文档库 最新最全的文档下载
当前位置:文档库 › ansys梁单元应力提取

ansys梁单元应力提取

ANSYS梁单元如何提取应力(转载)

ANSYS梁单元如何提取应力(转载)

我用的188单元作谐响应分析,求解结束后,我想取出模型中的最大应力值作为参数,然后在接下来的优化当中用该最大应力作为状态变量,请问我应该怎么做啊,注意优化时,对应于每组参数值,最大应力点的位置都可能不同.

请高手指点一下谢谢

以下程序段分别得到目标变量(总体积),约束变量SV的最大应力值。

/POST1

SET,

NSORT,U,Y

*GET,DMAX,SORT,,MAX

ETABLE,VOLU,VOLU

ETABLE,SMAX_I,NMISC,1

ETABLE,SMAX_J,NMISC,3

ssum

*GET,VOLUME,SSUM,,ITEM,VOLU

ESORT,ETAB,SMAX_I,,1 !按照单元SMAX_I的绝对值大小进行排序

*GET,SMAXI,SORT,,MAX

ESORT,ETAB,SMAX_J,,1

*GET,SMAXJ,SORT,,MAX

SMAX=SMAXI>SMAXJ !约束变量SV:SMAX=最大应力值

FINISH

===============

你这个程序段是针对beam3 吧,对beam188好像不行。

对beam188,要求所有单元的最大、最小应力可以用命令

allsel

*GET,ZDYL_MAX,SECR,ALL,S,X,MAX

*GET,ZDYL_MIN,SECR,ALL,S,X,MAX

但是虽然能用图形显示最大、最小应力截面,却不清楚怎么用命令流提取出这个截面和他所在的单元来,盼高手提示!

另外也可以用单元表求出轴应力和弯曲应力,然后求最大、最小应力

SMAX=Maximum stress (direct stress + bending stress)

SMIN=Minimum stress (direct stress - bending stress)

命令流

ETABLE,SDIR,SMISC,31

ETABLE,SBZT,SMISC,34

SADD,YL_MAX,SDIR,SBZT

SADD,YL_MIN,SDIR,SBZT,,-1

*do,K,1,单元数,1

*GET,YLMAX(K),ELEM,K,ETABLE,YL_MAX

*GET,YLMIN(K),ELEM,K,ETABLE,YL_MIN

*ENDDO

2、BEAM188单元剪应力怎么查看?

BEAM188单元输出中帮助文件的输出序号如下:

Table 188.2. BEAM188 Item and Sequence Numbers for the ETABLE and ESOL Commands Name Item I J

FX SMISC 1 14

MY SMISC 2 15

MZ SMISC 3 16

MX SMISC 4 17

SFZ SMISC 5 18

SFY SMISC 6 19

EX SMISC 7 20

KY SMISC 8 21

KZ SMISC 9 22

KX SMISC 10 23

SEZ SMISC 11 24

SEY SMISC 12 25

Area SMISC 13 26

BM SMISC 27 29

BK SMISC 28 30

请教:怎么没有剪应力SX,SXZ,SXY的输出序号?怎么查看计算结果的剪应力?

------------------

不需要到ETABLE 定义

sx是正应力sy,sz剪应力。直接在后处理中显示sy,sz 应力即可得到

------------------

因为对于梁截面考虑剪应力时,计算比较复杂,应该时随截面坐标变化的,所以不是节点的量,因此,对于etable中只给出了节点处的剪力,也就是说,对于梁单元,在节点处考虑截面切应力是无法得到的,如果想得到只能用实体单元模拟梁单元!

------------------

3\LINK8和beam4的应力、应变图与值怎么查看?

我求出LINK8和beam4的结果后,但只查出其变形结构和自由度的结果,不知其应力、应变的图与值怎么查看。望指点

beam4只能看到变形结构和自由度的结果,这是梁单元的基本结果,这两种单元不考虑实体的受力情况,如果要看应力应变云图,又要节省时间可以采用BEAM188/189梁,这种单元应用了子结构技术考虑了离散截面的受力分析,结果根实体计算吻合的较好。

至于LINK单元,由于只受轴向力,所以应力应变都是一样的,无需观看,程序也就没有这个功能。

GOOD LUCK!

beam4和link8的应力应变要通过单元表来显示。以beam4单元为例,

SDI R Axial direct stress

SBYT Bending stress on the element +Y side of the beam

SBYB Bending stress on the element -Y side of the beam

SBZT Bending stress on the element +Z side of the beam

SBZB Bending stress on the element -Z side of the beam

通过单元表:etable,a,ls可以显示,具体看帮助!

---------------------------

4、ANSYS中任意应力问题

如果想显示梁单元的应力等值线图,请打开实际形状显示功能(PLotCtrl->Style->Size and Shape->/ESHAPE选为ON),然后即可绘制。

注意梁单元(如BEAM188,BEAM189)的应力结果是在单元坐标系中显示的,即SXX 为轴向正应力,SXY,SXZ为截面剪应力,没有其他应力分量。

另外,缺省情况下,只输出SXX,如果想观察SXY,SXZ,请将BEAM188或189的KEYOPT (4)选为Include both(以这两个单元为例,其他单元可能不同,请看帮助文件,推荐使用BEAM188,BEAM189,这是功能最强的梁单元)。

至于壳的应力显示也类似,请打开实际形状显示功能,即可如同在实体上一样显示结果,您可以很清楚地看出不同位置、高度的应力值。

当然如果你只想画出顶部、中部或底部的应力图也可以,以shell63为例,首先需关闭powergraphics(Toolbar上点POWRGRPH,选择OFF),然后进入General

PostProc->Option for outp->SHELL中选择位置即可。

5、BEAM188单元应力理论解?

1,BEAM188单元梁截面的理论解是不是这样?

σ=FX/A+MY/WY+MZ/WZ?

以下是我基于此编的提取截面应力的命令流,不知道是不是正确,请指教,(见附件),但我这样提取出的应力在局部地方与PLESOL,S,X,中显示的有很大出入,(其中有一个工况,显示为

-150,提出来的为-170,此处为位移约束处).其它地方都只是小数后第三位的差别.那么请教

高手,在约束处是不是有其它的应力?

2,在ANSYS中计算出的静态应力,还要不要再去考虑稳定系数?

3,在各个单枝计算通过的情况下,还要不要考虑整体的稳定性问题?

怎么考虑,(我是用ANSYS进行塔式起重机的受力分析,刚学),请各位高手不吝指教.谢谢! beam188单元可以考虑剪切变形,也可以自己定义截面并且在截面上划分网格,和普通的梁单元不同,普通的梁单元时通过截面的某些几何的特性比如惯性矩、面积等来求解的,beam188单元不是。

BEAM188 不像BEAM44那样直接提供最大应力和最小应力,是要自己经过单元表处理才能得到的。

SDIR(轴向应力) is the stress component due to axial load

SDIR = FX/A, where FX is the axial load (SMISC quantities 1 and 14) and A is the area of the cross section

SBYT and SBYB are bending stress components.<BR>

SBYT = -MZ * ymax / Izz

SBYB = -MZ * ymin / Izz

SBZT = MY * zmax / Iyy

SBZB = MY * zmin / Iyy

BENDING STRESS(弯曲应力)=1/2(SBYT+SBYB)

SMAX(最大应力)=SDIR(轴向应力) + BENDING STRESS(弯曲应力)

SMIN (最小应力)=SDIR(轴向应力) - BENDING STRESS(弯曲应力)

所以最大应力和最小应力都是要通过一系列单元表操作才能算出。

-----------------------------

我和beam打交道很多。根据我的理解,beam4(传统梁单元)和beam189(Timoshenko梁单元)都是才用了材料力学的平截面假定,因此楼主的公式不能说错。当然它们的理论基础不同,主要表现是其形函数不一样。

a51308所说的

SMAX(最大应力)=SDIR(轴向应力) + BENDING STRESS(弯曲应力)

SMIN (最小应力)=SDIR(轴向应力) - BENDING STRESS(弯曲应力)

是不是只适用于矩形截面呢?对于圆型截面等好像就不太精确了吧

6、请高手指点:beam188的mises应力能输出吗?

请高手指点:beam188的mises应力能输出吗?还有mises应变和塑性应变.

----------------------

粱单元是不能直接输出MISES应力的,因为粱单元是基于初等粱理论的,只能输出内力,然后按照材料力学的知识有内力计算应力。

--------------------------

梁单元是不能直接输出Mises应力,但却不尽能输出内力,并且能直接输出轴应力,对于BEAM188和BEAM189单元,还能输出剪应力:

1、对于BEAM3和BEAM4,使用单元表ETable抽取LS或NMISC项,然后Contour

Plot--->Line Elem Res;

2、对于BEAM188和BEAM189,用List Results--->Section Solution命令列出轴应力或剪应力.

ansys 怎样提取某个节点的应力和应变(网络软件)

ansys 怎样提取某个节点的应力和应变? 时间:2010-11-14 来源:网络浏览次数: 次 1. 最简单的办法是使用NSORT,打印出结果,可以通过控制使其输出到文件 2. 使用apdl能复杂一点,下面是以前经常用的一段命令流,参考着修改一下吧*CREATE,GET_node_inf,mac, *GET,Nnod,NODE,0,COUNT !获取所选择的节点总数 *DIM,S_Xyz,ARRAY,NNOD,5 !定义1个数组存放数据 *GET,Nd,NODE,0,NUM,MIN !获取最小的节点编号 *DO,I,1,Nnod,1 S_Xyz(I,1)=Nd !将节点列表放数组第1列 S_Xyz(I,2)=NX(Nd) !节点的X坐标放数组第2列 S_Xyz(I,3)=NY(Nd) !节点的Y坐标放数组第3列 S_Xyz(I,4)=NZ(Nd) !节点的Z坐标放数组第4列 !*GET,S_Xyz(I,5),NODE,ND,S,EQV !节点的von mises值放数组第5列 *GET,S_Xyz(I,5),NODE,ND,U,SUM !节点的总变形值值放数组第5列 Nd=NDNEXT(Nd) !读出下一个节点编号 *ENDDO *END *CREATE,OUT_node_inf,mac, *CFOPEN,node_info,txt,, *VWRITE,S_Xyz(1,1),S_Xyz(1,2),S_Xyz(1,3),S_Xyz(1,4),S_Xyz(1,5) (F10.0,3F15.4,E15.5) *CFCLOS *END GET_node_inf OUT_node_inf /delete,GET_node_inf,mac /delete,OUT_node_inf,mac 另附 1.先对节点的值进行SORT,在提取最大的值即可。 最大应力节点编号及其数值的提取:

ANSYS中杆梁壳单元内力的输出

杆梁壳单元内力的输出 计算完成后,就可以对杆梁壳单元进行后处理,显示位移、应力(需打开单元开关显示开关)的操作和普通的单元的后处理是一样的。但其内力的输出和显示需要进行特殊的处理。首先要保证在定义单元类型时,打开了内力输出的选项;其次,在完成计算后需要通过定义单元表的方法来提取。 一、定义输出选项 Beam4单元说明的input summary中可以看到关于内力输出的开关选项说明: 二、定义单元表 查看对应项和序号:在单元说的后的单元输出表中查到MFOR(X,Y,Z)和MMOM(X,Y,Z)对应的项和序列号如下表,注意I和J节点上对应的序列号不同。 GUI方式如下图: 命令流过程如下: (I节点处结果) Etable,forx_i,smisc,1 !x方向剪力(即轴力) Etable,fory_i,smisc,2 !y方向剪力 Etable,forz_i,smisc,3 !z方向剪力 Etable,momx_i,smisc,4 !x方向弯矩 Etable,momy_i,smisc,5 !y方向弯矩 Etable,momz-i,smisc,6 !z方向弯矩

(J节点处结果) Etable,forx_j,smisc,7 !x方向剪力(即轴力) Etable,fory_j,smisc,8 !y方向剪力 Etable,forz_j,smisc,9 !z方向剪力 Etable,momx_j,smisc,10 !x方向弯矩 Etable,momy_j,smisc,11 !y方向弯矩 Etable,momz-j,smisc,12 !z方向弯矩 三、绘制内力图 对线单元和面单元,其绘制单元表的结果的命令是不一样的。 线单元的内力云图的绘制为:PLLS. 面单元的内力云图的绘制为:PLETAB 四、注意事项 1.弯矩图的绘制与显示比例 在绘制弯矩图时(其他内力图也一样),可以给定一个显示比例系数Fact(默认等于1),当为负值时,反向显示,数值为放大系数。同时还须注意的是,弯矩图的显示还与单元坐标系的方向有关,因此,如果同一段梁中各个单元的单元坐标系不一致(可以通过改变线的方向来改变线单元的单元坐标系),还将导致弯矩图显示不连续。壳单元的后处理中更加要注意单元坐标系的方向,而且如果面上的壳单元划分不整齐,还将导致提取出来的内力图方向不统一,没有参考价值。 2.划分数的影响 要特别注意梁单元划分数对弯矩图的影响,除了因为有限元法是一种把连续结构体离散化的近似求解方法,还因为弯矩图是以梁单元的I和J节点结果进行连线绘制的。 可通过例子中用10份,2份,100份进行对比。

ansys各种结构单元介绍

一、单元分类 MP - ANSYS/Multiphysics DY - ANSYS/LS-Dyna3D FL - ANSYS/Flotran ME - ANSYS/Mechanical PR - ANSYS/Professional PP - ANSYS/PrepPost ST - ANSYS/Structural EM - ANSYS/Emag 3D ED - ANSYS/ED

LINK1 —二维杆单元 单元描述: LINK1单元有着广泛的工程应用,比如:桁架、连杆、弹簧等等。这种二维杆单元是杆轴方向的拉压单元,每个节点有2个自由度:沿节点坐标系x、y方向的平动。就象在铰接结构中的表现一样,本单元不承受弯矩。单元的详细特性请参考理论手册。三维杆单元的描述参见LINK8。 下图是本单元的示意图。 PLANE2 —二维6节点三角形结构实体单元 单元描述: PLANE2是与8节点PLANE82单元对应的6节点三角形单元。单元的位移特性是二次曲线,适合于模拟不规则的网格(比如由不同的CAD/CAM系统得到的网格)。 本单元由六个节点定义,每个节点有2个自由度:沿节点坐标系x、y 方向的平动。本单元可作为平面单元(平面应力或平面应变)或者作为轴对称单元使用。本单元还具有塑性、蠕变、膨胀、应力刚化、大变形、大应变等功能。详细特性请参考理论手册。 下图是本单元的示意图。

BEAM3二维弹性梁单元 BEAM3是一个轴向拉压和弯曲单元,每个节点有3个自由度:沿节点坐标系x、y方向的平动和绕z轴的转动。单元的详细特性请参考理论手册。其它的二维梁单元是塑性梁单元(BEAM23)和变截面非对称梁单元(BEAM54)。 下图是本单元的示意图。 BEAM4三维弹性梁单元 单元描述: BEAM4是一个轴向拉压、扭转和弯曲单元,每个节点有6个自由度:沿节点坐标系的x、y、z方向的平动和绕x、y、z轴的转动。本单元具有应力刚化和大变形功能。在大变形(有限转动)分析中允许使用一致切线刚度矩阵选项。本单元的详细特性请参考理论手册。变截面非对称弹性梁单元的描述参见BEAM44,三维塑性梁单元的描述参见BEAM24。

第七章 ansys梁单元分析和横截面形状

第七章梁分析和横截面形状 7.1 梁分析概况 梁单元用于生成三维结构的一维理想化数学模型。与实体单元和壳单元相比,梁单元求解效率更高。 本章的内容只适用于 BEAM44(三维变截面单元)和另两种有限元应变单元 BEAM188 和 BEAM189 (三维梁单元)。这些梁单元与ANSYS 的其他梁单元相比,提供了更健壮的非线性分析能力,显著地改进了截面数据定义功能和可视化特性。参阅《ANSYS Elements Reference》中关于 BEAM44、BEAM188 和 BEAM189 单元的描述。 注意--如要对 BEAM44 单元采用本章论述的横截面定义功能,必须清楚不能应用这些功能来定义斜削的截面。此外,本章所述的后处理可视化功能不能应用于 BEAM44 单元。 注意--用户定义横截面功能可能不能应用CDWRITE命令。 7.2 何为横截面 横截面定义为垂直于梁轴的截面的形状。ANSYS提供有11种常用的梁横截面库,并支持用户自定义截面形状。当定义了一个横截面时,ANSYS 建立一个9节点的数值模型来确定梁的截面特性(Iyy,Izz 等),并求解泊松方程得到扭转特征。 图7-1是一个标准的Z型横截面,示出了截面的质心和剪切中心,以及计算得到的横截面特性。 图7-1 Z型横截面图

横截面和用户自定义截面网格将存储在横截面库文件中。如果用BEAM44、BEAM188、BEAM189 单元来模拟线实体,可用LATT命令将梁横截面属性赋予线实体。 7.3 如何生成横截面 用下列步骤生成横截面: 1、定义截面并与代表相应截面形状的截面号(Dection ID)关联。 2、定义截面的几何特性数值。 ANSYS 提供了表7-1 所列出的命令,可以完成横截面生成、查看、列表和操作横截面库的功能。 表7-1 ANSYS 横截面命令 命令GUI菜单路径目的 PRSSOL MainMenu>GeneralPostproc>ListRes ults> SectionSolutionUtilityMenu> List>Results>SectionSolution 打印梁截面结果 (BEAM44不支持) SECTYP E MainMenu>Preprocessor>Sections>- Beam-CommonSectnsMainMenu> Preprocessor>Sections>-Beam-Cust omSectns>ReadSectMesh 用SEID关联截面子类 型 SECDAT A MainMenu>Preprocessor>Sections>- Beam-CommonSectns 定义截面几何数据 SECOFF SET MainMenu>Preprocessor>Sections>- Beam-CommonSectnsMainMenu> Preprocessor>Sections>-Beam-Cust omSectns>ReadSectMesh 定义梁截面的截面偏 离 SECCON TROLS MainMenu>Preprocessor>Sections>- Beam-Add/Edit 覆盖程序计算的属性 值 SECNUM MainMenu>Preprocessor>-Attribute s-Define>DefaultAttribsMainMenu> Preprocessor>-Modeling-Create>El ements>ElemAttributes 识别关联到一个单元 的SECID

梁结构应力分布ANSYS分析汇总

J I A N G S U U N I V E R S I T Y 先进制造及模具设计制造实验 梁结构应力分布ANSYS分析 学院名称:机械工程学院 专业班级:研1402 学生姓名:XX 学生学号:S1403062 2015年5 月

梁结构应力分布ANSYS分析 (XX,S1403062,江苏大学) 摘要:本文比较典型地介绍了如何用有限元分析工具分析梁结构受到静力时的应力的分布状态。我们遵循对梁结构进行有限元分析的方法,建立了一个完整的有限元分析过程。首先是建立梁结构模型,然后进行网格划分,接着进行约束和加载,最后计算得出结论,输出各种图像供设计时参考。通过本论文,我们对有限元法在现代工程结构设计中的作用、使用方法有个初步的认识。 关键词:梁结构;应力状态;有限元分析;梁结构模型。 Beam structure stress distribution of ANSYS analysis (Dingrui, S1403062, Jiangsu university) Abstract: This article is typically introduced how to use the finite element analysis tool to analyze the stress of beam structure under static state distribution. We follow the beam structure finite element analysis method, established the finite element analysis of a complete process. Is good beam structure model is established first, and then to carry on the grid, then for constraint and load, calculated the final conclusion, the output of images for design reference. In this article, we have the role of the finite element method in modern engineering structural design, use method has a preliminary understanding. Key words: beam structure; Stress state; The finite element analysis; Beam structure model. 1引言 在现代机械工程设计中,梁是运用得比较多的一种结构。梁结构简单,当是受到复杂外力、力矩作用时,可以手动计算应力情况。手动计算虽然方法简单,但计算量大,不容易保证准确性。相比而言,有限元分析方法借助计算机,计算精度高,

Ansys梁分析实例

工程介绍: 某露天大型玻璃平面舞台的钢结构如图1所示,每个分格(图2中每个最小的矩形即为一个分格)x方向尺寸为1m,y方向尺寸为1m;分格的列数(x向分格)=8,分格的行数(y向分格)=5。 钢结构的主梁(图1中黄色标记单元)为高140宽120厚14的方钢管,其空间摆放形式如图3所示;次梁(图1中紫色标记单元)为直径60厚10的圆钢管(单位为毫米),材料均为碳素结构钢Q235;该结构固定支撑点位于左右两端主梁和最中间(如不是正处于X方向正中间,偏X坐标小处布置)的次梁的两端,如图2中标记为 U R处。主梁和次梁之间是固接的。 xyz xyz 玻璃采用四点支撑与钢结构连接(采用四点支撑表明垂直作用于玻璃平面的面载荷将传递作用于玻璃所在钢结构分格四周的节点处,表现为点载荷;试对在垂直于玻璃平面方向的42 KN m的面载荷(包括玻璃自重、钢结构自重、活载 / 荷(人员与演出器械载荷)、风载荷等)作用下的舞台进行有限元分析。(每分格面载荷对于每一支撑点的载荷可等效于1KN的点载荷)。 作业提交的内容至少应包括下面几项: (1)屏幕截图显示该结构的平面布置结构,图形中应反映所使用软件的部分界面,如图2; (2)该结构每个支座的支座反力; (3)该结构节点的最大位移及其所在位置; (4)对该结构中最危险单元(杆件)进行强度校核。 图1

图2 图3 本操作中选用的单位为:(N,mm,MPa)。具体操作及分析求解: 1.更该工作文件和标题。如图1.1-1.5所示

图1.1 图1.2

图1.3 图1.4 图1.5

图1.6 2.选择单元类型。 根据题目要求,选择单元类型为beam-3D-2node-188单元。 执行Main Menu→Preprocessor →Element Type→Add/Edit/Delete →Add ,选择beam-3D-2node-188。如图2.1所示。 图2.1 3.定义材料属性 该钢结构材料为碳素结构钢Q235,则将弹性模量设置为200GPa,泊松比设置为0.3。执行Main Menu→Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic,在EX框中输入2.05e,在PRXY框中输入0.3。操作步骤为如图3.1;3.2所示。

ANSYS_Beam188单元应用

Beam188/189单元基于Timoshenko梁理论(一阶剪切变形理论:横向剪切应变在横截面上是常数,也就是说,变形后的横截面保持平面不发生扭曲)而开发的,并考虑了剪切变形的影响,适合于分析从细长到中等粗细的梁结构。该单元提供了无约束和有约束的横截面的翘曲选项。 Beam188是一种3D线性、二次或三次的2节点梁单元。Beam189是一种3D二次3节点梁单元。每个节点有六个或者七个自由度,包括x、y、z 方向的平动自由度和绕x、y、z 轴的转动自由度,还有一个可选择的翘曲自由度。该单元非常适合线性、大角度转动或大应变非线性问题。 beam188的应力刚化选项在任何大挠度分析中都是缺省打开的,从而可以分析弯曲、横向及扭转稳定问题(进行特征值屈曲分析或(采用弧长法或非线性稳定法)破坏研究)。 Beam188/beam189单元支持弹性、塑性,蠕变及其他非线性材料模型。这种单元还可以采用多种材料组成的截面。该单元还支持横向剪力和横向剪应变的弹性关系,但不能使用高阶理论证明剪应力的分布变化。下图是单元几何示意图:该单元的几何形状、节点位置、坐标体系和压力方向如图所示,beam188 由整体坐标系的节点i 和j 定义。 对于Beam188梁单元,当采用默认的KEYOPT(3)=0,则采用线性的形函数,沿着长度用了一个积分点,因此,单元求解量沿长度保持不变;当KEYOPT(3)=2,该单元就生成一个内插节点,并采用二次形函数,沿长度用了两个积分点,单元求解量沿长度线性变化;当KEYOPT(3)=3,该单元就生成两个内节点,并采用三次形函数,沿长度用了三个积分点,单元求解量沿长度二次变化; 当在下面情况下需要考虑高阶单元内插时,推荐二次和三次选项: 1)变截面的单元; 2)单元内存在非均布荷载(包含梯形荷载)时,三次形函数选项比二次选项提供更好的结果。(对于局部的分布荷载和非节点集中荷载情况,只有三次选项有效); 3)单元可能承受高度不均匀变形时。(比如土木工程结构中的个别框架构件用单个单元模拟时) Beam188单元的二次和三次选项有两个限制: 1)虽然单元采用高阶内插,但是beam188的初始几何按直线处理; 2)因为内节点是不可影响的,所以在这些节点上不允许有边界(或荷载或初始)条件。

ansys etable提取结果

ANSYS etable提取结果 etable提取运算结果 ansys求解完结束后,会把计算结果保存在结果表中,行是单元的编号,列是计算信息,如节点位移、节点力、应力、应变等。 ETABLE这个命令就是把表中的需要的信息取出来,赋值给某个自定义的向量,再通过*GET 命令可以指定某个具体的单元,就可以把该单元的对应计算结果提取出来了。 ETABLE, Lab, Item, Comp 命令选项解释: Lab 自定义的表名,用于后续命令或输出的标题,最多可使用8个字母,不可与预定义的表名称重复。默认的表名是Item和Comp项的前四个字母组合而成的8个字母。如果与用户之前定义的表名相同,本次结果将被包括在同一表中。最多可定义200个不同的表名。以下表名是ANSYS预定义的,不可用作用户自定表名:REFL, STAT, 和ERAS. Lab = REFL 以ETABLE的最新选项重写所有ETABLE命令预定义的表,但保留字段将被忽略,这个命令在载荷步改变后重写表时很方便。Lab = STAT将显示储存的表的值。Lab = ERAS将删除整个表。 Item 选项名称。常用的选项名称见后表。某些选项需要栏目名。Item = ERAS将删除表中的某一栏。 Comp 选项的栏目名(如果需要的话)。常用的栏目名见后表。 说明: 定义单元值的表以便后续处理。单元值表可以被认为是工作表,其行代表所有被选择的单元。其列代表通过ETABLE命令输入表中的单元值。每一列数据有一个用户定义的名称,用于列表和显示。 将数据输入单元表后,你不仅可以列出和显示你的数据,还可以对数据进行许多操作,例如列相加或列相乘[SADD, SMULT],为安全计算定义允许的应力[SALLOW],或者将一列数据和另一列相乘[SMULT]。更多的细节请看ANSYS Basic Analysis Guide。 有很多不同类型的数据结果可以被存在单元表中。例如,许多单元的选项只有一个值(也就是说,每一个单元对应此选项只有一个值)单一值的选项包括:SERR, SDSG, TERR, TDSG, SENE, TENE, KENE, JHEAT, JS, VOLU和CENT. 其余的选项是多个值的(也就是说,这些值在单元中是变化的,每个节点有不同的值)。因为每个单元只能有一个值存在单元表中,多值的选项存入的是平均值(视节点数而定)。例外的是FMAG和所有的单元力选项,它们存入的是相关节点值的和。(这段话的意思是说,单值的单元选项,如单元体积,存入表中的就是这个值;而在单元不同位置有不同值的选项,如应力?,写入表中的是单元的平均值。根本原因在于一个单元只能对应表中的一个数据。) ETABLE命令中可以使用两种数据访问方法,视你想储存的数据不同而不同。一些结果只用通用名就可以访问(要素名法),而另一些结果需要一个标志名和标志数(序列数法)。要素名法用于访问常用的单元数据(也就是说,绝大部分单元类型都有的数据)。所有的单值选项以及一部分多值选项可以用要素名法访问。不同的单元值视计算方法不同和选择集不同而不同。(AVPRIN, RSYS, LAYER, SHELL,和ESEL) 尽管节点值不用单元表也可以很容易地列出和显示,你仍然可能需要利用单元表储存这些节

ansys梁单元

当一个结构构件的一个方向尺寸远远大于另外两个方向的尺寸时,3D构件就可以理想化为1D构件以提高计算效率。这样的单元有两类:以承受轴向拉压作用为主的杆单元,和承受弯曲作用为主的梁单元。 ANSYS提供的单元类型中共有9种梁单元,分别为BEAM3, BEAM4, BEAM23, BEAM24, BEAM44, BEAM54, BEAM161, BEAM188, BEAM189。在结构分析中常用的是BEAM4和BEAM188或BEAM189这三中梁单元。 BEAM4单元 1.BEAM4单元是一种具有拉压弯扭能力的3D弹性单元。每节点6个自由度。 2.BEAM4单元的定义包括:几何位置的确定,单元坐标系的确定,截面特性 的输入。 BEAM4单元包含两个节点(i,j)或三个节点(i,j,k),k为单元的方向节点;单元的截面特性用实常数(REAL)给出,主要包括截面(area),两个 方向的截面惯性矩(IZZ)和(IYY),两个方向的厚度(TKY和TKZ),相对单元坐标系x轴的方向角(THETA),扭转惯性矩(IXX)。其中惯性矩,厚度,方向角都是在单元坐标系下给出的。 3.BEAM4单元坐标系的方向确定如下:单元坐标系X轴由节点i,j连线方 向确定由i指向 j;对于两节点确定的BEAM4单元,若方向角theta=0,则单元坐标系y轴默认平行于整体坐标系的x-y平面;若单元坐标系x 轴与整体坐标系z轴平行,则单元坐标系y轴默认平行整体坐标系的y 轴,z轴由右手法则判定;若用户希望自己来控制单元绕单元坐标系x轴的转动角,则可以通过方向角theta或第三个节点k来实现,i,j,k 确定一个平面,单元坐标系的Z轴就在该平面内。 可以用下列命令查看单元坐标系及截面: /ESHAPE, 1 /PSYMB, ESYS 说明:在指定网格划分属性时,可将某一关键点作为方向点属性赋予所需划分的线,这样就生成包含3个节点的梁单元。(具体见后面) 4.单元压力荷载(pressure)的施加比较特殊。只能用SFBEAM命令来实现, 通过其他方式施加荷载都是无效的,其中LKEY为荷载方向号。 5.beam4单元应力输出:包括轴向正应力,弯曲应力,两者的合应力。 命令:PRESOL,ELEM GUI:LIST RESULT〉ELEM SOLUT〉LINEELEM RESULT

ANSYS梁单元的选择

ANSYS中有七八种梁单元,它们的特点和适用范围各不相同。了解这些单元之间的异同,有助于正确选择单元类型和得到较为理想的计算结果。 梁是一种几何上一维而空间上二维或三维的单元,主要用于模拟一个方向长度大于其它两方向的结构形式。也就是说,主要指那些细长、像柱子一样的结构,只要横截面的尺寸小于长度尺寸,就可以选用梁单元来模拟(这在一定意义上和壳单元在一个方向上比另外两个方向都薄原理相似)。通常来讲,横截面尺寸需要小于长度的1/20或1/30,这里的长度是指两支撑点间的物理意义上的距离。梁单元本身可以进行任意的网格划分,且不支配梁理论的适用性;反过来,就像刚才提到的那样,物理尺寸和特性将决定选择哪种单元更为合适。 有两种基本的梁单元理论:铁木辛格(剪切变形)理论和欧拉-伯努力理论。ANSYS 中的如下单元是基于欧拉-伯努力梁理论: 1.2D/3D elastic BEAM3/4 2.2D plastic BEAM23 3.2D/3D offset tapered,unsymmetric BEAM54/44 4.3D thin-walled,plastic BEAM24 欧拉-伯努力梁理论建立在如下假定的基础上: 1.单元形函数为Hermitian多项式,挠度是三次函数; 2.弯矩可以线性改变; 3.不考虑横截面剪切变形; 4.扭转时截面不发生翘曲; 5.只具有线性材料能力(部分单元BEAM23/24具有有限的非线性材料能力); 6.非常有限的前后处理能力(除了BEAM44)。 ANSYS中有两种梁单元(BEAM188和BEAM189)是基于铁木辛格(剪切变形)理论,这种梁理论主要建立在如下假定基础上: 1.单元形函数为拉格朗日插值多项式,具有线性或二次的位移函数; 2.横向剪应力沿厚度方向为常数(一阶剪切变形梁单元); 3.可以模拟自由或约束扭转效应; 4.支持丰富的模型特性(塑性和蠕变); 5.强大的前生处理能力。 使用中需要注意: (1)铁木辛格(剪切变形)理论是基于一阶剪切变形理论的,它不能准确地求解短粗梁,因此,ANSYS在帮助里指出该类型梁的适用范围是:GAl2/EI>30,对于那些高跨比较大的梁应选用实体单元求解; (2)ANSYS中2结点的铁木辛格(剪切变形)单元BEAM188对网格密度的依赖性较强,选用时单根构件单元数应不小于5或不小于3,并且打开KEYOPT(3),否则误差会较大。

ansys怎样提取某个节点的应力和应变

ansys 怎样提取某个节点的应力和应变 时间:2010-11-14 来源:网络浏览次数: 次 1.最简单的办法是使用NSORT,打印出结果,可以通过控制使其输出到文件 2. 使用apdl能复杂一点,下面是以前经常用的一段命令流,参考着修改一下吧*CREATE,GET_node_inf,mac, *GET,Nnod,NODE,0,COUNT !获取所选择的节点总数 *DIM,S_Xyz,ARRAY,NNOD,5 !定义1个数组存放数据 *GET,Nd,NODE,0,NUM,MIN !获取最小的节点编号 *DO,I,1,Nnod,1 S_Xyz(I,1)=Nd !将节点列表放数组第1列S_Xyz(I,2)=NX(Nd) !节点的X坐标放数组第2列S_Xyz(I,3)=NY(Nd) !节点的Y坐标放数组第3列S_Xyz(I,4)=NZ(Nd) !节点的Z坐标放数组第4 列 !*GET,S_Xyz(I,5),NODE,ND,S,EQV !节点的 von mises值放数组第5列 *GET,S_Xyz(I,5),NODE,ND,U,SUM !节点的总变形值值放数组第5列 Nd=NDNEXT(Nd) !读出下一个节点编号 *ENDDO *END *CREATE,OUT_node_inf,mac, *CFOPEN,node_info,txt,, *VWRITE,S_Xyz(1,1),S_Xyz(1,2),S_Xyz(1,3),S_Xyz(1,4),S_Xyz(1,5) ,, *CFCLOS *END GET_node_inf OUT_node_inf /delete,GET_node_inf,mac /delete,OUT_node_inf,mac 另附 1.先对节点的值进行SORT,在提取最大的值即可。 最大应力节点编号及其数值的提取:

ANSYS_MPC连接梁壳单元实例

2010-05-21 22:12:04 作者:zhz2004 来源:机械CADl论坛浏览次数:621 网友评论0 条 近日在论坛看到些用ansys的坛友问及beam单元和shell单元、beam单元和solid单元、shell单元和solid单元的连接问题。其实解决此类问题的方法不只一种,耦合约束方程、绑定接触都是有效的方法。其中耦合约束方程适用于小变形,而绑定接触即可用于小变形,也可用于大变形的几何非线性分析。下面,我将本人所做的用MPC方法连接shell单元和b eam单元的详细步骤提供给大家,与各位共勉。 添加shell单元(略) 添加beam单元(略) 添加shell实常数 添加shell实常数:shell厚度 添加beam截面:圆钢 内经、外径及网格密度

预览网格 开始建模:转动工作平面工作平面z轴向上 建立圆面 继续: 将面拉伸成体 定义拉伸高度:0.5m 删除体,留面 显示面 删除空圆柱的顶面和底面

创建点:用于建立梁单元的第一个点。两点之间创建(正中)。 复制点:用于建立梁单元的第二个点。复制:Y方向0.5m 连接两点,用于创建梁单元。 继续 定义材料属性,有点晚^_^ 准备划分壳单元 划分壳,映射方法

准备划分梁单元 划分梁单元 选中要划分梁单元的线 完成,定义mpc接触 GUI:MainMenu→Pre-processor→Modeling→Create→ContactPair,进入接触向导,然后按照提示与帮助说明进行选择目标面接触面等操作[4]。在创建接触对前,单击Optionalsetting按钮弹出Cotactproperties对话框,将Basic选项卡中的Contactalgorithm即接触算法设置为MPCalgorithm即可。操作完成后,ANSYS自动定义目标单元与接触单元类型,并生成接触对。 定义主控点 选择梁单元的下面一个关键点(当然也可以选择梁单元的最下一个node,相应选项要选pick existing node...) 选择梁单元的下面一个关键点 继续下一个: 施加集中力x方向10000n 计算结果,位移云图 显示梁截面的位移云图 显示梁单元形状

ANSYS梁单元如何提取应力

ANSYS梁单元如何提取应力 问题1:梁BEAM188的应力如何提取?最大、最小应力如何提取? 就这个问题我上网找了一下,主要在https://www.wendangku.net/doc/aa5077951.html,上找,找了几个帖子,先贴过来看看ANSYS梁单元如何提取应力 1、如何取出梁单元中的最大应力作为优化参数值? https://www.wendangku.net/doc/aa5077951.html,/forum/viewthread.php?tid=133155&pid2=650360&keywords= beam188%20%E6%A2%81%20%E5%BA%94%E5%8A%9B&searchstyle=3&i ssearch=true#pid650360 问: 我用的188单元作谐响应分析,求解结束后,我想取出模型中的最大应力值作为参数,然后在接下来的优化当中用该最大应力作为状态变量,请问我应该怎么做啊,注意优化时,对应于每组参数值,最大应力点的位置都可能不同. 请高手指点一下谢谢 ---------- 以下程序段分别得到目标变量(总体积),约束变量SV的最大应力值。 /POST1 SET, NSORT,U,Y *GET,DMAX,SORT,,MAX ETABLE,VOLU,VOLU ETABLE,SMAX_I,NMISC,1 ETABLE,SMAX_J,NMISC,3 ssum *GET,VOLUME,SSUM,,ITEM,VOLU ESORT,ETAB,SMAX_I,,1 !按照单元SMAX_I的绝对值大小进行排序 *GET,SMAXI,SORT,,MAX ESORT,ETAB,SMAX_J,,1 *GET,SMAXJ,SORT,,MAX SMAX=SMAXI>SMAXJ !约束变量SV:SMAX=最大应力值 FINISH =============== 你这个程序段是针对beam3 吧,对 beam188好像不行。 对beam188,要求所有单元的最大、最小应力可以用命令 allsel

ansys提取最大应力值

ANSYS提取最大应力最大位移值 用ansys的apdl方式如何直接获得最大应力和最大位移点的节点编号? 在后处理中,用Query Results可以找到最大、最小应力和位移的节点号,及其相应值。然后用*Get提取该节点号的各项计算值。 最大应力节点编号的提取: allsel nsort,s,eqv,0,0,all *get,max_eqv,sort,0,imax 最大位移节点编号的提取: allsel nsort,u,sum,0,0,all *get,max_u,sort,0,imax 在书上看到GUI的操作如下: (1)Main Menu>General PostProc>Element Table>Define Table, 在弹出来的对话框中User label for item输入变量名,假定为smaxe,下面Results datas item中左侧的框内选By sequence num 右侧选LS, 并在下方出现的LS,后面输入1 ,单击OK (2)General Postproc>List Results>Sorted Listing>Sort Elems

在弹出来的对话框中由上到下依次为“Descending order”“yes”“(空着)”“smaxe”,单击OK (3)Utility Menu>Parameters>Get Scalar Data 在弹出来的对话框中选择Results Data>other operations,单击OK就完成了。 先用 Nsort 将位移排序,再用 *get 取得最大值,比如,要查找 Ux 的最大值: NSORT,U,x,0 ! 降序排列 *get,ux_max,SORT,0,MAX ! 最大值 *get,ux_imax,SORT,0,IMAX ! 对应节点号 在后处理中,用Query Resulys可以找到最大、最小应力和位移的节点号,及其相应值。然后用*Get提取该节点号的各项计算值。 最大应力节点编号的提取: allsel nsort,s,eqv,0,0,all *get,max_eqv,sort,0,imax 最大位移节点编号的提取: allsel nsort,u,sum,0,0,all *get,max_u,sort,0,imax

ansys提取节点应力

ansys提取节点应力 ?| ?浏览:530 ?| ?更新:2013-12-11 15:02 GUI操作:在General Postproc——Query Results——Subgrid Solu,选择你想显示的节点。 命令流:1. 最简单的办法是使用NSORT,打印出结果,可以通过控制使其输出到文件 2. 使用apdl能复杂一点,下面是以前经常用的一段命令流,参考着修改一下吧 *CREATE,GET_node_inf,mac, *GET,Nnod,NODE,0,COUNT !获取所选择的节点总数 *DIM,S_Xyz,ARRAY,NNOD,6 !定义1个数组存放数据 *GET,Nd,NODE,0,NUM,MIN !获取最小的节点编号 *DO,I,1,Nnod,1 S_Xyz(I,1)=Nd !将节点列表放数组第1列 S_Xyz(I,2)=NX(Nd) !节点的X坐标放数组第2列 S_Xyz(I,3)=NY(Nd) !节点的Y坐标放数组第3列 S_Xyz(I,4)=NZ(Nd) !节点的Z坐标放数组第4列 *GET,S_Xyz(I,5),NODE,ND,S,EQV !节点的von mises值放数组第5列 *GET,S_Xyz(I,6),NODE,ND,U,SUM !节点的总变形值值放数组第6列 Nd=NDNEXT(Nd) !读出下一个节点编号 *ENDDO *END *CREATE,OUT_node_inf,mac, *CFOPEN,node_info,txt,, *VWRITE,S_Xyz(1,1),S_Xyz(1,2),S_Xyz(1,3),S_Xyz(1,4),S_Xyz(1,5) (F10.0,3F15.4,E15.5) *CFCLOS *ENDGET_node_infOUT_node_inf/delete,GET_node_inf,mac/delete,OUT_node_inf,mac

第七章ansys梁单元分析和横截面形状

梁单元用于生成三维结构的一维理想化数学模型。与实体单元和壳单元相比,梁单元求解效率更高。 本章的内容只适用于BEAM44(三维变截面单元)和另两种有限元应变单元BEAM188 和BEAM189 (三维梁单元)。这些梁单元与ANSYS 的其他梁单元相比,提供了更健壮的非线性分析能力,显著地改进了截面数据定义功能和可视化特性。参阅《ANSYS Elements Reference 》中关于BEAM44 、BEAM188 和BEAM189 单元的描述。 注意-- 如要对BEAM44 单元采用本章论述的横截面定义功能,必须清楚不能应用这些功能来定义斜削的截面。此外,本章所述的后处理可视化功能不能应用于BEAM44 单元。 注意-- 用户定义横截面功能可能不能应用CDWRITE 命令。 横截面定义为垂直于梁轴的截面的形状。ANSYS 提供有11种常用的梁横截面库,并支持用户自定义截面形状。当定义了一个横截面时,ANSYS 建立一个9节点的数值模型来确定梁的截面特性(Iyy ,Izz 等),并求解泊松方程得到扭转特征。 图7-1 是一个标准的Z 型横截面,示出了截面的质心和剪切中心,以及计算得到的横截面特性。

横截面和用户自定义截面网格将存储在横截面库文件中。如果用BEAM44、BEAM188、BEAM189 单元来模拟线实体,可用LATT 命令将梁横截面属性赋予线实体。 用下列步骤生成横截面: 1、定义截面并与代表相应截面形状的截面号(Dection ID)关联。 2、定义截面的几何特性数值。 ANSYS提供了表7-1所列出的命令,可以完成横截面生成、查看、列表和操作横截面库的功能。 表7-1 ANSYS横截面命令 PE 命令GUI菜单路径 MainMenu >Ge neralPostproc>List PRSSO Results> Sectio nSolutio nUtilityMe nu> SECTY List>Results>Sectio nSolutio n MainMenu >Preprocessor>Secti o n s>-Beam-Com mon Sect nsMa 目的 打印梁截面结果 (BEAM44不支持) 用SEID关联截面子类

ansys梁单元应力提取

ANSYS梁单元如何提取应力(转载) ANSYS梁单元如何提取应力(转载) 我用的188单元作谐响应分析,求解结束后,我想取出模型中的最大应力值作为参数,然后在接下来的优化当中用该最大应力作为状态变量,请问我应该怎么做啊,注意优化时,对应于每组参数值,最大应力点的位置都可能不同. 请高手指点一下谢谢 以下程序段分别得到目标变量(总体积),约束变量SV的最大应力值。 /POST1 SET, NSORT,U,Y *GET,DMAX,SORT,,MAX ETABLE,VOLU,VOLU ETABLE,SMAX_I,NMISC,1 ETABLE,SMAX_J,NMISC,3 ssum *GET,VOLUME,SSUM,,ITEM,VOLU ESORT,ETAB,SMAX_I,,1 !按照单元SMAX_I的绝对值大小进行排序 *GET,SMAXI,SORT,,MAX ESORT,ETAB,SMAX_J,,1 *GET,SMAXJ,SORT,,MAX SMAX=SMAXI>SMAXJ !约束变量SV:SMAX=最大应力值 FINISH =============== 你这个程序段是针对beam3 吧,对beam188好像不行。 对beam188,要求所有单元的最大、最小应力可以用命令 allsel *GET,ZDYL_MAX,SECR,ALL,S,X,MAX *GET,ZDYL_MIN,SECR,ALL,S,X,MAX 但是虽然能用图形显示最大、最小应力截面,却不清楚怎么用命令流提取出这个截面和他所在的单元来,盼高手提示! 另外也可以用单元表求出轴应力和弯曲应力,然后求最大、最小应力 SMAX=Maximum stress (direct stress + bending stress) SMIN=Minimum stress (direct stress - bending stress) 命令流 ETABLE,SDIR,SMISC,31 ETABLE,SBZT,SMISC,34 SADD,YL_MAX,SDIR,SBZT SADD,YL_MIN,SDIR,SBZT,,-1 *do,K,1,单元数,1 *GET,YLMAX(K),ELEM,K,ETABLE,YL_MAX

ANSYS杆单元,梁单元简介

ANSYS中提供的杆单元简介 LINK1二维杆单元,应用于平面桁架,杆件,弹簧等结构,承受轴向的拉力和压力,不考虑弯矩,每个节点具有X和Y位移方向的两个自由度,单元不能承受弯矩,只用于铰链结构应力沿单元均匀分布。 具体应用时存在如下假设和限制: 1.杆件假设为均质直杆,在其端点受轴向载荷。 2.杆长应大于0,即节点i,j不能重合 3.杆件必须位于x-y平面且横截面积要大于0 4.温度沿杆长方向线性变化 5.位移函数的设置使得杆件内部的应力为均匀分布 6.初始应变也参与应力刚度矩阵的计算 LINK8三维杆单元,应用于空间桁架,是 LINK2的三维情况,用来模拟桁架,缆索,连杆,弹簧等,这种三维杆单元是杆轴方向的拉压单元,每个节点有三个自由度,即沿节 点坐标系x,y,z,方向的平动,就像在铰链结构中表现的一样,本单元不承受弯 矩。本单元具有塑性,蠕变,膨胀、应力刚化、大变形和大应变等功能。 具体应用时存在如下假设和限制: 1.杆单元假定为直杆,轴向载荷作用在末端,自杆的一端至另一端均为统一属性 2.杆长应大于0,即节点i,j不能重合 3.横截面积要大于0 4.温度沿杆长方向线性变化 5.位移函数暗含着在杆上有相同的应力 6.即便是对于第一次累计迭代,初始应变也被用来计算应力刚度矩阵 LINK10 三维仅受压或仅受拉杆单元,应用于悬索,它具有独一无二的双线性刚度矩阵特性,使用只受拉选项时,如果单元受压,刚度就消失,以此来模拟缆索的松弛或是链条 的松弛,这一特性对于整个钢缆用一个单元来模拟的钢缆静力问题非常有用,当需 要松弛单元的性能,而不关心松弛单元的运动时,他也可用于动力分析(带有惯性 和阻尼效应)。 如果分析的目的是研究单元的运动(没有松弛单元),那那么应该使用类似于LINK10的不能松弛的单元,如LINK8或PIPE59。对于最终收敛结果是紧绷状态的结构,如果迭代过程中可能出现松弛状态,那么这种静力收敛问题也不能使用LINK10单元。而使用其他单元。 LINK10单元在每个节点上有三个自由度,即沿节点坐标系x,y,z方向的平动,不管仅受拉(揽)选项,还是仅受压(裂口)选项,本单元都不包括弯曲刚度。本 单元具有应力刚化和大变形功能。 具体应用时存在如下假设和限制: 1.单元长度必须大于0,节点i,j不能重合,横截面积要大于0,温度沿杆长方向 线性变化 2.如果ISTRN(单元初始应变,对于揽选项,负的应变值表示其处于松弛状态;对 于裂口选项,正的应变值表示其处于裂开状态)等于0那么的单元的刚度包括在 第一个子步内。对于裂开选项(仅受压时),节点J相对于节点I的正值轴向位 移(在单元坐标系中)往往表示裂口打开. 3.求解程序如下:在第一个子步初始时的单元妆太浓决定于初始应变或裂口的输 入值,如果对于揽选项该值小于0,则对于这个子步来说,单元的刚度认为是

相关文档