文档库 最新最全的文档下载
当前位置:文档库 › 九年级数学上册 二次函数专题练习(解析版)

九年级数学上册 二次函数专题练习(解析版)

九年级数学上册 二次函数专题练习(解析版)
九年级数学上册 二次函数专题练习(解析版)

九年级数学上册 二次函数专题练习(解析版)

一、初三数学 二次函数易错题压轴题(难)

1.在平面直角坐标系中,将函数2

263,(y x mx m x m m =--≥为常数)的图象记为G .

(1)当1m =-时,设图象G 上一点(),1P a ,求a 的值; (2)设图象G 的最低点为(),o o F x y ,求o y 的最大值;

(3)当图象G 与x 轴有两个交点时,设右边交点的横坐标为2,x 则2x 的取值范围是 ; (4)设1112,,2,16816A m B m ????+ ? ?????

,当图象G 与线段AB 没有公共点时,直接写出m 的取值范围.

【答案】(1)0a =或3a =-;(2)

118;(3)21136x -<<-;(4)1

8

m <-或1

16

m >-

【解析】 【分析】

(1)将m=-1代入解析式,然后将点P 坐标代入解析式,从而求得a 的值; (2)分m >0和m ≤0两种情况,结合二次函数性质求最值; (3)结合二次函数与x 轴交点及对称轴的性质确定取值范围; (4)结合一元二次方程根与系数的关系确定取值范围. 【详解】

解:(1)当1m =-时,()2

2613y x x x =++≥

把(),1P a 代入,得

22611a a ++=

解得0a =或3a =- (2)当0m >时,,(3)F m m - 此时,0o y m =-<

当0m ≤时,2

22

3926=2()22

y x mx m x m m m =----- ∴239,22F m m m ??

--

???

此时,229911=()22918

m m m -

--++ ∴0y 的最大值1

18

=

综上所述,0y 的最大值为

118

(3)由题意可知:当图象G 与x 轴有两个交点时,m >0

当抛物线顶点在x 轴上时,2

2

=4(6)42()=0b ac m m -=--??-△ 解得:m=0(舍去)或29

m =-

由题意可知抛物线的对称轴为直线x=3

2

m 且x ≥3m

∴当图象G 与x 轴有两个交点时,设右边交点的横坐标为x 2,则x 2的取值范围是

21136

x -<<- (4)18m <-或1

16

m >- 【点睛】

本题属于二次函数综合题,考查了二次函数的性质,不等式等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会用转化的思想思考问题,属于中考压轴题.

2.如图,抛物线y=﹣x 2+mx+n 与x 轴交于A 、B 两点,与y 轴交于点C ,抛物线的对称轴交x 轴于点D ,已知A (﹣1,0),C (0,2). (1)求抛物线的表达式;

(2)在抛物线的对称轴上是否存在点P ,使△PCD 是以CD 为腰的等腰三角形?如果存在,直接写出P 点的坐标;如果不存在,请说明理由;

(3)点E 时线段BC 上的一个动点,过点E 作x 轴的垂线与抛物线相交于点F ,当点E 运动到什么位置时,四边形CDBF 的面积最大?求出四边形CDBF 的最大面积及此时E 点的坐标.

【答案】(1)抛物线的解析式为:y=﹣x 2+x+2 (2)存在,P 1(

,4),P 2(

),P 3(

,﹣

(3)当点E运动到(2,1)时,四边形CDBF的面积最大,S四边形CDBF的面积最大=.

【解析】

试题分析:(1)将点A、C的坐标分别代入可得二元一次方程组,解方程组即可得出m、n的值;

(2)根据二次函数的解析式可得对称轴方程,由勾股定理求出CD的值,以点C为圆心,CD为半径作弧交对称轴于P1;以点D为圆心CD为半径作圆交对称轴于点P2,P3;作CH 垂直于对称轴与点H,由等腰三角形的性质及勾股定理就可以求出结论;

(3)由二次函数的解析式可求出B点的坐标,从而可求出BC的解析式,从而可设设E点的坐标,进而可表示出F的坐标,由四边形CDBF的面积=S△BCD+S△CEF+S△BEF可求出S与a的关系式,由二次函数的性质就可以求出结论.

试题解析:(1)∵抛物线y=﹣x2+mx+n经过A(﹣1,0),C(0,2).

解得:,

∴抛物线的解析式为:y=﹣x2+x+2;

(2)∵y=﹣x2+x+2,

∴y=﹣(x﹣)2+,

∴抛物线的对称轴是x=.

∴OD=.

∵C(0,2),

∴OC=2.

在Rt△OCD中,由勾股定理,得

CD=.

∵△CDP是以CD为腰的等腰三角形,

∴CP1=CP2=CP3=CD.

作CH⊥x轴于H,

∴HP1=HD=2,

∴DP1=4.

∴P1(,4),P2(,),P3(,﹣);

(3)当y=0时,0=﹣x2+x+2

∴x1=﹣1,x2=4,

∴B(4,0).

设直线BC的解析式为y=kx+b,由图象,得

解得:,

∴直线BC的解析式为:y=﹣x+2.

如图2,过点C作CM⊥EF于M,设E(a,﹣a+2),F(a,﹣a2+a+2),∴EF=﹣a2+a+2﹣(﹣a+2)=﹣a2+2a(0≤x≤4).

∵S四边形CDBF=S△BCD+S△CEF+S△BEF=BD?OC+EF?CM+EF?BN,

=+a(﹣a2+2a)+(4﹣a)(﹣a2+2a),

=﹣a2+4a+(0≤x≤4).

=﹣(a﹣2)2+

∴a=2时,S四边形CDBF的面积最大=,

∴E(2,1).

考点:1、勾股定理;2、等腰三角形的性质;3、四边形的面积;4、二次函数的最值

3.如图,直线l :y =﹣3x +3与x 轴,y 轴分别相交于A 、B 两点,抛物线y =﹣x 2+2x +b 经过点B .

(1)该抛物线的函数解析式;

(2)已知点M 是抛物线上的一个动点,并且点M 在第一象限内,连接AM 、BM ,设点M 的横坐标为m ,△ABM 的面积为S ,求S 与m 的函数表达式,并求出S 的最大值; (3)在(2)的条件下,当S 取得最大值时,动点M 相应的位置记为点M '. ①写出点M '的坐标;

②将直线l 绕点A 按顺时针方向旋转得到直线l ',当直线l ′与直线AM '重合时停止旋转,在旋转过程中,直线l '与线段BM '交于点C ,设点B ,M '到直线l '的距离分别为d 1,d 2,当d 1+d 2最大时,求直线l '旋转的角度(即∠BAC 的度数).

【答案】(1)2y x 2x 3=-++;(2)2

1525228S m ??=--+ ??? ,258;(3)

①57,24M ??' ???

;②45°

【解析】 【分析】

(1)利用直线l 的解析式求出B 点坐标,再把B 点坐标代入二次函数解析式即可求出b 的值.

(2)设M 的坐标为(m ,﹣m 2+2m +3),然后根据面积关系将△ABM 的面积进行转化. (3)①由(2)可知m =

5

2

,代入二次函数解析式即可求出纵坐标的值.

②可将求d1+d2最大值转化为求AC的最小值.【详解】

(1)令x=0代入y=﹣3x+3,

∴y=3,

∴B(0,3),

把B(0,3)代入y=﹣x2+2x+b并解得:b=3,∴二次函数解析式为:y=﹣x2+2x+3.

(2)令y=0代入y=﹣x2+2x+3,

∴0=﹣x2+2x+3,

∴x=﹣1或3,

∴抛物线与x轴的交点横坐标为-1和3,

∵M在抛物线上,且在第一象限内,

∴0<m<3,

令y=0代入y=﹣3x+3,

∴x=1,

∴A的坐标为(1,0),

由题意知:M的坐标为(m,﹣m2+2m+3),∴S=S四边形OAMB﹣S△AOB=S△OBM+S△OAM﹣S△AOB

=1

2

×m×3+

1

2

×1×(-m2+2m+3)-

1

2

×1×3

=﹣1

2

(m﹣

5

2

)2+

25

8

∴当m=5

2

时,S取得最大值

25

8

(3)①由(2)可知:M′的坐标为(5

2

7

4

).

②设直线l′为直线l旋转任意角度的一条线段,过点M′作直线l1∥l′,过点B作BF⊥l1于点F,

根据题意知:d 1+d 2=BF , 此时只要求出BF 的最大值即可, ∵∠BFM′=90?,

∴点F 在以BM′为直径的圆上, 设直线AM′与该圆相交于点H , ∵点C 在线段BM′上, ∴F 在优弧'BM H 上, ∴当F 与M′重合时, BF 可取得最大值, 此时BM′⊥l 1,

∵A (1,0),B (0,3),M′(

52,7

4

), ∴由勾股定理可求得:AB 10,M′B 55

M′A 85, 过点M′作M′G ⊥AB 于点G , 设BG =x ,

∴由勾股定理可得:M′B 2﹣BG 2=M′A 2﹣AG 2, ∴

8516

10﹣x )2=125

16﹣x 2,

∴x =

510

8

, cos ∠M′BG =

'BG BM =2

2

,∠M′BG= 45? 此时图像如下所示,

∵l1∥l′,F与M′重合,BF⊥l1

∴∠B M′P=∠BCA=90?,

又∵∠M′BG=∠CBA= 45?

∴∠BAC=45?.

【点睛】

本题主要考查了一次函数与二次函数的综合以及一次函数旋转求角度问题,正确掌握一次函数与二次函数性质及综合问题的解法是解题的关键.

4.如图,顶点为M的抛物线y=ax2+bx+3与x轴交于A(﹣1,0),B两点,与y轴交于点

C,过点C作CD⊥y轴交抛物线于另一点D,作DE⊥x轴,垂足为点E,双曲线y=6

x

(x>0)

经过点D,连接MD,BD.

(1)求抛物线的表达式;

(2)点N,F分别是x轴,y轴上的两点,当以M,D,N,F为顶点的四边形周长最小时,求出点N,F的坐标;

(3)动点P从点O出发,以每秒1个单位长度的速度沿OC方向运动,运动时间为t秒,当t为何值时,∠BPD的度数最大?

【答案】(1)y=﹣x2+2x+3;(2)N(5

7

,0),F(0,

5

3

);(3)t=9﹣215.

【解析】

【分析】

(1)由已知求出D点坐标,将点A(-1,0)和D(2,3)代入y=ax2+bx+3即可;

(2)作M关于y轴的对称点M',作D关于x轴的对称点D',连接M'D'与x轴、y轴分别交于点N、F,则以M,D,N,F为顶点的四边形周长最小即为M'D'+MD的长;

(3)设P(0,t),作△PBD的外接圆N,当⊙N与y轴相切时,∠BPD的度数最大;【详解】

解;(1)C(0,3)

∵CD⊥y,

∴D点纵坐标是3.

∵D在y=6

x

上,

∴D(2,3),

将点A(﹣1,0)和D(2,3)代入y=ax2+bx+3,

∴a=﹣1,b=2,

∴y=﹣x2+2x+3;

(2)M(1,4),B(3,0),

作M关于y轴的对称点M',作D关于x轴的对称点D',连接M'D'与x轴、y轴分别交于点N、F,

则以M,D,N,F为顶点的四边形周长最小即为M'D'+MD的长;

∴M'(﹣1,4),D'(2,﹣3),

∴M'D'直线的解析式为y=﹣7

3

x+

5

3

∴N(5

7

,0),F(0,

5

3

);

(3)设P(0,t).

∵△PBO 和△CDP 都是直角三角形, tan ∠CDP =

32

t -,tan ∠PBO =3t

令y =tan ∠BPD =

3233123

t t t t -+--

, ∴yt 2+t ﹣3yt +6y ﹣9=0, △=﹣15y 2+30y +1=0时,

y =

15415-+舍)或y 15415

+,

∴t =32﹣12×1y

∴t =9﹣15 ∴P (0,9﹣15. 【点睛】

本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,利用轴对称求最短距离,学会利用辅助圆解决问题,属于中考压轴题.

5.定义:对于已知的两个函数,任取自变量x 的一个值,当0x ≥时,它们对应的函数值相等;当0x <时,它们对应的函数值互为相反数,我们称这样的两个函数互为相关函数.

例如:正比例函数y x =,它的相关函数为(0)

(0)x x y x x ≥?=?

-

. (1)已知点()5,10A -在一次函数5y ax =-的相关函数的图像上,求a 的值; (2)已知二次函数2

1

42

y x x =-+-

. ①当点3,2B m ?? ???

在这个函数的相关函数的图像上时,求m 的值; ②当33x -≤≤时,求函数2

1

42

y x x =-+-

的相关函数的最大值和最小值.

(3)在平面直角坐标系中,点M 、N 的坐标分别为1,12??-

???、9,12??

???

,连结MN .直接写出线段MN 与二次函数2

4y x x n =-++的相关函数的图像有两个公共点时n 的取值范围.

【答案】(1)1;(2

)①2

2- ;②max 432y =

,min 1

2

y =-;(3)31n -<≤-,5

14

n <≤

【解析】 【分析】

(1)先求出5y ax =-的相关函数,然后代入求解,即可得到答案;

(2)先求出二次函数的相关函数,①分为m <0和m ≥0两种情况将点B 的坐标代入对应的关系式求解即可; ②当-3≤x <0时,y=x 2-4x+

1

2

,然后可 此时的最大值和最小值,当0≤x≤3时,函数y=-x 2+4x-1

2

,求得此时的最大值和最小值,从而可得到当-3≤x≤3时的最大值和最小值; (3)首先确定出二次函数y=-x 2+4x+n 的相关函数与线段MN 恰好有1个交点、2个交点、3个交点时n 的值,然后结合函数图象可确定出n 的取值范围. 【详解】

解:(1)根据题意,

一次函数5y ax =-的相关函数为5,(0)

5,(0)ax x y ax x -≥?=?

-+

∴把点()5,10A -代入5y ax =-+,则

(5)510a -?-+=,

∴1a =;

(2)根据题意,二次函数2

142y x x =-+-的相关函数为2

214,(0)214,(0)

2x x x y x x x ?-+-≥??=??-+

①当m <0时,将B (m ,

32)代入y=x 2-4x+1

2得m 2-4m+1322

=,

解得:

m=2 当m≥0时,将B (m ,

32

)代入y=-x 2+4x-12得:-m 2+4m-12=3

2,

解得:

m=2.

综上所述:

m=2-或

m=2+或

m=2-

②当-3≤x <0时,y=x 2-4x+

1

2

,抛物线的对称轴为x=2,此时y 随x 的增大而减小, ∴当3x =-时,有最大值,即2

143(3)4(3)22

y =--?-+=, ∴此时y 的最大值为

432

. 当0≤x≤3时,函数y=-x 2+4x 1

2-

,抛物线的对称轴为x=2, 当x=0有最小值,最小值为12

-

, 当x=2时,有最大值,最大值y=

72

. 综上所述,当-3≤x≤3时,函数y=-x 2+4x 12-

的相关函数的最大值为43

2,最小值为12

-;

(3)如图1所示:线段MN 与二次函数y=-x 2+4x+n 的相关函数的图象恰有1个公共点.

∴当x=2时,y=1,即-4+8+n=1,解得n=-3.

如图2所示:线段MN 与二次函数y=-x 2+4x+n 的相关函数的图象恰有3个公共点.

∵抛物线y=x 2-4x-n 与y 轴交点纵坐标为1, ∴-n=1,解得:n=-1.

∴当-3<n≤-1时,线段MN 与二次函数y=-x 2+4x+n 的相关函数的图象恰有2个公共点. 如图3所示:线段MN 与二次函数y=-x 2+4x+n 的相关函数的图象恰有3个公共点.

∵抛物线y=-x2+4x+n经过点(0,1),

∴n=1.

如图4所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有2个公共点.

∵抛物线y=x2-4x-n经过点M(

1

2

,1),

∴1

4

+2-n=1,解得:n=

5

4

∴1<n≤5

4

时,线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有2个公共点.

综上所述,n的取值范围是-3<n≤-1或1<n≤5

4

【点睛】

本题主要考查的是二次函数的综合应用,解答本题主要应用了二次函数的图象和性质、函数图象上点的坐标与函数解析式的关系,求得二次函数y=-x2+4x+n的相关函数与线段MN 恰好有1个交点、2个交点、3个交点时n的值是解题的关键.

6.如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,-1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.

(1)求该抛物线的函数关系式;

(2)当△ADP是直角三角形时,求点P的坐标;

(3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.

【答案】(1) y=x2﹣4x+3;(2) P1(1,0),P2(2,﹣1);(3) F1(22,1),F2(22,1).

【解析】

【分析】

(1)已知了抛物线的顶点坐标,可将抛物线的解析式设为顶点式,然后将函数图象经过的C点坐标代入上式中,即可求出抛物线的解析式;

(2)由于PD∥y轴,所以∠ADP≠90°,若△ADP是直角三角形,可考虑两种情况:

①以点P为直角顶点,此时AP⊥DP,此时P点位于x轴上(即与B点重合),由此可求出P点的坐标;

②以点A为直角顶点,易知OA=OC,则∠OAC=45°,所以OA平分∠CAP,那么此时D、P关于x轴对称,可求出直线AC的解析式,然后设D、P的横坐标,根据抛物线和直线AC的解析式表示出D、P的纵坐标,由于两点关于x轴对称,则纵坐标互为相反数,可据此求出P 点的坐标;

(3)很显然当P、B重合时,不能构成以A、P、E、F为顶点的四边形,因为点P、F都在抛物线上,且点P为抛物线的顶点,所以PF与x轴不平行,所以只有(2)②的一种情况符合题意,由②知此时P、Q重合;假设存在符合条件的平行四边形,那么根据平行四边形的性质知:P、F的纵坐标互为相反数,可据此求出F点的纵坐标,代入抛物线的解析式中即可求出F点的坐标.

【详解】

(1)∵抛物线的顶点为Q(2,﹣1),

∴设抛物线的解析式为y=a(x﹣2)2﹣1,

将C(0,3)代入上式,得:

3=a(0﹣2)2﹣1,a=1;

∴y=(x﹣2)2﹣1,即y=x2﹣4x+3;

(2)分两种情况:

①当点P1为直角顶点时,点P1与点B重合;

令y=0,得x2﹣4x+3=0,解得x1=1,x2=3;

∵点A在点B的右边,

∴B(1,0),A(3,0);

∴P1(1,0);

②当点A为△AP2D2的直角顶点时;

∵OA=OC ,∠AOC=90°, ∴∠OAD 2=45°;

当∠D 2AP 2=90°时,∠OAP 2=45°, ∴AO 平分∠D 2AP 2; 又∵P 2D 2∥y 轴, ∴P 2D 2⊥AO ,

∴P 2、D 2关于x 轴对称;

设直线AC 的函数关系式为y=kx+b (k≠0). 将A (3,0),C (0,3)代入上式得:

30

3

k b b +=??

=? , 解得1

3

k b =-??

=? ;

∴y=﹣x+3;

设D 2(x ,﹣x+3),P 2(x ,x 2﹣4x+3), 则有:(﹣x+3)+(x 2﹣4x+3)=0, 即x 2﹣5x+6=0;

解得x 1=2,x 2=3(舍去);

∴当x=2时,y=x 2﹣4x+3=22﹣4×2+3=﹣1; ∴P 2的坐标为P 2(2,﹣1)(即为抛物线顶点). ∴P 点坐标为P 1(1,0),P 2(2,﹣1);

(3)由(2)知,当P 点的坐标为P 1(1,0)时,不能构成平行四边形; 当点P 的坐标为P 2(2,﹣1)(即顶点Q )时, 平移直线AP 交x 轴于点E ,交抛物线于F ; ∵P (2,﹣1), ∴可设F (x ,1); ∴x 2﹣4x+3=1,

解得x 1=22,x 22; ∴符合条件的F 点有两个,

即F 1(22,1),F 2(2,1).

【点睛】

此题主要考查了二次函数的解析式的确定、直角三角形的判定、平行四边形的判定与性质等重要知识点,同时还考查了分类讨论的数学思想,能力要求较高,难度较大.

7.定义:函数l 与l '的图象关于y 轴对称,点(),0P t 是x 轴上一点,将函数l '的图象位于直线x t =左侧的部分,以x 轴为对称轴翻折,得到新的函数w 的图象,我们称函数w 是函数l 的对称折函数,函数w 的图象记作1F ,函数l 的图象位于直线x t =上以及右侧的部分记作2F ,图象1F 和2F 合起来记作图象F .

例如:如图,函数l 的解析式为1y x =+,当1t =时,它的对称折函数w 的解析式为

()11y x x =-

<.

(1)函数l 的解析式为21y x =-,当2t =-时,它的对称折函数w 的解析式为_______; (2)函数l 的解析式为1212

y x x =--,当42x -≤≤且0t =时,求图象F 上点的纵坐标的最大值和最小值;

(3)函数l 的解析式为()2

230y ax ax a a =--≠.若1a =,直线1y t =-与图象F 有两个

公共点,求t 的取值范围.

【答案】(1)()212y x x =+<-;(2)F 的解析式为2211(0)2

11(0)2y x x x y x x x ?=--≥????=--+

;图象

F上的点的纵坐标的最大值为

3

2

y=,最小值为3

y=-;(3)当3

t=-

3

1

2

t<≤

3

5

2

t

+

<<时,直线1

y t=-与图象F有两个公共点.

【解析】

【分析】

(1)根据对折函数的定义直接写出函数解析式即可;

(2)先根据题意确定F的解析式,然后根据二次函数的性质确定函数的最大值和最小值即可;

(3)先求出当a=1时图像F的解析式,然后分14

t-=-、点()

,1

t t-落在223()

y x x x t

=--≥上和点()

,1

t t-落在()

223

y x x x t

=--+<上三种情况解答,最后根据图像即可解答.

【详解】

解:(1)()

212

y x x

=+<-

(2)F的解析式为

2

2

1

1(0)

2

1

1(0)

2

y x x x

y x x x

?

=--≥

??

?

?=--+<

??

当4

x=-时,3

y=-,当1

x=-时,

3

2

y=,

当1

x=时,

3

2

y=-,当2

x=时,1

y=,

∴图象F上的点的纵坐标的最大值为

3

2

y=,最小值为3

y=-.

(3)当1

a=时,图象F的解析式为

2

2

23()

23()

y x x x t

y x x x t

?=--≥

?

=--+<

?

∴该函数的最大值和最小值分别为4和-4;

a:当14

t-=-时,3

t=-,

∴当3

t=-时直线1

y t

=-与图象F有两个公共点;

b:当点()

,1

t t-落在223()

y x x x t

=--≥上时,

2

123

t t t

-=--

,解得

1

t=

2

3

2

t=

c:当点()

,1

t t-落在()

223

y x x x t

=--+<上时,

2

123

t t t

-=--+,解得34

t=-(舍),

4

1

t=

14

t-=,

∴55

t=

∴当

31712t -<≤或317

52

t +<<时,直线1y t =-与图象F 有两个公共点; 综上所述:当3t =-,3171t -<≤,317

5t +<<时,直线1y t =-与图象F 有两个公共点. 【点睛】

本题属于二次函数综合题,考查了“称折函数”的定义、二次函数的性质、解二元一次方程等知识,弄清题意、灵活运用所学知识是解答本题的关键.

8.如图,在平面直角坐标系中,二次函数y =﹣x 2+6x ﹣5的图象与x 轴交于A 、B 两点,与y 轴交于点C ,其顶点为P ,连接PA 、AC 、CP ,过点C 作y 轴的垂线l . (1)P 的坐标 ,C 的坐标 ;

(2)直线1上是否存在点Q ,使△PBQ 的面积等于△PAC 面积的2倍?若存在,求出点Q 的坐标;若不存在,请说明理由.

【答案】(1)(3,4),(0,﹣5);(2)存在,点Q 的坐标为:(

9

2

,﹣5)或(

21

2,﹣5) 【解析】 【分析】

(1)利用配方法求出顶点坐标,令x=0,可得y=-5,推出C (0,-5); (2)直线PC 的解析式为y=3x-5,设直线交x 轴于D ,则D (

5

3

,0),设直线PQ 交x 轴于E ,当BE=2AD 时,△PBQ 的面积等于△PAC 的面积的2倍,分两种情形分别求解即可解决问题. 【详解】

解:(1)∵y =﹣x 2+6x ﹣5=﹣(x ﹣3)2+4, ∴顶点P (3,4), 令x =0得到y =﹣5,

∴C(0,﹣5).

故答案为:(3,4),(0,﹣5);(2)令y=0,x2﹣6x+5=0,

解得:x=1或x=5,

∴A(1,0),B(5,0),

设直线PC的解析式为y=kx+b,则有

5

34 b

k b

=-

?

?

+=

?

解得:

3

5 k

b

=

?

?

=-

?

∴直线PC的解析式为:y=3x﹣5,

设直线交x轴于D,则D(5

3

,0),

设直线PQ交x轴于E,当BE=2AD时,△PBQ的面积等于△PAC的面积的2倍,

∵AD=2

3

∴BE=4

3

∴E(11

3

,0)或E′(

19

3

,0),

则直线PE的解析式为:y=﹣6x+22,

∴Q(9

2

,﹣5),

直线PE′的解析式为y=﹣6

5

x+

38

5

∴Q′(21

2

,﹣5),

综上所述,满足条件的点Q的坐标为:(9

2

,﹣5)或(

21

2

,﹣5);

【点睛】

本题考查抛物线与x轴的交点、二次函数的性质等知识,解题的关键是熟练掌握待定系数法,学会用转化的思想思考问题,属于中考常考题型.

9.在平面直角坐标系中,抛物线y=x2+(k﹣1)x﹣k与直线y=kx+1交于A,B两点,点A 在点B的左侧.

(1)如图1,当k=1时,直接写出A,B两点的坐标;

(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP面积的最大值及此时点P的坐标;

(3)如图2,抛物线y=x2+(k﹣1)x﹣k(k>0)与x轴交于点C、D两点(点C在点D的左侧),在直线y=kx+1上是否存在唯一一点Q,使得∠OQC=90°?若存在,请求出此时k 的值;若不存在,请说明理由.

【答案】(1)A(-1,0) ,B(2,3)

(2)△ABP最大面积s=

1927

322

288

?=; P(

1

2

,﹣

3

4

(3)存在;

25

【解析】

【分析】

(1)当k=1时,抛物线解析式为y=x2﹣1,直线解析式为y=x+1,然后解方程组21

1

y x

y x

?=

?

=+

?

即可;

(2)设P(x,x2﹣1).过点P作PF∥y轴,交直线AB于点F,则F(x,x+1),所以利用S△ABP=S△PFA+S△PFB,

,用含x的代数式表示为S△ABP=﹣x2+x+2,配方或用公式确定顶点坐标即可.(3)设直线AB:y=kx+1与x轴、y轴分别交于点E、F,用k分别表示点E的坐标,点F的坐标,以及点C的坐标,然后在Rt△EOF中,由勾股定理表示出EF的长,假设存在唯一一点Q,使得∠OQC=90°,则以OC为直径的圆与直线AB相切于点Q,设点N为OC中点,连接NQ,根据条件证明△EQN∽△EOF,然后根据性质对应边成比例,可得关于k的方程,解方程即可.

【详解】

解:(1)当k=1时,抛物线解析式为y=x2﹣1,直线解析式为y=x+1.

联立两个解析式,得:x2﹣1=x+1,

解得:x=﹣1或x=2,

(完整版)初三数学二次函数所有经典题型

初三数学二次函数经典题型 二次函数单元检测 (A) 姓名___ ____ 一、填空题: 1、函数2 1 (1)21m y m x mx +=--+是抛物线,则m = . 2、抛物线2 23y x x =--+与x 轴交点为 ,与y 轴交点为 . 3、二次函数2 y ax =的图象过点(-1,2),则它的解析式是 , 当x 时,y 随x 的增大而增大. 4.抛物线2)1(62 -+=x y 可由抛物线262 -=x y 向 平移 个单位得到. 5.抛物线342 ++=x x y 在x 轴上截得的线段长度是 . 6.抛物线() 422 2-++=m x x y 的图象经过原点,则=m . 7.抛物线m x x y +-=2 ,若其顶点在x 轴上,则=m . 8. 如果抛物线c bx ax y ++=2 的对称轴是x =-2,且开口方向与形状与抛物线 相同,又过原点,那么a = ,b = ,c = . 9、二次函数2 y x bx c =++的图象如下左图所示,则对称轴是 ,当函数值0y <时, 对应x 的取值范围是 . 10、已知二次函数2 1(0)y ax bx c a =++≠与一次函数2(0)y kx m k =+≠的图象相交于点 A (-2,4)和 B (8,2),如上右图所示,则能使1y 2y >成立的x 的取值范围 . 二、选择题: 11.下列各式中,y 是x 的二次函数的是 ( ) A .2 1xy x += B . 2 20x y +-= C . 2 2y ax -=- D .2 2 10x y -+= 2 2 3x y -=

12.在同一坐标系中,作2 2y x =、2 2y x =-、2 12 y x = 的图象,它们共同特点是 ( ) A . 都是关于x 轴对称,抛物线开口向上 B .都是关于y 轴对称,抛物线开口向下 B . 都是关于原点对称,顶点都是原点 D .都是关于y 轴对称,顶点都是原点 13.抛物线12 2+--=m mx x y 的图象过原点,则m 为( ) A .0 B .1 C .-1 D .±1 14.把二次函数122 --=x x y 配方成为( ) A .2 )1(-=x y B . 2)1(2--=x y C .1)1(2 ++=x y D .2)1(2 -+=x y 15.已知原点是抛物线2 (1)y m x =+的最高点,则m 的范围是( ) A . 1-m D . 2->m 16、函数2 21y x x =--的图象经过点( ) A 、(-1,1) B 、(1 ,1) C 、(0 , 1) D 、(1 , 0 ) 17、抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( ) A 、2 3(1)2y x =-- B 、23(1)2y x =+-C 、23(1)2y x =++ D 、2 3(1)2y x =-+ 18、已知h 关于t 的函数关系式2 12 h gt = ( g 为正常数,t 为时间)如图,则函数图象为 ( ) 19、下列四个函数中, 图象的顶点在y 轴上的函数是( ) A 、2 32y x x =-+ B 、25y x =- C 、2 2y x x = -+ D 、2 44y x x =-+ 20、已知二次函数2 y ax bx c =++,若0a <,0c >,那么它的图象大致是( ) 21、根据所给条件求抛物线的解析式: (1)、抛物线过点(0,2)、(1,1)、(3,5) (2)、抛物线关于y 轴对称,且过点(1,-2)和(-2,0) 22.已知二次函数c bx x y ++=2 的图像经过A (0,1),B (2,-1)两点. (1)求b 和c 的值; (2)试判断点P (-1,2)是否在此函数图像上? 23、某广告公司设计一幅周长为12米的矩形广告牌,广告设计费为每平方米1000元,设矩形一边

九年级数学二次函数应用题 含答案

九年级数学专题二次函数的应用题 一、解答题 1.一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为 2.5米时,达到最大高度 3.5米,然后准确落入篮圈。已知篮圈中心到地面的距离为3.05米。 (1)建立如图所示的直角坐标系,求抛物线的解析式; (2)该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,他跳离地面的高度是多少? 2.某商场购进一批单价为16元的日用品,经试验发现,若按每件20元的价格销售时,每月能卖360件,若按每件25元的价格销售时,每月能卖210件,假定每月销售件数y(件)是价格x(元/件)的一次函数.(1)试求y与x之间的关系式; (2)在商品不积压,且不考虑其他因素的条件下,问销售价格定为多少时,才能使每月获得最大利润?每月的最大利润是多少? 3.在体育测试时,初三的一名高个子男同学推铅球,已知铅球所经过的路线是某个二次函数图像的一部分,如图所示,如果这个男同学的出手处A点的坐标(0,2),铅球路线的最高处B点的坐标为(6,5)(1)求这个二次函数的解析式; 米,)2)该男同学把铅球推出去多远?(精确到0.01 ( 元的价钱购进一种服装,根据试销得知:这种服装每天的销售量(件)某商场以每件42,4.

件)可看成是一次函数关系:/(元与每件的销售价 之间的函数关系式(每天的销售与每件的销售价写出商场卖这种服装每天的销售利润1. 利润是指所卖出服装的销售价与购进价的差); 2.通过对所得函数关系式进行配方,指出:商场要想每天获得最大的销售利润,每件的销售价定为多少最为合适;最大销售利润为多少? 5.某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路 线是如图所示坐标系下经过原点O的一条抛物线(图中标出的数据为已知条件),在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面10米,入水处距池边的距离为4米,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误。 (1)求这条抛物线的解析式; (2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为3米,问此次跳水会不会失误?并通过计算说明理由 6.某服装经销商甲,库存有进价每套400元的A品牌服装1200套,正常销售时 每套600元,每月可卖出100套,一年内刚好卖完,现在市场上流行B品牌服装,此品牌服装进价每套200元,售出价每套500元,每月可买出120套(两套服装的市场行情互不影响)。目前有一可进B品牌的机会,若这一机会错过,估计一年内进不到这种服装,可是,经销商手头无流动资金可用,只有低价转让A品牌服装,经与经销商乙协商,达成协议,转让价格(元/套)与转让数量(套)有 如下关系: 转让数量(套)120011001000900800700600500400300200100 价格(元/套)240250260270 280290 300310 320330 340 350 方案1:不转让A品牌服装,也不经销B品牌服装; 方案2:全部转让A品牌服装,用转让来的资金购B品牌服装后,经销B品牌服装; 方案3:部份转让A品牌服装,用转让来的资金购B品牌服装后,经销B品牌服装,同时经销A品牌服装。 问: ①经销商甲选择方案1与方案2一年内分别获得利润各多少元?

九年级数学《二次函数》综合练习题及答案

九年级数学《二次函数》综合练习题 一、基础练习 1把抛物线y=2x 2向上平移1个单位,得到抛物线 _____________ ,把抛物线y=-2x 2?向下平移3个单位,得到 抛物线 _________ . 2 ?抛物线y=3x 2-1的对称轴是 ______ ,顶点坐标为 ________ ,它是由抛物线 y=3x 2?向 _________ 平移 _____ 个单位得到的. 3 .把抛物线y=J 2x 2向左平移1个单位,得到抛物线 _____________ ,把抛物线y=-J2x 2?向右平移3个单位, 得到抛物线 __________ . 4. _____________________________________ 抛物线y=j 3 ( x-1 ) 2的开口向 _____________ ,对称轴为 ,顶点坐标为 __________________________________ , ?它是由抛物线 y=乔x 2向 _______ 平移 _______ 个单位得到的. 1 1 1 5 .把抛物线y=- 1 (X+1) 2向 __________ 平移 _______ 个单位,就得到抛物线 y=-」x 2. 3 2 3 6. _____________________________ 把抛物线y=4 (x-2 ) 2向 平移 个单位,就得到函数 y=4 (x+2) 2的图象. 1 2 1 7. ____________________________________ 函数y=- (x- 1) 2的最大值为 ________ ,函数y=-x 2- 1的最大值为 _________________________________________ . 3 3 &若抛物线y=a (x+m ) 2的对称轴为x=-3,且它与抛物线y=-2 x 2的形状相同,?开口方向相同,则点(a , m )关于原点的对称点为 __________________ . 9. ___________________________________________________________________ 已知抛物线y=a (x-3 ) 2过点(2, -5 ),则该函数y=a (x-3 ) 2当x= _______________________________________?时,?有最 __ 值 _______ . 10. ________________________________________________________________________________________ 若二次函数y=ax 2+b ,当x 取X 1, X 2 (X 1^x)时,函数值相等,则x 取x 什X 2时,函数的值为 ___________________ . 11. 一台机器原价50万元.如果每年的折旧率是 x ,两年后这台机器的价格为 y?万元,则y 与x 的函数 关系式为( ) A . y=50 (1-x ) 2 B . y=50 (1-x ) 2 C . y=50-x 2 D . y=50 (1+x ) 2 12. 下列命题中,错误的是( ) 13 .顶点为(-5 , 0)且开口方向、形状与函数 1 1 A . y=- (x-5) 2 B . y=- x 2-5 C 3 3 .抛物线 y=- J 3X 2-1不与 x 轴相交; 2 .抛物线 尸孚2-1与 y= 3 (x-1 ) 2 2 形状相同,位置不同 .抛物线 .抛物线 1 y=-- 2 1 y= 2 (x- 1) 2 1 (x+ —) 2 2 的顶点坐标为 2 的对称轴是直线 1 , 0); 2 1 x=— 2 1 y=- =x 2的图象相同的抛物线是( ) 3 1 1 y=- (x+5) 2 D . y= (x+5) 2 3 3

(精)人教版数学九年级上册《二次函数》全章教案(最新)

22.1二次函数的图像和性质(一) 一、学习目标 1.知识与技能目标: (1)理解并掌握二次函数的概念; (2)能判断一个给定的函数是否为二次函数,并会用待定系数法求函数解析式; (3)能根据实际问题中的条件确定二次函数的解析式。 二、学习重点难点 1.重点:理解二次函数的概念,能根据已知条件写出函数解析式; 2.难点:理解二次函数的概念。 三、教学过程 (一)创设情境、导入新课: 回忆一下什么是正比例函数、一次函数、反比例函数?它们的一般形式是怎样的? (二)自主探究、合作交流: 问题1:正方体的六个面是全等的正方形,如果正方形的棱长为x,表面积为y,写出y与x的关系。问题2:n边形的对角线数d与边数n之间有怎样的关系? 问题3:某工厂一种产品现在的年产量是20件,计划今后两年增加产量.如果每年都比上一年的产量增加x倍,那么两年后这种产品的数量y将随计划所定的x的值而定,y与x之间的关系怎样表示? 问题4:观察以上三个问题所写出来的三个函数关系式有什么特点? 小组交流、讨论得出结论:经化简后都具有的形式。 问题5:什么是二次函数? 形如。 问题6:函数y=ax2+bx+c,当a、b、c满足什么条件时,(1)它是二次函数? (2)它是一次函数?(3)它是正比例函数?

(三)尝试应用: 例1. 关于x 的函数 是二次函数, 求m 的值. 注意:二次函数的二次项系数必须是 的数。 例2. 已知关于x 的二次函数,当x=-1时,函数值为10,当x=1时,函数值为4,当x=2时,函数值为7。求这个二次函数的解析式.(待定系数法) (四)巩固提高: 1.下列函数中,哪些是二次函数? (1)y=3x -1 ; (2)y=3x 2+2; (3)y=3x 3+2x 2; (4)y=2x 2-2x+1; (5)y=x 2-x(1+x); (6)y=x - 2+x . 2.一个圆柱的高等于底面半径,写出它的表面积S与半径R之间的关系式。 3、n 支球队参加比赛,每两支队之间进行一场比赛。写出比赛的场数m 与球队数n 之间的关系式。 4、已知二次函数y=x2+px+q ,当x=1时,函数值为4,当x=2时,函数值为- 5, 求这个二次函数的解析式. (五)小结: 1.二次函数的一般形式是 。2.会用 法求二次函数解析式。 (六)作业设计 22.1二次函数 y=ax 2的图像和性质(二) 一.学习目标: m m 2 21)x (m y --=

九年级二次函数讲义

二次函数 一.知识梳理 1、定义:只含有一个未知数,且未知数最高次数为2的方程叫做一元二次方。一元二次方程的标准式:ax2+bx+c=0 (a≠0) 其中:ax2叫做二次项,bx叫做一次项,c叫做常数项 a是二次项系数,b是一次项系数 2、一元二次方程根的判别式(二次项系数不为0): “△”读作德尔塔,在一元二次方程ax2+bx+c=0 (a≠0)中△=b2-4ac △=b2-4ac>0 <====> 方程有两个不相等的实数根,即:x1,x2 △=b2-4ac=0 <====> 方程有两个相等的实数根,即:x1=x2 △=b2-4ac<0 <====> 方程没有实数根。 注:“<====>”是双向推导,也就是说上面的规律反过来也成立,如:告诉我们方程没有实数根,我们便可以得出△<0 3、一元二次方程根与系数的关系(二次项系数不为0;△≥0),韦达定理。 ax2+bx+c=0 (a≠0)中,设两根为x1,x2,那么有: 因为:ax2+bx+c=0 (a≠0)化二次项系数为1可得,所以:韦达定理也描述为:两根之和等于一次项系数的相反数,两根之积等于常数项。 注意:(1)在一元二次方程应用题中,如果解出来得到的是两个根,那么我们要根据实际情况判断是否应舍去一个跟。 5、一元二次方程的求根公式: 注:任何一元二次方程都能用求根公式来求根,虽然使用起来较为复杂,但非常有效。

一、求二次函数的三种形式: 1. 一般式:y=ax 2 +bx+c ,(已知三个点) 顶点坐标(-2b a ,244ac b a -) 2.顶点式:y=a (x -h )2 +k ,(已知顶点坐标对称轴) 顶点坐标(h ,k ) 3.交点式:y=a(x- x 1)(x- x 2),(有交点的情况) 与x 轴的两个交点坐标x 1,x 2 对称轴为2 2 1x x h += 二、a b c 作用分析 │a │的大小决定了开口的宽窄,│a │越大,开口越小,│a │越小,开口越大, a , b 的符号共同决定了对称轴的位置,当b=0时,对称轴x=0,即对称轴为y 轴,当a ,b 同号时,对称轴x=- 2b <0,即对称轴在y 轴左侧,当a ,b?异号时,对称轴x=-2b a >0, 即对称轴在y 轴右侧,c?的符号决定了抛物线与y 轴交点的位置, c=0c<0时,与y?轴交于负半轴,以上a ,b ,c 的符号与图像的位置是共同作用的,也可以互相推出.

人教版九年级数学上册二次函数教案

教材分析 本节课是数学新人教版九级(上)第二十二章《二次函数》第一节课内容 二次函数教学设计 一、教学目标知识方面: 1.理解并掌握二次函数的概念; 2.能根据实际问题中的条件列出二次函数的解析式。 3.经历探索、分析和建立两个变量之间的二次函数关系的过程,体会二次函数是刻画现实世界的一个有效的数学模型。 4.通过分析实际问题列出二次函数关系式,培养学生分析问题、解决问题的能力。情感方面:通过学生的主动参与,师生、学生之间的合作交流,提高学生的学习兴趣,激发他们的求知欲、培养合作意识。 二、教材分析 本节课是数学新人教版九年级(上)第二十二章《二次函数》第一节课内容.知识方面,它是在正比例函数,一次函数,对函数认识的完善与提高;也是对方程的理解的补充,同时也是以后学习初等函数的基础。根据本节的教学内容及学生学情,给彩虹、桥梁等图片这些丰富的生活实例,进一步让学生充分感受到二次函数的应用价值与实际意义。 重点是理解二次函数的概念,能根据已知条件写出函数解析式; 难点是从实例中抽象出二次函数的定义,会分析实例中的二次函数关系。 三、教学过程教学过程: 一、提出问题,导入新课。 1、回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?图象形状各是什么? 2、教师提出问题:投篮球时篮球运行的路线是什么曲线?这种曲线的形状是怎样的?是否象以前学过的函数图象?能否用新的函数关系式来表示?怎样计算篮球达到最高点时的高度?这将在本章——二次函数中学习。 3、你能举出一些生活中类似的曲线吗? 二、合作交流,形成概念。1.列式表示下面函数关系。 问题1:正方体的六个面是全等的正方形,如果正方形 的棱长为x,表面积为y,写出y与x的关系。 问题2:某工厂一种产品现在的年产量是20件,计划今后两年增加产量.如果每年都比上一年的产量增加x倍,那么两年后这种产品的数量y将随计划所定的x的值而定,y与x之间的关系怎样表示? 活动中教师关注: (1)学生参与小组合作讨论后,能否明白题意,写出相应关系式。 (2)问题3中可先分析一年后的产量,再得出两年后的产量。 2.教师引导学生观察,分析上面三个函数关系式的共同点。 学生小组交流、讨论得出结论,它们的共同点: (1)等号左边是变量y,右边是关于自变量x的整式。 a,b,c为常数,且a≠0 (2)等式的右边最高次数为,可以没有一次项和常数项,但不能没有二次项。(3)x的取值范围是任意实数。 教师口述二次函数的定义并板书在黑板上:一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫二次函数。

初三数学二次函数知识点总结

初三数学 二次函数 知识点总结 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数, 0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质: 上加下减。 3. ()2 y a x h =-的性质: 左加右减。

4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-= ,.

数学九年级上册 二次函数专题练习(解析版)

数学九年级上册 二次函数专题练习(解析版) 一、初三数学 二次函数易错题压轴题(难) 1.在平面直角坐标系中,将函数2 263,(y x mx m x m m =--≥为常数)的图象记为G . (1)当1m =-时,设图象G 上一点(),1P a ,求a 的值; (2)设图象G 的最低点为(),o o F x y ,求o y 的最大值; (3)当图象G 与x 轴有两个交点时,设右边交点的横坐标为2,x 则2x 的取值范围是 ; (4)设1112,,2,16816A m B m ????+ ? ????? ,当图象G 与线段AB 没有公共点时,直接写出m 的取值范围. 【答案】(1)0a =或3a =-;(2) 118;(3)21136x -<<-;(4)1 8 m <-或1 16 m >- 【解析】 【分析】 (1)将m=-1代入解析式,然后将点P 坐标代入解析式,从而求得a 的值; (2)分m >0和m ≤0两种情况,结合二次函数性质求最值; (3)结合二次函数与x 轴交点及对称轴的性质确定取值范围; (4)结合一元二次方程根与系数的关系确定取值范围. 【详解】 解:(1)当1m =-时,()2 2613y x x x =++≥ 把(),1P a 代入,得 22611a a ++= 解得0a =或3a =- (2)当0m >时,,(3)F m m - 此时,0o y m =-< 当0m ≤时,2 22 3926=2()22 y x mx m x m m m =----- ∴239,22F m m m ?? -- ??? 此时,229911=()22918 m m m - --++ ∴0y 的最大值1 18 =

浙教版九年级上册二次函数知识点总结及典型例题

浙教版九年级上册二次函数知识点总结及典型例题 知识点一、二次函数的概念和图像 1、二次函数的概念 一般地,如果特)0,,(2 ≠++=a c b a c bx ax y 是常数,,特别注意a 不为零,那么y 叫做x 的二次函数。 )0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。 2、二次函数的图像 二次函数的图像是一条关于a b x 2- =对称的曲线,这条曲线叫抛物线。 抛物线的主要特征: ①有开口方向;②有对称轴;③有顶点。 3、二次函数图像的画法--------五点作图法: (1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M ,并用虚线画出对称轴 (2)求抛物线c bx ax y ++=2 与坐标轴的交点: 当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C ,再找到点C 的对称点D 。将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。 当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D 。由C 、M 、D 三点可粗略地画出二次函数的草图。如果需要画出比较精确的图像,可再描出一对对称点A 、B ,然后顺次连接五点,画出二次函数的图像。 【例1】、已知函数y=x 2 -2x-3, (1)写出函数图象的顶点、图象与坐标轴的交点,以及图象与 y 轴的交点关于图象对称轴的对称点。然后画出函数图象的草图; (2)求图象与坐标轴交点构成的三角形的面积: (3)根据第(1)题的图象草图,说 出 x 取哪些值时,① y=0;② y<0;③ y>0 知识点二、二次函数的解析式 二次函数的解析式有三种形式:口诀----- 一般 两根 三顶点 (1)一般 一般式:)0,,(2 ≠++=a c b a c bx ax y 是常数, (2)两根 当抛物线c bx ax y ++=2 与x 轴有交点时,即对应的一元二次方程02=++c bx ax 有实根1 x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2 可转化为两根式))((21x x x x a y --=。如果没有交点,则不能这样表示。 a 的绝对值越大,抛物线的开口·越小。 (3)三顶点 顶点式:)0,,()(2 ≠+-=a k h a k h x a y 是常数, 当题目中告诉我们抛物线的顶点时, 我们最好设顶点式,这样最简洁。

人教版九年级数学二次函数应用题(含答案)

人教版九年级数学二次函数实际问题(含答案) 一、单选题 2+2t,则当t=4t(米)与时间(秒)的关系式为s=5t时,该物体所经1.在一定条件下,若物体运动的路程s过的路程为][ A.28米 B.48米 C. 68米 米.88 D2 +bx+c的图象过点(1,0)……2.由于被墨水污染,一道数学题仅能见到如下文字:y=ax 求证这个二次函数的,题中的二次函数确定具有的性质是图象关于直线x=2对称.][ A.过点(3,0) B.顶点是(2,-1) C.在x轴上截得的线段的长是3 3)(0,D.与y轴的交点是3.某幢建筑物,从10 m高的窗口A用水管向外喷水,喷出的水流呈抛物线状(抛物线所在的平面与墙面 是离墙的距离OB1m,离地面m,则水流落地点BM垂直),如图,如果抛物线的最高点离墙 A.2m B.3m C .4 m m5 D. 之间的函数关系式是,则该运与水平距离4.如图,铅球运动员掷铅球的高度y(m)x(m)页9共,页1第 动员此次掷铅球的成绩是

][ A.6 m B.8m C. 10 m m.12 D 2,若滑到间的关系为S=l0t+2t的斜坡笔直滑下,滑下的距离S(m)与时间5.某人乘雪橇沿坡度为1t(s):4s,则此人下降的高度为坡底的时间为][ A.72 m 36 .m BC.36 m m.18D2 +50x-500,则要想满足关系y=-x与销售单价x(元))6.童装专卖店销售一种童装,若这种童装每天获利y(元获得最大利润,销售单价为][ A.25元 B.20元 C.30元 元40D.7.中国足球队在某次训练中,一队员在距离球门12米处的挑射,正好从2.4米高(球门距横梁底侧高)入2 +bx+c所示,则下列结论正确的是网.若足球运行的路线是抛物线y=ax -12a00;④③;;①a<②

人教版九年级上册数学九年级二次函数综合测试题及答案

二次函数单元测评 一、选择题(每题3分,共30分) 1.下列关系式中,属于二次函数的是(x为自变量)() A. B. C. D. 2. 函数y=x2-2x+3的图象的顶点坐标是() A. (1,-4) B.(-1,2) C. (1,2) D.(0,3) 3. 抛物线y=2(x-3)2的顶点在() A. 第一象限 B. 第二象限 C. x轴上 D. y轴上 二、4. 抛物线的对称轴是() A. x=-2 B.x=2 C. x=-4 D. x=4 5. 已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中,正确的是( A. ab>0,c>0 B. ab>0,c<0 C. ab<0,c>0 D. ab<0,c<0 6.二次函数y=ax2+bx+c的图象如图所示,则点在第 ___象限() A. 一 B. 二 C. 三 D. 四 7. 如图所示,已知二次函数y=ax2+bx+c(a≠0)的图象的顶点P 的横坐标是4,图象交x轴于点A(m,0)和点B,且m>4,那么 AB的长是() A. 4+m B. m C. 2m-8 D. 8-2m 8. 若一次函数y=ax+b的图象经过第二、三、四象限,则二次函数y=ax2+bx 的图象只可能是() 9. 已知抛物线和直线在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=-1,P1(x1,y1),P2(x2,y2)是抛物线上的点,P3(x3, y3)是直线上的点,且-1

人教版九年级上册数学 二次函数专题练习(word版

人教版九年级上册数学 二次函数专题练习(word版 一、初三数学二次函数易错题压轴题(难) 1.已知,抛物线y=- 1 2 x2 +bx+c交y轴于点C(0,2),经过点Q(2,2).直线y=x+4分别交x轴、y轴于点B、A. (1)直接填写抛物线的解析式________; (2)如图1,点P为抛物线上一动点(不与点C重合),PO交抛物线于M,PC交AB于N,连MN. 求证:MN∥y轴; (3)如图,2,过点A的直线交抛物线于D、E,QD、QE分别交y轴于G、H.求证:CG ?CH 为定值. 【答案】(1)2 1 2 2 y x x =-++;(2)见详解;(3)见详解. 【解析】 【分析】 (1)把点C、D代入y=- 1 2 x2 +bx+c求解即可; (2)分别设PM、PC的解析式,由于PM、PC与抛物线的交点分别为:M、N.,分别求出M、N的代数式即可求解; (3)先设G、H的坐标,列出QG、GH的解析式,得出与抛物线的交点D、E的横坐标,再列出直线AE的解析式,算出它与抛物线横坐标的交点方程.运用韦达定理即可求证.【详解】 详解:(1)∵y=- 1 2 x2 +bx+c过点C(0,2),点Q(2,2), ∴ 2 1 222 2 2 b c c ? -?++ ? ? ?= ? = ,

解得:1 2b c =??=? . ∴y=- 12 x 2 +x+2; (2) 设直线PM 的解析式为:y=mx ,直线PC 的解析式为:y=kx+2 由2 2122y kx y x x =+?? ?=-++?? 得 12 x 2 +(k-1)x=0, 解得:120,22x x k ==-, x p =22p x k =- 由2 1=22y mx y x x =???-++?? 得 12 x 2 +(m-1)x-2=0, ∴124b x x a ?=- =- 即x p?x m =-4, ∴x m =4p x -=21 k -. 由24y kx y x =+??=+? 得x N = 2 1 k -=x M , ∴MN ∥y 轴. (3)设G (0,m ),H (0,n ). 设直线QG 的解析式为y kx m =+, 将点()2,2Q 代入y kx m =+ 得22k m =+

人教版九年级上册数学二次函数知识点总结

二次函数知识点 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质: 上加下减。 3. ()2 y a x h =-的性质: 左加右减。 4. ()2 y a x h k =-+的性质:

1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2 沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2 变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2 沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2 变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-= ,. 五、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、 对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).

初中数学九年级《二次函数》公开课教学设计

22.1.1 二次函数 一、教学目标 1.知识与技能目标: (1).使学生理解并掌握二次函数的概念 (2).能判断一个给定的函数是否为二次函数,并会用待定系数法求函数解析式 (3).能根据实际问题中的条件确定二次函数的解析式,体会函数的模型思想 2.过程与方法目标; 通过“探究----感悟----练习”,采用探究、讨论等方法进行。 3.情感态度与价值观: 通过对几个特殊的二次函数的讲解,向学生进行一般与特殊的辩证唯物主义教育 二、教学重、难点 1.重点:理解二次函数的概念,能根据已知条件写出函数解析式 2.难点:理解二次函数的概念. 三、教学过程 1、知识回顾 (1).什么是变量,常量? (2).函数的定义是什么,有什么表现形式? (3) 函数的图象怎么构成,如何作函数的图象? 2、合作学习,探索新知 : 问题1: 正方体的六个面是全等的正方形,如果正方形的棱长为x ,表面积为y ,那么y 与x 的关系可表示为? y=6x 2 问题2: n 个球队参加比赛,每两队之间进行一场比赛.比赛的场次数m 与球队数n 有什么关系? m=21122 n n 问题3: 某工厂一种产品现在的年产量是20件,计划今后两年增加产量.如果

每年都比上一年的产量增加x 倍,那么两年后这种产品的数量y 将随计划所定的x 的值而定,y 与x 之间的关系怎样表示? y=20x 2+40x+20 观察以上三个问题所写出来的三个函数关系式有什么特点?引导学生从自变量最高次数思考。 经化简后都具有y=ax2+bx+c 的形式,(a,b,c 是常数, a≠0 ). 我们把形如y=ax2+bx+c(其中a,b,c 是常数,a≠0)的函数叫做二次函数 称:a 为二次项系数,ax 2叫做二次项;b 为一次项系数,bx 叫做一次项;c 为常数项. 又例:y=x2 + 2x – 3 满足什么条件时 当,是常数其中函数c b,a,)c b,a,c(bx ax y 2++= (1)它是二次函数? (2)它是一次函数? (3)它是正比例函数? 3、巩固练习: 1.下列函数中,哪些是二次函数? (1)y=3x-1 ; (2)y=3x 2+2; (3)y=3x 3+2x 2; (4)y=2x 2-2x+1; (5)y=x 2-x(1+x); (6)y=x -2+x. 2.做一做: (1)正方形边长为x (cm ),它的面积y (cm2)是多少? (2)矩形的长是4厘米,宽是3厘米,如果将其长增加x 厘米,宽增加2x 厘米,则面积增加到y 平方厘米,试写出y 与x 的关系式. 4、例题讲解: 例1: 关于x 的函数是二次函数, 求m 的值. 解: 由题意可得 注意:二次函数的二次项系数不能为零 m m x m y -+=2)1(012 2≠+=-m m m 时,函数为二次函数。当解得,22 =∴=m m

(完整)初三中考二次函数专题复习

第二十六章 二次函数 【知识梳理】 1.定义:一般地,如果c b a c bx ax y ,,(2 ++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数c bx ax y ++=2 用配方法可化成:()k h x a y +-=2 的形式,其中 a b a c k a b h 4422 -=-=,. 3.抛物线的三要素:开口方向、对称轴、顶点. ①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0

新动力教育 数学杨老师 对称轴是直线a b x 2- =. (2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2 的形式,得到顶点为(h ,k ),对称轴是直线h x =. (3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. 6.抛物线c bx ax y ++=2 中,c b a ,,的作用 (1)a 决定开口方向及开口大小,这与2 ax y =中的a 完全一样. (2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2 的对称轴是直线 a b x 2- =,故:①0=b 时,对称轴为y 轴;②0>a b (即a 、b 同号)时,对称轴在y 轴左侧;③0c ,与y 轴交于正半轴;③0

全初三数学二次函数知识点归纳总结

二次函数知识点归纳及相关典型题 第一部分 基础知识 1.定义:一般地,如果c b a c bx ax y ,,(2 ++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数2 ax y =的性质 (1)抛物线2 ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2 ax y =的图像与a 的符号关系. ①当0>a 时?抛物线开口向上?顶点为其最低点; ②当0a 时,开口向上;当0

新人教版九年级上二次函数知识点总结与练习

新人教版九年级上二次函数知识点总结与练习知识点一:二次函数的定义 1.二次函数的定义: 一般地,形如2 =++(a b c y ax bx c ,,是常数,0 a≠)的函数,叫做二次函数. 其中a是二次项系数,b是一次项系数,c是常数项. 知识点二:二次函数的图象与性质 ? 2. 二次函数()2 =-+的图象与性质 y a x h k (1)二次函数基本形式2 =的图象与性质:a的绝对值越大,抛物线的开口越小 y ax (2)2 =+的图象与性质:上加下减 y ax c

(3)()2 y a x h =-的图象与性质:左加右减

(4)二次函数()2 y a x h k =-+的图象与性质 3. 二次函数c bx ax y ++=2的图像与性质 (1)当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值 2 44ac b a -. (2)当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值 2 44ac b a -.

4. 二次函数常见方法指导 (1)二次函数2y ax bx c =++图象的画法 ①画精确图 五点绘图法(列表-描点-连线) 利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图. ②画草图 抓住以下几点:开口方向,对称轴,与y 轴的交点,顶点. (2)二次函数图象的平移 平移步骤: ① 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k , ; ② 可以由抛物线2 ax 经过适当的平移得到具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 平移规律:概括成八个字“左加右减,上加下减”. (3)用待定系数法求二次函数的解析式 ①一般式:.已知图象上三点或三对、 的值,通常选择一般式. ②顶点式:.已知图象的顶点或对称轴,通常选择顶点式. ③交点式: .已知图象与轴的交点坐标 、 ,通常选择交点式. (4)求抛物线的顶点、对称轴的方法 ①公式法:a b ac a b x a c bx ax y 44222 2 -+ ?? ? ??+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线a b x 2- =. ②配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2 的形式,得到顶点为(h ,k ),对称轴是直线h x =.

相关文档
相关文档 最新文档