文档库 最新最全的文档下载
当前位置:文档库 › GB7252油中溶解气体分析与故障判断

GB7252油中溶解气体分析与故障判断

变压器油中溶解气体在线监测概要

变压器油中溶解气体在线监测方法研究

摘要 (3) 1. 导言 (4) 2. 国内外发展现状及发展趋势 (6) 3. 变压器油中溶解气体在线监测方法的基本原理 (9) 3.1.变压器常见故障类型 (9) 3.2.变压器内部故障类型与油中溶解特征气体含量的关系 (10) 4. 基于油中特征气体组分的故障诊断方法 (14) 4.1.特征气体法 (14) 4.2.三比值法 (15) 4.3.与三比值法配合使用的其它方法 (17)

摘要 电力变压器是电力系统中最主要的设备,同时也是电力系统中发生事故最多的设备之一,对其运行状况实时监测,保证其安全可靠运行,具有十分重要的意义。变压器油中溶解气体的组分和含量在一定程度上反映出变压器绝缘老化或故障的程度,可以作为反映设备异常的特征量。如何以变压器油中溶解气体在线监测为手段,实现对运行变压器潜伏性故障的诊断和预测,是本文的出发点。 本文的目标是研究基于油中溶解气体分析(DGA)的电力变压器状态监测与故障分析方法,通过气体色谱分析方法实现对变压器油中溶解的七种特征气体(氢气H2、甲烷CH4、乙炔C2H2、乙烯C2H4、乙烷C2H6、一氧化碳CO、二氧化碳CO2)组分含量在线实时监测,从而达到对电力变压器工作状态的诊断分析。

1.导言 现代社会对能源的巨大需求促进了电力工业的飞速发展。一方面是单台电力的容量越来越大;另一方面是电力网向着超高压的方向发展,并正组织成庞大的区域性甚至跨区域的大电网。然而,随着电力设备容量的增大和电力网规模的扩大,电力设备故障给人们的生产和现代生活所带来的影响也就越来越大。这就要求供电部门在不断提高供电质量的同时,要切实采取措施来保证电力设备的正常运行,以此来提高供电的可靠性。长期以来形成的定期检修已不能满足供电企业生产目标。激烈的市场竞争迫使电力企业面临着多种棘手的问题,例如如何提高设备运行可靠性、如何有效控制检修成本、合理延长设备使用寿命等。因此,状态检修已成为必然。而状态检修的实现,必须建立在对主要电气设备有效地进行在线监测的基础上,通过实时监测高压设备的实际运行情况,提高电气设备的诊断水平,做到有针对性的检修维护,才能达到早期预报故障、避免恶性事故发生的目的。由此可见,以变压器状态监测为手段,随时对其潜伏性故障进行诊断和预测以及跟踪发展趋势是十分必要的。 对于大型电力变压器,目前几乎大多是用油来绝缘和散热,变压器油与油中的固体有机绝缘材料在运行电压下因电、热、氧化和局部电弧等多种因素作用会逐渐变质,裂解成低分子气体;变压器内部存在的潜伏性过热或放电故障又会加快产气的速率。随着故障的缓慢发展,裂解出来的气体形成气泡在油中经过对流、扩散作用,就会不断地溶解在油中。同一类性质的故障,其产生的气体量随故障的严重程度而异。由此可见,油中溶解气体的组分和含量在一定程度上反映出变压器绝缘老化或故障的程度,可以作为反映电气设备电气异常的特征量。 溶解气体分析(Dissolved Gas Analysis简称DGA)是诊断变压器内部故障的最主要技术手段之一。根据GB/T7252-2001《变压器油中溶解气体分析和判断导则》,可以通过分析油中7种分析组分H2、C2H2、C2H4、C2H6、CH4、CO和CO2的含量来判断并分析故障。通过从油样中分离出这些溶解气体,并利用色谱技术对其进行定量分析。变压器油中溶解的各种气体成分的相对数量和形成速度主要取决于故障点能量的释放形式及故障的严重程度,所以根据色谱分析结果可以进

变压器油中溶解气体的成分和含量

变压器油中溶解气体的成分和含量 与充油电力设备绝缘故障诊断的关系 摘要:介绍了通过分析变压器油中溶解气体的成分和含量以判断充油电力设备故障的机理和方法。 关键词:变压器;变压器油;气相色谱法;比值法 1 前言 气相色谱法一直是国内外许多电力设备制造厂作为检验质量、开发新产品的有力工具。实践证明,用气相色谱法能有效地发现充油电力设备内部的潜伏性故障及其发展程度,而利用其他电气试验方法很难发现某些局部发热和局部放电等缺陷。故在1999年颁布执行的电力设备预防性试验规程中,把油中气体色谱分析放在“电力变压器及电抗器”试验的首位。某些变压器厂家在其产品中还装设了DGA(dissolved gas analysis,即溶解气体分析)自动检测报警系统。 2 故障分析的机理 充油的电力设备(如变压器、电抗器、电流互感器、充油套管和充油电缆等)的绝缘主要是由矿物绝缘油和浸在油中的有机绝缘材料(如电缆纸、绝缘纸板等)所组成。其中 矿物绝缘油即变压器油,是石油的一种分镏产物,其主要成分是烷烃(C n H 2n+2 )、环烷族饱 和烃(C n H 2n )、芳香族不饱和烃(C n H 2n-2 )等化合物。有机绝缘材料主要是由纤维素(C 6 H 10 O 5 ) n 构成。在正常运行状态下,由于油和固体绝缘会逐渐老化、变质,会分解出极少量的气 体(主要有氢H 2、甲烷CH 4 、乙烷C 2 H 6 、乙烯C 2 H 4 、乙炔C 2 H 2 、一氧化碳CO、二氧化碳CO 2 等7种)。当电力设备内部发生过热性故障、放电性故障或受潮情况时,这些气体的产

量会迅速增加。表1列出气体的种类与外施能量的关系。 这些气体大部分溶解在绝缘油中,少部分上升在绝缘油的面上,例如变压器有一部分气体从油中逸出进入气体继电器(瓦斯继电器)。经验证明,油中气体的各种成分含量的多少和故障的性质及程度直接有关。因此在设备运行过程中,定期测量溶解于油中的气体组织成分和含量,对于及早发现充油电力设备内部存在的潜伏性故障有非常重要的意义。 表1 气体种类与外施能量的关系 气体CO CO2H2CH4C2H6C2H4C2H2 能量/J 3特征气体色谱的分析和判断 判断有无故障的两种方法 与油中溶解气体的正常值作比较判定有无故障 若氢和烃类气体不超过表2所列的含量,则认为电力设备运行正常。 表2 油中溶解气体的正常值 气体成分H2CH4C2H6C2H4C2H2总烃(C1+C2) 正常极限值/μ1004535555100 根据总烃产气速率判定有无故障 当总烃含量超过正常值时,应考虑采用产气速率判断有无故障。绝对产气速率V:

油色谱试验标准

油色谱分析试验标准 一、作业前的准备 (一)人员配置:2人(一人操作、一人监护) (二)工器具:油色谱分析仪,油样振荡器电源,烘干箱,油样注射器、5ML注射器、1ML注射器万用表,点火器 二注意事项 1、开色谱分析仪器前,一定先打开氮气钢瓶总阀,避免钨丝烧坏。 2、色谱分析仪器上的压力表参数:氮气0.32Mpa,氢气0.14Mpa,空气0.14Mpa。 3、注射样品后,当采集波形因某种原因,时间没有完成而停止了,需要等到上一次时间完成后才可开始注射下一次的样品,进行第二次试验。 4、A信号采集的六个峰值分别是:一氧化碳(CO)、甲烷(CH4)、二氧化碳(CO2)乙烯(C2H4)、乙炔(C2H2)、乙烷(C2H6)。 5、检测器A内的塞子,大概30次换一次。 6、开机后,当没有信号显示,检查“检测器”开关是否打开。 7、柱箱温度值不能升高时,检查柱箱温度开关是否打开。 8、变压器油气体色谱分析 油中溶解气体含量的注意值: 总炔 150ppm 乙炔 5ppm 氢气 150ppm ※总炔=甲烷+乙炔+乙烯+乙烷 ppm是每升油中含该气体的微升数(106) 三常见故障 1信号A显示“8300”,信号板A放大板没插好, 2信号B显示“1535”,调节调零旋转扭,若值没有什么变化,可能是信号B的钨丝烧坏或旋转按钮损害,需厂家修理处理。 3量程都是1如: SIGNAL 1 RANGE 1 SIGNAL 2 RANGE 1 4调零、衰减都是“0”。 四操作步骤 1开机 1.1打开空气、氢气、氮气钢瓶总阀。钢瓶总阀上的输出压力表的值在0.4 Mpa <压力值<0.5Mpa,钢瓶压力表小于2Mpa以下,换钢瓶。 1.2打开色谱分析仪器的红色开关。

变压器油中溶解气体分析与诊断

变压器油中溶解气体分析与诊断 摘要 变压器在线监测及故障诊断技术,对提高电力系统的安全稳定性具有十分重要的意义。其中基于油中溶解气体分析的在线监测技术是变压器在线监测中最普遍,也是最重要的技术。目前己投入使用的油中溶解气体在线监测系统普遍存在一些不足,如检测气体种类少、准确度及精确度不高、体积大、成本高等。 本文对变压器油色谱在线监测及故障诊断系统进行了研究,分析了其它色谱在线监测方法的种种不足,对其进行了改进,设计了一套变压器油在线监测系统,能够及时、准确地监测变压器油中溶解的各种特征气体,实时地反映设备的运行状态,并对故障诊断算法进行了仿真。在获得真实可靠的监测数据的基础上,建立了一个诊断模型,并对该模型进行了仿真,仿真结果表明三比值法、四比值法等故障诊断方法有一定的优越性,能够比较准确地定性和定量地对故障做出判断,为电力运营部门提供有用的决策依据。 分析了变压器油中溶解气体的发展变化规律,研究了变压器油中溶解气体和故障类型之间的关系。对常用的三比值模型进行深入研究,总结了各种模型的特点和适用范围。论述了用三比值进行变压器油中溶解气体分析,诊断和预测变压器故障的有效性和可行性。 关键词:变压器油中溶解气体在线监测故障诊断

目录 第一章绪论 (4) 1.1变压器 (4) 1.1.1变压器的分类 (4) 1.1.2电力变压器的选型原则 (6) 1.1.3变压器的作用及其意义 (13) 1.2变压器油 (14) 1.2.1变压器油简介 (14) 1.2.2变压器油国内外发展现状 (15) 第二章.变压器油中溶解气体分析与诊断 (17) 2.1.利用CO、CO2浓度及CO2/CO比值诊断固体绝缘老化 (17) 2.2.利用mL(CO2+CO)/g(纸)诊断变压器绝缘寿命 (19) 2.3利用油中糠醛分析诊断变压器绝缘老化 (20) 2.3.1概述 (20) 2.3.2.油中糠醛含量测试方法 (21) 2.3.4利用油中糠醛诊断变压器绝缘寿命 (23) 2.4固体绝缘老化的综合诊断 (29) 3 变压器油的运行维护 (30) 3.1变压器油的选择 (30) 3.1.1变压器油的质量标准 (30) 3.1.2变压器油在低温下的特性 (31) 3.2 混油、补油和换油 (33) 3.2.1 混油和补油 (33) 3.2.2换油 (34) 3.3 运行变压器油的防劣措施 (36) 3.3.1 隔膜密封装置 (36) 3.3.2 净油器 (37) 3.4 变压器油的金属减活(钝化)剂 (42)

变压器油色谱分析报告

运行中变压器油色谱分析 异常与解决对策 王海军 (河北大唐国际王滩发电有限责任公司) 摘要:对运行变压器油中氢气含量超标出现的原因进行了详细分析,并提出了氢气含量超标的滤油工艺及防止二次污染的源头控制、过程控制及关键点控制。 关键词:变压器油;色谱分析;热油循环;二次污染 1前言 运行中的变压器油气相色谱分析,以检测变压器油中气体的组成和含量,是早期发现变压器内部故障征兆和掌握故障发展情况的一种科学方法。特征气体的出现与变压器运行中的实际状况及在处理中的工艺有关,处理工艺粗糙可能造成变压器油的二次污染。 本文根据实际运行变压器中出现氢气含量超标的具体情况,分析了产生气体的原因并提出了变压器热油循环的处理工艺,防止变压器油二次污染的要点。 2变压器油中氢气含量超标、二次污染实例 我公司#1高压厂用公用变压器(以下简称#1高公变)于2005年10月1日并网运行,在运行中,根据预防性试验规程对各变压器进行了油色谱跟踪分析,发现#1高公变的氢气值出现过含量超过注意值:H2≤150μL/ L ,具体测量数值见表一: 对#1高公变进行热油循环后的色谱分析中,虽然氢气含量达到标准但在油中又检测到痕量乙炔,见表二

再次热油循环后氢气、乙炔均在标准之内。 3#1高公变油中氢气超标及二次污染原因分析 当变压器油中氢气含量超过注意时,人们根据多年的运行经验及文献[1]中指出: (1)当变压器出现局部过热时,随着温度的升高,氢气(H2)和总烃气体明显增加,但乙炔(C2H2)含量极少。 (2)变压器内部出现放电故障也会出现氢气(H2)。局部放电(能量密度一般很低),产生的特征气体主要是氢气氢气(H2),其次是甲烷(CH4),并有少量乙炔(C2H2),但总烃值并不高;火花放电(是一种间歇性放电,其能量密度一般比局部放电高些,属低能量放电)时,乙炔(C2H2)明显增加,气体主要成分时氢气(H2)、乙炔(C2H2);电弧放电(高能放电)时,氢气(H2)大量产生,乙炔(C2H2)亦显著增多,其次是大量的乙烯、甲烷和乙烷。 对于文献[1]中的阐述具有很强的理论性,变压器油是由烷烃、环烷烃和芳香烃等组成[3]的结构复杂的液态烃类混合物。当变压器内发生放电现象,油中的烷烃、环烷烃和芳香烃等烃类混合物发生分解,不同能量的放电产生的特征气体并伴有其他气体产生,根据产生的特征气体可以判断变压器内部发生的具体故障。 三比值法[1]是利用气象色谱分析结果中五种特征气体的三个比值(C2H2/C2H4、CH4/H2、C2H4/C2H6)来判断变压器内部故障性质。根据三比值法的编码规则,三比值法计算结果见表三 从表中特征值0、1、0判定氢气超标的原因为高湿度引起孔穴中的放电,而引起高湿度的原因在变压器生产过程中绝缘材料干燥彻底的情况下只有变压器运行中水分的进入。 所以根据我厂#1高公变在安装、运行过程中的具体情况对变压器油中氢气含量超标、乙炔二次污染分析如下: (1)#1高公变在电建安装过程中曾出现过气体继电器伸缩节法栏处渗油情况,于2005年10月10日更换新伸缩节后,渗油情况解决。在气体继电器伸缩节渗油期间水分、空气从渗油处进入变压器内,导致高公变在运行过程中油中氢气含量超出注意值。2006年2月5日对高公变进行热油循环48小时后,再检测氢气含量为9.99μL/ L,氢气含量超标问题解决。 (2)而乙炔的产生是由于使用的滤油机在滤油之前未对滤油机内部用合格变压器油进行冲洗,而且之前滤油机滤过其他油质。带内部残油进行滤油后的色谱分析里又出现3.23μL/ L的乙炔。重新滤油后再次做色谱分析,油内氢气、乙炔含量合格:氢气4.57μL/ L,乙炔0.00μL/ L。

应用油中溶解气体分析法判断变压器故障

编号:AQ-JS-03420 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 应用油中溶解气体分析法判断 变压器故障 Application of dissolved gas analysis in oil to judge transformer fault

应用油中溶解气体分析法判断变压 器故障 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 1根据油中溶解气体进行变压器故障诊断 变压器油是由具有不同键能的化学键键合在一起的碳氢化合物分子组成的。它作为良好的介质材料在变压器中起绝缘、散热、灭弧等作用,并有其特殊的性能。 在正常运行条件下,变压器油和固体绝缘材料由于受到电场、热、水分、氧的作用,随时间而发生速度缓慢的老化现象,产生少量的氢、低分子烃类气体和碳的氧化物等。 当变压器在故障状态下运行时,故障点周围的变压器油温度升高,其化学键断裂,形成多种特征气体。因不同键能的化学键在高温下有不同的稳定性,根据热力动力学原理,油裂解时生成的任何一种气体,其产气速率都随温度而变化,在一特定温度下达到最大

值。随着温度的上升,最大值出现的顺序是:甲烷(CH4)、乙烷(C2H6)、乙烯(C2H4)、乙炔(C2H2)。在温度高于1000℃时,还有可能形成碳的固体颗粒及碳氢聚合物。故障下产生的气体通过运动、扩散、溶解和交换,将热解气体分子传递到变压器油的各部分。 油中溶解气体分析法就是根据故障下产气的累计性、故障下的产气速率和故障下产气的特性来检测与诊断变压器等充油电气设备内部的潜伏性故障的。 2采用色谱法分析变压器故障的注意事项 (1)发现特征气体组分含量增长时,应缩短跟踪分析周期,并结合历史数据、产气速率、负荷情况、电气试验、新投运设备出厂前的状况、检修工艺流程等,确定故障是由于电路还是磁路或是其它原因,如辅助设备、设备材料、检修工艺等引起的,以缩小检修时的故障查找范围。 (2)由于取样阀中某些特殊的材料(如含镍不锈钢合金等)的催化作用,生成大量的氢气聚集在取样阀周围;取样阀在进行焊接后,大量在高温下产生的特征气体同样会聚集在取样阀的周围,此时取

变压器油中溶解气体分析的原理及方法8页

变压器油中溶解气体分析的原理及方法 充油电力变压器在正常运行过程中受到热、电和机械方面力的作用下逐渐老化,产生某些可燃性气体,当变压器存在潜伏性故障时,其气体产生量和气体产生速率将逐渐明显,人们取变压器油样使用气相色谱方法获得油中溶解的特征气体浓度后,就可以对变压器的故障情况进行分析。由于大型充油电力变压器是一个非常复杂的电气设备,变压器存在潜伏性故障时与多种因素存在耦合,特征气体形成涉及的机理十分复杂,这些机理及由这些机理导出的诊断方法对智能诊断方法有很好的借鉴意义。 1 变压器油及固体绝缘的成份及气体产生机理分析 虽然SF6气体绝缘、蒸发冷却式气体绝缘变压器和干式变压器、交联聚乙烯绕组变压器等有着良好的发展前景,但是变压器油优良的绝缘和散热能力是它们所不能替代的,目前高电压、大容量的电力变压器仍然普遍采用充油式。充油电力变压器内部的主要绝缘材料是变压器油、绝缘纸和纸板等A 级绝缘材料,当运行年限为20年左右时,最高允许的温度为105℃左右。变压器油中特征气体是由变压器油及固体绝缘产生的,与它们的性能存在着密切的关系。 1 变压器油的成份及气体产生机理 变压器油是由天然石油经过蒸馏、精炼而获得的一种矿物油。它是由各种碳氢化合物所组成的混合物,其中碳、氢两元素占全部重量的95%~99%。主要的碳氢化合物有环烷烃(50%以上)、烷烃(10%~40%)和芳香烃(5%~15%)组成[9]。不同变压器油各种成份的含量有些不同。 变压器油中不同烃类气体的性能是不同的。环烷烃具有较好的化学稳定性和介电稳定性,黏度随温度的变化很小。芳香烃化学稳定性和介电稳定性也较好,在电场作用下不析出气体,而且能吸收气体;但芳香烃易燃、黏度大、凝固点高,且在电弧的作用下生成的碳粒较多,会降低油的电气性能。环烷烃中的石蜡烃具有较好的化学稳定性和易使油凝固,但在电场的作用下易发生电离而析出气体,并形成树枝状的X蜡,影响油的导热性。 变压器油在运行中受到温度、电场、氧气及水分和铜、铁等材料的催化作用会形成某些氧化物及其油泥、氢、低分子烃类气体和固体X蜡等,这就是绝缘油的老化和劣化作用。正常的老化和劣化情况下,变压器油中仅能产生少量的气体,通常它们的含量在临界值之下。

变压器油中气体分析

变压器 TRANSFORMER 2000 变压器油中溶解气体的成分和含量 与充油电力设备绝缘故障诊断的关系 张利刚 摘要:介绍了通过分析变压器油中溶解气体的成分和含量以判断充油电力设备故障的机理和方法。 关键词:变压器;变压器油;气相色谱法;比值法 中图分类号:TM411;TM406 文献标识码:B 文章编号:1001-8425(2000)03-0039-04 Relation between the Composition & Contents of Dissolved Gases in Transformer Oil and Insulation Fault Diagnosis of Oil-Filled Power Equipment ZHANG Li-gang Abstract:The mechanism and method of estimating the oil-filled power equipment fault through analyzing the composition & contents of dissolved gases in transformer oil are introduced.

Key words:Transformer; Transformer oil; Gas Chromatography; Ratio method 1 前言 气相色谱法一直是国内外许多电力设备制造厂作为检验质量、开发新产品的有力工具。实践证明,用气相色谱法能有效地发现充油电力设备内部的潜伏性故障及其发展程度,而利用其他电气试验方法很难发现某些局部发热和局部放电等缺陷。故在1999年颁布执行的电力设备预防性试验规程中,把油中气体色谱分析放在“电力变压器及电抗器”试验的首位。某些变压器厂家在其产品中还装设了DGA(dissolved gas analysis,即溶解气体分析)自动检测报警系统。 2 故障分析的机理 充油的电力设备(如变压器、电抗器、电流互感器、充油套管和充油电缆等)的绝缘主要是由矿物绝缘油和浸在油中的有机绝缘材料(如电缆纸、绝缘纸板等)所组成。其中矿物绝缘油即变压器油,是石油的一种分 镏产物,其主要成分是烷烃(C n H 2n+2 )、环烷族饱和烃(C n H 2n )、芳香族不饱 和烃(C n H 2n-2 )等化合物。有机绝缘材料主要是由纤维素(C 6 H 10 O 5 ) n 构成。在 正常运行状态下,由于油和固体绝缘会逐渐老化、变质,会分解出极少 量的气体(主要有氢H 2、甲烷CH 4 、乙烷C 2 H 6 、乙烯C 2 H 4 、乙炔C 2 H 2 、一氧 化碳CO、二氧化碳CO 2 等7种)。当电力设备内部发生过热性故障、放电性故障或受潮情况时,这些气体的产量会迅速增加。表1列出气体的种类与外施能量的关系。 这些气体大部分溶解在绝缘油中,少部分上升在绝缘油的面上,例如变压器有一部分气体从油中逸出进入气体继电器(瓦斯继电器)。经验

变压器油中溶解气体的分析与故障判断

变压器油中溶解气体的分析与故障判断 随着变压器运行时间的延长,变压器可能产生初期故障,油中某些可燃性气体则是内部故障的先兆,这些可燃气体可降低变压器油的闪点,从而引起早期故障。 变压器油和纤维绝缘材料在运行中受到水分、氧气、热量以及铜和铁等材料催化作用的影响而老化和分解,产生的气体大部分溶于油中,但产生气体的速率是相当缓慢的。当变压器内部存在初期故障或形成新的故障条件时,其产气速率和产气量则十分明显,绝大多数的初期缺陷都会出现早期迹象,因此,对变压器产生气体进行适当分析即能检测出故障。 1、变压器油中的气体类别 气相色谱法正是对变压器油中可燃性气体进行分析的最切实可行的方法,该方法包括从油中脱气和测量两个过程。矿物油是由大约2871种液态碳氢化合物组成的,通常只鉴别绝缘油中的氢气(H2卜氧气(02)、氮气 (N2)、甲烷(CH4)、一氧化碳(C0)、乙烷(C2H6)、二氧化碳(C02)、乙烯(C2H4)、乙炔(C2H2)9种气体,将这些气体从油中脱出并经分析,证明它们的存在及含量,即可反映出产生这些气体的故障类型和严重程度。油在正常老化过程产生的气体主要是一氧化碳(C0)和二氧化碳(C02),油绝缘中存在局部放电时(如油中气泡击穿),油裂解 产生的气体主要是氢气(H2)和甲烷(CH4)。在故障温度高于正常运行温度不多时,产生的气体主要是甲烷 (CH4), 随故障温度的升高,乙烯(C2H2)和乙烷(C2H6)逐渐成为主要物征气体;当温度高于1000 C时(如在电弧弧道温度300 C以上),油裂解产生的气体中含有较多的乙炔(C2H2),如果故障涉及到固体绝缘材料时,会产生较多的一 氧化碳(CO)和二氧化碳(C02)。 2、如何判断电气设备的故障性质 运用五种特征气体的三对比值判断电气设备的故障性质: (1) C2H2/C2H4 < 0.1 0.1 v CH4/H2V 1 C2H4/C2H6 v 1时,属变压器已正常老化。 (2) C2H2/C2H4 < 0.1 CH4/H2 v 0.1 0.1v C2H4/C2H6v1 时,属低能量密度的局部放电,是含气空腔中的放电,这种空腔是由于不完全浸渍、气体饱和或高湿度等原因造成的。 (3) 0.1 v C2H2/C2H4v 1 CH4/H2v 0.1 0.1v C2H4/C2H6v1 时,属高能量密度的局部放电(除含气空腔的放电),导致固体绝缘的放电痕迹。 (4) 1 v C2H2/C2H4v 3 0.1 v CH4/H2v 1 C2H4/C2H6>3时,有工频续流的放电、线圈、线饼、线匝之间或线圈对地之间油的电弧击穿。

套管油色谱分析标准

序号项目周期要求说明 1 油中 溶解气 体色谱 分析 1)新投运及 大修后投运 500kV: 1,4,10,30天 220kV: 4,10,30天 110kV:4,30 天 2)运行中 500kV:3个月 220kV:6个月 35kV、110kV: 1年 3)必要时 1)根据GB/T 7252—2001新装变压 器油中H 2 与烃类气体含量(μL/L)任 一项不宜超过下列数值: 总烃:20;H 2 :30;C 2 H 2 :0 2)运行设备油中H 2 与烃类气体含 量( μL/L)超过下列任何一项值时应 引起注意: 总烃:150; H 2 :150 C 2 H 2 :5 (35kV~220kV),1 (500kV) 3)烃类气体总和的产气速率大于 6mL/d(开放式)和12mL/d(密封式),或 相对产气速率大于10%/月则认为设备 有异常 1)总烃包括CH 4 、C 2 H 4 、C 2 H 6 和C 2 H 2 四种气体 2)溶解气体组份含量有增长趋势 时,可结合产气速率判断,必要时 缩短周期进行跟踪分析 3)总烃含量低的设备不宜采用相 对产气速率进行判断 4)新投运的变压器应有投运前的 测试数据 5)必要时,如: —出口(或近区)短路后 —巡视发现异常 —在线监测系统告警等 2 油中 水分, mg/L 1)准备注入 110kV及以上 变压器的新油 2)投运前 3)110kV及 以上:运行中1 年 4)必要时 投运前 110kV ≤20 220kV ≤15 500kV ≤10 运行中 110kV ≤35 220kV ≤25 500kV ≤15 1)运行中设备,测量时应注意 温度的影响,尽量在顶层油温高于 50℃时取样 2)必要时,如: —绕组绝缘电阻(吸收比、极化 指数)测量异常时 —渗漏油等 3 油中 含气 量, %(体 积分 数) 500kV 1)新油注入 前后 2)运行中: 1年 3)必要时 投运前:≤1 运行中:≤3 1)限值规定依据:GB/T 7595-2008《运行中变压器油质量》 2)必要时,如: —变压器需要补油时 —渗漏油 4 油中 糠醛含 量,mg/ L 必要时1)含量超过下表值时,一般为非正 常老化,需跟踪检测: 1)变压器油经过处理后,油中糠 醛含量会不同程度的降低,在作出 判断时一定要注意这一情况 2)必要时,如: —油中气体总烃超标或CO、CO 2 过高 —需了解绝缘老化情况时,如长 期过载运行后、温升超标后等运行 年限 1~55~1010~1515~20 糠醛 含量 0.10.20.40.75 2)跟踪检测时,注意增长率 3)测试值大于4mg/L时,认为绝缘 老化已比较严重 5 油中 颗粒度 测试 500kV 1)投运前 2)投运1个 月或大修后 3)运行中1年 4)必要时 1)投运前(热循环后)100mL油中大 于5μm的颗粒数≤2000个 2)运行时(含大修后)100mL油中大 于5μm的颗粒数≤3000个 1)限值规定依据:DL/T 1096-2008《变压器油中颗粒度限 值》 2)检验方法参考:DL/T 432-2007 《电力用油中颗粒污染度测量方 法》 3)如果颗粒有明显的增长趋势, 应缩短检测周期,加强监控 6 绝缘 油试验 见12.1节

应用油中溶解气体分析法判断变压器故障参考文本

应用油中溶解气体分析法判断变压器故障参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

应用油中溶解气体分析法判断变压器故 障参考文本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 1 根据油中溶解气体进行变压器故障诊断 变压器油是由具有不同键能的化学键键合在一起的碳 氢化合物分子组成的。它作为良好的介质材料在变压器中 起绝缘、散热、灭弧等作用,并有其特殊的性能。 在正常运行条件下,变压器油和固体绝缘材料由于受 到电场、热、水分、氧的作用,随时间而发生速度缓慢的 老化现象,产生少量的氢、低分子烃类气体和碳的氧化物 等。 当变压器在故障状态下运行时,故障点周围的变压器 油温度升高,其化学键断裂,形成多种特征气体。因不同 键能的化学键在高温下有不同的稳定性,根据热力动力学

原理,油裂解时生成的任何一种气体,其产气速率都随温度而变化,在一特定温度下达到最大值。随着温度的上升,最大值出现的顺序是:甲烷(CH4)、乙烷(C2H6)、乙烯(C2H4)、乙炔(C2H2)。在温度高于1 000℃时,还有可能形成碳的固体颗粒及碳氢聚合物。故障下产生的气体通过运动、扩散、溶解和交换,将热解气体分子传递到变压器油的各部分。 油中溶解气体分析法就是根据故障下产气的累计性、故障下的产气速率和故障下产气的特性来检测与诊断变压器等充油电气设备内部的潜伏性故障的。 2 采用色谱法分析变压器故障的注意事项 (1) 发现特征气体组分含量增长时,应缩短跟踪分析周期,并结合历史数据、产气速率、负荷情况、电气试验、新投运设备出厂前的状况、检修工艺流程等,确定故障是由于电路还是磁路或是其它原因,如辅助设备、设备材

变压器油色谱分析的基本原理及应用

变压器油色谱分析的基本原理及应用 字数:2509 字号:大中小 摘要:文中阐述了采用色谱分析判断变压器内部故障的意义、原理及方法,并列举了采用色谱分析判断变压器故障的实例。 关键词:变压器色谱分析潜伏性故障 概述 油色谱分析作为在线检测变压器运行的一项有效措施,由于它做到了监测时不需要将设备停电,而且灵敏度高,与其他试验配合能提高对设备故障分析准确性,而且不受外界因数的影响,可定期对运行设备内部绝缘状况进行监测。因此变压器油色谱分析已真正成为发现变压器等重要电气设备内部隐患、预防事故发生的有效途径,在严格色谱分析工作的开展下,使设备的潜伏性故障得到及时消除,确保变压器等设备安全稳定运行。 1.绝缘油色谱分析的基本原理 变压器大多采用油纸复合绝缘,当内部发生潜伏性故障时,油纸会因受热分解产生烃类气体。含有不同化学结构的碳氢化合物有着不同的热稳定性,绝缘油随着故障点的温度升高依次裂解产生烷烃、烯烃和炔烃。在正常情况下,充油电气设备内的绝缘油及有机绝缘材料,在过热或电的作用下会逐渐老化和分解,产生少量的低于分子烃类气体和一氧化碳及二氧化碳气体,这些气体大部分溶解于油中,当充油电气设备内部存在潜伏性过热和放电性故障时,就会加快这些气体的产生速度,随着故障的发展,分解出的气体形成气泡在油中对流、扩散,不断溶解在油中。 2.绝缘油色谱分析的方法 2.1故障下产气的累计性 充油电力设备的潜伏性故障所产生的可燃性气体,大部分会溶解与油中,随着故障的持续,这些气体在油中不断积累,直至饱和甚至析出气泡。因此,油中故障气体的含量及其积累程度是诊断故障存在与发展的一个依据。 2.2故障下产气的速率 正常情况下充油电力设备在热和电场的作用下,同样老化分解出少量的可燃性气体,但产气速率应很慢。有的设备因某些原因使气体含量超过注意值,不能断定故障;有的设备虽低于注意值,如含量增长迅速,也应引起注意。产气速率对反映故障的存在、严重程度及其发展趋势更加直接和明显,可以进一步确定故障的有无及性质。因此,故障气体的产气速率,也是诊断故障的存在与发展程度的另一个依据。 2.3故障下产气的特征 变压器等电力设备内部不同故障下,产生的气体有不同的特征。如:局部放电时会有

油中气体分析技术综述

变压器油色谱在线监测 目前110kV及以上等级的大型电力变压器及电抗器主要采用油纸绝缘结构。绝缘油同时承担着绝缘介质和冷却媒质两方面的作用。在热和电的作用下,绝缘油会逐渐老化、分解而产生各种低分子烃、氢气以及有机酸和石蜡等。而以纤维素为基础的固体绝缘材料(纸和纸板)发生劣化分解时,除释放出水、醛类、酮类和有机酸外,还会产生相当数量的一氧化碳和二氧化碳。 变压器油中溶解的各种气体分析的相对数量形成速度主要取决于故障能量的释放形式以及故障的严重程度,所以根据色谱分析结果可以进一步判断设备内部是否存在异常,推断故障类型及故障能量等。对变压器油中溶解气体的分析是变压器故障诊断采用的基本方法,通过对其的分析能够发现变压器的过热、局部放电等潜伏性故障。 气相色谱分析具有选择性好、分离性高、分离时间快(几分钟到几十分钟)、灵敏度高和适用范围广等优点。但常规的色谱分析是一套庞大、精密而复杂的检测装置。整个分析时间长,需熟练的试验人员,对环境的要求高,整套设备体积较大,只适用于在试验室内进行检测。且油样从现场采集后运送到试验室进行分析,不仅耗时而且采样、运输、保存过程中还会引起气体组份的变化,更不能做到实时在线监测。为了实现在线监测油中气体分析,需要简化色谱分析装置,使之适用于在线监测和现场检测[2]。 变压器油中溶解气体在线监测原理如图1-1-1所示[3]。 图1-1-1. 变压器油中溶解气体在线监测系统结构框图监测过程可分为以下4部分: a.进行油气分离,从油中分离出需要检测的混合气体; b.利用气体分离技术把几种气体分离,再用气体检测器把气体浓度信号转

换成电压或电流信号; c.数据采集系统进行A/D转换,将电压或电流信号转换成数字信号,并上 传到工作站; d.工作站软件根据各种气体的含量对变压器运行状态进行评估,预测变压 器潜伏性故障。 在变压器溶解多种气体检测中,油中汲取气体是一个重要环节。英国中央发电局(CEGB)认为产生测量误差的原因多半是在脱气阶段。实现变压器油中多种气体在线监测,油气分离模块必须能在线、自动分离出油中溶解多种(至少六种以上)气体,并且不对变压器油箱中的油形成污染,另外油气平衡时间相对较短,一般应小于24小时,对于一些变压器运行过程中出现“紧急情况”需在线监测系统来自动看护,如内部故障发展速度较为迅速,还需要在线监测系统油气分离时间达到2小时,甚至更短。另外,油气分离的关键元件使用寿命应能满足在线监测产品正常使用,一般情况下应大于六年。 1.1.1几种常用的油气分离方法 目前油气分离技术按其取气方法可分为高分子聚合物分离方法、真空泵法、油中吹气法等几大类,其中平板分离膜、毛细管、血液透析装置、中空纤维等都属于高分子聚合物分离方法的不同运用形式。美国Sevenron公司就采用医学上的血液透析装置,研制出TrueGas变压器油中溶解气体在线监测系统。该方法透气快,效果好,但此种装置价格昂贵,在我国使用较少。目前应用比较多的几种在线油气分离方法主要有平板高分子透气膜法、真空脱气法、载气脱气法、动态顶空平衡法、动态顶空脱气法和中空纤维脱气法几种。 1.平板高分子透气膜法 这种方法的原理是利用某些合成材料薄膜(如聚酰亚胺、聚四氟乙烯、氟硅橡胶等)的透气性,让油中所溶解的气体经薄膜透析到气室里。当渗透时间相当长后,透析到气室的气体浓度c将达到稳定,它与油中溶解气体的浓度v 之间的关系如图1-1-3所示。这样,测出气室中的各气体浓度就可以换算出油中气体的含量。

绝缘油溶解气体的在线色谱分析

绝缘油溶解气体的在线色谱分析 一、气相色谱分析及在线监测方法简介 油中溶解气体分析就是分析溶解在充油电气设备绝缘油中的气体,根据气体的成分、含量及变化情况来诊断设备的异常现象。例如当充油电气设备内部发生局部过热、局部放电等异常现象时,发热源附近的绝缘油及固体绝缘(压制板、绝缘纸等)就会发生过热分解反应,产生CO2、CO、H2和CH4、C2H4、C2H2等碳氢化合物的气体。由于这些气体大部分溶解在绝缘油中,因此从充油设备取样的绝缘油中抽出气体,进行分析,就能够判断分析有无异常发热,以及异常发热的原因。气相色谱分析是近代分析气体组分及含量的有效手段,现已普遍采用。图4-7所示为油色谱分析在线监测的原理框图。 图4-7 油色谱分析在线监测原理框图 进行气相色谱分析,首先要从运行状态下的充油电气设备中取油样,取样方法和过程的正确性,将严重影响到分析结果的可信度。如果油样与空气接触,就会使试验结果发生一倍以上的偏差。因此,在IEC和国内有关部门的规定中都要求取样过程应尽量不让油样与空气接触。其次,要从抽取的油样中进行脱气,使溶解于油中的气体分离出来。脱气方法有多种,常用的是振荡脱气法,即在一密闭的容器中,注入一定体积的油样,同时再加入惰性气体(不同于油中含有的待测气体),在一定温度下经过充分振荡,使油中溶解的气体与油达到两相动态平衡。于是就可将气体抽出,送进气相色谱仪进行气体组分及含量的分析。 常规的油色谱分析法存在一系列不足之处,不仅脱气中可能存在较大的人为误差,而且监测曲线的人工修正法也会加大误差,从取油样到实验室分析,作业程序复杂,花费的时间和费用较高,在技术经济上不能适应电力系统发展的需要;监测周期长,不能及时发现潜伏性故障和有效的跟踪发展趋势;因受其设备费用和技术力量的限制,不可能每个电站都配备油色谱分析仪,运行人员无法随时掌握和监视本站变压器的运行状况,从而会加大事故率。因此,国内外不仅要定期作以预防性试验为基础的预防性检修,而且相继都在研究以在线监测为基础的预知性检修策略,以便实时或定时在线监测与诊断潜伏性故障或缺陷。 绝缘油气相色谱在线监测主要解决油气分离问题,目前在线监测油气分离采用的是不渗

浅谈变压器油的气相色谱分析

浅谈变压器油的气相色谱分析 一、色谱分析在绝缘监督中的作用在电气试验中,通过气相色谱分析绝缘油中溶解气体,能尽早的发现充油电气设备内部存在的潜伏性故障,是绝缘监督的一种重要手段。这一检测技术可以在设备不停电的情况下进行,而且不受外界因素的影响,可定期对运行设备内部绝缘状况进行监测,确保设备安全可靠运行。变压器大多采用油纸复合绝缘,当内部发生潜伏性故障时,油纸会因受热分解产生烃类气体。含有不同化学键结构的碳氢化合物有着不同的热稳定性,绝缘油随着故障点的温度升高依次裂解产生烷烃、烯烃和炔烃。在正常情况下,充油电气设备内的绝缘油及有机绝缘材料,在过热或电的作用下会逐渐老化和分解,产生少量的低分子烃类气体和一氧化碳及二氧化碳气体,这些气体大部分溶解于油中。当充油电器内部存在潜伏性过热和放电性故障时,就会加快这些气体的产生速度,随着故障的发展,分解出的气体形成气泡在油中对流、扩散,不断溶解在油中。故障气体的组成及含量与故障类型和故障严重程度关系密切。因此,在变压器运行过程中,定期做油的色谱分析,能尽早发现设备内部的潜伏性故障,以避免设备发生故障或事故损失。二、实例变压器内部放电性故障产生的特征气体主要是乙炔。正常的变压器油中不含这种气体,如果变压器油中这种气体增长很快,说明该变压器存在严重的放电性故障。某公司送来两台运行中变压器的油样,经色谱分析,其中一台有C2H2气体(4.9PPm),5天后他们再次送来该台变压器油样检测,乙炔含量猛增到12.8PPm,见表1。 表1 从上表可以看出,总的烃类气体不高,惟有乙炔气体超过注意值。氢气含量也比较高。我们分析该变压器内可能存在放电性故障,要他们回去检查,果然发现是分接开关拨叉电位悬浮引起放电,经过处理,避免了事故的发生。还有一次,某电站送来升压变压器油样,经色谱分析烃类气体含量均在注意值范围内,惟有氢气含量高达345ppm,见表2。我们分析该变压器可能有进水现象。经检查,果然发现该变压器进水受潮,经处理,避免了绝缘击穿事故的发生。 表2 变压器油的气相色谱分析在绝缘监督中具有很重要的作用:第一,可检测设备内部故障,预报故障的发展趋势,使实际存在的故障得到有计划且经济的检修,避免设备损坏和无计划的停电;第二,当确诊设备内部存在故障时,要根据故障的危害性、设备的重要性、负荷要求和安全及经济来制定合理的故障处理措施,确保设备不发生损坏;第三,对于已发生事故的设备,有助于了解设备事故的性质和损坏程度,以指导检修。三、气相色谱分析过程气相色谱分析是一种物理分离分析技术,分析程序是先将取样变压器油经真空泵脱气装置将溶解

变压器油中溶解气体分析教(学)案

变压器油中溶解气体分析 一、产气原理 (一)绝缘油的分解 大约油温在150℃时,就能产生甲烷;150-500℃左右时产生乙烷;大约500℃时产生乙烯,随着温度的逐渐升高,乙烯占总烃的比例越来越大;800-1200℃左右时产生乙炔。生成碳粒的温度约在500-800℃左右。 变压器油主要是由碳氢化合物组成(烷烃C n H2n+2,环烷烃C n H2n或C n H2n-2 ,芳香烃C n H2n-6。绝缘纸的成分主要是碳水化合物(C6H10O6)n。由电和热故障的结果可以使某些C-H键和C-C键断裂,伴随生成少量活泼的氢原子和不稳定的碳氢化合物的自由基,这些氢原子或自由基通过复杂的化学反应迅速重新化合,形成氢气和低分子烃类气体,如甲烷、乙烷、乙烯、乙炔等,也能生成碳的固体颗粒及碳氢聚合物(X-石蜡)。故障初期,所形成的气体溶于油中;当故障能量较大时,也能聚集成游离气体。碳的固体颗粒及碳氢聚合物可沉积在设备部。 低能放电,如局部放电,能过离子反应促使最弱的键C-H键断裂,主要重新化合成氢气。随着放电能量越来越高,如火花放电、电弧放电,能使C-C断裂,然后迅速以C-C键、C=C键、C≡C键的形式重新化合成烃类气体。 (二)绝缘纸的分解 纸、层压板或木块等固体绝缘材料分解时,主要产生CO、CO2,当怀疑故障涉及固体绝缘时,一般CO2/C0〈3。

(三)气体的其它来源 如分接开关油室向主油箱渗漏(C2H2高);设备油箱带油补焊(C2H2高);潜油泵出故障(是高速泵,轴和轴瓦产生磨擦,C2H2高,应改为低速泵);变压器油中含水(H2高);本体受潮(H2高)等均可产生气体。 (三)变压器部故障的类型 变压器部故障分为热性故障和电性故障两种,热性故障按温度高低又分为低温过热、中温过热和高温过热三种故障,电性故障按放电的能量密度分为局部放电、火花放电和电弧放电三种故障,现分别叙述如下。 1、热性故障 热性故障是指变压器部的局部过热温度升高,而不是变压器正常运行时由铜损和铁损转化而来的热量,使上层油温升高。 (l)热性故障的分类。当变压器部发生局部过热时,人们可以按温度的升高围分为四种情况:150℃以下属于轻微过热故障,150~300℃属于低温过热,300~700℃属于中温过热,大于700 ℃属于高温过热。 (2)热性故障产生的气体。热性故障是因热效应造成绝缘物加速裂解,所产生的特征气体主要是甲烷和乙烯,两者总量约占总烃的80%,随着故障点温度的升高,乙烯在总烃中所占的比例增大,甲烷为次,乙烷和氢气更次。其中氢气的含量一般在27%以下。通常热性故障是不产生乙炔的,但是,严重过热也会产生少量乙炔,其最大含量不超过总烃量的6%,当过热涉及固体绝缘物时,除了产生上述气体外,也会产生大量的CO和CO2。 (3)热性故障产生的原因,可以分为下列三种情况:①接点接触不良,

相关文档
相关文档 最新文档