高强钢超长、超厚板现场焊接工法 中建三局股份钢结构公司 二00七年二月

高强钢超长、超厚板现场焊接工法 中建三局股份钢结构公司 一、前言 近年来,随着经济的发展、产钢量的提高,钢结构工程由于其优越的力学和环保节能等性能得到了迅速的发展,特别是2008年奥运会、2010年上海世博会、2010年广州亚运会即将在我国举行,大型体育场馆、公共建筑、构筑物以及大跨经的厂房及市政共用工程等建设方兴未艾,给我国的钢结构设计施工带来了前所未有的挑战。随着各类特大型复杂钢结构工程的涌现,高强超厚板(如60~100mm 厚的Q390D、Q420D、Q460E等材质钢板)的现场焊接就越来越多,焊接难度也越来越大,特别是多杆件汇交形成的复杂节点,为满足节点构造要求和现场吊装要求,一些超长、超厚焊缝在施工现场进行焊接也就在所难免,而高强钢材的可焊性程度、焊接参数、焊接应力和变形控制等受现场条件、焊接位臵及环境的影响,存在较多的不确定性因素,尚无成熟的规范及焊接工艺参数作参照。研究、探索高强超厚板现场焊接工艺具有十分重要的理论意义和实际意义,也是十分必要迫切需要解决的问题;同时对施工单位也提出很高的要求,需要根据工程本身特点与实际工况,依托传统、成熟的焊接技术,开展科技创新、大胆探索,进行施工工艺革新。 中建三局股份钢结构公司近年来在钢结构厚板焊接方面不断总结经验,推陈出新。通过在中央电视台新台址工程CCTV主楼钢结构安装中,以10根超大型复杂蝶形节点的多箱型分体钢柱为代表的超长、超厚焊缝的成功焊接,总结了一整套关于高强钢超长、超厚

板的现场焊接思路和方法,形成本焊接工法。 二、工法特点 2.1使用半自动实芯焊丝C02气体保护焊(FCAW-G)和半自动药芯焊丝C02气体保护焊(GMAW)相结合的焊接方法,模拟工况进行焊接工艺试验,获取焊接参数。 2.2用电脑控制的电加热设备进行焊前预热、焊中层间温度控制以及焊后后热消氢处理,确保母材受热均匀,有效控制了冷裂纹的产生,提高了焊接工效、保障了连续施焊,避免了大量火焰烘烤工的集中作业,节约了焊接时间和焊接成本。 2.3采取分段退焊顺序,并在焊前、焊中与焊后用全站仪进行时实监测,及时调整加热能量,减少焊接变形。 2.4焊后48小时焊接探伤和15天后延迟裂纹探伤检验,进一步保障了焊接质量。 三、适用范围 本工法适用于厚板、长焊缝的焊接,最适用于钢结构安装工程中高强材质Q390D、Q420D、Q460E的长焊缝的二氧化碳气体半自动保护焊、立焊位臵的焊接;对于其它板厚在100mm以上的现场焊缝焊接同样具有很大的参考价值。 四、工艺原理 4.1 施工前,根据焊接形式有针对性地进行焊接工艺评定。 4.2 钢分体安装,先安装本体钢柱、并部分焊接,然后安装分离下来的一部分钢柱。 4.3 焊接前先对焊接坡口两侧的母材进行超声波无损探伤检测,检查母材内部有无缺陷,同时用焊缝量规对焊缝坡口大小、角度以及安装组对情况进行仔细的检查。

焊接接头组织和性能的控制

第七章 焊接接头组织和性能的控制 1.焊接热循环对被焊金属近缝区的组织、性能有什么影响?怎样利用热循环和其他工艺措施改善HAZ 的组织性能? 答: (1)在热循环作用下,近缝区的组织分布是不均匀的,融合去和过热去出现了严 重的晶粒粗化,是整个接头的薄弱地带,而行能也是不均匀的,主要是淬硬、韧化和脆化,及综合力学性能,抗腐蚀性能,抗疲劳性能等。 (2)焊接热循环对组织的影响主要考虑四个因素:加热速度、加热的最高温度, 在相等温度以上的停留时间,冷却速度和冷却时间,研究它是研究焊接质量的主要途径,而在工艺措施上,常可采用长段的多层焊合短道多层焊,尤其是短道多层焊对热影响区的组织有以定的改善作用,适于焊接晶粒易长而易淬硬的钢种。 2. 冷却时间100t t 8 385、、t 的各自应用对象,为什么不常用某温度下(如540℃)的 冷却速度? 答:对于一般碳钢和低合金钢常采用相变温度范围800~500℃冷却时间(85t )对冷裂纹倾向较大的钢种,常采用800~300℃的冷却时间8 3t ,各冷却时间的选定要根据不同金属材料做存在的问题来决定 为了方便研究常用某一温度范围内的冷却时间来讨论热影响组织性能的变化,而某个温度下 比如540℃则为一个时刻即冷却至540℃时瞬时冷却速度 和组织性能。故不常用某以温度下的冷却速度,对于一般低合金钢来讲,主要研究热影响区溶合线附近冷却过程中540℃时瞬时冷却速度 3. 低合金钢焊接时,HAZ 粗晶区奥氏体的均质化程度对冷却时变相有何影响? 答:奥氏体的均质化过程为扩散过程,因此焊接时焊接速度快和相变以上停留时间短都不利于扩散过程的进行,从而均质化过程差而 影响到冷却时间的组织相变,低合金钢在焊接条件下的CCT 曲线比热处理条件下的曲线向做移动,也就是在同样冷却速度下焊接时比热处理的淬硬倾向小,例如冷却速度为36s C / 时可得到100%的马氏体,在焊接时由于家人速度快,高温停留时间短

高强钢焊接工艺的研究

Q420高强钢性能分析和焊接工艺研究 张宇 南通新华钢结构工程有限公司 摘要:通过对低合金高强度结构钢的焊接影响因素的分析, 为制定合理的焊接工艺提供了依据, 应用该工艺保证了低合金高强度钢的焊接效果。 关键词:焊接性;影响因素;工艺 引言 自20世纪60年代以来,低合金高强钢领域取得了惊人的进展,由此而形成了“现代低合金高强钢”,在合金设计及生产工艺诸方面导入了很多新的概念,主要的是:(1)Nb、V、Ti等强烈碳化物形成元素的应用,以及晶粒细化和析出强化为主要内容的钢的强韧化机理的建立,出现了新一代的低合金高强钢,即以低碳、高纯净度为特征的微合金化钢; (2)低合金高强度钢不再是“简易”生产的普通低合金钢,而是采用一系列现代冶金新技术生产的精细钢类,包括铁水预处理、顶底复吹转炉冶炼、钢包冶金、连铸、控扎控冷(热机械处理)等技术得到普遍应用,已成为低合金高强度钢的基本生产流程。 高强钢的焊接性能也是塔杆设计和制造部门比较关心的一个问题,这主要包括两个方面,一时裂纹敏感性,二是焊接热影响区的力学性能。如果焊接工艺不当,高强钢焊接时,有焊接热影响区脆化倾向,易形成热裂纹,冷却速度较快时,有明显的冷裂倾向。 1、焊接性试验的相关内容 试验目的 评价母材焊接性能的好坏,确定合理的焊接工艺参数。 试验方法 最常用的方法(直接法):焊接裂纹试验(冷裂纹试验、热裂纹试验、再热裂纹试验、脆性断裂)。 计算法(间接法):碳当量法、焊接裂纹敏感指数法。 式中: 焊接冷裂纹敏感性分析 钢材的焊接冷裂纹敏感性一般与母材和焊缝金属的化学成分有关,为了说明冷裂纹敏感性与钢材化学成分的关系,通常用碳当量来表示。计算碳当量的公式很多,对于Q420钢,采用了国际焊接学会(IIW)推荐的非调质钢碳当量Ceq(IIW)计算公式(公式1)和日本工艺标准(JIS)推荐的碳当量Ceq(JIS)计算公式(公式2)进行计算。 根据JGJ81—2002规定:钢材碳当量小于,焊接难度一般;在—范围内,焊接程度较难。 热影响区最高硬度试验 热影响区最高硬度试验是以测定焊接热影响区的淬硬倾向来评定钢材的冷裂纹敏感性。试验按照—84《焊接热影响区最高硬度试验方法》的规定进行。 试验检测面经打磨抛光后,用2%硝酸酒精溶液浅腐蚀后,参照如图1所示。 图1 硬度的检测位置 斜Y坡口焊接裂纹试验 斜Y坡口焊接裂纹试验(小铁研)主要是评定焊接热影响区产生冷裂纹的倾向性。试参照—84《斜Y坡口焊接裂纹试验方法》的规定进行。试验焊缝结束后,经48小时后进行裂纹检查。

屈服强度900 MPa级高强钢焊接工艺

第28卷第9期焊接学报V01.28No.92oo7年9月TRANSAC兀ONS0F7IH匮CHINA骊TEIDINGINgITnJ.110N&挚terrlber2007 屈服强度900MPa级高强钢焊接工艺 高有进1’2,王乘1,徐宗林2 (1华中科技大学水电与数字化工程学院,武汉4姗4 2.郑州煤矿机械集团有限责任公司。郑州450013) 摘要:针对煤矿机械用屈服强度900枷)a级高强钢板焊接工艺特点,研究了该钢材焊 接热影响区组织转变规律、焊接冷裂纹敏感性及焊接工艺参数对焊接接头组织性能的 影响。结果表明,黯嘞D钢有较强的淬硬倾向,焊接过程中应采取必要的措施防止焊 接冷裂纹的产生;焊接工艺参数对焊接接头组织和性能均有一定的影响,为确保焊接质 量,应合理控制焊接热输入量及焊道间温度。研究成果已成功应用于高端液压支架的 焊接。 关键词:900hⅡh;高强度钢;焊接工艺;液压支架 中围分类号:1鲫.儿文献标识码:A文章编号:哪一360x(2叫7)09一103—05向碉皿 0序言 随着国内综合采煤机械化水平的不断提升,高端液压支架需求量不断增大。为实现支架高强度和高可靠性要求,同时又尽量减轻支架重量,方便井下运输和安装,支架用钢材的强度也愈来愈高。为保证高端液压支架焊接接头的综合力学性能满足高强度高可靠性的设计及使用要求,达到国际先进水平,郑州煤矿机械集团有限公司与哈尔滨焊接研究所合作对高端液压支架上使用的屈服强度900胁级高 强钢板的焊接性、配套焊接材料及焊接工艺进行了研究,同时根据液压支架推移框架的结构特点,对sm咖D钢焊接的焊接工艺及接头性能进行了试验与评定。 1试验材料及试验方法 试验用屈服强度900MPa级高强钢板Sm900D 由上海三钢有限责任公司生产,交货状态为调质,钢板厚度20mm。试验钢板的化学成分及力学性能见表l。Sm900D钢配套焊接材料选用德国DR^HT.zL】GsrEIN公司生产的庐1.2I眦MEcA兀I.1100M无缝药芯焊丝,该焊丝符合美国AwsA5.28E120c—G标准要求,采用80%Ar+20%c02气体保护焊熔敷金属力学性能及扩散氢含量见表2。采用FoR.MAsroR—D型快速膨胀仪研究不同焊接热循环条件下焊接热影响区(HAz)过热区组织转变规律;插销冷裂纹试验按国家标准GB9446一1988规定进行,使用HCL一3Mc微机控制五头插销试验机。插销试件从20mm厚Sm靴D钢板的l/4处取,试件直径为≠6m,插销试件的缺口形式及尺寸见图1所示。插销试验采用断裂准则进行评定;斜Y坡口焊接裂纹试验按国家标准cB4675.1—89规定进行,试件焊后放置48h,进行表面、断面裂纹检查;几种不同焊接热输人量及不同焊道间温度下Sm900D钢对接接头性能试验的焊接工艺如表3所示,试板尺寸为加m×150Ⅲ×300m,采用单边300v形坡口;焊接接头冲击试验和焊缝金属拉伸试验按 表1s}仃∞0D钢板化学成分(质量分数.%)及力学性能 1曲b1Chem酬co呻0sni∞sandm∞怕n酬pr。pen酷afS卜n弓00Ds眙eIpI己岫 收稿日期:娜一循一∞照国家标准cB2650—2652—89规定进行;焊接接 头的组织采用标准的金相分析方法进行分析。  万方数据

浅析超高强钢焊接

浅析超高强度钢的焊接 张勇 摘要:针对性地介绍了超高强度钢焊接时如何合理选择工艺参数、存在的主要问题、注意事项及应采取的预防措施。 关键词:超高强度钢;焊接;冷裂纹;疲劳 超高强度钢一般是指屈服强度大于700Mpa的细晶粒高强钢,如:HQ80(鞍钢)、STE690、STE890、STE960(德国)、WELDOX700、WELDOX900、WELDOX960、WELDOX1100(瑞典奥克隆德钢铁公司)等。其焊接存在的主要问题为:焊接氢致裂纹(冷裂纹)、焊接热影响区软化及韧性下降、焊接接头的疲劳等。本文针对高强钢焊接进行比较详细的分析和介绍。 1.高强钢焊接目标: 在焊接接头处获得适当的强度(抗拉强度和疲劳强度),在焊接接头处获得良好的韧性,避免产生冷裂纹。 2.防止冷裂纹措施 2.1 焊前预热 预热对对接焊缝和根部焊道最为重要,焊接过程中和焊接后的温度越高,则氢越易从钢中逸出;钢板越厚,预热的必要性越大,以补偿厚板更快的冷却速度,而且厚板比薄板的碳当量(CE)值更高。工件具体的预热温度和要求见表一与图一,如果不同钢种的焊接或所用焊材的碳当量比母材高,则预热温度由碳当量高的母材或焊材的碳当时决定。 2.2确保焊接面的清洁和干燥 产生冷裂纹的主要原因是有应力存在的焊缝金属中有氢的存在。焊件在组装前应彻底清除坡口表面及附近母材上的各种脏物(例如:氧化皮,铁锈,油污,水份等,这些脏物在焊接时分解出氢而导致焊缝产生延迟纹或气孔,使焊接接头性能受损),

直至露出金属光泽并保证清理范围内无裂纹与夹层等缺陷。 2.3减小构件内应力 通过采用良好的焊接顺序;合理组装,避免强力组对以减少构件的残余应力;焊接组装时应将工件压紧或垫置牢固,以防止因焊接受热而产生附加的应力和变形。 2.4选择含氢量小的焊接材料 选用的焊接材料其熔敷金属含氢量应小于5ml/100g;为了避免吸潮,焊接材料应根据厂家的规定进行储存,使用前按厂应家要求重新烘焙,以免工件在焊后或使用过程中产生延迟冷裂纹。 2.5焊后后热消氢处理 在焊接完成后,立即将焊件后热到150-250℃,并按每毫米板厚不少于5分钟进行恒温处理后缓冷(且总的恒温时间不得小于1小时),确保焊接接头中的残余氢能扩散逸出,减少延迟冷裂纹的产生。 2.5焊后热处理 进行焊后热处理是为了减少焊接残余应力,高强钢焊后一般不进行焊后热处理,热处理会使接头的某些机械性能下降,如:冲击韧性等。只有在设计规则有特殊说明时,方应进行焊后热处理。但应注意其焊后热处理温度不能超过其调质回火温度。 图一: 预热温度测量位置及当量板厚的确定 S3=0 S1= S2 钢板的当量板厚S K=S1+S2+S3,或至少为2倍板厚 S1=距焊缝金属75mm内的平均厚度

常见钢焊接性

1.试述低碳钢的焊接性。 由于低碳钢含碳量低,锰、硅含量也少,所以,通常情况下不会因焊接而产生严重硬化组织或淬火组织。低碳钢焊后的接头塑性和冲击韧度良好,焊接时,一般不需预热、控制层间温度和后热,焊后也不必采用热处理改善组织,整个焊接过程不必采取特殊的工艺措施,焊接性优良。焊接低碳钢时可采取哪些措施消除应力裂纹? (1)降低消应力退火温度。(2)控制母材中V、B的含量。

⑶坡口形式将焊件尽量开成U形坡口式进行焊接。如果是铸件缺陷,铲挖出的坡口外形应圆 滑,其目的是减少母材熔入焊缝金属中的比例,以降低焊缝中的含碳量,防止裂纹产生。 ⑷焊接工艺参数由于母材熔化到第一层焊缝金属中的比例最高达30%左右,所以第一层焊 缝焊接时,应尽量采用小电流、慢焊接速度,以减小母材的熔深。 ⑸焊后热处理焊后最好对焊件立即进行消除应力热处理,特别是对于大厚度焊件、高刚性结 构件以及严厉条件下(动载荷或冲击载荷)工作的焊件更应如此。消除应力的回火温度为600~650℃。 若焊后不能进行消除应力热处理,应立即进行后热处理。 4.试述高碳钢的焊接工艺要点。 ⑴焊接性当高碳钢的碳的质量分数大于0.60%时,焊后的硬化、裂纹敏感倾向更大,因此 焊接性极差,不能用于制造焊接结构。常用于制造需要更硬度或耐磨的部件和零件,其焊接工作主要是焊补修复。 ⑵焊条选用由于高碳钢的抗拉强度大都在675MPa以上,所以常用的焊条型号为E7015、 E6015,对构件结构要求不高时可选用E5016、E5015焊条。此外,亦可采用铬镍奥氏体钢焊条进行焊接。 ⑶焊接工艺1)由于高碳钢零件为了获得高硬度和耐磨性,材料本身都需经过热处理,所 以焊前应先进行退火,才能进行焊接。 2)焊件焊前应进行预热,预热温度一般为250~350℃以上,焊接过程中必需保持层间温度不低于预热温度。 3)焊后焊件必需保温缓冷,并立即送入炉中在650℃进行消除应力热处理。 5.试述低合金高强钢的焊接性。 强度级别较低的低合金高强钢,如300~400MPa级,由于钢中合金元素含量较少,其焊接性良好,接近于低碳钢。随着钢中合金元素的增加,强度级别提高,钢的焊接性也逐渐变差,出现的主要问题是: ⑴热影响区的淬硬倾向含碳时较少、强度级别较低的钢种,如09Mn2、09Mn2Si、09MnV 钢等,淬硬倾向很小。随着强度级别的提高,淬硬倾向也开始加大,如16Mn、15MnV钢焊接时,快速度冷却会导致在热影响区出现马氏体组织。 ⑵冷裂纹低合金高强钢焊接时,热影响区的冷裂纹倾向加大,并且这种冷裂纹往往具有延迟 的性质,危害性很大。例如,材料为18MnMoNb钢壁厚115mm的一大型容器,由于预热温度不够,焊后在热影响区形成大量冷裂纹。 低合金高强钢的定位焊缝很容易开裂,其原因是由于焊缝尺寸小、长度短、冷却速度快,这种开裂属于冷裂纹性质。 ⑶热裂纹一般情况下,强度等级为294~392MPa的热轧、正火钢,热裂倾向较小,但在厚 壁压力容器的高稀释率焊道(如根部焊道或靠近坡口边缘的多层埋弧焊焊道)中也会出现热裂纹。电渣焊时,若母材的含碳量偏高并含镍时,电渣焊缝中可能会出现呈八字形分布的热裂纹。 强度等级为800~1176MPa的中碳调质钢(如30CrMnSiA钢),焊接时热裂的敏感性较大。 ⑷粗晶区脆化热影响区中被加热至1100℃以上的粗晶区,当焊接线能量过大时,粗晶区的 晶粒将迅速长大或出现魏氏组织而使韧性下降,出现脆化段。 6.试述低合金高强钢焊接时的主要工艺措施。 ⑴预热预热是防止裂纹的有效措施,并且还有助于改善接头性能。但预热会恶化劳动条件, 使生产工艺复杂化,过高的预热温度还会降低接头韧性。因此,焊前是否需要预热以及预热温度的确定应根据钢材的成分(碳当量)、板厚、结构形状、刚度大小以及环境温度等决定。

Q高强钢焊接工艺的研究

Q高强钢焊接工艺的研 究 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

Q420高强钢性能分析和焊接工艺研究 张宇 南通新华钢结构工程有限公司 摘要:通过对低合金高强度结构钢的焊接影响因素的分析,为制定合理的焊接工艺提供了依据,应用该工艺保证了低合金高强度钢的焊接效果。 关键词:焊接性;影响因素;工艺 引言 自20世纪60年代以来,低合金高强钢领域取得了惊人的进展,由此而形成了“现代低合金高强钢”,在合金设计及生产工艺诸方面导入了很多新的概念,主要的是:(1)Nb、V、Ti等强烈碳化物形成元素的应用,以及晶粒细化和析出强化为主要内容的钢的强韧化机理的建立,出现了新一代的低合金高强钢,即以低碳、高纯净度为特征的微合金化钢; (2)低合金高强度钢不再是“简易”生产的普通低合金钢,而是采用一系列现代冶金新技术生产的精细钢类,包括铁水预处理、顶底复吹转炉冶炼、钢包冶金、连铸、控扎控冷(热机械处理)等技术得到普遍应用,已成为低合金高强度钢的基本生产流程。 高强钢的焊接性能也是塔杆设计和制造部门比较关心的一个问题,这主要包括两个方面,一时裂纹敏感性,二是焊接热影响区的力学性能。如果焊接工艺不当,高强钢焊接时,有焊接热影响区脆化倾向,易形成热裂纹,冷却速度较快时,有明显的冷裂倾向。 1、焊接性试验的相关内容 试验目的 评价母材焊接性能的好坏,确定合理的焊接工艺参数。

试验方法 最常用的方法(直接法):焊接裂纹试验(冷裂纹试验、热裂纹试验、再热裂纹试验、脆性断裂)。 计算法(间接法):碳当量法、焊接裂纹敏感指数法。 式中: 焊接冷裂纹敏感性分析 钢材的焊接冷裂纹敏感性一般与母材和焊缝金属的化学成分有关,为了说明冷裂纹敏感性与钢材化学成分的关系,通常用碳当量来表示。计算碳当量的公式很多,对于Q420钢,采用了国际焊接学会(IIW)推荐的非调质钢碳当量Ceq(IIW)计算公式(公式1)和日本工艺标准(JIS)推荐的碳当量Ceq(JIS)计算公式(公式2)进行计算。 根据JGJ81—2002规定:钢材碳当量小于,焊接难度一般;在—范围内,焊接程度较难。 热影响区最高硬度试验 热影响区最高硬度试验是以测定焊接热影响区的淬硬倾向来评定钢材的冷裂纹敏感性。试验按照—84《焊接热影响区最高硬度试验方法》的规定进行。 试验检测面经打磨抛光后,用2%硝酸酒精溶液浅腐蚀后,参照如图1所示。 图1硬度的检测位置 斜Y坡口焊接裂纹试验 斜Y坡口焊接裂纹试验(小铁研)主要是评定焊接热影响区产生冷裂纹的倾向性。试参照—84《斜Y坡口焊接裂纹试验方法》的规定进行。试验焊缝结束后,经48小时后进行裂纹检查。

焊接接头金相组织分析

焊接接头金相组织分析 一、试验目的 (一)观察与分析焊缝的各种典型结晶形态 (二)掌握低碳钢焊接接头各区域的组织变化 (三)了解低碳钢焊接热影响区的组织变化规律。二、试验装置 及试验材料 (一)粗、细金相砂纸一套 (二)平板玻璃2块 (三)金相显微镜4台 (四)吹风机1个 (五)抛光机4台 (六)低碳钢焊接接头试片1个 (七)腐蚀液: 4%硝酸酒精溶液 (八)乙醇、丙酮、棉花等 三、试验原理 (一)焊缝凝固时的结晶形态 1、焊缝的交互结晶,如图1所示

熔池金属的结晶是从熔合区母材的半熔化晶粒上开始向焊缝中心成长 2、焊缝的结晶形态 根据成分过冷的结晶理论,合金的结晶形态与溶质的浓度C0、结晶速度R和温度剃度G有关。 图2 C0、R和G对结晶形态的影响 (二)低碳钢焊缝热影响区金属的组织变化 以低碳钢为例,根据其热影响区金属组织的特性,可分为四个区域,如图3所示:

图3低碳钢焊接热影响区分布特征 1-熔合区;2-粗晶区;3-结晶区;4-不完全重结晶区;5-母材 a、接头金相组织: 1、未受热影响的焊缝金属区; 2、受影响的层间金属区,结晶形态消失; 3、受过热作用的热影响区; 4、母材;

b、过热粗晶区魏氏体组织 C、左侧一次正火细晶区,右侧二次正火,晶粒较粗 d、不完全结晶区组织

e、母材组织 (三)30CrMnSiA钢焊缝热影响区金属组织变化 30CrMnSiA钢的连续冷却转变曲线

四、实验方法及步骤 (一)低碳钢焊接接头金相分析 1、试样的准备; 2、用金相砂纸打磨试片; 3、抛光试片; 4、腐蚀; 5、在显微镜下观察与分析 (二)30CrMnSiA钢试片的制作 1、将厚度为2.5mm的30CrMnSiA钢板切成180× 20mm和180× 35mm两种规格的试片; 2、试片焊前进行退火处理; 3、去除试片表面油污及氧化物; 4、分别用电弧焊和气焊焊接试片; 5、制作金相试样:打磨、抛光、腐蚀等; 6、在显微镜下观察已制备好的金相试样;

高强度钢板的性能及焊接

BS系列高强钢简介 Brief introduction 开发历史 工程机械用系列高强、超高强结构钢是宝钢于2000年在国内率先开发成功的一类热轧新产品,牌号大多采用“BS”开头, 如第一代高强钢BS600MC和BS700MC已大量应用于工程机械、集装箱制造等行业。2005年宝钢开发成功具有优良低温韧性的第二代高强钢,牌号为BS700MCK2、BS600MCJ4、BS550MCK4等等。BS系列高强钢为低碳低合金结构钢,具有良好的可焊接性和冷成形性,可广泛应用于工程机械、车辆结构、集装箱等制造行业。 高强钢 BS系列高强结构钢采用宝钢股份公司先进的冶炼技术、铌钛微合金化处理以及精确的控制轧制和控制冷却技术获得金相显微组织为少量铁素体加针状体组织。制造工艺和金相组织保证了合格稳定的力学性能、加工性能和可靠的质量。自从2000年开发成功以后,深受用户青睐,产销量逐年增加。超高强钢选用高强钢代替传统产品可显著减小钢板的设计厚度,进而减轻结构的自重。除此之外,BS系列高强钢还具有如下特点: ? 优良的成形性,不同强度级别钢板均能够冷加工成形; ? 良好的焊接性,钢板具有低焊接裂纹敏感性,焊接接头的性能优良; ? 良好的低温冲击韧性。 制造工艺及交货状态 生产工艺流程: BS系列高强钢采用氧气转炉冶炼镇静钢,经过二次精炼后进行连续铸造,连铸坯送热轧厂再加热并采用控轧控冷工艺轧制成卷,精整检验后可以钢卷状态交货,也可以矫直切板后以钢板状态交货。交货状态: BS系列高强钢基本采用轧态(TMCP)交货。 所示,超出规格范围可与宝钢热轧高强钢产销研小组联系(附后)。 牌号Steel grade 可供厚度Thickness,mm 可供宽度Width,mm 可供长度Length,mm BS550- 2.5-16 850-1750 2000-12000 BS600- 2.5-16 850-1750 2000-12000 BS700- 2.5-14 850-1600 2000-12000 BS960- 4-10 950-1200 2000-12000 牌号及可供规格范围 Product range of dimensions 宽度 (width), mm 18 10 14 6 17 9 13 5 16 8 12 4

焊缝接头组织的金相观察与分析

焊缝接头组织的金相观察与分析 姓名: 学号: 班级: 专业:

焊缝接头组织的金相观察与分析 一、实验说明 焊接是工业生产中用来连接金属材料的重要加工方法。根据工艺特点不同,焊接方法又分为许多种,其中熔化焊应用得最广泛。 熔化焊的实质就是利用能量高度集中的热源,将被焊金属和填充材料快速熔化,热后冷却结晶而形成牢固接头。 由于熔化焊过程的这一特点,不仅焊缝区的金属组织与母材组织不一样,而且靠近焊缝区的母材组织也要发生变化。这部分靠近焊缝且组织发生了变化的金属称为热影响区。热影响区内,和焊缝距离不一样的金属由于在焊接过程中所达到的最高温度和冷却速度不一样,相当于经受了不同规范的热处理,因而最终组织也不一样。 以低碳钢为例,根据热影响区内各区段在焊接过程中所达到的最高温度范围,依次分为熔合区(固相线一液相线),过热区(1100℃——固相线);完全正 火区(AC3——1100℃);不完全正火区(AC1~AC3)。对易淬火钢而言,还会出现淬火组织。 焊接结构的服役能力和工作可靠性,既取决于焊缝区的组织和质量,也取决于热影响区的组织和宽窄。因此对焊接接头组织进行金相观察与分析已成为焊接生产与科研中用以评判焊接质量优劣,寻找焊接结构的失效原因的一种重要手段。 本实验采用焊接生产中应用最多的低碳钢为母材,用手工电弧施焊,然后对焊接接头进行磨样观察。 二、实验目的 1、学会正确截取焊接接头试样。 2、认识焊缝区和热影响区各区段的组织特征。 3、深刻领会熔化焊焊接过程特点。 4、理解焊缝、热影响区到基体的硬度变化规律。 三、实验设备及器材 1、施焊设备及器材(手弧焊机、结422焊条,面罩)。 2、200×100×8mmA3钢板一块(45钢)。施焊前用牛头刨床沿其长度方 向中心线刨一条深2mm,宽4~5mm的弧形槽。 3、砂轮切割机一台。 4、钳工工具一套。 5,制备金相试样的全部器材。 6、金相显微镜若干台。 7、显微硬度仪一台

相关文档