文档库 最新最全的文档下载
当前位置:文档库 › 高一数学暑期复习讲义第2讲 一元二次不等式与集合

高一数学暑期复习讲义第2讲 一元二次不等式与集合

高一数学暑期复习讲义第2讲 一元二次不等式与集合
高一数学暑期复习讲义第2讲 一元二次不等式与集合

第2讲 一元二次不等式与集合的含义和表示

(必背)一、当0>a 时,一元二次不等式02>++c bx ax (或0<)的解集

与二次函数c bx ax y ++=2图象及一元二次方程02=++c bx ax 的解的关系:

例1(1)01272>+-x x ;

(2)0322≥+--x x ;

(3)0122<+-x x ;

(4)0222

<+-x x .

例2 已知不等式02<++b ax x 的解集为}21|{<<-x x ,求不等式012<+-ax bx 的解集.

巩固练习

1.解下列不等式:

(1)02732<+-x x ;

(2)0262≤+--x x ;

(3)01442<+-x x ;

(4)0532<+-x x .

2.函数122+--=x x y 的定义域为____________________________.

3.不等式022>++bx ax 的解集为}3

121|{<<-x x ,求b a -.

4.求a 的值,使关于x 的不等式0622<++a x ax )0(≠a 的解集为2|{x .

二、集合

例1、(1)求方程0322=--x x 的解集; (2)求不等式23>-x 的解集.

例2、求方程210x x ++=所有实数解所构成的集合。

例3、已知集合A={}

a a a ++22,2,若3A ∈,求a 的值.

例4、写出集合{},a b 的所有子集。

例5、不等式组210360x x ->??-≤?

的解集为A ,U R =,试求A 及U C A ,并把它们分别表示在数轴上。

高一数学 必修一 第二章《一元二次函数、方程和不等式》训练题 (2)-200708(解析版)

高一数学必修一第二章《一元二次函数、方程和不等式》训练题 (2) 一、选择题(本大题共8小题,共40.0分) 1.使不等式23x?1?2>0成立的x的取值范围是() A. (3 2,+∞) B. (2 3 ,+∞) C. (1 3 ,+∞) D. (?1 3 ,+∞). 2.设集合A={x||3x+1|≤4},B={x|log2x≤3},则A∪B=() A. [0,1] B. (0,1] C. [?5 3,8] D. [?5 3 ,8) 3.若函数f(x)=1 2cos2x+3a(sinx?cosx)+(4a?1)x在[?π 2 ,0]上单调递增,则实数a的取值范 围为 A. [1 7,1] B. [?1,1 7 ] C. (?∞,?1 7 ]∪[1,+∞) D. [1,+∞) 4.已知函数f(x)=1 2 ax2+cosx?1(a∈R),若函数f(x)有唯一零点,则a的取值范围为 A. (?∞,0) B. (?∞,0]∪[1,+∞) C. (?∞,?1]∪[1,+∞) D. (?∞,0)∪[1,+∞) 5.已知函数f(x)={2x+4 x ?5,x>0, ?x2?3x?3,x≤0. 若函数f(x)=?x+m恰有两个不同的零点,则实 数m的取值范围是() A. (0,+∞) B. (?∞,4√3?5) C. (?∞,?2)∪(4√3?5,+∞) D. [?3,?2)∪(4√3?5,+∞) 6.已知集合A={x|x2?x?2>0},B={x|0f(x1)+f(x2)恒成立, 则实数λ的取值范围是( ) A. [?3,+∞) B. (3,+∞) C. [?e,+∞) D. (e,+∞) 二、填空题(本大题共4小题,共20.0分) 9.函数f(x)=x2+2(a?1)x+2在区间(?∞,4]上递减,则a的取值范围是__________ 10.已知a,b,c分别是?ABC三内角A,B,C所对的边,5sin2B?8sinBsinC+5sin2C?5sin2A=0, 且a=√2,则?ABC面积的最大值为________. 11.若直线x a +y b =1(a>0,b>0)过点(1,2),则a+2b的最小值为.. 12.设a+2b=4,b>0,则1 2|a|+|a| b 的最小值为___________. 三、解答题(本大题共7小题,共84.0分)

(完整版)一元二次不等式的经典例题及详解

一元二次不等式专题练习 例1 解不等式:(1)01522 3>--x x x ;(2)0)2()5)(4(3 2 <-++x x x . 例2 解下列分式不等式: (1) 2 2 123+-≤-x x (2) 1 2 731 422<+-+-x x x x 例3 解不等式242+<-x x 例4 解不等式 04125 622<-++-x x x x . 例5 解不等式x x x x x <-+-+2 2232 2. 例6 设R m ∈,解关于x 的不等式03222<-+mx x m . 例7 解关于x 的不等式)0(122>->-a x a ax . 例8 解不等式331042<--x x . 例9 解关于x 的不等式0)(322>++-a x a a x . 例10 已知不等式02 >++c bx ax 的解集是 {})0(><<αβαx x .求不等式 02>++a bx cx 的解集. 例11 若不等式 1 12 2+--<++-x x b x x x a x 的解为)1()31 (∞+-∞,,Y ,求a 、b 的值. 例12不等式022<-+bx ax 的解集为{}21<<-x x ,求a 与b 的值. 例13解关于x 的不等式01)1(2<++-x a ax . 例14 解不等式x x x ->--81032.

例1解:(1)原不等式可化为 0)3)(52(>-+x x x 把方程0)3)(52(=-+x x x 的三个根3 ,2 5 ,0321 =-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分. ∴原不等式解集为? ?????><<-3025x x x 或 (2)原不等式等价于 ?? ?>-<-≠????>-+≠+?>-++2450)2)(4(0 50 )2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{} 2455>-<<--

(完整版)高中数学不等式归纳讲解

第三章不等式 定义:用不等号将两个解析式连结起来所成的式子。 3-1 不等式的最基本性质 ①对称性:如果x>y,那么y<x;如果y<x,那么x>y; ②传递性:如果x>y,y>z;那么x>z; ③加法性质;如果x>y,而z为任意实数,那么x+z>y +z; ④乘法性质:如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;(符号法则) 3-2 不等式的同解原理 ①不等式F(x)<G(x)与不等式G(x)>F(x)同解。

②如果不等式F (x ) < G (x )的定义域被解析式H ( x )的定义域所包含,那么不等式 F (x )<G (x )与不等式F (x )+H (x )<G (x )+H (x )同解。 ③如果不等式F (x )<G (x ) 的定义域被解析式H (x )的定义域所包含,并且H (x )>0,那么不等式F(x)<G (x )与不等式H (x )F (x )<H ( x )G (x ) 同解;如果H (x )<0,那么不等式F (x )<G (x )与不等式H (x)F (x )>H (x )G (x )同解。 ④不等式F (x )G (x )>0与不等式 0)x (G 0)x (F >>或0)x (G 0)x (F <<同解 不等式解集表示方式 F(x)>0的解集为x 大于大的或x 小于小的 F(x)<0的解集为x 大于小的或x 小于大的 3-3 重要不等式

3-3-1 均值不等式 1、调和平均数: )a 1...a 1a 1(n H n 21n +++= 2、几何平均数: n 1 n 21n )a ...a a (G = 3、算术平均数: n )a a a (A n 21n +++= 4、平方平均数: n )a ...a a (Q 2n 2221n +++= 这四种平均数满足Hn ≤Gn ≤An ≤Qn a1、a2、… 、an ∈R +,当且仅当a1=a2= … =an 时取“=”号 3-3-1-1均值不等式的变形 (1)对正实数a,b ,有2ab b a 22≥+ (当且仅当a=b 时 取“=”号)

一元二次不等式练习题含答案

一元二次不等式练习 一、选择题 1.设集合S ={x |-50 B .a ≥13 C .a ≤13 D .02} C .{x |-1≤x ≤2} D .{x |-1≤x <2} 4.若不等式ax 2+bx -2>0的解集为???? ??x |-2a 的解集是{}x |x <-1或x >a ,则( ) A .a ≥1 B .a <-1 C .a >-1 D .a ∈R 6.已知函数f (x )=ax 2+bx +c ,不等式f (x )>0的解集为{}x |-3

二、填空题 8.若不等式2x2-3x+a<0的解集为(m,1),则实数m的值为________. 9.若关于x的不等式ax-b>0的解集是(1,+∞),则关于x的不等式ax+b x-2 >0的解集是 ________. 10.若关于x的方程9x+(4+a)3x+4=0有解,则实数a的取值范围是________. 三、解答题 11.解关于x的不等式:ax2-2≥2x-ax(a<0). . 12.设函数f(x)=mx2-mx-1. (1)若对于一切实数x,f(x)<0恒成立,求m的取值范围; (2)若对于x∈[1,3],f(x)<-m+5恒成立,求m的取值范围.

高中数学不等式知识点总结

弹性学制数学讲义 不等式(4课时) ★知识梳理 1、不等式的基本性质 ①(对称性)a b b a >?> ②(传递性),a b b c a c >>?> ③(可加性)a b a c b c >?+>+ (同向可加性)d b c a d c b a +>+?>>, (异向可减性)d b c a d c b a ->-?<>, ④(可积性)bc ac c b a >?>>0, bc ac c b a 0, ⑤(同向正数可乘性)0,0a b c d ac bd >>>>?> (异向正数可除性)0,0a b a b c d c d >>< ⑥(平方法则) 0(,1)n n a b a b n N n >>?>∈>且 ⑦(开方法则)0(,1)n n a b a b n N n >>?>∈>且 ⑧(倒数法则) b a b a b a b a 110;110>?<<> 2、几个重要不等式 ①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22 .2a b ab +≤ ②(基本不等式) 2a b ab +≥ ()a b R +∈,,(当且仅当a b =时取到等号). 变形公式: 2a b a b +≥ 2 .2a b ab +??≤ ??? 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、

三相等”. ③(三个正数的算术—几何平均不等式) 33a b c abc ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号). ④()222a b c ab bc ca a b R ++≥++∈, (当且仅当a b c ==时取到等号). ⑤ 3333(0,0,0)a b c abc a b c ++≥>>> (当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号) 0,2b a ab a b <+≤-若则(当仅当a=b 时取等号) ⑦b a n b n a m a m b a b <++<<++<1,(其中000)a b m n >>>>,, 规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>?>?<->当时,或 22. x a x a a x a

高一数学不等式解法例题.doc

典型例题一 例 1 解不等式:( 1)2x3 x2 15 x 0 ;(2) ( x 4)( x 5)2 (2 x)3 0 . 分析:如果多项式 f (x) 可分解为 n 个一次式的积,则一元高次不等式 f ( x) 0 (或f (x) 0 )可用“穿根法”求解,但要注意处理好有重根的情况. 解:( 1)原不等式可化为 x(2x 5)( x 3)0 把方程 x(2 x 5)( x 3) 0 的三个根 x1 0, x2 5 , x3 3顺次标上数轴.然后从右上2 开始画线顺次经过三个根,其解集如下图的阴影部分. ∴原不等式解集为x 5 0或 x 3 x 2 ( 2)原不等式等价于 ( x 4)( x 5)2 (x 2)3 0 x 5 0 x 5 (x 4)( x 2) 0 x 4或 x 2 ∴原不等式解集为x x 5或 5 x 4或x 2 说明:用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正;②对于偶次或 奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿” ,其法如下图. 典型例题二 例 2 解下列分式不等式: ( 1) 3 1 2 ;(2) x2 4x 1 1 x 2 x 2 3x2 7x 2 分析:当分式不等式化为f (x) 0(或0) 时,要注意它的等价变形g( x)

① f ( x) f ( ) g ( ) 0 g( x) x x ② f ( x) f (x) g(x) f ( x) f ( x ) 0或 ( ) ( ) 0 或 g( x) g (x) 0 g (x) f x g x ( 1)解: 原不等式等价于 3 x 3 x 0 x 2 x 2 x 2 x 2 3( x 2) x( x 2) x 2 5x 6 ( x 2)( x 2) (x 2)( x 2) ( x 6)( x 1) 0 (x 6)( x 1)( x 2)(x 2) 0 ( x 2)( x 2) (x 2)( x 2) 0 用“穿根法” ∴原不等式解集为 ( , 2) 1,2 6, 。 ( 2)解法一 :原不等式等价于 2x 2 3x 1 0 3x 2 7x 2 (2x 2 3x 1)(3x 2 7 x 2) 0 2x 2 3x 1 0 2x 2 3x 1 3x 2 7x 2 或 3x 2 7x 2 1 或 1 x 或 x 2 x 2 1 3 ∴原不等式解集为 ( , 1 ) ( 1 ,1) (2, ) 。 3 2 解法二:原不等式等价于 ( 2x 1)( x 1) 0 (3x 1)( x 2) (2x 1)( x 1)(3x 1) (x 2) 0 用“穿根法” ∴原不等式解集为 ( , 1) ( 1 ,1) (2, ) 3 2 典型例题三 例 3 解不等式 x 2 4 x 2

中职数学第二章不等式测验试卷

中职数学第二章不等式单元测验试卷 班级 姓名 学号 得分 一、选择题:(每题3分,共30分) 1、设,a b c d >>,则下列不等式中正确的是 ( ) A .a c b d ->- B .a c b d +>+ C .ac bd > D .a d b c +>+ 2、290x ->的解集是 ( ) A .(3,)±+∞ B .(3,)+∞ C .(,3)(3,)-∞-?+∞ D .(3,)-+∞ 3、不等式2210x x ++≤的解集是 ( ) A .{}1x x ≤- B .R C .? D .{}1x x =- 4、不等式22x +<的解集是 ( ) A .(,1)-∞- B .(1,3)- C .51(,)22-- D .5(,)2-+∞ 5、已知0,0a b b +><则 ( ) A .a b a b >>->- B .a a b b >->>- C .a b b a >->>- D .a b a b ->->> 6、若二次函数223y x x =--,则使0y <的自变量x 的取值范围是 ( ) A .{}13x x -<< B .{}13x x x =-=或 C .{}13x x x <->或 D .R 7、不等式(1)(31)0x x ++≤的解集是 ( ) A .1,3??-∞- ??? B .1,3??-+∞???? C .11,3??--???? D .(]1,1,3??-∞-?-+∞???? 8、若不等式2104 x mx ++≤的解集是?,则实数m 的取值范围是 ( ) A .1m < B .11m m >-<或 C .11m -<< D .11m m ><-或 9、已知{} 23,A x x x Z =-<≤∈,12 a =,则下列关系正确的是 ( ) A .a A ∈ B .a A ? C .a A ≥ D .a A ≤ 10、不等式226101 x x x --<+的解集为 ( )

高一数学 必修一 第二章《一元二次函数、方程和不等式》训练题 (18)-200708(解析版)

高一数学 必修一 第二章《一元二次函数、方程和不等式》训练题 (18) 一、选择题(本大题共9小题,共45.0分) 1. 若a >b ,则下列正确的是( ) A. a 2>b 2 B. ac >bc C. ac 2>bc 2 D. a ?c >b ?c 2. 不等式?2x 2+x +3≤0的解集是( ) A. {x|?1≤x ≤3 2} B. {x|x ≤?1或x ≥3 2} C. {x|x ≤?3 2或x ≥1} D. {x|?3 2≤x ≤1} 3. 下列各函数中,最小值为2的是( ) A. y =x +1 x B. y =sinx +1 sin x ,x ∈(0,π 2) C. y =2√x 2+2 D. y =x ?2√x +3 4. 下列四个结论中正确的个数是( ) (1)对于命题p:?x 0∈R 使得x 02?1≤0,则?p:?x ∈R 都有x 2?1>0; (2)已知X ~N(2,σ2),则P(X >2)=0.5 (3)已知回归直线的斜率的估计值是2,样本点的中心为(4,5),则回归直线方程为y ?=2x ?3; (4)“x ≥1”是“x +1 x ≥2”的充分不必要条件. A. 4 B. 3 C. 2 D. 1 5. 已知集合A ={y |y =1 2},B ={x|x 2<4},则A ∪B = A. (0,2) B. (?2,2) C. (?1,+∞) D. (?2,+∞) 6. 函数f(x)=?x 2+3x ?2a ,g(x)=2x ?x 2,若f(g(x))≥0对x ∈[0,1]恒成立,则实数a 的取 值范围为 A. (?∞,?2] B. (?∞,?1] C. (?∞,0] D. (?∞,1] 7. 已知函数f(x)=xe x +1 2x 2+x +a ,g(x)=xlnx +1,若存在x 1∈[?2,2],对任意x 2∈[1 e 2,e], 都有f (x 1)=g (x 2),则实数a 的取值范围是( ) A. [?3?1 e ?2e 2,e ?3?2e 2] B. (?3?1 e ?2e 2,e ?3?2e 2) C. [e ?3?2e 2,3 2] D. (e ?3?2e 2,3 2) 8. 在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,若a =4,A =π 3,则该三角形面积的最 大值是( ) A. 2√2 B. 3√3 C. 4√3 D. 4√2

高中数学不等式综合复习

不等式专题 一.不等式的基本性质 1. 不等式的基本概念 (1) 不等(等)号的定义:.0;0;0b a b a b a b a b a b a ?>- (2) 不等式的分类:绝对不等式;条件不等式;矛盾不等式. (3) 同向不等式与异向不等式. (4) 同解不等式与不等式的同解变形. 2.不等式的基本性质 (1)a b b a (对称性) (2)c a c b b a >?>>,(传递性) (3)c b c a b a +>+?>(加法单调性) (4)d b c a d c b a +>+?>>,(同向不等式相加) (5)d b c a d c b a ->-?<>,(异向不等式相减) (6)bc ac c b a >?>>0,. (7)bc ac c b a 0,(乘法单调性) (8)bd ac d c b a >?>>>>0,0(同向不等式相乘) (9)0,0a b a b c d c d >><(异向不等式相除) 11(10),0a b ab a b >>? <(倒数关系) (11))1,(0>∈>?>>n Z n b a b a n n 且(平方法则) (12))1,(0>∈>?>>n Z n b a b a n n 且(开方法则) 二.一元二次不等式 1.不等式的解法 (1)整式不等式的解法(根轴法). 步骤:正化,求根,标轴,穿线(偶重根打结),定解. 特例① 一元一次不等式ax >b 解的讨论; 一元一次不等式)0(0≠>+a b ax 的解法与解集形式 当0>a 时,a b x - >, 即解集为?????? ->a b x x | 当00(a ≠0)解的讨论.

高一数学一元二次不等式解法练习题及答案.doc

高一数学一元二次不等式解法练习题及答案 例若<<,则不等式--<的解是1 0a 1(x a)(x )01 a [ ] A a x B x a .<< .<<11 a a C x a D x x a .>或<.<或>x a a 1 1 分析比较与的大小后写出答案. a 1 a 解∵<<,∴<,解应当在“两根之间”,得<<. 选. 0a 1a a x A 11 a a 例有意义,则的取值范围是 .2 x x 2--x 6 分析 求算术根,被开方数必须是非负数. 解 据题意有,x 2-x -6≥0,即(x -3)(x +2)≥0,解在“两根之外”,所以x ≥3或x ≤-2. 例3 若ax 2+bx -1<0的解集为{x|-1<x <2},则a =________,b =________. 分析 根据一元二次不等式的解公式可知,-1和2是方程ax 2+bx -1=0的两个根,考虑韦达定理. 解 根据题意,-1,2应为方程ax 2+bx -1=0的两根,则由韦达定理知 -=-+=-=-=-?? ?????b a a ()()1211122×得

a b ==-1212 ,. 例4 解下列不等式 (1)(x -1)(3-x)<5-2x (2)x(x +11)≥3(x +1)2 (3)(2x +1)(x -3)>3(x 2+2) (4)3x 2-+- -+-3132 511 3 122x x x x x x >>()() 分析 将不等式适当化简变为ax 2+bx +c >0(<0)形式,然后根据“解公式”给出答案(过程请同学们自己完成). 答 (1){x|x <2或x >4} (2){x|1x }≤≤3 2 (3)? (4)R (5)R 说明:不能使用解公式的时候要先变形成标准形式. 例不等式+> 的解集为5 1x 1 1-x [ ] A .{x|x >0} B .{x|x ≥1} C .{x|x >1} D .{x|x >1 或x =0} 分析 直接去分母需要考虑分母的符号,所以通常是采用移项后通分. 解不等式化为+->, 通分得>,即>, 1x 0001 111 22 ----x x x x x ∵x 2>0,∴x -1>0,即x >1.选C . 说明:本题也可以通过对分母的符号进行讨论求解.

中职数学2.2.1不等式的基本性质

2.2.1不等式的基本性质 【学习目标】: 1.复习归纳不等式的基本性质; 2.学会证明这些性质; 3.并会利用不等式的性质解决一些简单的比较大小的问题。 【学习重点】:不等式性质的证明 【课前自主学习】: 1、数轴上右边的点表示的数总左边的点所表示的数,可知: ? a- > b b a a- = b ? a b ? < a- a b b 结论:要比较两个实数的大小,只要考察它们的差的符号即可。2、不等式的基本性质: (1)对称性:b a>?; (2)传递性:? b a,; b > >c (3)同加性:? a; >b 推论:同加性:? > a,; b c >d (4)同乘性:? b ,c a, >0 > ,c a; b ? < >0 推论1:同乘性:? ,0d c b a; >0 > > > 推论2:乘方性:? n N a,0; b ∈ > >+ 推论3:开方性:? b n a,0; > ∈ >+ N 【问题发现】:

【问题导学,练习跟踪】: 例1. 用符号“>”或“<”填空,并说出应用了不等式的哪条性质. (1) 设a b >,3a - 3b -; (2) 设a b >,6a 6b ; (3) 设a b <,4a - 4b -; (4) 设a b <,52a - 52b -. 变式练习(1)设36x >,则 x > ; (2)设151x -<-,则 x > . 例2. 已知0a b >>,0c d >>,求证ac bd >. 变式练习:已知a b >,c d >,求证a c b d +>+. 当堂检测: 1.如果b a >,则下列不等式成立的是( ) A.b a 55-<- B.b a > C.bc ac > D.22bc ac > 2.如果0< B.b a > C.b b a 1 1 >- D.22b a > 3.已知b a ,为任意实数,那么( ) A.b a >是的22b a >必要条件 B.b a >是b a -<-11的充要条件 C.b a >是b a >的充分条件 D.b a >是22b a >的必要条件 归纳小结 强化思想 本次课学了哪些内容?重点和难点各是什么?

高中数学必修1 第二章 方程与不等式微专题1

微专题1 基本不等式的应用技巧 在解答基本不等式的问题时,常常会用加项、凑项、常数的代换、代换换元等技巧,而且在通常情况下往往会考查这些知识的嵌套使用. 一、加项变换 例1 已知关于x 的不等式x +1x -a ≥7在x >a 上恒成立,则实数a 的最小值为________. 答案 5 解析 ∵x >a , ∴x -a >0, ∴x +1x -a =(x -a )+1x -a +a ≥2+a , 当且仅当x =a +1时,等号成立, ∴2+a ≥7,即a ≥5. 反思感悟 加上一个数或减去一个数使和(积)为定值,然后利用基本不等式求解. 二、平方后使用基本不等式 例2 若x >0,y >0,且 2x 2+y 23=8,则x 6+2y 2的最大值为________. 答案 92 3 解析 (x 6+2y 2)2=x 2(6+2y 2)=3·2x 2 ????1+y 23 ≤3·? ?? ??2x 2+1+y 2322=3×????922. 当且仅当 2x 2=1+y 23,即x =32,y =422时,等号成立. 故x 6+2y 2的最大值为92 3. 三、展开后求最值 例3 若a ,b 是正数,则????1+b a ? ???1+4a b 的最小值为( ) A .7 B .8 C .9 D .10 答案 C

解析 ∵a ,b 是正数, ∴????1+b a ????1+4a b =1+4a b +b a +4=5+4a b +b a ≥5+24a b ·b a =5+4=9, 当且仅当b =2a 时取“=”. 四、常数代换法求最值 例4 已知x ,y 是正数且x +y =1,则4x +2+1y +1的最小值为( ) A.1315 B.94 C .2 D .3 答案 B 解析 由x +y =1得(x +2)+(y +1)=4, 即14 [(x +2)+(y +1)]=1, ∴4x +2+1y +1=? ????4x +2+1y +1·14 [(x +2)+(y +1)] =14???? ??4+1+4(y +1)x +2+x +2y +1 ≥14(5+4)=94 , 当且仅当x =23,y =13 时“=”成立,故选B. 反思感悟 通过常数“1”的代换,把求解目标化为可以使用基本不等式求最值的式子,达到解题的目的. 五、代换减元求最值 例5 若实数x ,y 满足xy +3x =3????03. 则3x +1y -3=y +3+1y -3=y -3+1y -3+6≥2(y -3)·1y -3 +6=8,当且仅当y =4,x =37时

一元二次不等式解法及集合运算练习题

必修5《一元二次不等式及其解法》练习卷 知识点: 1、一元二次不等式:只含有一个未知数,并且未知数的最高次数是2的不等式. 2、二次函数的图象、一元二次方程的根、一元二次不等式的解集间的关系: 判别式24b ac ?=- 0?> 0?= 0?< 二次函数2y ax bx c =++ ()0a >的图象 一元二次方程20ax bx c ++= ()0a >的根 有两个相异实 数根 1,22b x a -±? = ()12x x < 有两个相等实 数 根 122b x x a ==- 没有实数 根 一元二次不等 20ax bx c ++> ()0a > {} 1 2 x x x x x <>或 2b x x a ??≠-??? ? R

式的解集 20ax bx c ++< ()0a > {}1 2x x x x << ? ? 同步练习: 1、不等式2654x x +<的解集为( ) A .41,,32????-∞-+∞ ? ????? B .41,32??- ??? C .14,,23????-∞-+∞ ? ????? D .14,23??- ??? 2、设集合{}12x x A =≤≤,{}0x x a B =-<,若A B ≠?,那么实数a 的取值范围是( ) A .()1,+∞ B .[)2,+∞ C .(],2-∞ D .[)1,+∞ 3、若不等式210x mx ++>的解集为R ,则m 的取值范围是( ) A .R B .()2,2- C .()(),22,-∞-+∞ D .[]2,2- 4、设一元二次不等式210ax bx ++>的解集为113x x ?? -<

(完整版)高中数学不等式习题及详细答案

第三章 不等式 一、选择题 1.已知x ≥2 5 ,则f (x )=4-25+4-2x x x 有( ). A .最大值45 B .最小值4 5 C .最大值1 D .最小值1 2.若x >0,y >0,则221+)(y x +221 +)(x y 的最小值是( ). A .3 B . 2 7 C .4 D . 2 9 3.设a >0,b >0 则下列不等式中不成立的是( ). A .a +b + ab 1≥22 B .(a +b )( a 1+b 1 )≥4 C 22 ≥a +b D . b a ab +2≥ab 4.已知奇函数f (x )在(0,+∞)上是增函数,且f (1)=0,则不等式x x f x f ) ()(--<0 的解集为( ). A .(-1,0)∪(1,+∞) B .(-∞,-1)∪(0,1) C .(-∞,-1)∪(1,+∞) D .(-1,0)∪(0,1) 5.当0<x <2 π时,函数f (x )=x x x 2sin sin 8+2cos +12的最小值为( ). A .2 B .32 C .4 D .34 6.若实数a ,b 满足a +b =2,则3a +3b 的最小值是( ). A .18 B .6 C .23 D .243 7.若不等式组?? ? ??4≤ 34 ≥ 30 ≥ y x y x x ++,所表示的平面区域被直线y =k x +34分为面积相等的两部分,则k 的值是( ). A . 7 3 B . 37 C . 43 D . 34 8.直线x +2y +3=0上的点P 在x -y =1的上方,且P 到直线2x +y -6=0的距离为

高一数学不等式解法经典例题92436

实用文档 标准文案大全典型例题一 例1解不等式:(1)015223???xxx;(2)0)2()5)(4(32????xxx. 分析:如果多项式)(xf可分解为n个一次式的积,则一元高次不等式0)(?xf(或0)(?xf)可用“穿根法”求解,但要注意处理好有重根的情况. 解:(1)原不等式可化为 0)3)(52(???xxx 把方程0)3)(52(???xxx的三个根3,25,0321????xxx顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部 分. ∴原不等式解集为??????????3025xxx或 (2)原不等式等价于 ??????????????????????2450)2)(4(050)2()5)(4(32xxxxxxxxx或 ∴原不等式解集为??2455???????xxxx或或 说明:用“穿根法”解不等式时应注意:①各一次项中x的系数必为正;②对于偶次或奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿”, 其法如下图. 典型例题二 例2 解下列分式不等式: (1)22123????xx;(2)12731422?????xxxx 分析:当分式不等式化为)0(0)()(??或xgxf时,要注意它的等价变形

实用文档 标准文案大全①0)()(0)()(????xgxfxgxf ② 0)()(0)(0)()(0)(0)()(0)()(?????????????xgxfxfxgxfxgxgxfx gxf或或 (1)解:原不等式等价于 ????????????????????????????????????????0)2)(2(0)2)(2)(1)(6(0)2 )(2()1)(6(0)2)(2(650)2)(2()2()2(302232232xxxxxxxxxxxx xxxxxxxxxxxxx 用“穿根法” ∴原不等式解集为????????????,62,1)2,(。 (2)解法一:原不等式等价于 027313222?????xxxx21213102730132027301320)273)(132(222222??? ???????????????????????????????xxxxxxxxxxxxxxx或或或 ∴原不等式解集为),2()1,21()31,(??????。 解法二:原不等式等价于0)2)(13()1)(12(?????xxxx 0)2()13)(1)(12(???????xxxx 用“穿根法” ∴原不等式解集为),2()1,21()31,(?????? 典型例题三 实用文档 标准文案大全 例3解不等式242???xx 分析:解此题的关键是去绝对值符号,而去绝对值符号有两种方法:一是根据绝对值的

高中不等式所有知识及典型例题(超全)

一.不等式的性质: 二.不等式大小比较的常用方法: 1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式);3.分析法;4.平方法;5.分子(或分母)有理化; 6.利用函数的单调性;7.寻找中间量或放缩法 ;8.图象法。其中比较法(作差、作商)是最基本的方法。 三.重要不等式 1.(1)若R b a ∈,,则ab b a 22 2≥+ (2)若R b a ∈,,则2 22b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x +≥ (当且仅当1x =时取“=”); 若0x <,则1 2x x + ≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2 (2 22b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求 它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 5.a 3+b 3+c 3≥3abc (a,b,c ∈ R +), a +b +c 3 ≥3abc (当且仅当a =b =c 时取等号); 6. 1 n (a 1+a 2+……+a n )≥12n n a a a (a i ∈ R +,i=1,2,…,n),当且仅当a 1=a 2=…=a n 取等号; 变式:a 2+b 2+c 2≥ab+bc+ca; ab ≤( a +b 2 )2 (a,b ∈ R +) ; abc ≤( a +b +c 3 )3(a,b,c ∈ R +) a ≤ 2a b a +b ≤ab ≤ a +b 2 ≤ a 2+b 2 2 ≤b.(0b>n>0,m>0; 应用一:求最值 例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1 x

一、集合与一元二次不等式

第一章 集合与函数 1.1 集合及集合间的基本关系 一 、知识梳理: 1、集合中元素的性质:________、 ________ 、________; 2、 集合的表示方法:________、 __________; 3、 元素与集合的关系:_____________________ ; 4、 集合与集合的关系:______________ 。 5、子集的概念:___________ ,表示: ,文氏图表示: 真子集:___________ , 集合的相等的意义:___________ 6、 数集之间的关系(横线上填数集的专用符号) →→?? ?? ?? ?? ???? ? ?? 整数集自然数集正整数集 有理数集实数集分数集 复数集 无理数集虚数集 7、空集的含义:________________________,符号表示_______________ 空集的特征__________________________。 8、设有限集合A 含有n 个元素,则其子集有_______个;真子集有________个。 二 、基础练习 1.用符号“∈”“?”填空 (1)设A 为所有亚洲国家组成的集合,则: 中国_____A , 美国_______A , 印度_______A , 英国_______A ; (2)若{ } x x x A ==2 |,则—1 _____ A ; (3)若{ } 06|2 =-+=x x x B ,则3 ___ A ; (4)若{}101|≤≤∈=x N x C ,则8_______C ,9.1 ____ C 2.试选择适当的方法表示下列集合: (1)由方程092 =-x 的所有实数根组成的集合; (2)由小于8的所有质数组成的集合; (3)一次函数3+=x y 与62+-=x y 的图象的交点组成的集合; 3.写出集合{}c b a ,,的所有子集。

高一数学不等式知识点总结

高一数学不等式知识点总结 一、要点精析 1.比较法比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比 较法(简称为求差法)和商值比较法(简称为求商法)。 (1)差值比较法的理论依据是不等式的基本性质:“a- b≥0a≥b;a-b≤0a≤b”。其一般步骤为:①作差:考察不等式左右 两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进 行变形,或变形为一个常数,或变形为若干个因式的积,或变形为 一个或几个平方的和等等,其中变形是求差法的关键,配方和因式 分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论。 应用范围:当被证的不等式两端是多项式、分式或对数式时一般使 用差值比较法。 (2)商值比较法的理论依据是:“若a,b∈R+, a/b≥1a≥b;a/b≤1a≤b”。其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是 判定商大于1或小于1。应用范围:当被证的不等式两端含有幂、 指数式时,一般使用商值比较法。 2.综合法利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从 “已知”看“需知”,逐步推出“结论”。其逻辑关系为:AB1 B2B3…BnB,即从已知A逐步推演不等式成立的必要条件从而得 出结论B。

3.分析法分析法是指从需证的不等式出发,分析这个不等式成立的充分条件,进而转化为判定那个条件是否具备,其特点和思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”。用 分析法证明AB的逻辑关系为:BB1B1B3… BnA,书写的模式是:为了证明命题B成立,只需证明命题B1为真,从而有…,这只需证明B2为真,从而又有…,……这只需证明 A为真,而已知A为真,故B必为真。这种证题模式告诉我们,分 析法证题是步步寻求上一步成立的充分条件。 4.反证法有些不等式的证明,从正面证不好说清楚,可以从正难则反的角度考虑,即要证明不等式A>B,先假设A≤B,由题设及其 它性质,推出矛盾,从而肯定A>B。凡涉及到的证明不等式为否定 命题、惟一性命题或含有“至多”、“至少”、“不存在”、“不 可能”等词语时,可以考虑用反证法。 5.换元法换元法是对一些结构比较复杂,变量较多,变量之间的关系不甚明了的不等式可引入一个或多个变量进行代换,以便简化 原有的结构或实现某种转化与变通,给证明带来新的启迪和方法。 主要有两种换元形式。(1)三角代换法:多用于条件不等式的证明, 当所给条件较复杂,一个变量不易用另一个变量表示,这时可考虑 三角代换,将两个变量都有同一个参数表示。此法如果运用恰当, 可沟通三角与代数的联系,将复杂的代数问题转化为三角问题根据 具体问题,实施的三角代换方法有:①若x2+y2=1,可设x=cosθ, y=sinθ;②若x2+y2≤1,可设x=rcosθ,y=rsinθ(0≤r≤1);③对 于含有的不等式,由于|x|≤1,可设x=cosθ;④若x+y+z=xyz,由tanA+tanB+tanC=tanAtan-BtanC知,可设x=taaA,y=tanB,z=tanC,其中A+B+C=π。(2)增量换元法:在对称式(任意交换两个字母,代 数式不变)和给定字母顺序(如a>b>c等)的不等式,考虑用增量法进 行换元,其目的是通过换元达到减元,使问题化难为易,化繁为简。如a+b=1,可以用a=1-t,b=t或a=1/2+t,b=1/2-t进行换元。 6.放缩法放缩法是要证明不等式A 二、难点突破

相关文档
相关文档 最新文档