文档库 最新最全的文档下载
当前位置:文档库 › Science Instructional Materials in Preparation for the 2006 Adoption. The most startling

Science Instructional Materials in Preparation for the 2006 Adoption. The most startling

Science Instructional Materials in Preparation for the 2006 Adoption. The most startling
Science Instructional Materials in Preparation for the 2006 Adoption. The most startling

Direct Science Instruction Suffers a Setback in California - Or Does It? * ?Richard R. Hake, Indiana University, Emeritus Professor of Physics

". . .I will look primarily at our traditions and practices of early schooling through the

age of twelve or so. There is little to come after, whether of joys or miseries, that is

not prefigured in these years."

David Hawkins in The Roots of Literacy (2000), p. 3.

On 10 March 2004, the California State Board of Education (CSBE), bending to intense

pressure from teachers, scientists, and leaders of industry and higher education, made some

amendments in the California Curriculum Commissions (CCC's) Criteria For Evaluating K-8

Science Instructional Materials in Preparation for the 2006 Adoption. The most startling

amendment reversed the Criteria's demand that "instructional materials must compose

NO MORE than 20 to 25 percent of hands-on activities" to read "instructional materials must

compose AT LEAST 20 to 25 percent of hands-on activities." Although widely heralded as a

setback for DI in California, I argue that DI may continue to predominate in K-8 science

classrooms because instructional material adoptions will be heavily influenced by the

DI-oriented CCC and CSBE. I list eleven objections to the Criteria that remain in force despite

the amendments, and make three suggestions for loosening the stifling stranglehold of the CCC

on K-8 science education: (1) replace the CCC's DI diehards, (2) rewrite the entire Criteria to

insure local control of teaching practices and instructional materials, and (3) drastically

upgrade teachers' salaries and working conditions.

I. Introduction

The California Curriculum Commission (CCC) has attempted to enact a Criteria For Evaluating K-8 Science Instructional Materials in Preparation for the 2006 Adoption that would prohibit the expenditure of state funds for K-8 science education instructional materials containing more than 25% hands-on activities. Such a draconian edict would reduce hands-on activities in most California schools, since all but the wealthiest are dependent on state funding for instructional materials. Because of its dire implications for science instruction in K-8 (and hence K-16) nationwide – text providers tend to publish only materials that can be sold in California, their largest market – the CCC's retrograde scheme has been reported in the news media [Strauss (2004), Galley (2004), Mercury News (San Jose) (2004)]; and has prompted letters of protest to the CCC and/or the California State Board of Education (CSBE) from (among others):

_____________________________________________________________

*The reference is: Hake, R.R. 2004. "Direct Instruction Suffers a Setback in California - Or Does It?"

contributed to the 129th National AAPT meeting in Sacramento, CA, 1-5 August 2004; online as reference 33 at

< https://www.wendangku.net/doc/a64998111.html,/~hake >, or download directly as a 420kB pdf by clicking on

< https://www.wendangku.net/doc/a64998111.html,/~hake/DirInstSetback-041104f.pdf>. I welcome comments and suggestions directed to .

? Partially supported by NSF Grant DUE/MDR-9253965.

? Richard R. Hake, 11 April 2004. Permission to copy or disseminate all or part of this material is granted provided that the copies are not made or distributed for commercial advantage, and the copyright and its date appear. To disseminate otherwise, to republish, or to place at another website [instead of linking to

< https://www.wendangku.net/doc/a64998111.html,/~hake >] requires written permission.

(a) California state legislators [Goldberg (2003)];

(b) the California Science Teachers Association [Janulaw (2004a,b)];

(c) the San Diego Science Alliance [Winter (2004)];

(d) the National Academy of Sciences acting in concert with the National Science

Teachers Association [Alberts & Wheeler (2004)];

(e) the National Science Teachers Association [Wheeler (2004)];

(f) leaders of Genentech, Intel, Bechtel, Pixar, Lucasfilm, Adobe Systems; the Presidents

of the University of California, Stanford, and the California Institute of Technology;

and all 10 Chancellors of the University of California [Levinson et al. (2004)].

A separate letter of protest was received from Richard Stephens (2004), president of the

Boeing Company.

In addition, just before and during the first two months of 2004, Larry Woolf and I [Woolf & Hake (2004), Woolf (2004a-e), Hake (2003a,b; 2004a-q)] mounted a campaign that urged teachers, scientists, and educators to protest the CCC's regressive Criteria.

On 16 January 2004, despite an avalanche of objections, true to its myopic allegiance to direct instruction (DI), and in keeping with its typical disregard for external opinion, the CCC

< https://www.wendangku.net/doc/a64998111.html,/cc/ > passed its Criteria.

On 5 March 2004, a meeting was called by Rae Belisle, executive director of the CSBE to address the outpouring of protests to the CCC's Criteria, a few of which are indicated above. According to a report by the California Science Teachers Association [CSTA (2004)], Belisle's workshop was attended by state board staff and CSTA executive director Christine Bertrand, K-12 teachers, CSU faculty, CSU deans, California School Boards Association, California Teachers Association, and representatives of Governor Schwarzenegger’s office.

Certain amendments to the Criteria were crafted at Belisle's workshop for consideration of the California State Board of Education (CSBE) < https://www.wendangku.net/doc/a64998111.html,/board/ > at its meeting on 10 March. The most startling amendment reversed the Criteria's demand that "instructional materials must include NO MORE than 20 to 25 percent of hands-on materials" to read "instructional materials must include AT LEAST 20 to 25 percent of hands-on materials."

On 10 March, the CSBE unanimously accepted the March 5th amendments of Belisle's working group, thereby seeming to repudiate the anti-hands-on strictures of the Criteria that were written by the CCC, most of whose members had been appointed by the direct-instruction-oriented CSBE itself. According to a report by the California Science Education Advisory Committee [CSEAC: < https://www.wendangku.net/doc/a64998111.html,/werc/cseac.html > (2004)], some of whom attended the meeting:

In a rare show of unanimity, everyone involved in the issue testified in support of the revised criteria based on the March 5th negotiation. This testimony included those who had argued for this and other changes as well as people who had written the original language

restricting hands-on instruction. . . . .[My italics.]

The Criteria, as amended, are online at < https://www.wendangku.net/doc/a64998111.html,/cfir/science/ >. The more important changes are shown below in bold:

*******************************************

A. NEW LINES: 18-20:

Students should have the opportunity to learn science by direct instruction, by reading textbooks and supplemental materials, by solving Standards-based problems, and by doing lab investigations and experiments.

*******************************************

B. NEW LINES: 25-29:

Some teachers may not have specialized in science and may not have an extensive background in science, while others may hold supplemental authorizations in life or physical science or have had extensive training in science content and pedagogy. The publishers shall develop and submit programs that offer the flexibility to meet the diverse needs of students and teachers with varying science backgrounds.

*******************************************

C. PREVIOUS LINES 102-109:

[To be considered suitable for adoption, an instructional materials submission must provide]

a table of evidence in the teacher edition, demonstrating that the California

Science Standards can be comprehensively taught from the submitted materials with hands-on activities composing no more than 20 to 25 percent of science instructional time (as

specified in the California Science Framework). Additional hands-on activities may be

included, but must not be essential for complete coverage of the California Science

Standards for the intended grade level(s), must be clearly marked as optional, and must meet all other evaluation criteria.

ARE REPLACED BY (changes are in bold):

NEW LINES 94-99:

[To be considered suitable for adoption, an instructional materials submission must provide]

a table of evidence in the teacher edition, demonstrating that the California Science

Standards . . . ["Science Content Standards for California Public Schools K-12,October, 1998, online as a 61page 0.5 MB pdf at < https://www.wendangku.net/doc/a64998111.html,/standards/ >]. . . . can be comprehensively taught from the submitted materials with hands-on activities composing at least 20 to 25 percent of the science instructional program (as specified in the California Science Framework). Hands-on activities must be cohesive, connected and build on each other to lead students to a comprehensive understanding of the California Science Content Standards.

[Note that the italicized words indicate a need to revise the wording in the heretofore

sacrosanct California Science Framework < https://www.wendangku.net/doc/a64998111.html,/cfir/science >!]

******************************************

D. PREVIOUS LINES 156-157:

[To be considered suitable for adoption, an instructional materials submission must provide]

a program organization that provides the option of pre-teaching of the science content

embedded in any hands-on activities.

ARE REPLACED BY (changes are in bold):

NEW LINES 141-142:

[To be considered suitable for adoption, an instructional materials submission must provide]

a program organization that provides the option of preparing or pre-teaching of the science

content embedded in any hands-on activities.

******************************************

E. PREVIOUS LINES 299-300:

[To be considered suitable for adoption, an instructional materials submission must provide] suggestions for how to adapt each hands-on activity provided to direct instruction methods

of teaching.

ARE REPLACED BY (changes are in bold):

NEW LINES 264–267:

[To be considered suitable for adoption, an instructional materials submission must provide] suggestions for how to adapt each hands-on activity provided to other methods of teaching, including teacher modeling, teacher demonstration, direct instruction, or reading, as specified in the California Science Framework.

The National Science Teachers Association [NSTA (2004)], The California Science Teachers Association [CSTA (2004)], the California Science Education Advisory Committee [CSEAC (2004)], Scott Hays (2004a,b), and Jerry Becker (2004) have all reported on the apparent 10 March setback for direct instruction. That seeming setback is primarily the Criteria's change from "instructional materials must include NO MORE than 20 to 25 percent of science instructional time" to "instructional materials must include AT LEAST 20 to 25 percent of science instructional time."

II. Will the 10 March Apparent Setback for Direct Instruction Have Any Substantive Effect on the California Adoptions Process for K-8 Science Materials?

I sincerely hope it will, but by playing the devil's advocate I hope to show that such optimism may be illusory. I list below two reasons to be doubtful that the amendments to the Criteria will affect the adoptions process.

A. Textbooks Containing More Than 20% Hands-On Material Will Probably NOT be

adopted.

As indicated above, according to the CSEAC (2004):

In a rare show of unanimity, everyone involved in the issue testified in support of

the revised criteria based on the March 5th negotiation. This testimony included

those . . . people. . . .[evidently members of the CCC]. . . who had written the

original language restricting hands-on instruction. . . . . [My italics.]

Does this mean that the CCC has suddenly seen the light and will henceforth support

hands-on instruction? The probability of such a radical conversion seems vanishingly

small, considering past statements of its leaders [Metzenberg (1998, undated, 1999);

Adams (2004)], and its demonstrated prior disregard for the opinions of California

legislators, citizens, teachers, scientists, and educators (as witness the CCC's passage of

its much-protested anti-hands-on Criteria on 16 January 2004).

To foresee the 2006 instructional materials adoption process, one can examine the last

such process in the year 2000 as indicated at CSBE (2000). [My thanks to Larry Woolf

for calling my attention to this reference]. There it is stated that:

The materials that publishers submitted were thoroughly reviewed by the 52

members of the Instructional Materials Advisory Panel (IMAP) and 14 members of

the Content Review Panel (CRP) appointed by the State Board of Education. . . .

The Curriculum Commission held two well-publicized formal public hearings and

included a change process for improving the accuracy of materials. The State Board

of Education conducted a formal public hearing in February 2000. The State Board

and the Commission appreciated the public interest in the resources submitted for

adoption and carefully reviewed all the testimony. It should be noted that for

purposes of this process, the Curriculum Commission recommends and the State

Board of Education adopts only “basic instructional materials.” Basic instructional

materials are those resources that are designed for use by pupils as a principal

learning resource and that meet in organization and content the basic requirement

of the intended course. Supplemental resources, or resources covering less than an

entire course content, are not adopted as part of this process. [My italics.]

I judge from the above that the adoption process in 2006 will be heavily influenced by the recommendations of the CCC. Regardless of the judgements of the CSBE-appointed IMAP and CRP, it seems likely that the CCC (just as it passed the anti-hands-on Criteria on 16 January 2004 in defiance of protests from teachers, scientists, and educators) will disregard all external input and reject hands-on-rich materials in favor of those that contain the maximum amount of direct instruction – 80% under the amended Criteria of 10 March 2004. This will satisfy the CCC's mantra to "teach 'em the 'facts' " [Metzenberg (1998)], "let 'em read a textbook" [Metzenberg (undated)], or "know the CONTENT " [Metzenberg (1999)]. From the CCC's standpoint, only direct instruction will facilitate the pouring of the full portion of the all important "facts" and "content" contained in the California Science Standards into the vacant vessels that comprise students' minds, without time-wasting hands-on activities.

Publishers, judging from their deplorable records [see, e.g., Roseman et al. (1999), Hubisz et al. (2001), Raloff (2001a,b)] will then tend to maximize their bottom lines by printing materials for CA (and the rest of the U.S) which satisfy the CCC's favored 20%. Most instructors will tend to teach from those hands-on-deficient textbooks. Judging from past history [ Roseman et al. (1999), Hubisz et al. (2001), Raloff (2001a,b)], such commercial textbooks will, in addition to being light on hands-on activities, also be both scientifically and pedagogically inferior.

Although wealthier schools and school districts may be able to purchase with their own funds textbooks containing more than 20% of hands-on material, and therefore not approved by the CCC for state adoption, the average K-8 classroom will still be condemned to use hands-on deficient text books, resulting in lower quality science instruction for the average California student. We trust that the CSBE is aware that lower quality education for lower income students poses the threat of discrimination law-suits against the State [see e.g. Asimov (2001)], as has been pointed out by Woolf (2004c).

B. Exemplary Nationally-Developed, Research-Based, Hands-On Science Instructional Materials Will Probably NOT Be Adopted.

There are at least two reasons for this suspicion:

1. The first reason revolves around new lines 141-142 of the Criteria that read (changes

are in bold):

[To be considered suitable for adoption, an instructional materials submission

must provide] a program organization that provides the option of preparing or pre-teaching of the science content embedded in any hands-on activities.

Leaving aside the ambiguous newly-added term "preparing," the fact that the

"pre-teaching of hands-on materials" has evidently not been recognized as an oxymoron suggests that DI-blinders on both the CCC nor the CSBE prevent them from

understanding the nature of the nationally-developed, research-based, hands-on science instructional materials. As an example, suppose the hands-on activity involves students simultaneously dropping a flat sheet of paper, a sheet of paper crumpled into a ball, and

a lead ball. After lively discussion with their peers, the students write down their

predictions of the sequence in which the three dropped objects will hit the floor. They then do the experiment. The nearly simultaneous arrival on the floor of the light crumpled sheet and the heavy lead ball will astonish most students. When challenged for an

explanation by a teacher who knows enough to shut up and listen to what students say, students can be guided to exert the mental effort required to reach an interpretation

approximating that of a professional physicist. When they do, lights will go on in their eyes – they will have gained some deep insight into the "Newtonian revolution."

Of course, if any pre-teaching (read DI instruction) occurs, students' eyes will remain glazed over both during the "pre-teaching" and during the now pointless hands-on

exercise. Research [Sec. III (2)] , to which the CCC is apparently oblivious, has indicted time and again that the students will have learned essentially nothing.

Since the "pre-teaching" converts the hands-on activities to the CCC's gold standard

(but-ineffective) DI, the CCC may well wonder why students should waste time going though preempted hands-on motions when they could be "learning the facts"

[Metzenberg (1998)]. The CCC will, I suspect, not adopt nationally-developed,

research-based, hands-on science instructional materials.

2. The second reason that exemplary nationally-developed, hands-on materials will probably not be adopted revolves around the unchanged lines 79-95 of the Criteria:

[To be considered suitable for adoption, an instructional materials submission must

provide] comprehensive teaching of all California Science Standards [CSS] at the

intended grade level(s), as discussed and prioritized in the California Science

Framework, Chapters 3 and 4. The only standards that may be referenced are the

[CSS]. There should be no reference to national standards or benchmarks or to any

standards other than the [CSS]. . . . Extraneous lessons or topics that are not

directly focused on the standards are minimal, certainly composing no more than

10 percent of the science instructional time. . . . . A table of evidence in the teacher

edition, demonstrating that the [CSS] can be comprehensively taught from the

submitted materials . . . .

As Larry Woolf (2004e) has written in his unpublished San Jose Mercury News OpEd piece:

Many research-based science instructional materials, often developed using National

Science Foundation funding, are guided by the National Science Education Standards

(NSES). . . . [NRC 1996] . . . . . and Benchmarks . . . .[AAAS (1993]. . . . . Yet, the mere presence of the forbidden words “national standards” or “benchmarks” in these science

instructional materials will prevent them from being adopted. . . . .

Nationally developed science instructional materials often contain more than 10% of topics considered "extraneous" at a given grade level by the Criteria because such topics are in the NSES, but are missing from the CSS. On the other hand, some topics required by the CSS for certain grade levels, e.g. “there are more than 100 different types of atoms, which are included in the periodic table of the elements” for third grade, would not be contained in materials written to satisfy the NSES because the NSES considers the periodic table to be a high school level topic. Thus, science instructional materials written to satisfy the

NSES may not cover every California state standard at every grade level. This means that the Criteria will prevent the adoption of most nationally developed science materials based on the NSES.

The restrictive criteria of the previous adoption resulted in only science textbooks being

adopted for 2000 - 2006. Studies by the AAAS. . . .[Roseman et al. (1999)]. . . and the David and Lucile Packard Foundation. . . [Hubisz, J.L. et al. (2001)] . . . . of middle school science textbooks found them to be riddled with errors and ineffective – not one was rated

satisfactory by the AAAS. Yet, our teachers are restricted to using these flawed materials.

Districts should be permitted to purchase materials from different sources that best allow them to meet the state science standards. This approach follows the Business Roundtable’s Principles for K-12 Education < https://www.wendangku.net/doc/a64998111.html,/document.cfm/467 > that “districts should have flexibility for their educational … innovation and instruction” and schools should use “world class educational materials.” California science policy should not restrict teachers from obtaining the educational materials that will allow their students to excel.

The Criteria should be rejected.

In regard to the Criteria's insular insistence that:

The only standards that may be referenced are the California Science Standards

[CSS]. There should be no reference to national standards or benchmarks or to any standards other than the [CSS]. . . . . . Extraneous lessons or topics that are not

directly focused on the standards are minimal, certainly composing no more than

10 percent of the science instructional time,

it should be mentioned that Johnny Lott (2004), President of the National Council of Teachers of Mathematics (NCTM), has written Governor Schwarznegger to express dismay over the Criteria's mathematics counterpart of the above stricture. Lott writes:

Reading the guidelines in conjunction with a statement from a recent speech of

State Superintendent Jack O'Connell gives many nationwide cause for alarm. His quote follows:

...the majority of California's 1.7 million high school students simply are not

reaching the academic levels needed to succeed, in the workplace, in college,

or as effective citizens.

While recognizing that it is within the state purview of education to set any

standards or guidelines that the state chooses, the proposed California criteria have national implications. These criteria state that subject matter in mathematics and

science must reference only California standards at a time when your state

superintendent acknowledges that California, with its standards adopted in 1997, has a massive number of students who are not succeeding.

A major reason for national concern is that textbook publishers often cater to the

California text market. If you choose to set criteria for textbook selection that limit reference of standards only to your state standards and limit principles of

instruction only to those that reflect the current thinking in California, a bar is

being set that severely limits not only your teachers and students but teachers and students nationwide. And this is being done at a time when Mr. O'Connell has

noted that the majority of California's 1.7 million high school students are not

succeeding. Instead of restricting the view espoused in the California Criteria that de-emphasizes problem solving, concept understanding, and "creative thinking,"

now should be the time for California's leadership to compare its standards to those of "high-performing states" and to other national standards. This is a time to

recognize that "narrow minds produce narrow views." [My italics.]

III. With the Reasonable Assumption (Sec. II) that the Amended Criteria Will Have No Substantive Effect on California Adoptions for K-8 Science Materials, All Previous Objections [see, e.g. Sec. I] to the Criteria Remain in Force.

I shall enumerate my own objections [an elaboration of my 1 March 2004 letter to the CSBE (Hake (2004q)] as numbers 1-11 below:

1. The Criteria, even as amended on 3/10/04, will seriously limit hands-on pedagogical methods in the average K-8 science classroom.

The reasons have been given above in Section II .

2. The Criteria, since they will allow adoption of science materials in K-8 that contain only 20% hands-on material, as indicated in Sec. II above, ignore scientific evidence demonstrating that hands-on guided inquiry methods are far more effective than direct instruction in K-8 science education.

There is a substantial amount of scientific research evidence [for discussions of what constitutes "scientific research evidence" in education see Shavelson & Towne (2000) & Burkhardt & Schoenfeld (2003)] that "hands-on guided-inquiry methods" [commonly called "inquiry" or "interactive engagement" methods] are far more effective than "direct instruction" for promoting student learning in conceptually difficult areas [for reviews see e.g., Hake (2004j); Doss-Hammel (2004); Lowery (2003); and the literature references in AAAS (1993, 2004), NRC (1996; 1997a,b; 1999, 2000, 2001, 2003), Bransford et al. (1999), and Donovan et al. (1999).

In Hake (2004j) I wrote:

[The CCC] appears to inhabit a "private universe" [Schneps & Sadler (1985)], seemingly

oblivious of the literature of cognitive science [see, e.g. Bransford et al. (1999)] and three decades of science-education research showing the superiority of hands- and minds-on

pedagogy to direct instruction in conceptually difficult areas [see e.g., Karplus (1974, 1977, 1981); Arons (1960, 1972, 1974, 1983, 1985, 1997, 1998); Shymansky et. al. (1983, 1989, 1990); Halloun & Hestenes (1985a,b); McDermott & Redish (1999); Hake (1998a,b;

2002a,b); Lopez & Schultz (2001); FOSS (2001); Pelligrino et al. (2001); Crouch & Mazur (2001); Fagen et al. (2002); Fuller (2002)]; Redish (2003); and Belcher (2003).

Note that none of the above research concerns unguided "discovery learning," an evident bugaboo of CCC's Stan Metzenberg and executive director Thomas Adams (2004).

Still other references showing the superior effectiveness of hands-on guided inquiry methods

over direct instruction are Bredderman (1982, 1983, 1985), Kyle et al. (1988), Jorgenson & Vanosdall (2002), GLEF (2001), and Anderson (2002). In addition, the eleven K-12 science-education studies listed in Table 1 of Lipsey & Wilson (1993) (where the test group is characterized by reform methods) yield a total N = 888 students and average effect size = 0.36 [Cohen (1988)].

Most of these studies include grades 4 or 6 to 12 with the effect size control group being

traditional direct instruction and the measurement unit being "achievement" or "learning" (presumably as measured by tests). Cohen’s rule of thumb – based on typical results in social

science research – that d = 0.2, 0.5, 0.8 imply respectively “small,” “medium,” and “large”

effects, but Cohen cautions that the adjectives “are relative, not only to each other, but to the area

of behavioral science or even more particularly to the specific content and research method being employed in any given investigation.” My own survey [Hake (1998a,b)] yielded a much larger

effect size of d = 2.43 [Hake (2002a)] and such large differences in the effectiveness of

interactive engagement vs direct instruction have been corroborated by many other physics-education researchers as discussed in Hake (2002a,b).

In sharp contrast there is, as far as I am aware, ZERO scientific evidence for the superiority (in conceptually difficult areas of science education) of "direct instruction" [in any of its many

guises [see Sec. III (8) below and Hake (2004p)] to "inquiry" [operationally defined by Alberts (2000)] or "interactive engagement" [operationally defined by Hake (1998a,b)]. Of course,

neither "inquiry" nor "interactive engagement" methods should be confused with the extreme "discovery learning" mode, researched by Klahr & Nigam (2004). Their research suggests that,

not surprisingly, an extreme mode of "discovery learning," in which there is almost no teacher guidance, is inferior to "direct instruction" for increasing third and fourth grade children's

effective use of the control of variables strategy, a so-called "process skill." It might be

interesting for Klahr & Nigam to extend their study to more guided forms of "discovery learning" and to children's acquisition of "operative knowledge" [Arons (1983)]. In regard to the latter, Arons was fond of quoting:

Above all things we must be aware of what I will call 'inert ideas' – that is to say, ideas that

are merely received into the mind without being utilized, or tested, or thrown into fresh

combinations.

Alfred North Whitehead, The Aims of Education (1929).

3. The Criteria, since they will allow adoption of science materials in K-8 that contain only 20% hands-on material, as indicated in Sec. II above, are very strongly biased in favor of the relatively ineffective [see Sec. III (2) above] "direct instruction."

It seems ironic that the entire national K-8 (and hence K-16) science-education endeavor promises to be undermined by a few diehard extremists on the CCC and the CSBE who unscientifically refuse to consider:

(1) the overwhelming scientific evidence that direct instruction is ineffective for enhancing

conceptual understanding of science [Sec. III (2)], and

(2) the vehement protests from (as indicated in Sec. I above):

(a) California state legislators [Goldberg (2003)];

(b) the California Science Teachers Association [Janulaw (2004a,b)];

(c) the San Diego Science Alliance [Winter (2004)];

(d) the National Academy of Sciences and the National Science Teachers Association

[Alberts & Wheeler (2004)];

(e) the National Science Teachers Association [Wheeler (2004)];

(f) leaders of Genentech, Intel, Bechtel, Pixar, Lucasfilm, Adobe Systems; the

Presidents of the University of California, Stanford, and the California Institute of Technology; and all 10 Chancellors of the University of California [Levinson et al.

(2004)]; and the president of the Boeing Company. [Stephens (2004)].

4. The common argument that direct instruction methods must dominate science materials because some teachers do not have the requisite understanding of science or the facilities to utilize hands-on guided inquiry methods is, in my opinion, spurious.

As indicated in Sec. I, the Criteria, as amended on 3/10/04, contain the new lines 25 – 29:

Some teachers may not have specialized in science and may not have an extensive

background in science, while others may hold supplemental authorizations in life or

physical science or have had extensive training in science content and pedagogy. The

publishers shall develop and submit programs that offer the flexibility to meet the diverse needs of students and teachers with varying science backgrounds. [My italics.]

This wording is in consonance with the sentiments of Thomas Adams (2004) who is quoted by Strauss (2004) as follows:

. . . . commission members are trying to balance the need for a comprehensive science

curriculum with the limited science background of many K-8 teachers. Twenty to 25 percent of hands-on instruction seemed like the like 'the most reasonable amount of time for

someone faced with the challenges of limited facilities and limited time,' he said. 'What we want are materials that all teachers can use,' Adams said. ' . . . There are some people who are convinced that the only way that students learn is in a discovery method.' " [My italics.]

The same concerns were raised by critics of the excellent 1960's hands-on Physics Science Study Committee (PSSC) program for high-school physics, who complained that some teachers did not have the requisite understanding of science or the facilities to use PSSC. The late Arnold Arons (1960) responded with a characteristic insightful zinger:

I cannot escape the conviction that [such arguments are] entirely specious. The conventional

course material. . . .[conventional high-school direct-instruction texts and recipe labs]. . . . is incompetent. It seems to me vastly preferable to put into the hands of our students

competent material which might at first be incompetently handled by some teachers tha n to hold tightly to incompetent material, incompetently handled.

But because some members of the CCC and the CSBE believe that hands-on instruction may not be competently handled by some instructors, the present Criteria allow the adoption of K-8 science materials with 80% direct instruction, shown over and over again to be "incompetent material" (see Sec. III (2) above) that will, in some cases, be "incompetently handled."

In my opinion, instead of lowering the quality of science instruction to accommodate the least prepared and least effective teachers, the CSBE would better serve the state by working to attract outstanding teachers into California's classrooms. In Hake (2002d) I suggest that school boards treat K-12 teachers like the valued professionals they are by drastically upgrading their salaries (Heller 2001) and working conditions(Jones 2001) [especially in the inner cities(Kozol 1992)]. Ken Heller (2001) suggests that teachers be paid at least as much as mechanical engineers. Other concrete proposals to substantially increase salaries of K-12 teachers have been given by Don Langenberg (2000) and the Hart-Rudman Commission (2001b). For a review of the Heller, Langenberg, and Hart-Rudman proposals see Lesson #12i of Hake (2002a). For an analysis of incentives for attracting and retaining K-12 teachers by PACE (Policy Analysis for California Education) < https://www.wendangku.net/doc/a64998111.html,/ >see La u rence et al. (2002).

But where would cash-strapped California find money for upgrading teachers' salaries and working conditions? From the transcript of First to Worst (Merrow (2004):

Foremost among [tough questions for California are] what to do about proposition 13. Gov.

Schwarzenegger has made his position clear: "Additional taxes are the last burden that we need to put on the backs of the citizens and the businesses of California.". . . .[but see

Salladay & Nicholas (2004)]. . . .

Regarding the governor's "No New Taxes" pledge, perhaps he might consider the implications for California of Business Week's (2004) claim that:

Because the quality of a nation's workforce has such a huge influence on productivity,

effective school reform could easily stimulate the economy more than conventional

strategies, such as the Bush tax cuts. Consider what would happen if the U.S. could raise the performance of its high school students on math and science to the levels of western Europe within a decade. According to Eric A. Hunushek . . . . .

[ < https://www.wendangku.net/doc/a64998111.html,/eah/eah.htm >]. . . . , a senior fellow at the Hoover

Institution < https://www.wendangku.net/doc/a64998111.html,/ > at Stanford University, U.S. gross

domestic product growth would then be 4% higher than otherwise by 2025 and 10% higher in 30 years." [My italics.]

Alternatively, Michael Kirst, professor of education, business administration, and political science at Stanford University, in the extended transcript of Merrow's interview at

< https://www.wendangku.net/doc/a64998111.html,/merrow/tv/ftw/transcripts/kirst.pdf > (44kB) said:

What we do need to do is to bring back a local source of revenue. Now, that could be the property tax or another tax. One proposal I've been thinking about is a local income tax surcharge. Ohio uses this, Pennsylvania uses this for example. You would just add on 10 percent, by a local vote of the people in that school district, to their state income tax. So we need some sort of local revenue base.

And John Mockler, former executive secretary of the CSBE, stated in his extended interview with Merrow < https://www.wendangku.net/doc/a64998111.html,/merrow/tv/ftw/interviews.html >:

I think what you need to do [rather than try to repeal Prop. 13], and I think people are starting to talk

about it, is this realignment of tax structures, state and local. Property tax is a stable tax. Even in this economic downturn, property taxes in the state are up seven, eight percent, even though state general fund revenues are down 10 billion, 12 billion. So asset taxes, city taxes, property taxes, need to be a better share of revenue. California spends almost more than any other state on state aid to schools.

But we have such low property tax that our expenditures are less than other states. So by not having

a local tax base, any volatility in the state system makes the local system volatile. So I think what

you need to do is look at the whole tax structure. We used to spend, let's say, five-and-a-half, five . . .

cents (sic). . . . [Mockler evidently meant "percent"]. . . . of our income on kids. Now they're now giving us 3.3 cents. So two percentage points less of their income go to schools. Well, one percent of personal income in this state is $11.5 billion. So if the citizens of the state committed to their schools the same percent of their income as they did when Ronald Reagan was governor, we'd spend $23

billion more a year on the schools. That being said, the last four or five years before this last

recession, we made some progress. We moved from almost last in expenditures per kid up to around 35th. [My italics.]

5. The Criteria are focussed only on the California Science Standards and thus isolate California public education from the recommendations of most U.S. scientists and science educators.

The Criteria effectively isolate California's K-8 teachers and students from the thinking and recommendations of the Nation's most outstanding scientists and science educators [see, e.g., AAAS (1993, 2004); NRC (1996, 1997a, 1997b, 1999, 2000, 2001, 2003)], insisting that their attention be focussed solely on the California Science Standards ["Science Content Standards for California Public Schools K-12, October, 1998, online as a 61 page 0.5 MB pdf at

< https://www.wendangku.net/doc/a64998111.html,/standards/ >]. The latter document is the product of a highly politicized and undemocratic process spearheaded by a few direct-instruction extremists as described by Schultz (1998), Woolf (1999), and Feder (1998a,b)]. As indicated above in Sec.

IIB2, the exclusionary lines 79-95 read:

[To be considered suitable for adoption, an instructional materials submission must provide]

comprehensive teaching of all California Science Standards [CSS] at the intended grade level(s), as discussed and prioritized in the California Science Framework, Chapters 3 and 4. The only standards

that may be referenced are the [CSS]. There should be no reference to national standards or

benchmarks or to any standards other than the [CSS]. . . . .Extraneous lessons or topics that are not directly focused on the standards are minimal, certainly composing no more than 10 percent of the science instructional time. . . . . A table of evidence in the teacher edition, demonstrating that the [CSS] can be comprehensively taught from the submitted materials . . . .

Woolf’s (1999) petition (as true today as it was in 1999) states that the California Science Standards:

. . . are based on neither the spirit nor the letter of the National Science Education Standards

developed by the National Academy of Sciences . . .[National Research Council NRC

(1996)]. . . or the Benchmarks for Science Literacy. . .[ AAAS (1993, 2004)]. . . .developed

by the American Association for the Advancement of Science; many of the California

Science Standards are incorrect, misleading, ambiguous, and age-inappropriate.” The

petition further states that “California Academic Standards Commission" has approved a

policy that effectively prohibits the adoption of scientifically accurate, thoroughly tested,

and highly regarded kit-based science curricula,. . . .(and) . . . has approved a policy that

allows the adoption of materials that have never been thoroughly tested in classrooms.

Woolf’s petition was signed by 330 Californians, among them: Andrew Sessler & James Langer, past presidents of the American Physical Society; Jerry Pine, co-director of the Cal Tech

Precollege Science Institute; Wendell Potter, vice chair of the Physics Dept., Univ. of California at Davis; Helen Quinn of the Stanford Linear Accelerator; Richard Shavelsohn, Professor of

Education and Psychology at Stanford; J.M. Atkin, Chair of the Committee on Science

Education K-12 at the National Research Council; Fred Goldberg, Professor of Physics, San

Diego State University; Angela Stacy, Professor of Chemistry, Univ. of California-Berkeley; and many California science teachers and educators from elementary, middle, and high schools;

colleges; and universities.

For some commentary on the "California Science Wars” see Feder (1998 a, b). For commentary on the parallel and similar "California Math Wars” see Jackson (1997), Sowder (1998), Becker & Jacob (2000), Wilson (2003), and reviews of the latter book from "traditionalist" Ralph Raimi (2004) and "reformer" Anthony Ralston (2003). Sowder (1998) wrote:

I will discuss today the ways that I see these two sides differing: They hold different beliefs about

what mathematics is, different beliefs about how mathematics is learned, different understandings of what it means to know mathematics, and different ways of interpreting what research has to tell us on these issues. In a nutshell, they represent different value systems. I believe that rational, reflective discussion and exploration of these issues can bring the two sides closer together. Thus, although the two sides may not reach total agreement, they can come to understand the issues better and find ways to compromise. I am told that California schools educate one-seventh of the students in this country.

There is too much at stake to continue the fighting, to take a chance on sacrificing the mathematical education of our children by not reaching some agreement on what that education should be. [My italics.]

In my opinion, if "science" is substituted for "mathematics," then Sowder's comments apply equally well to the California "Science Wars." Some direct instructionists think K-8 science education should be about teaching the "facts," while some proponents of "inquiry" think K-8 science education should be about leading children to exercise careful observation and critical thinking. Surely both sides can, as Sowder writes, "come to understand the issues better and find ways to compromise."

6. The Criteria, since they will allow adoption of science materials in K-8 that contain only 20% hands-on material, as indicated in Sec. II above, dictate a one-size fits all pedagogy, thus foreclosing teachers' options in favor of edicts from the Sacramento bureaucracy.

To facilitate effective teaching and learning it is imperative to leave teaching options open to the teachers in the trenches and not allow the state bureaucracy to dictate one-size-fits-all methods that must be employed. Teachers, to be effective, need to use different approaches (e.g., didactic lectures, coaching, collaborative discussions, and Socratic dialogue) to fit the classroom occasions and diverse natures of their students. Each method has its strengths and weaknesses for each type of student, but in the hands of a skilled teacher each can be made to compliment the other methods so as to advance every student's learning. A skilled teacher might lecture on material that can be rote memorized [but s(he) might be better off using the Gutenberg Method (Morrison 1986, Hake 2002c) that recognizes the invention of the printing press], coach skills such as typing or playing a musical instrument, and use Socratic dialogue or collaborative discussions (or some other "interactive engagement" method) to induce students to construct their conceptual understanding of difficult counter-intuitive material such as Newton's Laws.

It should be noted that the new lines 18-20 in the Criteria, as amended on 3/10/04: Students should have the opportunity to learn science by direct instruction, by reading textbooks and supplemental materials, by solving Standards-based problems, and by doing lab investigations and experiments,

do not necessarily mean any diversion from "teach em the facts" direct instruction since:

(a) "reading textbooks and supplemental materials," if such only calls for rote memorization;

(b) "solving Standards-based problems," if such only require plug-and-chug algorithmic manipulation;

(c) "doing lab investigations and experiments," if such only require following a recipe;

are all forms of direct instruction.

Likewise the fact that in the Criteria, as amended on 3/10/04, the previous lines 299-300:

[To be considered suitable for adoption, an instructional materials submission must

provide] suggestions for how to adapt each hands-on activity provided to direct instruction methods of teaching,

are replaced by lines 264–267: (changes are in bold):

Suggestions for how to adapt each hands-on activity provided to other methods of

teaching, including teacher modeling, teacher demonstration, direct instruction, or reading, as specified in the California Science Framework,

do not necessarily mean any diversion from "teach 'em the facts" direct instruction since:

(a) The term "teacher modeling" is undefined and could mean simply a direct-instruction

lecture on the application of a model to a scientific area. Or does "teacher modeling" refer to the "modeling program" of Hestenes et al. [see e.g. Wells et al. (1995)] ? If so, it requires more than just action on the part of the teacher, and it might be questioned why this program was given special priority over other "interactive engagement" methods [see e.g. Hake

(1998b] .

(b) Teacher demonstrations can be a deadening and ineffective form of direct instruction

unless the students are interactively engaged.

(c) "Reading," if such only calls for rote memorization, can again be an ineffective form of

direct instruction.

7. Considering Sec. III (6) above, the Criteria run counter to the announced intentions of Governor Schwarznegger and Secretary of Education Riordan [see Helfand (2004)] to move control of teaching practices from Sacramento to local teachers, principals, and parents - in direct opposition to the apparent intentions of the CCC and the CSBE.

A strong proponent of local control is James Guthrie, a Professor of Public Policy and Education at Vanderbilt University and Director of the Peabody Center for Education Policy there. He was formerly a professor of education at the University of California, Berkeley, and is the co-founder of the Berkeley-based Policy Analysis for California Education (PACE).

< https://www.wendangku.net/doc/a64998111.html,/ >. In the extended transcript of Merrow's interview at

< https://www.wendangku.net/doc/a64998111.html,/merrow/tv/ftw/transcripts/guthrie.pdf> (56kB) Guthrie says: . . . [The] detrimental consequence of Proposition 13 isn't so much money, as it is how it changed the governance structure of California's education system. Proposition 13

centralized decision making. It made it a . . . inadvertently, unconsciously, mindlessly, [sic] its proponents didn't think of this. Or didn't think sufficiently about it. It changed California from a local school, a system of local schools, to a state system. And when that happened, the centralized decision making set it up to be the poster child for partisan politics, in the state. It set it up for state bureaucratic regulation. It set it up for a . . . vastly diminished local participation in decision making and engagement. . . . Proposition 13's governance system, has to be changed, in order to give local school districts an opportunity to gain

purchase on their children's education.

8. The Criteria fail to meaningfully define"direct instruction" and "hands-on" activities. Unfortunately, neither "direct instruction" nor "hands-on" activities have been meaningfully defined in the Criteria. Here "meaningfully defined" means "operationally defined" [see, e.g. Holton & Brush (2001), Phillips (2000)] so that, e.g., any term "T" denoting some pedagogical method, is specified in terms of rigorous operations for distinguishing "T" from other methods U, V, W, X. . . . The undefined nature of the terms "direct instruction" [Hake (2004p)] and "hands-on" activities [Hake (2004m)] means that:

A. The CCC, in making decisions as to what instructional materials do or do not satisfy the

Criteria, will be able to exercise their prejudices with no accountability to the CSBE,

science teachers, principals, or parents.

B. "Direct instruction" and "hands-on activity" can and do mean different things to

different people.

1. What does "hands-on activity" mean? In a discussion list post [Hake (2004m)] I

wrote:

I suspect that "hands-on activity" means:

(a) "non-direct-instruction," to the CCC's Stan Metzenberg (1998);

(b) "discovery learning," to Thomas Adams (2004), executive director of the

CCC;

(c) either "discovery learning," or "non-direct-instruction," to most members of the

CCC;

(d) "interactive engagement" or "inquiry" or "hands-on guided inquiry" to most

physics education researche r s [including Woolf & Hake (2004)];

(e) "placing hands on ANY object (e.g., pencil, paper, book, candy)" to literalists.

培优补差个案分析

培优补差个案分析 (许魏明) 个案基本情况:雷雅欣,女,和祖父母、父母住在一起。父亲工作比较忙,主要是由母亲负起教育的责任。母亲的性格比较急,教育孩子常动辄就批评。祖父母也参与到对孩子的教育中,但方法与母亲截然不同,采取比较爱护,包庇的措施。形成她对祖父母是比较依赖的。 日常行为表现学习方面:雷雅欣的学习积极性不高,在课堂上,从不举手发言,不会主动参与到课堂上的小组讨论中,还常常不自觉地在搞小动作。做作业的时候,精神不集中,常会呆呆地坐着胡思乱想或搞小动作,写字的速度慢,每天的作业很晚才能完成,常会欠交作业。人际交往方面:雷雅欣性格比较胆小、怕事,不会主动与人交往,只是和坐在一起的几位同学来往,交往的圈子窄。常常借一些文具给同学,但从来不要求别人还。同学拿了自己的东西也不会告诉老师自理方面:生活上的事情,基本能完成,但动作很慢,所耗时长,在收拾书包,排队等等,常常会落在全班的最后。由于每天完成作业已经很晚了,常常是由母亲帮忙收拾书包。跟母亲走在一起,也是常被落在后面,母亲走走停停地等。三、诊断分析:雷雅欣的家庭的文化素质比较低,但由于家庭的教育方式也简单,造成她一方面在妈妈的呵斥下没有建立起应有的自信心,觉得做什么事情自己都是错的,清楚知道提问的答案也不敢说出,有时甚至不去思考(反正都是错的)。雷雅欣在不断感受失败,正是在这一恶性循环的过程中, 她的学习困难随着教育时间的延续越积越多, 缺乏自信心,缺乏学习积极性也就成为必然的;另一方面,在爷爷奶奶的包庇下,依赖心理比较严重。 辅导过程:1、老师的帮助使她建立起自信的大厦。第一次接触雷雅欣,让我特别留意她,她与其他的同学很不一样,总是不说话,只是在旁边微微地笑,我主动找她聊天,她也是羞羞答答地捂着嘴巴,小声地说话,完全没有一个二年级女同学的那种调皮,开朗的感觉。我首先主动找她聊天,说说她感兴趣的话题。我还鼓励她在课堂上大胆发言。上课之前,我先告诉她,我有一个问题想问问她,要她做好准备,然后在小组讨论的时候,我对她进行个别辅导,再让她发言。我还创造一个让她得到在学习上成功的喜悦的机会。 2、加强与家长的联系,共同探讨教育孩子的措施。不同的孩子,就要采取不同的教育方法。要使孩子向预定的目标发展,老师与家长就要互相配合,创设一个统一、向上的环境给孩子。雷雅欣的家长都十分重视她的学习、成长,就是方法用得不恰当。孩子在母亲的严厉管教和祖父母的宠爱下无所适从。我建议母亲在教孩子时,要求要低一点,不要拿孩子与其他人比较,先让孩子超越自己,着重鼓励孩子,尤其对于她进步的火花,哪怕是星星之火,都要及时给予赞扬。给多一点时间,让孩子通过自己的努力一点一点的进步。还恳请祖父母不要再太溺爱孩子,注意不要买那些高级的文具给孩子,不要对孩子的要求太满足,做到奖罚分明。 3、通过友谊的力量,促进她走向新的台阶。我把她编排在一个比较活跃,上进的小组内,让小组成员带动雷雅欣的进步。引导小组同学主动与她交往,在课堂上要提醒她不要开小差,鼓励她参与到小组讨论中。 效果与体会孩子天生喜欢给别人赞扬,雷雅欣现在开始减少对老师的恐惧感,在师生的聊天中,能放松地、完整地表达自己的想法。在课堂上,刚开始,虽然在小组讨论中练习好了,可是一站起来发言,还是紧闭嘴巴,一字不哼。经过反复的训练,终于开“金口”,现在虽然仍不会主动举手发言,但是已经不抗拒老师的提问,基本上一些简单的问题能完整地自己解决。家长也反映孩子学习的主动性增强了。这次单元考试,虽然周婷婷考试有85分(以前的成绩多60、70分左右)。知道成绩后十分高兴,自信心也在成功之中逐渐建立起

浅谈小学数学教学与生活的联系

浅谈小学数学教学与生活的联系 教育对经济发展和社会发展具有积极的促进作用,而这种作用的发挥是通过受教育者的能动性来实现的。义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生。人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。小学教育工作者在教学工作中应注意建立学生生活与数学学习的关系。以下是笔者的一些看法。 标签:小学数学;教学;生活;联系 一、理念——面向学生的生活世界 学生是一个有血有肉、有思想、有个性的活生生的人,不是灌装知识的“容器”。1993年联合国教科文组织在北京召开的“面向21世纪的教育”的国际研讨会,就将“高境界的理想、信念与责任感,强烈的自主精神,坚强的意志和良好的环境适应能力、心理承受能力”列为21世纪人才规格的显著特征。 学生不是一张白纸,他们在日常生活中积累了一定的生活经验,这些经验往往与数学概念、法则、公式、数量关系等数学知识有着密切的内在联系。教师可以根据不同年级学生的身心发展特点和学习规律,提供基本内容的现实情景,让数学内容包含在学生熟悉的事物和具体情境之中,加深学生对学习的理解。 教师在教学过程中,要面向小学生的生活世界和社会实践,让数学课程走向生活;尊重学生已有的知识与经验,并在此基础上展开教学活动;教师要引导学生经历知识形成的过程,积极倡导自主、合作、掷究的学习方式,让他们做学习的主人,让课堂充满创新活力,激发学生的学习热情;实施综合性评价,体现人文关怀,以促进师生的共同发展。 二、意义——丰富学生的生活世界 传统的数学课程体系大多是严格按照学科体系展开的内容一般是一系列经过精心组织的、条理清晰的知识结构,这样的内容便于教师教给学生系统的数学知识和逻辑的思考方法。但这些内容是否真实而有意义,是否贴近学生的生活世界,是否有利于学生认识和理解数学,却往往考虑甚少。由于学生平时极少接触高深的数学知识,缺乏数学感悟,如果对这部分结构较为复杂的知识不事先进行铺垫就直接教学,很可能会导致部分学生因无法利用已有生活经验,而对他们感悟、理解并完善认知结构带来一定的障碍。 面向学生,面向生活,面向社会。学生的数学学习内容应当是现实的,有意义的,富有挑战性的。学生生活在现实社会中,并最终走向社会,如果数学内容的题材能贴近学生的生活实际,走入他们的生活世界,呈现的形式能丰富多样,生动活泼,就会让他们感到亲切,并产生乐学、好学的动力。当学生对学习内容产生了极大兴趣的时候,学习过程对他们来说就不是一种负担,而是一种心理满

浙江省一二三级重点中学名单

浙江省一二三级重点中学名单 一、省一级重点中学 杭州市: 杭州高级中学杭州第二中学浙江大学附属中学杭州学军中学 杭州第四中学杭州第十四中学杭师院附属三墩高级中学杭州长河高级中学 杭州外国语学校萧山中学萧山区第二高级中学萧山区第三高级中学 萧山区第五高级中学余杭高级中学余杭第二高级中学富阳中学 富阳市第二高级中学富阳市新登中学桐庐中学临安中学 临安昌化中学临安市於潜中学淳安中学严州中学 宁波市: 镇海中学宁波效实中学宁波中学鄞州中学 慈溪中学余姚中学宁海中学象山中学 奉化市第一中学北仑中学鄞州区姜山中学鄞州区鄞江中学 慈溪市浒山中学宁波第二中学宁波万里国际学校中学(民办) 宁波华茂外国语学校(民办) 鄞州区正始中学宁波市李惠利中学镇海区龙赛中学宁海县知恩中学 慈溪市杨贤江中学 温州市: 温州中学温州第二高级中学瓯海中学瑞安中学 乐清中学平阳县第一中学苍南县第一中学永嘉中学 嘉兴市: 嘉兴市第一中学嘉兴市高级中学平湖中学海宁市高级中学 桐乡市高级中学海盐元济高级中学嘉善高级中学嘉兴市秀州中学 桐乡市第一中学平湖市当湖高级中学桐乡市茅盾中学海盐高级中学 嘉善第二高级中学 湖州市: 湖州中学湖州市第二中学湖州市菱湖中学德清县第一中学 德清县高级中学安吉高级中学长兴中学德清县第三中学 长兴县华盛虹溪中学(民办) 绍兴市: 绍兴市第一中学上虞春晖中学诸暨中学绍兴县柯桥中学 嵊州市第一中学绍兴市稽山中学上虞中学新昌中学 绍兴县鲁迅中学诸暨市牌头中学绍兴县越崎中学 金华市: 金华市第一中学浙江师范大学附属中学(金华二中)金华市汤溪高级中学兰溪市第一中学 东阳中学义乌中学永康市第一中学武义第一中学 浦江中学磐安中学金华艾青中学义乌市第二中学 衢州市: 衢州第二中学衢州第一中学江山中学龙游中学 丽水市: 丽水中学缙云中学遂昌中学青田中学 云和中学龙泉市第一中学庆元中学松阳县第一中学 景宁中学 台州市:

新教科版三年级上册科学知识点全集

1、(看)、(听)、(摸)、(问)、(量)等方法都是科学观察的基本方法。 2、在经历观察活动的过程中,让学生(学会小组合作学习)、(交流)、(表达)、(讨论)、(记录)等学习方法。 3、大树的特征可以用树的(高矮)、树冠的(形状)、树干的(粗细)、树皮的(样子)和树叶的(样子)等来描述。 4、小草与大树一样,具有(生命体)的共同特征。 5、大树和小草的主要不同之处是:植株的(高矮)不同、茎的(粗细)不同、茎的(质地)不同。 6、大树和小草的共同点是:都生长在(土壤)中,都有(绿色)的叶,都会(开花结果),都需要(水分)、(阳光)和(空气)。 7、水葫芦叶柄部位膨大的海绵体充满(空气)是浮在水面上的原因。 8、水生植物都有(根)、(茎)、(叶)等器官。它们的生长需要(水分),(阳光)和(空气)。 9、水生植物有(水葫芦),(金鱼藻),(水花生),(浮萍)等。 10、水葫芦和狗尾草的相同点:生长需要(水分)、(阳光)和(空气);有(根)、(茎)、(叶);都会(繁殖后代);寿命(短);都是(草本植物)。 11、树叶是(多种多样)的,同一种树的叶具有(共同)的基本特性。 12、植物的叶一般由(叶片)和(叶柄)组成。叶片上有(叶脉)。 13、树叶是有(生命)的,叶从(叶芽)开始生长,到最后衰老(死亡),完成了一生。 14、植物的变化主要表现在(发芽)、(生长)、(开花)、(结果)等方面。 15、能用(测量)的方法比较树叶的大小,能用(数据)记录植物的变化。 16、植物按生存的环境不同,可以分为(陆生)植物和(水生)植物。 17、植物的生存需要(水分),(阳光),(空气)和(营养)。 18、植物的一生是有(生命周期)的,每种植物都有一定的(寿命)。 19、植物的共同特征是:生长在一定的(环境)里;需要(水分),(阳光),(空气)和(营养);都会(生长发育);都会(繁殖后代);都有从生到死的(生命)过程。 20、向日葵一生的典型生长阶段是:(发芽)、(生长)、(开花)、(结果)。

如何把小学数学教学与生活相联系

如何把小学数学教学与生活相联系 数学源于生活,数学植根于生活,生活中处处有数学,数学蕴藏在生活中的每个角落。以生活实践为依托,将生活经验数学化。数学也是哲学的一门衍生物。是解决生活问题的钥匙,数学是人们生活、劳动和学可必不可少的工具。因此,数学都能在生活中找到其产生的踪迹。面向21世纪的数学教学,我们的理念是“人人学有用的数学,有用的数学应当为人人所学,不同的人学不同的的数学”,“数学教育应努力激发学生的学习情感,将数学与学生的生活、学习联系起来,学习有活力的、活生生的数学”。如何根据教材的特点,把枯燥的数学变得有趣、生动、易于理解、让学生活学、活用、从而培养学生的创造精神与实践能力呢?通过反复思考,我就从课堂教学入手,联系生活实际讲数学,把生活经验数学化,把数学问题生活化。 一利用生活经验来解决问题 低年级学生尽管具备了一定的生活经验,但他们对周围的各种事物、现象有着很强的好奇心。我就紧紧抓住这份好奇心,结合教材的教学容,创设情境,设疑引思,用学生熟悉的生活经验作为实例,引导学生利用自身已有的经验探索新知识,掌握新本领。 1.借用学生熟悉的自然现象学习数学 在教学“可能性”一课时,先让学生观看一段动画,在

风和日丽的春天,鸟儿在飞来飞去,突然天阴了下来,鸟儿也飞走了,这一变化使学生产生强烈的好奇心,这时老师立刻抛出问题:“天阴了,接下来可能会发生什么事情呢?”学生就会很自觉地联系他们已有的经验,回答这个问题。学生说:“可能会下雨”,“可能会打雷、电闪”,“可能会刮风”,“可能会一直阴着天,不再有变化”,“可能一会儿天又晴了”,“还可能会下雪”……老师接着边说边演示:“同学刚才所说的事情都有可能发生,其中有些现象发生的可能性很大如下雨,有些事情发生的可能性会很小如下雪……在我们身边还有哪些事情可能会发生?哪些事情根 本不可能发生?哪些事情发生的可能性很大呢?”通过这一创设情境的导入,使学生对“可能性”这一含义有了初步的感觉。学习“可能性”,关键是要了解事物发生是不确定性,事物发生的可能性有大有小,让学生联系自然界中的天气变化现象,为“可能性”的概念教学奠定了基础。 2.结合生活经验,在创设活动中学数学 在教“元角分的认识”一课中,我首先创设了这样一个情境:母亲节快到了,小明想给妈妈买一件礼物,就把自己攒的1角硬币都拿出来,一数有30个,拿着这么多硬币不方便,于是小明就找隔壁的老爷爷来帮忙想办法,老爷爷说这好办,收了小明的30个1角硬币,又给了小明31元钱,小明有点不高兴,觉得有点吃亏。你们说小明拿30个1角

2017年苍南中学自主招生选拔考试语文(参考答案)

2017年苍南中学自主招生选拔考试 语文参考答案及评分标准 2017.2.8 全卷满分120分。考试时间90分钟。 一、语文知识积累与运用(30分) 1.(4分)【答案】聆辨籍弥 2.(8分)【答案】①思而不学则殆②枯藤老树昏鸦③望帝春心托杜鹃。④采菊东篱下⑤黑云压城城欲摧,甲光向日金鳞开。⑥海日生残夜,江春入旧年。 3. (4分)【答案】①寂静②少③像北斗星一样④穿戴 4.(3分)【答案】D 5.(3分)【答案】C 6. (3分)【答案】C 7.(5分)【答案】(1)D(2分)(2)C(3分) 二、现代文阅读(24分) (一)(6分)8.B(3分)9.B(3分) (二)(18分)【答案】10.(4 分)答 E.给 2 分,答 A 给 2 分,答 C 给 1 分;BD 不给分。(C“对孩子的纵容”分析有误,这里表现的是她的护犊情深。B“说明他是一个很奸诈的生意人”分析有误,从他的这些行为看,只能说他是一个很会做生意的人。D“我一瞪眼......说明他们两个都是没有主见的人,凡事都要看别人的眼色行事分析有误”,二弟和三弟不敢说话,说明他们比较胆小,不愿意惹“我”生气;“一人吃了一口”说明二弟和三弟懂事) 11.①爱吃但是不贪吃。小弟弟知道“我”有母亲给的钱,看见吃食摊子就想吃,但最后只吃了小小一点,其他都让给几个哥哥吃了。②会耍赖。当我不同意买后,他挣脱我的手,死犟着坐在凉粉摊子前不走。③说话算数,会体贴人。他践行“我只吃一口”的诺言,还把分给他的那一份留下来给“我”吃。(每点2 分,答对 2 点给 4 分,意思对即可) 12.“那年的欢喜”有两层意思,表面指的是四个兄弟在那年拿出买盐的五分钱吃了一盘炒凉粉的欢喜;实际上是借这场欢喜表现他们几个当年互推互让、互敬互爱的浓浓兄弟情。(4分) 13.①一声喝住小弟弟的“嚷嚷”,这是因为我能体谅家里的难处,深知两毛钱的作用,表现了我的懂事。②拉小弟弟买盐去,不像刚才那么严厉,表现了面对小弟弟的耍赖和自己馋得直流口水的现实,我的心开始动摇。③靠吼和威吓来制止小弟弟,表现了处在小弟弟的耍赖、凉粉的诱惑和少称二两半盐的矛盾中我的内心快顶不住了。④“吃吧”表现了在凉粉的诱惑和弟弟们的期盼下,我最终放弃坚守,同意买下凉粉。(每点 2 分,答对 3 点给 6 分,意思对即可)。 三、古诗文阅读(26分) 1

教科版三年级上册科学期末总复习知识点汇总

教科版三年级上册科学期末总复习知识点汇总 第一单元《水》知识点汇总 第一课、水到哪里去了 1.蒸发:液体在任何温度下都能发生的气化现象,只在液体表面发生。 2.水蒸气:是水的气体形式,自然界中的水无时无刻的缓慢地蒸发成水蒸气。 3.水和水蒸气的相同点:没有固定的形状、无色、无味、透明。 4.水和水蒸气的不同点:水看得见摸得着,水蒸气看不见摸不着。水是液体、 空气是气体。 第二课、水沸腾了 1.沸腾: 液体被加热到一定温度时,内部出现大量气泡。气泡迅速胀大,上升 到液面后放出大量蒸气,整个液体发生剧烈汽化。 2.水沸腾时会有大量气泡产生并伴有声音,这是水变成水蒸汽散发到空气中的 表现。 3.水沸腾后继续加热,液体温度不再上升,此时的温度称为液体的“沸点”。第三课、水结冰了 1.冰融化能使周围的温度降低,在冰里面加盐,可以加快冰融化的速度,制造 更低的温度。 2.当环境温度低于0℃,水的温度下降到0℃时,开始结冰,水在结冰过程中, 要向周围放出热量。 3.水结冰后,从液体状态变成了固体状态,体积变大。 4.水和冰的相同点:无色、无味、透明。 5.水和冰的不同点:水是液体,冰是固体。 第四课、冰融化了 1.当环境温度高于0℃,冰开始融化。 2.冰融化成水后,体积变小。 3.冰是固态的水,有一定的形状和体积。冬季下的雪也是固态的水。水是液态, 没有固定的形状,但有一定的体积。水蒸气是气态的水,没有固定的形状和体积,存在于空气中。 4.水的三态变化 第五课、水能溶解多少物质 1.溶解:指物质均匀、稳定地分放在溶剂中,不会自行沉降,不能用过滤的方法 分离出来。

2.水能够溶解的物质的数量是有限的。 3.不同物质的溶解能力是不同的。 第六课、加快溶解 1.食盐在热水中溶解的更快。 2.搅拌能加快食盐溶解的速度。 3.影响溶解快慢的因素:温度,搅拌,颗粒大小。 第七课、混合与分离 1.用“溶解—过滤—蒸发”的方式可以分离食盐和沙。 2.过滤:通过特殊装置将流体提纯净化的过程。 3.蒸发结晶:加热蒸发溶液,使溶液由不饱和变为饱和,继续蒸发,过剩的溶质 就会呈晶体析出,叫蒸发结晶。 4.用磁铁可以分离木屑和铁屑 5.了解物质的特性,可以帮助我们解决生活中遇到的很多问题。 第八课、它们发生了什么变化 1.我们可以改变橡皮泥和纸的形状或大小,但是构成它们的物质没有改变。 2.冰、水、水蒸气虽然状态不同,但都是同一种物质。 3.物理变化:指物质的状态虽然发生了变化,但物质本身的组成成分却没有改 变。 2019版教科版小学科学三年级上 第二单元《空气》知识点汇总 第一课《感受空气》 1.空气能占据空间,形状不固定,有质量,但是很轻。 2.空气具有无色、透明、无味、会流动等特征。 3.空气在地球上无处不在。 4.空气中包含氮气、氧气、二氧化碳等。 5.空气中的氧气能帮助火柴燃烧,动植物需要呼吸空气。 6.空气气泡图:特性,组成,作用。

小学数学与生活的密切联系

浅谈小学数学与生活实际的密切联系 东刘小学谢文萍 摘要: 数学来源于生活,寓于生活,用于生活。在数学教学中,从学生的生活实际出发,让生活经验当“脚手架”,在数学和生活之间架起桥梁,学生一定会亲近数学,运用数学的意识也会越来越强。在小学数学教学中,如果能够根据小学生的认知特点,将数学知识与学生的生活实际紧密结合,那么,在他们的眼里,数学将是一门看得见、摸得着、用得上的学科,不再是枯燥乏味的数字游戏。这样,学生学起来自然感到亲切、真实,这也有利于培养学生用数学眼光来观察周围事物的兴趣、态度和意识。 关键词: 《数学课程标准指出》:“义务教育阶段的数学课堂,其基本出发点是促进学生全面持续、和谐地发展”。为此数学教学既要考虑数学自身的特点,更应遵循学生学习数学的规律,注重从学生已有的知识和生活经验出发,让学生亲身经历数学建构的过程。从而使学生获得对数学理解的同时,在认知、情感、能力等多方面得到发展。学生都是有着丰富的人格、丰富个性的活生生的人。 数学源于生活,寓于生活,用于生活。在数学教学中,从学生的生活实际出发,让生活经验当“脚手架”,在数学和生活之间架起桥梁,学生一定会亲近数学,运用数学的意识也会越来越强。在小学数学教学中,如果能够根据小学生的认知特点,将数学知识与学生的生活实

际紧密结合,那么,在他们的眼里,数学将是一门看得见、摸得着、用得上的学科,不再是枯燥乏味的数字游戏。这样,学生学起来自然感到亲切、真实,这也有利于培养学生用数学眼光来观察周围事物的兴趣、态度和意识。对于学生更好地认识数学,学好数学,培养能力,发展智力,促进综合素质的发展,具有重要的意义。因此,作为教师要善于结合课堂教学内容,捕捉生活中的数学现象,挖掘数学知识的生活内涵。 一、从生活到数学 《数学课程标准》强调数学教学必须注意从学生熟悉的生活情境和感兴趣的事物出发,使孩子们有更多机会从周围熟悉的事物中学习数学、理解数学。让学生感受到数学就在他们的周围。因此,我们要善于从学生已有的生活经验出发,创设感悟、有趣的教学情景,强化学生的感性认识,丰富学生的学习过程,引导学生在情境中观察、操作、交流,使学生感受数学与日常生活的密切联系,感受数学在生活中的作用;加深对数学的理解,并运用数学知识解决现实问题。如我在教学《长方体的认识》时,课前安排学生收集日常生活中各种各样有长方体的实物,课堂中让学生展示自己收集到的实物,然后让学生仔细观察这些实物有什么共同点,并组织讨论、交流,抽象出长方体的特征,以学生熟悉的生活实际为切入点创设开放式的活动情境,通过找一找、比一比、摸一摸、说一说的实践活动,调动学生的多种感官参与教学过程,使学生对长方体的认识有形象感知过渡到建立表象的层面,学完这节课后,又组织学生探索生活中长方体的运用及好处。

具有中学高级教师专业技术任职资格人员名单公示

2009年具有中学高级教师专业技术任职资格人员名单公示序号姓名县别工作单位从事专业 1 宣方军市直绍兴市第一中学高中语文 2 朱水军市直绍兴市第一中学高中语文 3 尤焕婷市直绍兴市高级中学高中语文 4 楼春燕市直绍兴市职业教育中心高中语文 5 杨佩琼市直绍兴市第一中学高中数学 6 张贤樑市直绍兴一中分校高中数学 7 沈建红市直绍兴市稽山中学高中数学 8 金辉市直绍兴市稽山中学高中数学 9 冯永华市直绍兴市高级中学高中数学 10 周夏君市直绍兴市职业教育中心高中数学 11 孙国海市直绍兴一中分校高中英语 12 张文平市直绍兴市稽山中学高中英语 13 陶海芳市直绍兴市高级中学高中英语 14 陈静市直绍兴市高级中学高中英语 15 陈玉平市直绍兴市高级中学高中英语 16 张晓华市直绍兴一中分校高中历史 17 孙洪亮市直绍兴一中分校高中历史 18 李时平市直绍兴市高级中学高中历史 19 冯高娟市直绍兴市高级中学高中历史 20 徐烨市直绍兴市高级中学高中物理 21 鲍农农市直绍兴一中分校高中化学 22 朱红燕市直绍兴市稽山中学高中化学 23 李国红市直绍兴市稽山中学高中计算机 24 郑长兴市直市教育教学研究院高中通用技术 25 冯建丽市直绍兴市高级中学高中通用技术 26 单慧芳市直绍兴市职业教育中心高中餐旅 27 肖满香市直绍兴市职业教育中心高中财会 28 孙慧珍市直市职业技术培训中心高中财会 29 凌珠兰市直绍兴市商业学校高中体育 30 金朝霞市直绍兴一中分校高中音乐 31 史滢滢市直绍兴市稽山中学高中音乐 32 茹慧娟市直绍兴市第一中学初中部初中语文 33 吴菲菲市直绍兴市第一中学初中部初中语文 34 钟珺红市直文理学院附中初中语文 35 戴国萍市直文理学院附中初中语文 36 周江市直昌安实验学校初中语文 37 沈五二市直绍兴市建功中学初中数学 38 俞菊妃市直文理学院附中初中数学 39 冯菊美市直绍兴市树人中学初中数学 40 汤文霞市直昌安实验学校初中数学 41 何晓燕市直绍兴一中初中部初中英语 42 金萍市直绍兴一中初中部初中英语 1 / 15

苍南县中考招生实施方案及加分政.doc

2019苍南县中考招生实施方案及加分政策- 中考 苍南县2019年初中学业水平考试与高中招生实施方案出炉 各学区、直属学校,各乡镇中学(九年一贯制): 现将《苍南县2019年初中学业水平考试与高中招生实施方案》印发给你们,请认真贯彻实施。 苍南县教育局

2019年3月25日 苍南县2019年初中学业水平考试与高中招生实施方案 根据《温州市教育局关于印发2019年初中学业水平考试与高中招生实施意见的通知》(温教基〔2019〕4号)和《温州市教育局关于进一步推进高中阶段学校考试招生制度改革的实施意见》(温教基〔2018〕76号),在认真总结近年来初中学业水平考试和高中招生改革实践经验的基础上,特制订本方案。 一、指导思想

初中学业水平考试与高中招生制度改革,要有利于全面贯彻党的教育方针,促进学生全面而有个性发展;有利于促进义务教育深化课程改革,减轻学生过重课业负担,提高教育教学质量;有利于建立公开、公平、公正的“阳光招生”运行和监督机制;有利于公办学校和民办学校、普通教育和职业教育的健康协调发展;有利于建立和完善初中教育质量监测与评价体系,促进我县义务教育的优质均衡发展。 二、初中学业水平考试 初中学业水平考试(以下简称“学业水平考试”)是义务教育阶段的终结性考试,主要是衡量学生达到国家规定学习要求的程度,考试成绩是学生毕业和升学的基本依据。

(一)学业水平考试对象 1.苍南县户籍初中毕业生:2019年苍南县户籍在本县就读的应届初中毕业生(以电子学籍注册为准),在苍南县外就读要求回苍升学的苍南县户籍应届毕业生,苍南县户籍的往届初中毕业生。 2.温州市内非苍南户籍但已取得苍南学籍的应届初中毕业生(以电子学籍注册为准)。

教科版科学三上知识点

《水》单元知识点 一、水到哪里去了 1.水是一种液体,没有固定的形状,但有一定的体积。湿抹布擦黑板过一会儿干了、湿的手干了是由于水蒸发了。常见的蒸发现象有:水洼干了、衣服晾干了、煮食物时水烧干了等等。 2.杯子装水后,加上盖子和不加上盖子相比,加盖子的蒸发慢,不加盖子的蒸发快;放在通风处比放在不通风处蒸发得慢;放在阳光下比放在阴凉处蒸发得快。 3.水蒸气是气体,它是水的一种形态,它也是水。水蒸气是无色无味的、透明的、看不见、摸不着。.水蒸气存在我们身边周围的空气中,不管温度高还是温度低,水都在不停地蒸发。4我们洗澡之后,看到卫生间玻璃上的小水珠不是水蒸气,水蒸气是看不见的。 5.一杯热开水放在桌上,看到上面冒着的“白烟”不是水蒸气,而是水蒸气遇冷凝结的小水滴。我们可以用加热、加快空气流动的方法让水蒸发得更快。 6 我们可以像海水晒盐一样增加水与空气接触面积的方法来加快水的蒸发。 7.空气中的水蒸气越多,湿度越大:水蒸气越少,湿度越小。不同的天气状况,空气中的水 二、水沸腾了 1.不停地给水加热,水会沸腾。.水沸腾时,水中和水面上会冒出很多气泡。 2.水沸腾时,水面上会看到很多“白烟" ,这不是水蒸气。.水变成水蒸气后,体积会大大增加。当水的温度升高到100摄氏度时,水会沸腾是,足以烫伤我们的,一定要注意安全。 3.水沸腾和蒸发的现象是不一样的:水沸腾的时候也在蒸发,水蒸发的时候不一定沸腾。 4.温度计100摄氏度就是以水沸腾时的温度为基础规定的。 5.高山的山顶和山脚下,水沸腾时的温度是不一样的。 5.用温度计测量水沸腾前、沸腾时的温度时,视线要与温度计的液面持平。 8.加热后的石棉网和三脚架是很烫的,不能用手触摸;要等它们降温之后再收拾和整理。 9.水沸腾时水面上的水蒸气温度很高,不能把手放在上面,容易把手烫伤。 10.让水沸腾后,人们可以用来蒸、煮食物、给自来水杀菌消毒、泡茶、泡方便面等、获取更多水蒸气。 三、水结冰了 1.常温下的水在结冰过程中,温度会-一直下降,当降低到0摄氏度时开始结冰。 2.水结冰时体积会变大,要占据更大的空间。.水在结冰的过程中,为了比较结冰前液面高度和结冰后冰柱的高度,我们需要做好标记。 3.水结冰后,冰块会浮在水面上。冰是无色、透明的固体。冰的温度低,如果长时间一直接触皮肤,容易被冻伤。 4.在做水结冰的实验时,装水试管外面的容器盛满碎冰并加入食盐是为了得到更低的温度。 5.冰是固体,不会流动,有固定的形状;冰是固态的水。 让水结冰,我们可以制造冰冻食品,如:冰淇淋、冰沙、冰棍。水结成冰之后,我们可以用冰块制作冰雕和其他艺术品。

潜能生培优补差个案分析

牛角圩小学一年级上册培优补差个案分析个案基本情况:陈紫涵,女,和祖父母、母亲住在一起。父亲工作比较忙,主要是由母亲负起教育的责任。母亲的性格比较急,教育孩子常动辄就批评。祖父母也参与到对孩子的教育中,但方法与母亲截然不同,采取比较爱护,包庇的措施。形成她对祖父母是比较依赖的。 日常行为表现学习方面:周海乐的学习积极性不高,在课堂上,从不举手发言,不会主动参与到课堂上的小组讨论中,还常常不自觉地在搞小动作。做作业的时候,精神不集中,常会呆呆地坐着胡思乱想或搞小动作,写字的速度慢,每天的作业很晚才能完成,常会欠交作业。人际交往方面:性格比较胆小、怕事,不会主动与人交往,只是和坐在一起的几位同学来往,交往的圈子窄。生活上的事情,基本能完成,但动作很慢,所耗时长,在收拾书包,排队等等,常常会落在全班的最后。 诊断分析:周海乐的家庭的文化素质比较低,但由于家庭的教育方式也简单,造成她一方面在妈妈的呵斥下没有建立起应有的自信心,觉得做什么事情自己都是错的,清楚知道提问的答案也不敢说出,有时甚至不去思考(反正都是错的)。在不断感受失败,正是在这一恶性循环的过程中, 她的学习困难随着教育时间的延续越积越多, 缺乏自信心,缺乏学习积极性也就成为必然的;另一方面,在爷爷奶奶的包庇下,依赖心理比较严重。 辅导过程: 1、老师的帮助使她建立起自信的大厦。我首先主动找她聊天,说说她感兴趣的话题。我还鼓励她在课堂上大胆发言。2、加强与家长的联系,共同探讨教育孩子的措施。不同的孩子,就要采取不同的教育方法。3、通过友谊的力量,促进她走向新的台阶。我把她编排在一个比较活跃,上进的小组内,让小组成员带动雷雅欣的进步。 孩子天生喜欢给别人赞扬,周海乐现在开始减少对老师的恐惧感,在师生的聊天中,能放松地、完整地表达自己的想法。这次单元考试及格了,知道成绩后十分高兴,自信心也在成功之中逐渐建立起。 2015年12月 牛角圩小学一年级下册培优补差个案分析

浅析小学数学与生活的联系

浅析小学数学与生活的联系 《新课程标准》要求小学数学要源于生活,贴近生活,注重学生的自主探究水平培养。现在教学的例题不再是以往不可捉摸的、抽象、游离于生活之外的应用题或文字题,已变成了各种形象生动、鲜活直观的生活情境:买东西、去旅游、做游戏、找规律等等事例;像这样,多方面的提升教材层次,就使得原本抽象的数学就变得生动有趣。我们教师使用起这样好玩的教材教学,使所有的学生都能感到特别有兴趣。 一、贴近生活,让数学变得富有魅力生活离不开数学,数学离不开生活。数学知识源于生活而最终服务于生活。在教学中要力求从学生熟悉的生活世界出发,选择学生身边的的事物,提出相关的数学问题,以激发学生的兴趣与动机。使学生初步感受数学与日常生活的密切联系,并能学以致用。例如:在教学完人民币的理解这个课后,让学生用自己带来的各种用品创办小小商店,让学生相互合作共同完成购物活动。在活动的过程中,提出问题解决问题。这时的教学已不再是单纯的"掌握知识",而是升华到了一个新的境界--情感、态度、价值观的实现。教学意义已大大超越了教材本身了。对于小学生来说,数学是他们对生活中数学现象的解读。书本数学是对生活数学的提炼,也是给学生学习生活数学提供一种视角,搭建一座平台。丰富多彩的现实世界理应是学生学习数学的背景。我们应从学生熟悉的人、熟悉的事入手,体现给学生的学习材料应具有现实性、趣味性、挑战性。所以,学生会产生强烈的探究欲望,并迫不及待地投入到知识的

建构活动。数学也所以变得富有魅力。 二、自主探索,让学生体验研究的乐趣 教师在教学过程中不是日复一日持续的教给学生新知识,而是为了教给学生学习的方法,使学生懂得用已学的方法去学习新知识、解决新问题。在新教材中,增强心算、允许估算,计算上,像5+8=要求尊重学生的想法,鼓励学生独立思考,提倡计算方法的多样化。有的学生发现了5+8其实用8+5来想更好,把5拿来分成2和3;有的学生认为刚学了9+5=用它来推算出结果更简单;更有学生掰起手指头一手比8,一手比5,重叠的是3,那就是13。在我们看来有的似乎不能够理解,但在学生的应用中它们却很自如,原因源于这些都是他们的真实体验,多样化的知识由此产生。让学生成为课堂上真正的主人。 弗来登塔尔认为:学习数学唯一准确的方法是让学生实行再创造,教师的任务是引导、协助学生实行这种再创造的工作,而不是把现成的东西灌输给学生。教材知识的表现方式是单一的、静态的,而学生获取的方式却是多样的、动态的。作为一名教师在教学中应充当一名组织者,提供学习材料,提出学习要求;充当一名引导者,提示研究方向,引导学生朝着有意义的方向去做;充当一名合作者,教师成为学生中的一员,与学生平等交流,相互分享彼此的思考、见解和知识。师生互动,生生互动,使每一位学生在有限的时间内都能得到锻炼与表现。

浙江省诸暨市学勉中学高中数学《第二章 基本初等函数测试试题 新人教版必修1

班级 _________ 姓名_____________ 学号____________ 一、选择题:本大题共10小题,每小题3分,共30分 1.对任意实数x ,下列等式恒成立的是( ). A .21133 2 ()x x = B .2113 3 2 ()x x = C .31153 5 ()x x = D .131 35 5 ()x x --= 2.下列函数与x y =有相同图象的一个函数是( ) A .2 x y = B .x x y 2= C .)10(log ≠>=a a a y x a 且 D .x a a y log = 3.函数 12 log (32) y x =-的定义域是( ) A .[1,)+∞ B .2(,)3+∞ C .2[,1]3 D .2 (,1] 3 4.三个数60.70.70.76log 6 ,,的大小关系为( ) A. 60.7 0.70.7log 66<< B. 60.70.70.76log 6<< C . 0.76 0.7log 660.7<< D. 60.7 0.7log 60.76<< 5.已知函数 2 95 (3)log 2x f x +=,那么(1)f 的值为( ). A . 2 log 7 B .2 C .1 D .1 2 6.设a 、b 均为大于零且不等于1的常数,则下列说法错误的是( ). A. y=ax 的图象与y=a -x 的图象关于y 轴对称 B. 函数f(x)=a1-x (a>1)在R 上递减 C. 若a 2 >a 21 -,则a>1 D. 若2x >1,则1x > 7.函数 212 ()log (25) f x x x =-+的值域是( ). A .[2,)-+∞ B .(,2]-∞- C .(0,1) D .(,2]-∞ 8.已知 log (2) a y ax =-在[0,1]上是x 的减函数,则a 的取值范围是( ) A. (0,1) B. (1,2) C. (0,2) D. ∞[2,+) 9.设函数1 ()()lg 1 f x f x x =+,则(10)f 的值为( )

最新教科版三年级上册科学知识点总结

最新教科版三年级上册科学知识点总结 第一单元植物复习知识点 1、看、听、摸、问、测量、闻等方法都是科学观察的基本方法. 2、大树的特征可以用树的高矮、树冠的形状、树干的粗细、树皮的样子和树叶的样子等来描述.树是活的植物,生长在一定的环境里,是有生命的.树的整体形态由树冠、树干、树根三部分组成. 3、大树和小草的主要不同之处是:植株的高矮不同、茎的粗细不同、茎的质地不同、寿命长短不同. 4、大树和小草的共同点是:都生长在土壤中,都有绿色的叶,都会开花结果,都需要水分、阳光和空气. 5、水葫芦叶柄部位膨大的海绵体充满空气是浮在水面上的原因. 6、水生植物和陆生植物都有根、茎、叶、花、果实和种子等器官.它们的生长需要水分、阳光和空气. 7、水生植物有水葫芦,金鱼藻、水花生,浮萍等. 8、水葫芦和狗尾草的相同点:生长需要水分、阳光和空气;有根、茎、叶;都会繁殖后代;寿命短;都是草本植物. 9、植物的叶一般由叶片、叶脉和叶柄组成.叶片上有叶脉.叶脉是传递水分和营养的通道.10、叶是有生命的,叶从叶芽开始生长,到最后衰老死亡,完成一生.11、以向日葵为例,植物的一生要经历种子、发芽、幼苗、生长、开花、结果、死亡等过程.12、能用测量的方法比较树叶的大小,能用数据记录植物的变化.13、植物按生存的环境不同,可以分为陆生植物和水生植物,根据茎的不同,可以分为草本植物和木本植物. 14、植物的生存需要水分、阳光、空气和营养.15、植物的一生是有生命周期的,每种植物都有一定的寿命.16、植物的共同特征是:生长在一定的环境里;需要水分、阳光、空气和营养;都会生长发育;都会繁殖后代;都有从生到死的生命过程.17、向日葵一生的典型生长阶段是:种子、发芽、生长、开花、结果、枯死. 第二单元动物复习知识点 1、动物具有多样性,动物生存依赖于环境,不同的环境生长着不同的动物. 2、我们观察蜗牛,要注意观察蜗牛的外形、生活、运动、反应、吃食、排泄、繁殖等.蜗牛分头部、腹部、尾部,头部有眼睛、触角和嘴.蜗牛的触角有两对,长的触角的顶部有眼睛,短的一对触角上没有眼睛. 3、蜗牛利用腹足能在各种物体上爬,腹足做细波浪状运动并在爬行中留下黏液痕迹. 4、用放大镜观察我扭头部,发现有眼睛、触角和嘴. 5、周围环境中,跟蜗牛长得相似的动物有田螺、蚌和蚬.蜗牛背上有一个褐色的壳.蜗牛壳上的螺线顺时针方向展开称为右旋. 6、要让睡着的蜗牛醒来的方法有:摩擦、敲打、放入水中.蜗牛新陈代谢除了吃食物外,还需要排泄粪便.蚯蚓喜欢生活在阴暗、潮湿的环境. 7、蚯蚓身体由许多环节构成,身体上有口、环带、肛门.其中口和肛门的作用是进食和排泄. 8、蜗牛喜欢吃菜叶,用肺呼吸,睡觉的时候也会呼吸. 9、蚯蚓的生活环境是在地下,潮湿的地方,我们一般在菜园、墙角等地方可以找到蚯蚓.蚯蚓是环节动物,蚯蚓的运动是爬行,身体伸缩前进.用笔尖轻触蚯蚓,蚯蚓的身体会产生缩紧等应激反应.10、蚯蚓适应潮湿的环境,但不能在水里生存.11、蜗牛和蚯蚓的相同点是:都适应阴暗潮湿的环境,身体柔软,都会爬行,会吃食物,会排泄,会繁殖后代等.12、蚂蚁的身体分为头、胸、腹三部分,头上长有一对触角,胸部长有六只脚.13、蚂蚁在行进的过程中,会分泌一种信息素,这种信息素引导后面的蚂蚁走相同路线.14、蚂蚁是群居动物,用触角来交流信息的.蚂蚁适应在陆地上生活.爱吃死昆虫、甜食,如糖、面包屑.15、蚂蚁的特点:生活在陆地上,身体有头、胸、腹三节,长着六只脚,运动爬行,群居生活,食物多样,会繁殖后代等.16、

培优补差个案跟踪分析

培优补差个案跟踪分析 一.个案简介: 陈行健,女,14岁,和姨夫姨妈生活在一起。父亲工作比较忙,母亲又远在海南从事渔具经营,主要是由其姨夫姨妈承担教育责任。该生性格活泼,聪明伶俐,学习自觉性高,有吃苦耐劳精神,英语、数学、物理等学科成绩拔尖,但语文一直是该生各学科中的拖腿科目,历次教学质量检测成绩均不理想(满分150分,考试总在90分左右)。 二. 诊断分析: 陈行健同学的家庭文化素质比较高。父亲陈宝华,80年代中期中专毕业,公务员身份;母亲王邦梅,初中文化;承担其教育责任的姨夫80年代中期大学专科毕业,一直从事中学语文教育教学工作。但由于该生语文基础差,对语文学习缺乏浓厚的兴趣,不注重阅读和写作练习,也缺少听说锻炼,因而成绩一直不够理想。 三.培补目标 扎实有效地内化该生的听说读写能力,全方位地提升该生的语文素养,力争在本期其中和期末质量检测中使该生的语文成绩达到优秀等次。

四.培补措施 1.激发兴趣,树立信心。兴趣是最好的老师。为了让她对语文学科发生浓厚的兴趣,我特别关注她在课堂上的一举一动,时常鼓励她积极地同文本对话,同同伴对话,大胆地同老师对话。上课时,我往往针对她的理解层面设计一些由浅入深的问题,引导她踊跃回答,让她觉得语文学习入门不难,取得成绩也是完全能够办得到的。 2.同桌牵手,展开帮扶。我与其班主任老师取得联系,安排语文学习能力较强的同学与其同桌共坐,让同桌对其在语文学习的过程中遇到的疑难问题进行解答,帮助她漫步语文学习的殿堂,遨游语文学习的瀚海。 3.诱导阅读,引领积累。我充分利用课余时间,定期找她谈话,借以引导她通过广泛的阅读,博采众长,深入积累,以求聚沙成塔。期中考试前,我有意识地引导她阅读了七年级、八年级阶段《课标》要求阅读的中外名著,敦促她严格按照“五个一”的内容(一天背一首或一篇古诗文、一天读一篇美文、一天写一篇日记、一周看一部影视剧、一周做一份试卷)开展语文学习活动。 4.开展活动,彰显才能。为了让她更好地在丰富多彩的语文活动中学语文、用语文进而提升语文能力,我有意识地引导她积极参加班级和学校组织开展的各种语文实践活动,诸如让她参加作文竞赛和语

小学数学与生活的密切联系

小学数学与生活的密切联系 新的一轮课程改革,进一步促使数学生活化,数学与生活进一步接轨是指从学生的已有经验 出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用过程。数学源于生活, 生活中又充满着数学。因此,数学教学内容应力求从学生熟悉的生活情境出发设计数学问题,让学生真正体验数学与生活的关系,从而实现“人人学有价值的数学;人人都能获得必需的数学”。为此,教师要经常引导学生提供他们所熟悉的经验,充分利用学生现有的知识经验和他们所熟悉的事物组织教学,把学生的生活经验课堂化,将抽象的数学转化为有趣、生动、易 于理解的事物,贴近生活,这就要求小学数学教学要与生活进一步接轨。 一、数学情境与生活 教师将学生熟悉的生活情境和感兴趣的问题作为数学活动的切入点,能让学生感到数学来自 于生活,生活中处处有数学,增强学习的好奇和兴趣,从而进入一个良好的学习状态。在日 常教学中,用学生熟悉的生活经验作教学实例,利用学生已有的生活经验学习数学知识。 如:在教学《分桃子》一课时,我创设情境:先要求每个学生拿出9个桃子放在盘子里,每 盘放的个数一样多,有几种放法,可以放几盘?当学生操作完之后,从中选择五种:(1) 每盘放3个,9÷3=3(盘);(2)每盘放9个,9÷9=1(盘);(3)每盘放2个,9÷2=4(盘),多1个;(4)每盘放4个,9÷4=2(盘)多1个;(5)每盘放5个,9÷5=1(盘) 多4个。接下来引导学生观察上面五个除法式子,并提问:可分成几种情况;学生于是很快 的观察到:一类正好分完,另一类分完后还有剩余的。于是老师再画龙点睛地指出,正好分 完的除法和除法算式,这是我们以前学过的;分了以后还剩余的算式,我们就把它叫做“有余数的除法”,这样创设生活情景,可以使课堂教学更接近现实生活,使学生身临其境,轻松的接受新知识。 二、数学理解与生活 生活是数学的源泉,生活中更是充满着数学问题。善于捕捉生活现象,沟通数学知识与生活 实际的联系,把生活中的问题逐步抽象成为数学问题,是激发学生学习兴趣,并使之产生学 习需要的有效方法。新的课程标准更多地强调学生用数学的眼光从生活中捕捉数学问题,探 索数学规律,主动地运用数学知识分析生活现象,自主地解决生活中的实际问题。在教学中 我们要善于从学生的生活中抽象数学问题,从学生的已有生活经验出发,设计学生感兴趣的 生活素材以丰富多彩的形式展现给学生,使学生感受到数学与生活的联系——数学无处不在,生活处处有数学。 如:在教学两位数乘法后,安排这样一个数学问题,学校组织师生去公园游玩。老师28人,小朋友150人。公园门口写着:门票成人每人30元,学生每人15元,团体30人以上每人 20人。请同学们设计一种你认为最好的购票方案。对这个问题,不同的学生有不同的设计方案: 1、全买团体票:(28+150)×20=3560元 2、不买团体票:28×30+150×15=3090元 3、一部分买团体票,一部分不买:(28+2)×20+(150-2)×15=2820元 通过不同的方案的比较,培养学生应用数学知识理财的意识。 三、日常生活“数学化” 孩子们的知识应该是在对话中形成,在交流中重组,在共享中倍增。在今天的“课堂超市”环 节中,这一切体现得淋漓尽致。如:我先出示了文具价目表:篮球95元/个,排球50元/个,

相关文档