文档库 最新最全的文档下载
当前位置:文档库 › 高考数学一轮复习考点突破检测函数与导数(解析卷)

高考数学一轮复习考点突破检测函数与导数(解析卷)

高考数学一轮复习考点突破检测函数与导数(解析卷)
高考数学一轮复习考点突破检测函数与导数(解析卷)

课时跟踪检测 导数的概念及运算

[A 级 保分题——准做快做达标]

1.曲线y =e x -ln x 在点(1,e)处的切线方程为( ) A .(1-e)x -y +1=0 B .(1-e)x -y -1=0 C .(e -1)x -y +1=0

D .(e -1)x -y -1=0

解析:选C 由于y ′=e -1

x

,所以y ′|x =1=e -1,故曲线y =e x -ln x 在点(1,e)处的切线方程为y

-e =(e -1)(x -1),即(e -1)x -y +1=0.

2.已知函数f (x )=a ln x +bx 2

的图象在点P (1,1)处的切线与直线x -y +1=0垂直,则a 的值为( ) A .-1 B .1 C .3

D .-3

解析:选D 由已知可得P (1,1)在函数f (x )的图象上, 所以f (1)=1,即a ln 1+b ×12

=1,解得b =1, 所以f (x )=a ln x +x 2

, 故f ′(x )=a

x

+2x .

则函数f (x )的图象在点P (1,1)处的切线的斜率k =f ′(1)=a +2, 因为切线与直线x -y +1=0垂直, 所以a +2=-1,即a =-3.

3.(2019·珠海期末)曲线y =x 3

-2x +4在点(1,3)处的切线的倾斜角为( ) A .30° B .45° C .60°

D .120°

解析:选B 由题意知点(1,3)在曲线y =x 3

-2x +4上.∵y =x 3

-2x +4,∴y ′=3x 2

-2,根据导数的几何意义,可知曲线y =x 3

-2x +4在点(1,3)处的切线的斜率k =y ′|x =1=1,∴曲线y =x 3

-2x +4在点(1,3)处的切线的倾斜角为45°.故选B.

4.(2019·青岛模拟)已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N *

,则f 2 018(x )=( )

A .-sin x -cos x

B .sin x -cos x

C .-sin x +cos x

D .sin x +cos x

解析:选C ∵f 1(x )=sin x +cos x ,∴f 2(x )=f 1′(x )=cos x -sin x ,f 3(x )=f 2′(x )=-sin x -cos x ,f 4(x )=f 3′(x )=-cos x +sin x ,f 5(x )=f 4′(x )=sin x +cos x ,…,∴f n (x )的解析式以4为周期重复出现,∵2 018=4×504+2,∴f 2 018(x )=f 2(x )=-sin x +cos x ,故选C.

5.(2019·山东省实验中学一模)设函数f (x )=x 3

+ax 2

,若曲线y =f (x )在点P (x 0,f (x 0))处的切线方程为x +y =0,则点P 的坐标为( )

A .(0,0)

B .(1,-1)

C .(-1,1)

D .(1,-1)或(-1,1)

解析:选 D f ′(x )=3x 2

+2ax ,依题意,得?????

3x 2

0+2ax 0=-1,x 0+f x 0=0,

f x 0=x 30+ax 20,

解得????

?

a =-2,x 0=1,

f x 0=-1

????

?

a =2,x 0=-1,f x 0=1,

故选D.

6.(2019·湖北黄石二中一模)若直线y =kx +2是函数f (x )=x 3-x 2

-3x -1图象的一条切线,则k =( )

A .1

B .-1

C .2

D .-2

解析:选C 直线y =kx +2过(0,2),f ′(x )=3x 2

-2x -3,设切点为(x 0,y 0),故切线方程为y -y 0=(3x 2

0-2x 0-3)(x -x 0),将(0,2)代入切线方程并结合y 0=x 3

0-x 2

0-3x 0-1,解得x 0=-1,y 0=0,代入y =kx +2,解得k =2.

7.(2019·银川一中月考)设函数f (x )=3sin θ3x 3+cos θ2x 2+4x -1,θ∈?

?????0,5π6,

则导数f ′(-

1)的取值范围是( )

A .[3,4+3]

B .[3,6]

C .[4-3,6]

D .[4-3,4+3]

解析:选B 求导得f ′(x )=3x 2

sin θ+x cos θ+4,将x =-1代入导函数,得f ′(-1)=3sin θ-cos θ+4=2sin ? ????θ-π6+4,由θ∈??????0,5π6,可得θ-π6∈??????-π6,2π3,∴sin ? ????θ-π6∈??????-12,1,∴2sin ?

????θ-π6+4∈[3,6].故选B.

8.(2019·巴蜀中学模拟)已知曲线y =

2x

x -1

在点P (2,4)处的切线与直线l 平行且距离为25,则直线l 的方程为( )

A .2x +y +2=0

B .2x +y +2=0或2x +y -18=0

C .2x -y -18=0

D .2x -y +2=0或2x -y -18=0 解析:选B y ′=

x --2x x -2

=-2

x -

2

,y ′|x =2=-

2

2

=-2,因此k l =-2,设直线

l 方程为y =-2x +b ,即2x +y -b =0,由题意得

|2×2+4-b |

5

=25,解得b =18或b =-2,所以直线l 的方程为2x +y -18=0或2x +y +2=0.故选B.

9.(2019·成都双流区模拟)过曲线y =x 2

-2x +3上一点P 作曲线的切线,若切点P 的横坐标的取值范

围是????

??1,32,则切线的倾斜角的取值范围是( ) A.?

?????0,π2

B.?

?????0,π4

C .[0,π)

D.??

??

?

?3π4,π

解析:选B 因为y ′=2x -2,1≤x ≤3

2,所以0≤2x -2≤1.设切线的倾斜角为α,则0≤tan α≤1.

因为0≤α≤π,所以0≤α≤π

4

,故选B.

10.(2019·广东七校联考)函数f (x )=x cos x 的导函数f ′(x )在区间[-π,π]上的图象大致是( )

解析:选A 法一:由题意,得f ′(x )=cos x +x (-sin x )=cos x -x sin x ,f ′(-x )=f ′(x ),所以f ′(x )为偶函数.又f ′(0)=1,所以排除C 、D ;令g (x )=f ′(x )=cos x -x sin x ,则g ′(x )=-

x cos x -2sin x ,易知g ′(0)=0,且当x ∈?

??

??

0,π2时,g ′(x )<0,f ′(x )单调递减,当x ∈?

??

??-π2

,0时,

g ′(x )>0,f ′(x )单调递增,所以f ′(x )在x =0处取得极大值,排除选项B.故选A.

法二:由题意,得f ′(x )=cos x +x (-sin x )=cos x -x sin x ,又f ′(0)=1,所以排除C ,D ;当

x ∈?

??

??

0,π2

时,y =cos x 单调递减,对于y =x sin x ,y ′=x cos x +sin x >0,则y =x sin x 单调递增,则

f ′(x )=cos x -x sin x 在?

??

??

0,π2

上单调递减.故选A.

11.(2018·全国卷Ⅱ)曲线y =2ln x 在点(1,0)处的切线方程为______________. 解析:因为y ′=2

x

,y ′|x =1=2,所以切线方程为y -0=2(x -1),即y =2x -2.

答案:y =2x -2

12.若点P 是曲线y =x 2

-ln x 上任意一点,则点P 到直线y =x -2的最小距离为________. 解析:由y =x 2

-ln x ,得y ′=2x -1x

(x >0),

设点P 0(x 0,y 0)是曲线y =x 2

-ln x 上到直线y =x -2的距离最小的点, 则y ′x =x 0=2x 0-1x 0=1,解得x 0=1或x 0=-1

2(舍去).

∴点P 0的坐标为(1,1).

∴所求的最小距离为|1-1-2|

2= 2.

答案: 2

13.(2019·石家庄二中月考)已知函数f (x )=1x

,g (x )=x 2

.若直线l 与曲线f (x ),g (x )都相切,则直

线l 的斜率为________.

解析:因为f (x )=1x ,所以f ′(x )=-1x

2,设曲线f (x )与l 切于点? ??

??x 1,1x 1,则切线斜率k =-1x 21

,故切

线方程为y -1x 1=-1x 21(x -x 1),即y =-1x 21x +2x 1.与g (x )=x 2联立,得x 2

+1x 21x -2x 1

=0.因为直线l 与曲线g (x )

相切,所以? ????1x 212-4? ??

??-2x 1=0,解得x 1=-12,故斜率k =-1x 21=-4.

答案:-4

14.(2019·淄博六中期末)曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离为________. 解析:设曲线上过点P (x 0,y 0)的切线平行于直线2x -y +3=0,即斜率是2,则y ′|x =x 0=2

2x 0-1=2,

解得x 0=1,所以y 0=0,即点P (1,0).又点P 到直线2x -y +3=0的距离为

|2-0+3|22

+-

2

=5,所以曲线

y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是 5.

答案: 5

15.(2019·孝感高中期中)已知函数f (x )=x 3

-x . (1)求曲线y =f (x )在点M (1,0)处的切线方程;

(2)如果过点(1,b )可作曲线y =f (x )的三条切线,求实数b 的取值范围. 解:(1)f ′(x )=3x 2

-1,∴f ′(1)=2. 故切线方程为y -0=2(x -1),即2x -y -2=0.

(2)设切点为(x 0,x 3

0-x 0),则切线方程为y -(x 3

0-x 0)=f ′(x 0)(x -x 0). 又切线过点(1,b ),所以(3x 2

0-1)(1-x 0)+x 3

0-x 0=b , 即2x 3

0-3x 2

0+b +1=0.

由题意,上述关于x 0的方程有三个不同的实数解. 记g (x )=2x 3

-3x 2

+b +1,则g (x )有三个不同的零点,

而g ′(x )=6x (x -1),令g ′(x )=0得x =0或x =1,则结合图像可知g (0)g (1)<0即可,可得b ∈(-1,0).

16.设函数f (x )=ax -b

x

,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0. (1)求f (x )的解析式;

(2)曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积是否为定值,若是,求此定值;若不是,说明理由.

解:(1)方程7x -4y -12=0可化为y =7

4x -3,

当x =2时,y =1

2

.

又f ′(x )=a +b

x 2

,所以?????

2a -b 2=12,a +b 4=7

4,

解得?

??

??

a =1,

b =3.

故f (x )=x -3

x

.

(2)是定值,理由如下:

设P (x 0,y 0)为曲线y =f (x )上任一点,

由f ′(x )=1+3x

2知曲线在点P (x 0,y 0)处的切线方程为y -y 0=? ??

??1+3x 20(x -x 0),

即y -? ????x 0-3x 0=? ??

??1+3x 20(x -x 0).

令x =0,得y =-6x 0

,得切线与直线x =0的交点坐标为? ??

??0,-6x 0.

令y =x ,得y =x =2x 0,得切线与直线y =x 的交点坐标为(2x 0,2x 0).

所以曲线y =f (x )在点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形的面积S =12??????

-6x 0·|2x 0|

=6.

故曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,且此定值为6.

[B 级 难度题——适情自主选做]

1.(2019·蚌埠质检)已知函数f (x )=x ? ??

??a -1e x ,曲线y =f (x )上存在两个不同点,使得曲线在这两点

处的切线都与y 轴垂直,则实数a 的取值范围是( )

A .(-e 2

,+∞)

B .(-e 2,

0)

C.? ??

??-1e 2,+∞ D.? ??

??-1e 2,0

解析:选D ∵曲线y =f (x )上存在不同的两点,使得曲线在这两点处的切线都与y 轴垂直,∴f ′(x )=a +(x -1)e -x

=0有两个不同的解,即a =(1-x )e -x

有两个不同的解.设y =(1-x )e -x

,则y ′=(x -2)e

-x

,∴当x <2时,y ′<0,当x >2时,y ′>0,则y =(1-x )e -x

在(-∞,2)上单调递减,在(2,+∞)上单

调递增,∴x =2时,函数y 取得极小值-e -2

.又∵当x >2时总有y =(1-x )e -x

<0且f (0)=1>0,∴可得实

数a 的取值范围是? ??

??-1e 2,0.故选D.

2.(2019·山东名校调研)已知曲线y =e x +a

与y =x 2

恰好存在两条公切线,则实数a 的取值范围是( )

A .[2ln 2-2,+∞)

B .(2ln 2,+∞)

C .(-∞,2ln 2-2]

D .(-∞,2ln 2-2)

解析:选D 由题意可设直线y =kx +b (k >0)为它们的公切线,联立?

????

y =kx +b ,y =x 2

可得x 2

-kx -b =0,

由Δ=0,得k 2+4b =0 ①.由y =e

x +a

求导可得y =e

x +a

,令e

x +a

=k ,可得x =ln k -a ,∴切点坐标为(ln

k -a ,k ln k -ak +b ),代入y =e x +a 可得k =k ln k -ak +b ②.联立①②可得k 2+4k +4ak -4k ln k =0,

化简得4+4a =4ln k -k .令g (k )=4ln k -k ,则g ′(k )=4

k

-1,令g ′(k )=0,得k =4,令g ′(k )>0,

得04.∴g (k )在(0,4)内单调递增,在(4,+∞)内单调递减,∴g (k )max =g (4)=4ln 4-4,且k →0时,g (k )→-∞,k →+∞时,g (k )→-∞.∵有两条公切线,∴方程4+4a =4ln k -k 有两解,∴4+4a <4ln 4-4,∴a <2ln 2-2.故选D.

课时跟踪检测导数与函数的单调性、极值与最值

1.(2019·厦门质检)函数y =12x 2

-ln x 的单调递减区间为( )

A .(-1,1)

B .(0,1]

C .(1,+∞)

D .(0,2)

解析:选B 由题意知,函数的定义域为(0,+∞),由y ′=x -1

x

≤0,得0

减区间为(0,1].

2.函数f (x )的导函数f ′(x )有下列信息: ①f ′(x )>0时,-12; ③f ′(x )=0时,x =-1或x =2. 则函数f (x )的大致图象是( )

解析:选C 根据信息知,函数f (x )在(-1,2)上是增函数.在(-∞,-1),(2,+∞)上是减函数,故选C.

3.函数f (x )=(x 2

-1)2

+2的极值点是( )

A .x =1

B .x =-1

C .x =1或-1或0

D .x =0

解析:选C ∵f (x )=x 4

-2x 2

+3,

∴由f ′(x )=4x 3

-4x =4x (x +1)(x -1)=0, 得x =0或x =1或x =-1,

又当x <-1时,f ′(x )<0,当-10, 当01时,f ′(x )>0, ∴x =0,1,-1都是f (x )的极值点.

4.(2019·成都高三摸底测试)已知函数f (x )=x 3

-ax 在(-1,1)上单调递减,则实数a 的取值范围为( )

A .(1,+∞)

B .[3,+∞)

C .(-∞,1]

D .(-∞,3]

解析:选B ∵f (x )=x 3

-ax ,∴f ′(x )=3x 2

-a .又f (x )在(-1,1)上单调递减,∴3x 2

-a ≤0在(-1,1)上恒成立,∴a ≥3,故选B.

5.(2019·赤峰模拟)设函数f (x )在定义域R 上可导,其导函数为f ′(x ),若函

数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是

( )

A .函数f (x )有极大值f (2)和极小值f (1)

B .函数f (x )有极大值f (-2)和极小值f (1)

C .函数f (x )有极大值f (2)和极小值f (-2)

D .函数f (x )有极大值f (-2)和极小值f (2)

解析:选D 由题图可知,当x <-2时,f ′(x )>0;当x =-2时,f ′(x )=0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x =2时,f ′(x )=0;当x >2时,f ′(x )>0.由此可得函数f (x )在x =-2处取得极大值,在x =2处取得极小值.故选D.

6.下列函数中,在(0,+∞)上为增函数的是( ) A .f (x )=sin 2x B .f (x )=x e x

C .f (x )=x 3

-x

D .f (x )=-x +ln x

解析:选B 对于A ,f (x )=sin 2x 的单调递增区间是??????k π-π4,k π+π4(k ∈Z);对于B ,f ′(x )=

e x

(x +1),当x ∈(0,+∞)时,f ′(x )>0,∴函数f (x )=x e x

在(0,+∞)上为增函数;对于C ,f ′(x )=3x 2

-1,令f ′(x )>0,得x >

33或x <-33,∴函数f (x )=x 3

-x 在? ????-∞,-33和? ??

??33,+∞上单调递增;对于D ,f ′(x )=-1+1x =-x -1

x

,令f ′(x )>0,得0

递增.综上所述,应选B.

7.函数f (x )=ax 3+bx 2+cx +d 的图象如图,则函数y =ax 2

+32

bx

+c

3

的单调

递增区间是( )

A .(-∞,-2] B.??????12,+∞ C .[-2,3]

D.????

??98,+∞ 解析:选D 由题图可知d =0.不妨取a =1,∵f (x )=x 3

+bx 2

+cx ,∴f ′(x )=3x 2

+2bx +c .由图可知

f ′(-2)=0,f ′(3)=0,∴12-4b +c =0,27+6b +c =0,∴b =-3

2,c =-18.∴y =x 2-94

x -6,y ′=2x

-94.当x ≥98时,y ′≥0,∴y =x 2

-94x -6的单调递增区间为????

??98,+∞.故选D. 8.已知定义在R 上的函数f (x ),f (x )+x ·f ′(x )<0,若a bf (b )

D .af (b )>bf (a )

解析:选C [x ·f (x )]′=x ′f (x )+x ·f ′(x )=f (x )+x ·f ′(x )<0,∴函数x ·f (x )是R 上的减函数,∵a bf (b ).

9.(2019·广州模拟)若函数f (x )=e x

(sin x +a cos x )在? ??

??π4,π2上单调递增,则实数a 的取值范围是

( )

A .(-∞,1]

B .(-∞,1)

C .[1,+∞)

D .(1,+∞)

解析:选A f ′(x )=e x

[sin x +cos x -a (sin x -cos x )],当a =0时,f ′(x )=e x

(sin x +cos x ),

显然x ∈? ????π4,π2,f ′(x )>0恒成立,排除C 、D ;当a =1时,f ′(x )=2e x cos x ,x ∈? ??

??π4,π2时,

f ′(x )>0,

故选A.

10.定义域为R 的函数f (x )满足f (1)=1,且f (x )的导函数f ′(x )>1

2,则满足2f (x )

合为( )

A .{x |-1

B .{x |x <1}

C .{x |x <-1或x >1}

D .{x |x >1}

解析:选B 令g (x )=2f (x )-x -1,∵f ′(x )>1

2,∴g ′(x )=2f ′(x )-1>0,∴g (x )为单调增函数,

∵f (1)=1,∴g (1)=2f (1)-1-1=0,∴当x <1时,g (x )<0,即2f (x )

11.已知e 为自然对数的底数,设函数f (x )=(e x

-1)(x -1)k

(k =1,2),则( ) A .当k =1时,f (x )在x =1处取到极小值 B .当k =1时,f (x )在x =1处取到极大值 C .当k =2时,f (x )在x =1处取到极小值 D .当k =2时,f (x )在x =1处取到极大值

解析:选C 当k =1时,f (x )=(e x

-1)(x -1),0,1是函数f (x )的零点.当0

-1)(x

(完整word版)高中数学解析几何大题精选

解析几何大量精选 1.在直角坐标系xOy 中,点M 到点()1,0F ,) 2 ,0F 的距离之和是4,点M 的轨迹 是C 与x 轴的负半轴交于点A ,不过点A 的直线:l y kx b =+与轨迹C 交于不同的两点P 和Q . ⑴求轨迹C 的方程; ⑴当0AP AQ ?=u u u r u u u r 时,求k 与b 的关系,并证明直线l 过定点. 【解析】 ⑴ 2 214 x y +=. ⑴将y kx b =+代入曲线C 的方程, 整理得2 2 2 (14)8440k x kbx b +++-=, 因为直线l 与曲线C 交于不同的两点P 和Q , 所以222222644(14)(44)16(41)0k b k b k b ?=-+-=-+> ① 设()11,P x y ,()22,Q x y ,则122 814kb x x k +=-+,21224414b x x k -= + ② 且2222 121212122 4()()()14b k y y kx b kx b k x x kb x x b k -?=++=+++=+, 显然,曲线C 与x 轴的负半轴交于点()2,0A -, 所以()112,AP x y =+u u u r ,()222,AQ x y =+u u u r . 由0AP AQ ?=u u u r u u u r ,得1212(2)(2)0x x y y +++=. 将②、③代入上式,整理得22121650k kb b -+=. 所以(2)(65)0k b k b -?-=,即2b k =或6 5 b k =.经检验,都符合条件① 当2b k =时,直线l 的方程为2y kx k =+.显然,此时直线l 经过定点()2,0-点. 即直线l 经过点A ,与题意不符. 当65b k =时,直线l 的方程为6655y kx k k x ? ?=+=+ ?? ?. 显然,此时直线l 经过定点6,05?? - ??? 点,满足题意. 综上,k 与b 的关系是65b k =,且直线l 经过定点6,05?? - ??? 2. 已知椭圆2222:1x y C a b +=(0)a b >>的离心率为1 2 ,以原点为圆心,椭圆的短半轴为半径的 圆与直线0x y -=相切. ⑴ 求椭圆C 的方程; ⑴ 设(4,0)P ,A ,B 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PB 交椭圆C 于另一点E ,证明直线AE 与x 轴相交于定点Q ; ⑴ 在⑴的条件下,过点Q 的直线与椭圆C 交于M ,N 两点,求OM ON ?u u u u r u u u r 的取值范围. 【解析】 ⑴22 143 x y +=. ⑴ 由题意知直线PB 的斜率存在,设直线PB 的方程为(4)y k x =-.

高中数学函数的单调性与导数测试题(附答案)

高中数学函数的单调性与导数测试题(附答 案) 选修2-21.3.1函数的单调性与导数 一、选择题 1.设f(x)=ax3+bx2+cx+d(a0),则f(x)为R上增函数的充要条件是() A.b2-4ac0 B.b0,c0 C.b=0,c D.b2-3ac0 [答案] D [解析]∵a0,f(x)为增函数, f(x)=3ax2+2bx+c0恒成立, =(2b)2-43ac=4b2-12ac0,b2-3ac0. 2.(2009广东文,8)函数f(x)=(x-3)ex的单调递增区间是() A.(-,2) B.(0,3) C.(1,4) D.(2,+) [答案] D [解析]考查导数的简单应用. f(x)=(x-3)ex+(x-3)(ex)=(x-2)ex, 令f(x)0,解得x2,故选D. 3.已知函数y=f(x)(xR)上任一点(x0,f(x0))处的切线斜率k =(x0-2)(x0+1)2,则该函数的单调递减区间为() A.[-1,+) B.(-,2]

C.(-,-1)和(1,2) D.[2,+) [答案] B [解析]令k0得x02,由导数的几何意义可知,函数的单调减区间为(-,2]. 4.已知函数y=xf(x)的图象如图(1)所示(其中f(x)是函数f(x)的导函数),下面四个图象中,y=f(x)的图象大致是() [答案] C [解析]当01时xf(x)0 f(x)0,故y=f(x)在(0,1)上为减函数 当x1时xf(x)0,f(x)0,故y=f(x)在(1,+)上为增函数,因此否定A、B、D故选C. 5.函数y=xsinx+cosx,x(-)的单调增区间是() A.-,-2和0,2 B.-2,0和0,2 C.-,-2, D.-2,0和 [答案] A [解析]y=xcosx,当-x2时, cosx0,y=xcosx0, 当02时,cosx0,y=xcosx0. 6.下列命题成立的是() A.若f(x)在(a,b)内是增函数,则对任何x(a,b),都有f(x)0

高考数学解析几何专题练习及答案解析版

高考数学解析几何专题练习解析版82页 1.一个顶点的坐标()2,0 ,焦距的一半为3的椭圆的标准方程是( ) A. 19422=+y x B. 14922=+y x C. 113422=+y x D. 14132 2=+y x 2.已知双曲线的方程为22 221(0,0)x y a b a b -=>>,过左焦点F 1的直线交 双曲线的右支于点P ,且y 轴平分线段F 1P ,则双曲线的离心率是( ) A . 3 B .32+ C . 31+ D . 32 3.已知过抛物线y 2 =2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A ,B 两点, 且△OAB (O 为坐标原点)的面积为,则m 6+ m 4的值为( ) A .1 B . 2 C .3 D .4 4.若直线经过(0,1),(3,4)A B 两点,则直线AB 的倾斜角为 A .30o B . 45o C .60o D .120o 5.已知曲线C 的极坐标方程ρ=2θ2cos ,给定两点P(0,π/2),Q (-2,π),则有 ( ) (A)P 在曲线C 上,Q 不在曲线C 上 (B)P 、Q 都不在曲线C 上 (C)P 不在曲线C 上,Q 在曲线C 上 (D)P 、Q 都在曲线C 上 6.点M 的直角坐标为)1,3(--化为极坐标为( ) A .)65, 2(π B .)6 ,2(π C .)611,2(π D .)67,2(π 7.曲线的参数方程为???-=+=1 232 2t y t x (t 是参数),则曲线是( ) A 、线段 B 、直线 C 、圆 D 、射线 8.点(2,1)到直线3x-4y+2=0的距离是( ) A . 54 B .4 5 C . 254 D .4 25 9. 圆0642 2 =+-+y x y x 的圆心坐标和半径分别为( ) A.)3,2(-、13 B.)3,2(-、13 C.)3,2(--、13 D.)3,2(-、13 10.椭圆 122 2 2=+b y x 的焦点为21,F F ,两条准线与x 轴的交点分别为M 、N ,若212F F MN ≤,则该椭圆离心率取得最小值时的椭圆方程为 ( )

基本初等函数的导数公式及导数运算法则综合测试题(附答案)

基本初等函数的导数公式及导数运算法则综合测试题(附答案) 选修2-21.2.2第2课时基本初等函数的导数公式及导数运算法则 一、选择题 1 .函数y = (x+ 1)2(x—1)在x= 1处的导数等于() A.1B.2 C. 3 D. 4 答案]D 解析]y = (x+1)2]'—x1 )+(x+ 1)2(x—1)' =2(x + 1)?(x—1) + (x+ 1)2= 3x2 + 2x—1, y‘ =1= 4. 2.若对任意x€ R, f‘ =)4x3, f(1) = —1,则f(x)=() A. x4 B. x4— 2 C. 4x3—5 D. x4+ 2 答案]B 解析]丁f‘(=4x3.f(x) = x4+c,又f(1) = — 1 ? ? ? 1 + c= — 1 ,? ? ? c= —2,—f(x) = x4 — 2. 3 .设函数f(x) = xm + ax 的导数为f‘ =)2x+1,则数列{1f(n)}(n € N*) 的前n 项和是() A.nn+1 B.n+2n+1 C.nn—1 D.n+1n 答案]A 解析]T f(x) = xm+ ax 的导数为f‘(x)2x + 1,

/. m = 2, a= 1,二f(x) = x2+ x, 即f(n) = n2+n=n(n+ 1), 二数列{1f(n)}(n € N*)的前n项和为: Sn= 11 X2 12X3 13 x+…+ 1n(n+ 1) =1 —12+ 12—13+…+ 1n —1n + 1 =1 —1n+ 1= nn+ 1, 故选 A. 4.二次函数y = f(x)的图象过原点,且它的导函数y= f‘的)图象是过第 一、二、三象限的一条直线,贝卩函数y= f(x)的图象的顶点在() A.第一象限 B.第二象限 C.第三象限 D.第四象限 答案]C 解析]由题意可设f(x)= ax2 + bx, f' (=2ax + b,由于f‘(的图象是过第一、二、三象限的一条直线,故2a>0, b>0,则f(x) = ax+ b2a2—b24a, 顶点—b2a,—b24a 在第三象限,故选 C. 5 .函数y = (2 + x3)2的导数为() A. 6x5+ 12x2 B. 4+ 2x3 C. 2(2+ x3)2 D. 2(2+ x3)?3x 答案]A 解析]t y= (2+ x3)2= 4+ 4x3+ x6, /. y = 6x5 + 12x2.

全国卷历年高考函数与导数真题归类分析(含答案)

全国卷历年高考函数与导数真题归类分析(含答案) (2015年-2018年共11套) 函数与导数小题(共23小题) 一、函数奇偶性与周期性 1.(2015年1卷13)若函数f (x ) =ln(x x +为偶函数,则a= 【解析】由题知ln(y x = 是奇函数,所以ln(ln(x x ++- =22ln()ln 0a x x a +-==,解得a =1.考点:函数的奇偶性 2.(2018年2卷11)已知是定义域为的奇函数,满足 .若 , 则 A. B. 0 C. 2 D. 50 解:因为是定义域为 的奇函数,且 , 所以, 因此, 因为 ,所以, ,从而 ,选C. 3.(2016年2卷12)已知函数()()R f x x ∈满足()()2f x f x -=-,若函数1 x y x += 与()y f x =图像的交点为()11x y ,,()22x y ,,?,()m m x y ,,则()1 m i i i x y =+=∑( ) (A )0 (B )m (C )2m (D )4m 【解析】由()()2f x f x =-得()f x 关于()01, 对称,而11 1x y x x +==+也关于()01,对称, ∴对于每一组对称点'0i i x x += '=2i i y y +,∴()1 1 1 022 m m m i i i i i i i m x y x y m ===+=+=+? =∑∑∑,故选B . 二、函数、方程与不等式 4.(2015年2卷5)设函数211log (2),1, ()2,1,x x x f x x -+-

高中数学(函数和导数)综合练习含解析

高中数学(函数和导数)综合练习含解析 学校:___________姓名:___________班级:___________考号:___________ 一、选择题(题型注释) 1.已知函数2()ln ()f x x ax a x a R =--∈.3253()422 g x x x x =-+-+ (1)当1a =时,求证:()12,1,x x ?∈+∞,均有12()()f x g x ≥ (2)当[)1,x ∈+∞时,()0f x ≥恒成立,求a 的取值范围. 2.已知定义域为R 的奇函数)(x f y =的导函数为)(x f y '=,当0≠x 时,0)()(>+'x x f x f ,若)1(f a =,)2(2--=f b , )21(ln )21(ln f c =,则c b a ,,的大小关系正确的是( ) A .b c a << B .a c b << C .c b a << D .b a c << 3.函数3()3f x x ax a =-+在()0,2内有最小值,则实数a 的取值范围是( ) A .[)0,4 B .()0,1 C .()0,4 D .()4,4- 4.在函数()y f x =的图象上有点列(),n n x y ,若数列{}n x 是等差数列,数列{}n y 是等比数列,则函数()y f x =的解析式可能为( ) A .()21f x x =+ B .()2 4f x x = C .()3log f x x = D .()34x f x ??= ??? 5.设:x p y c =是R 上的单调递减函数;q :函数()() 2lg 221g x cx x =++的值域为R .如果“p 且q ”为假命题,“p 或q ”为真命题,则正实数c 的取值范围是( ) A .1,12?? ??? B .1,2??+∞ ??? C .[)10,1,2??+∞ ??? D .10,2?? ??? 6.如果函数y ||2x =-的图像与曲线22:C x y λ+=恰好有两个不同的公共点,则实数λ的取值范围 是( ) A .{2}∪(4,)+∞ B .(2,)+∞ C .{2,4} D .(4,)+∞

导数测试题(含答案)

导数单元测试题 班级姓名 一、选择题 1.已知函数y=f(x)=x2+1,则在x=2,Δx=0.1时,Δy的值为( ) A.0.40 B.0.41 C.0.43 D.0.44 2.函数f(x)=2x2-1在区间(1,1+Δx)上的平均变化率Δy Δx 等于( ) A.4 B.4+2Δx C.4+2(Δx)2 D.4x 3.设f′(x0)=0,则曲线y=f(x)在点(x0,f(x0))处的切线( ) A.不存在B.与x轴平行或重合 C.与x轴垂直D.与x轴相交但不垂直 4.曲线y=-1 x 在点(1,-1)处的切线方程为( ) A.y=x-2 B.y=x C.y=x+2 D.y=-x-2 5.下列点中,在曲线y=x2上,且在该点处的切线倾斜角为π 4 的是( ) A.(0,0) B.(2,4) C.(1 4 , 1 16 ) D.( 1 2 , 1 4 ) 6.已知函数f(x)=1 x ,则f′(-3)=( ) A.4 B.1 9 C.- 1 4 D.- 1 9 7.函数f(x)=(x-3)e x的单调递增区间是( ) A.(-∞,2) B.(0,3) C.(1,4) D.(2,+∞) 8.“函数y=f(x)在一点的导数值为0”是“函数y=f(x)在这点取极值”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 9.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内的极小值点有( ) A.1个B.2个 C.3个D.4个 10.函数f(x)=-x2+4x+7,在x∈[3,5]上的最大值和最小值分 别是( ) A.f(2),f(3) B.f(3),f(5) C.f(2),f(5) D.f(5),f(3) 11.函数f(x)=x3-3x2-9x+k在区间[-4,4]上的最大值为10,则其最小值为( ) A.-10 B.-71 C.-15 D.-22 12.一点沿直线运动,如果由始点起经过t秒运动的距离为s= 1 4 t4- 5 3 t3+2t2,那么速度为零的时刻是( ) A.1秒末 B.0秒 C.4秒末 D.0,1,4秒末 二、填空题 13.设函数y=f(x)=ax2+2x,若f′(1)=4,则a=________. 14.已知函数y=ax2+b在点(1,3)处的切线斜率为2,则 b a =________. 15.函数y=x e x的最小值为________. 16.有一长为16 m的篱笆,要围成一个矩形场地,则矩形场地的最大面积是________m2. 三、解答题 17.求下列函数的导数:(1)y=3x2+x cos x; (2)y= x 1+x ; (3)y=lg x-e x. 18.已知抛物线y=x2+4与直线y=x+10,求: (1)它们的交点; (2)抛物线在交点处的切线方程. 19.已知函数f(x)= 1 3 x3-4x+4.(1)求函数的极值; (2)求函数在区间[-3,4]上的最大值和最小值.

原函数与导函数的关系

课题:探究原函数与导函数的关系 首师大附中 数学组 王建华 设计思路 这节课就是在学完导数与积分之后,学生从大量的实例中对原函数与导函数的关系有了一定的认识的基础上展开教学的。由于这部分内容课本上没有,但数学内部的联系规律与对称美又会使学生既觉得有挑战性又充满探究的兴趣。备这个课的过程中我虽然参考了大量已有的资料,但需要做更深入地思考这些命题间的联系,以什么方式展开更利于学生拾级而上,最终登上高峰体会一览众山小的乐趣与成就感。教师实际上就是在引导学生进行一次理论的探险,大胆地猜,小心地证,谨慎地修改条件,步步逼近真理。最终学生能否记住这些结论并不重要,重要的就是研究相互关联的事物的一般思路与方法。对优秀生或热爱数学的学生来说会有更多的收获。 整个教学流程 1、 从经验观察发现,猜想得命题p,q 、 这两个命题为真命题,证明它们的方法用复合函数求导,比较容易上手。 2、 学生自然会想到这个命题的逆命题就是否成立,尝试证明。证明的思路也要逆向思考。发现由于导数确定后原函数不能唯一确定,有上下平移的可能,这样关于y 轴对称的性质能够保持,但关于原点对称的性质就不能保证了。 3、 函数的平移不改变函数图象的对称性,因此将奇函数的性质拓展为关于中心对称,将偶函数的性质拓展为关于直线x a =对称,研究前面的四个命题还就是否成立。研究方法可以类比迁移前面的方法。能成立的严格证明,不能成立的举出反例,并尝试通过改变条件使之成为真命题。 4、已有成果的应用:利用二次函数的对称性性质研究三次函数的对称性。 教学目标 在这个探究过程中 1、加强学生对导函数与原函数相生相伴的关系的理解; 2、增强学生对函数对称性的理解与抽象概括表达能力; 3体验研究事物的角度,一个新定理就是怎样诞生的,怎样才就是全面地认识了一个事物。4、培养学生的思辨能力,分析法解决问题的能力,举反例的能力等等。 教学重点 以原函数与导函数的对称性的联系为载体让学生体验观察发现、概括猜想、辨别真伪的过程。 教学难点 灵活运用所学知识探索未知领域。 新课引入 前面解题时我们常根据导函数的符号示意图画出原函数的单调性示意图,您能根据原函数的图像画出导函数的示意图不? 一. 探究由原函数的奇偶性能否推出导函数的奇偶性。 问题1 已知函数()y f x =的图像,请尝试画出其导函数的图像示意图。 3()f x x = 2'()3y f x x ==

2020高考数学函数与导数综合题型分类总结

函数综合题分类复习 题型一:关于函数的单调区间(若单调区间有多个用“和”字连接或用“逗号”隔开),极值,最值;不等式恒成立;此类问题提倡按以下三个步骤进行解决: 第一步:令 0)('=x f 得到两个根;第二步:列表如下;第三步:由表可知; 不等式恒成立问题的实质是函数的最值问题,常见处理方法有四种: 第一种:变更主元(即关于某字母的一次函数)-----题型特征(已知谁的范围就把谁作为主元);第二种:分离变量求最值(请同学们参考例5);第三种:关于二次函数的不等式恒成立;第四种:构造函数求最值----题型特征 )()(x g x f >恒成立 0)()()(>-=?x g x f x h 恒成立;参考例4; 例1.已知函数32 1()23 f x x bx x a =-++,2x =是)(x f 的一个极值点. (Ⅰ)求()f x 的单调递增区间;(Ⅱ)若当[1, 3]x ∈时,2 2()3 f x a ->恒成立,求a 的取值范围. 例2.已知函数b ax ax x x f +++=2 3)(的图象过点)2,0(P . (1)若函数)(x f 在1-=x 处的切线斜率为6,求函数)(x f y =的解析式;(2)若3>a ,求函数)(x f y =的单调区间。 例3.设2 2(),1 x f x x = +()52(0)g x ax a a =+->。 (1)求()f x 在[0,1]x ∈上的值域; (2)若对于任意1[0,1]x ∈,总存在0[0,1]x ∈,使得01()()g x f x =成立,求a 的取值范围。 例4.已知函数 32()f x x ax =+图象上一点(1,)P b 的切线斜率为3-, 32 6()(1)3(0)2 t g x x x t x t -=+-++> (Ⅰ)求,a b 的值; (Ⅱ)当[1,4]x ∈-时,求()f x 的值域; (Ⅲ)当[1,4]x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围。 例5.已知定义在R 上的函数 32()2f x ax ax b =-+) (0>a 在区间[]2,1-上的最大值是5,最小值是-11. (Ⅰ)求函数()f x 的解析式;(Ⅱ)若]1,1[-∈t 时,0(≤+'tx x f )恒成立,求实数x 的取值范围. 例6.已知函数 2233)(m nx mx x x f +++=,在1-=x 时有极值0,则=+n m 例7.已知函数23)(a x x f =图象上斜率为3的两条切线间的距离为 510 2,函数33)()(2 2 +-=a bx x f x g . (1) 若函数)(x g 在1=x 处有极值,求)(x g 的解析式; (2) 若函数)(x g 在区间]1,1[-上为增函数,且)(42 x g mb b ≥+-在区间]1,1[-上都成立,求实数m 的取值范围. 答案: 1、解:(Ⅰ) '2()22f x x bx =-+. ∵2x =是)(x f 的一个极值点, ∴2x =是方程2 220x bx -+=的一个根,解得32 b =. 令'()0f x >,则2 320x x -+>,解得1x <或2x >. ∴函数()y f x =的单调递增区间为(, 1)-∞,(2, +)∞. (Ⅱ)∵当(1,2)x ∈时 '()0f x <,(2,3)x ∈时'()0f x >, ∴ ()f x 在(1,2)上单调递减,()f x 在(2,3)上单调递增. ∴(2)f 是()f x 在区间[1,3]上的最小值,且 2 (2)3 f a = +. 若当[1, 3]x ∈时,要使 22()3f x a -> 恒成立,只需22(2)3f a >+, 即2 2233 a a +>+,解得 01a <<. 2、解:(Ⅰ)a ax x x f ++='23)(2 . 由题意知? ??=+-=-'==623)1(2)0(a a f b f ,得 ???=-=23b a . ∴ 233)(23+--=x x x x f . (Ⅱ)023)(2=++='a ax x x f . ∵ 3>a ,∴ 01242>-=?a a .

导数综合讲义(教师版).pdf

导数综合讲义 第1讲导数的计算与几何意义 (3) 第2讲函数图像 (4) 第3讲三次函数 (7) 第4讲导数与单调性 (8) 第5讲导数与极最值 (9) 第6讲导数与零点 (10) 第7讲导数中的恒成立与存在性问题 (11) 第8讲原函数导函数混合还原(构造函数解不等式) (13) 第9讲导数中的距离问题 (17) 第10讲导数解答题 (18) 10.1 导数基础练习题 (21) 10.2 分离参数类 (24) 10.3 构造新函数类 (26) 10.4 导数中的函数不等式放缩 (29) 10.5 导数中的卡根思想 (30) 10.6 洛必达法则应用 (32) 10.7 先构造,再赋值,证明和式或积式不等式 (33) 10.8 极值点偏移问题 (35) 10.9 多元变量消元思想 (37) 10.10 导数解决含有ln x与e x的证明题(凹凸反转) (39) 10.11 导数解决含三角函数式的证明 (40) 10.12 隐零点问题 (42) 10.13 端点效应 (44) 10.14 其它省市高考导数真题研究 (45)

导数 【高考命题规律】 2014 年理科高考考查了导数的几何意义,利用导数判断函数的单调性,利用导数求函数的最值,文科考查了求曲线的切线方程,导数在研究函数性质中的运用;2015 年文理试卷分别涉及到切线、零点、单调性、最值、不等式证明、恒成立问题;2016 文科考查了导数的几何意义,理科涉及到不等式的证明,含参数的函数性质的研究,极值点偏移;2017 年高考考查了导数判断函数的单调性,含参零点的分类讨论。近四年的高考试题基本形成了一个模式,第一问求解函数的解析式,以切线方程、极值点或者最值、单调区间等为背景得到方程从而确定解析式,或者给出解析式探索函数的最值、极值、单调区间等问题,较为简单;第二问均为不等式相联系,考查不等式恒成立、证明不等式等综合问题,难度较大。预测 2018 年高考导数大题以对数函数、指数函数、反比例函数以及一次函数、二次函数中的两个或三个为背景,组合成一个函数,考查利用导数研究函数的单调性与极值及切线,不等 式结合考查恒成立问题,另外 2016 年全国卷 1 理考查了极值点偏移问题,这一变化趋势应引起考生注意。 【基础知识整合】 1、导数的定义: f ' (x ) = lim f (x 0 + ?x ) - f (x 0 ) , f ' (x ) = lim f (x + ?x ) - f (x ) 0 ?x →0 ?x ?x →0 ?x 2、导数的几何意义:导数值 f ' (x ) 是曲线 y = f (x ) 上点 (x , f (x )) 处切线的斜率 3、常见函数的导数: C ' = 0 ; (x n )' = nx n -1 ; (sin x )' = cos x ; (cos x )' = -sin x ; (ln x )' = 1x ; (log a x )' = x ln 1 a ; (e x )' = e x ; (a x )' = a x ln a 4、导数的四则运算: (u ± v )' = u ' ± v ' ;; (u ?v )' = u ' v + v ' u ; (u )' = u 'v -2 v 'u v v 5、复合函数的单调性: f ' x (g (x )) = f ' (u )g ' (x ) 6、导函数与单调性:求增区间,解 f ' (x ) > 0 ;求减区间,解 f ' (x ) < 0 若函数在 f (x ) 在区间 (a , b ) 上是增函数 ? f ' (x ) ≥ 0 在 (a , b ) 上恒成立;若函数在 f (x ) 在区间 (a , b ) 上是减函数 ? f ' (x ) ≤ 0 在 (a , b ) 上恒成立;若函数在 f (x ) 在区间 (a , b ) 上存在增区间 ? f ' (x ) > 0 在 (a , b ) 上恒成立;若函数在 f (x ) 在区间 (a , b ) 上存在减区间 ? f ' (x ) < 0 在 (a , b ) 上恒成立; 7、导函数与极值、最值:确定定义域,求导,解单调区间,列表,下结论 8、导数压轴题:强化变形技巧、巧妙构造函数、一定要多练记题型,总结方法

专题检测卷(六) 函数与导数

专题检测卷(六)函数与导数 (时间:120分钟满分:150分) 一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2020·北京适应性测试)函数f(x)=x2-5x+6的定义域为() A.{x|x≤2或x≥3} B.{x|x≤-3或x≥-2} C.{x|2≤x≤3} D.{x|-3≤x≤-2} 解析由题意,得x2-5x+6≥0,即(x-2)(x-3)≥0,解得x≤2或x≥3.故选A. 答案 A 2.(2020·沈阳一监)已知a=31 3,b=2 1 2,c=log32,则a,b,c的大小关系为() A.a8 1 6>8 0=1,∴a>b>1.又c=log32b>1>c.故选D. 答案 D 3.(2020·济南一模)已知函数y=f(x)的部分图象如图,则f(x)的解析式可能是() A.f(x)=x+tan x B.f(x)=x+sin 2x C.f(x)=x-1 2sin 2x D.f(x)=x-1 2cos x

解析 对于A ,函数f (x )的定义域为{x |x ≠π 2+k π,k ∈Z },而图象对应的函数在x =π 2处有定义,因此A 不符合题意; 对于B ,f ′(x )=1+2cos 2x ,令f ′(x )<0,得2π3+2k π0,∴x =-1时,f (x )取到极小值,即f (x )的极值点β=-1,∴α+β=2-1=1.故选C. 答案 C 5.(2020·安徽六校素质测试)若函数f (x )=e x (sin x +a )在区间? ???? -π2,π2上单调递增, 则实数a 的取值范围是( ) A.[2,+∞) B.[1,+∞) C.(1,+∞) D.(-2,+∞)

原函数和导函数的关系

课题:探究原函数与导函数的关系 首师大附中数学组王建华 设计思路 这节课是在学完导数和积分之后,学生从大量的实例中对原函数和导函数的关系有了一定的认识的基础上展开教学的。由于这部分内容课本上没有,但数学内部的联系规律和对称美又会使学生既觉得有挑战性又充满探究的兴趣。备这个课的过程中我虽然参考了大量已有的资料,但需要做更深入地思考这些命题间的联系,以什么方式展开更利于学生拾级而上,最终登上高峰体会一览众山小的乐趣和成就感。教师实际上是在引导学生进行一次理论的探险,大胆地猜,小心地证,谨慎地修改条件,步步逼近真理。最终学生能否记住这些结论并不重要,重要的是研究相互关联的事物的一般思路和方法。对优秀生或热爱数学的学生来说会有更多的收获。 整个教学流程 1. 从经验观察发现,猜想得命题p,q. 这两个命题为真命题,证明它们的方法用复合函数求导,比较容易上手。 2. 学生自然会想到这个命题的逆命题是否成立,尝试证明。证明的思路也要逆向思考。发现由于导数确定后原函数不能唯一确定,有上下平移的可能,这样关于y 轴对称的性质能够保持,但关于原点对称的性质就不能保证了。 3. 函数的平移不改变函数图象的对称性,因此将奇函数的性质拓展为关于中心对称,将偶函数的性质拓展为关于直线x a 对称,研究前面的四个命题还是否成立。研究方法可以类比迁移前面的方法。能成立的严格证明,不能成立的举出反例,并尝试通过改变条件使之成为真命题。 4. 已有成果的应用:利用二次函数的对称性性质研究三次函数的对称性。 教学目标 在这个探究过程中 1.加强学生对导函数与原函数相生相伴的关系的理解; 2.增强学生对函数对称性的理解和抽象概括表达能力; 3 体验研究事物的角度,一个新定理是怎样诞生的,怎样才是全面地认识了一个事物。 4.培养学生的思辨能力,分析法解决问题的能力,举反例的能力等等。 教学重点 以原函数与导函数的对称性的联系为载体让学生体验观察发现、概括猜想、辨别真伪的过程。 教学难点 灵活运用所学知识探索未知领域。 新课引入前面解题时我们常根据导函数的符号示意图画出原函数的单调性示意图,数的图像画出导函数的示意图吗? 你能根据原函探究由原函数的奇偶性能否推出导函数的奇偶性。

最新高中数学解析几何大题精选

解析几何大量精选 1 2 1.在直角坐标系xOy 中,点M 到点()1,0F ,)2,0F 的距离之和是4,点M 3 的轨迹是C 与x 轴的负半轴交于点A ,不过点A 的直线:l y kx b =+与轨迹C 交于4 不同的两点P 和Q . 5 ⑴求轨迹C 的方程; 6 ⑵当0AP AQ ?=时,求k 与b 的关系,并证明直线l 过定点. 7 【解析】 ⑴ 2214 x y +=. 8 ⑵将y kx b =+代入曲线C 的方程, 9 整理得222(14)8440k x kbx b +++-=, 10 因为直线l 与曲线C 交于不同的两点P 和Q , 11 所以222222644(14)(44)16(41)0k b k b k b ?=-+-=-+> ① 12 设()11,P x y ,()22,Q x y ,则122814kb x x k +=-+,21224414b x x k -=+ ② 13 且22 2 2 121212122 4()()()14b k y y kx b kx b k x x kb x x b k -?=++=+++=+, 14 显然,曲线C 与x 轴的负半轴交于点()2,0A -, 15 所以()112,AP x y =+,()222,AQ x y =+. 16 由0AP AQ ?=,得1212(2)(2)0x x y y +++=. 17

将②、③代入上式,整理得22121650k kb b -+=. 18 所以(2)(65)0k b k b -?-=,即2b k =或65 b k =.经检验,都符合条件① 19 当2b k =时,直线l 的方程为2y kx k =+.显然,此时直线l 经过定点()2,0-20 点. 21 即直线l 经过点A ,与题意不符. 22 当6 5b k =时,直线l 的方程为665 5y kx k k x ??=+=+ ?? ? . 23 显然,此时直线l 经过定点6 ,05 ??- ?? ? 点,满足题意. 24 综上,k 与b 的关系是65 b k =,且直线l 经过定点6 ,05?? - ??? 25 26 2. 已知椭圆2222:1x y C a b +=(0)a b >>的离心率为1 2 ,以原点为圆心,椭圆的短半 27 轴为半径的圆与直线0x y -+相切. 28 ⑴ 求椭圆C 的方程; 29 ⑵ 设(4,0)P ,A ,B 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PB 30 交椭圆C 于另一点E ,证明直线AE 与x 轴相交于定点Q ; 31 ⑶ 在⑵的条件下,过点Q 的直线与椭圆C 交于M ,N 两点,求OM ON ?的取32 值范围. 33 【解析】 ⑴22 143 x y +=. 34

高考真题汇编(函数与导数)

函数与导数 1.【2018年浙江卷】函数y=sin2x的图象可能是 A. B. C. D. 【答案】D 点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复. 2.【2018年理天津卷】已知,,,则a,b,c的大小关系为 A. B. C. D. 【答案】D 【解析】分析:由题意结合对数函数的性质整理计算即可求得最终结果. 详解:由题意结合对数函数的性质可知:,,,据此可得:.本题选择D选项.

点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确. 3.【2018年理新课标I卷】已知函数.若g(x)存在2个零点,则a的取值范围是 A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞) 【答案】C 详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C. 点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果. 4.【2018年理新课标I卷】设函数,若为奇函数,则曲线在点处的切线方程为 A. B. C. D.

函数与导数的关系

函数与导数的认识及复习 第一、求函数定义域题忽视细节函数的定义域是使函数有意义的自变量的取值范围,考生想要在考场上准确求出定义域,就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数的定义域。 在求一般函数定义域时,要注意以下几点:分母不为0;偶次被开放式非负;真数大于0以及0的0次幂无意义。函数的定义域是非空的数集,在解答函数定义域类的题时千万别忘了这一点。复合函数要注意外层函数的定义域由内层函数的值域决定。 第二、带绝对值的函数单调性判断错误带绝对值的函数实质上就是分段函数,判断分段函数的单调性有两种方法:第一,在各个段上根据函数的解析式所表示的函数的单调性求出单调区间,然后对各个段上的单调区间进行整合;第二,画出这个分段函数的图象,结合函数图象、性质能够进行直观的判断。函数题离不开函数图象,而函数图象反应了函数的所有性质,考生在解答函数题时,要第一时间在脑海中画出函数图象,从图象上分析问题,解决问题。 对于函数不同的单调递增(减)区间,千万记住,不要使用并集,指明这几个区间是该函数的单调递增(减)区间即可。 第三、求函数奇偶性的常见错误求函数奇偶性类的题最常见的错误有求错函数定义域或忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等等。判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函

数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。在定义域区间关于原点对称的前提下,再根据奇偶函数的定义进行判断。 在用定义进行判断时,要注意自变量在定义域区间内的任意性。 第四、抽象函数推理不严谨很多抽象函数问题都是以抽象出某一类函数的共同“特征”而设计的,在解答此类问题时,考生可以通过类比这类函数中一些具体函数的性质去解决抽象函数。多用特殊赋值法,通过特殊赋可以找到函数的不变性质,这往往是问题的突破口。抽象函数性质的证明属于代数推理,和几何推理证明一样,考生在作答时要注意推理的严谨性。每一步都要有充分的条件,别漏掉条件,更不能臆造条件,推理过程层次分明,还要注意书写规范。 第五、函数零点定理使用不当若函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)f(b)<> 第六、混淆两类切线曲线上一点处的切线是指以该点为切点的曲线的切线,这样的切线只有一条;曲线的过一个点的切线是指过这个点的曲线的所有切线,这个点如果在曲线上当然包括曲线在该点处的切线,曲线的过一个点的切线可能不止一条。 因此,考生在求解曲线的切线问题时,首先要区分是什么类型的切线。 第七、混淆导数与单调性的关系一个函数在某个区间上是增函数的这类题型,如果考生认为函数的导函数在此区间上恒大于0,很容易就会出错。 解答函数的单调性与其导函数的关系时一定要注意,一个函数的导函

高中数学解析几何大题专项练习

解析几何解答题 1、椭圆G :)0(122 22>>=+b a b y a x 的两个焦点为F 1、F 2,短轴两端点B 1、B 2,已知 F 1、F 2、B 1、B 2四点共圆,且点N (0,3)到椭圆上的点最远距离为.25 (1)求此时椭圆G 的方程; (2)设斜率为k (k ≠0)的直线m 与椭圆G 相交于不同的两点E 、F ,Q 为EF 的中点,问E 、F 两点能否关于 过点P (0, 3 3)、Q 的直线对称若能,求出k 的取值范围;若不能,请说明理由. ; 2、已知双曲线221x y -=的左、右顶点分别为12A A 、,动直线:l y kx m =+与圆22 1x y +=相切,且与双曲线左、右两支的交点分别为111222(,),(,)P x y P x y . (Ⅰ)求k 的取值范围,并求21x x -的最小值; (Ⅱ)记直线11P A 的斜率为1k ,直线22P A 的斜率为2k ,那么,12k k ?是定值吗证明你的结论. @ [

3、已知抛物线2 :C y ax =的焦点为F ,点(1,0)K -为直线l 与抛物线C 准线的交点,直线l 与抛物线C 相交于A 、 B 两点,点A 关于x 轴的对称点为D . (1)求抛物线 C 的方程。 ~ (2)证明:点F 在直线BD 上; (3)设8 9 FA FB ?=,求BDK ?的面积。. { — 4、已知椭圆的中心在坐标原点O ,焦点在x 轴上,离心率为1 2 ,点P (2,3)、A B 、在该椭圆上,线段AB 的中点T 在直线OP 上,且A O B 、、三点不共线. (I)求椭圆的方程及直线AB 的斜率; (Ⅱ)求PAB ?面积的最大值. - 、

函数与导数的综合应用

函数与导数的综合应用 命题动向:函数与导数的解答题大多以基本初等函数为载体,综合应用函数、导数、方程、不等式等知识,并与数学思想方法紧密结合进行深入考查,体现了能力立意的命题原则. 这几年,函数与导数的解答题一直作为“把关题”出现,是每年高考的必考内容,虽然是“把关题”,但是同其他解答题一样,一般都设置了层次分明的“台阶”,入口宽,入手易,但是深入难,解到底难.从近几年的高考情况看,命题的方向主要集中在导数在研究函数、方程、不等式等问题中的综合应用. 题型1利用导数研究函数性质综合问题 例1 [2016·山东高考]设f (x )=x ln x -ax 2+(2a -1)x ,a ∈R. (1)令g (x )=f ′(x ), 求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值.求实数a 的取值范围. 解题视点 (1)求出g (x )的导数,就a 的不同取值,讨论导数的符号;(2)f ′(x )=ln x -2a (x -1),使用数形结合方法确定a 的取值,使得在x <1附近f ′(x )>0,即ln x >2a (x -1),在x >1附近ln x <2a (x -1). 解 (1)由f ′(x )=ln x -2ax +2a ,可得g (x )=ln x -2ax +2a ,x ∈(0,+∞).则g ′(x )=1 x -2a =1-2ax x . 当a ≤0时,x ∈(0,+∞)时,g ′(x )>0,函数g (x ) 单调递增; 当a >0时,x ∈??? ?0,1 2a 时,g ′(x )>0,函数g (x )单调递增, x ∈????12a ,+∞时,函数g (x )单调递减.所以当a ≤0时,g (x )的单调增区间为(0,+∞); 当a >0时,g (x )的单调增区间为????0,12a ,单调减区间为??? ?1 2a ,+∞. (2)由(1)知,f ′(1)=0.①当a ≤0时,f ′(x )单调递增,所以当x ∈(0,1)时,f ′(x )<0,f (x )单调递减; 当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增.所以f (x )在x =1处取得极小值,不合题意. ②当01,由(1) 知f ′(x )在????0,12a 内单调递增, 可得当x ∈(0,1)时,f ′(x )<0,x ∈????1,1 2a 时,f ′(x )>0. 所以f (x )在(0,1)内单调递减,在??? ?1,1 2a 内单调递增,所以f (x )在x =1处取得极小值,不合题意. ③当a =12时,1 2a =1,f ′(x )在(0,1)内单调递增,在(1,+∞)内单调递减, 所以当x ∈(0,+∞)时,f ′(x )≤0,f (x )单调递减,不合题意. ④当a >12时,0<1 2a <1,当x ∈????12a ,1时,f ′(x )>0,f (x )单调递增, 当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减,所以f (x )在x =1处取得极大值,符合题意. 综上可知,实数a 的取值范围为????12,+∞. 冲关策略 函数性质综合问题的难点是函数单调性和极值、最值的分类讨论. (1)单调性讨论策略:单调性的讨论是以导数等于零的点为分界点,把函数定义域分段,在各段上讨论导数的符号,在不能确定导数等于零的点的相对位置时,还需要对导数等于零的点的位置关系进行讨论. (2)极值讨论策略:极值的讨论是以单调性的讨论为基础,根据函数的单调性确定函数的极值点. (3)最值讨论策略:图象连续的函数在闭区间上最值的讨论,是以函数在该区间上的极值和区间端点的函数值进行比较为标准进行的,在极值和区间端点函数值中最大的为最大值,最小的为最小值. 题型2利用导数研究方程的根(或函数的零点) 例2 [2017·全国卷Ⅰ]已知函数f (x )=a e 2x +(a -2)e x -x . (1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围. 解题视点 (1)先求函数f (x )的定义域,再求f ′(x ),对参数a 进行分类讨论,由f ′(x )>0(f ′(x )<0),得函数f (x )的单调递增(减)区间,从而判断f (x )的单调性;(2)利用(1)的结论,并利用函数的零点去分类讨论,即可求出参数a 的取值范围. 解 (1)f (x )的定义域为(-∞,+∞),f ′(x )=2a e 2x +(a -2)e x -1=(a e x -1)(2e x +1). (ⅰ)若a ≤0,则f ′(x )<0,所以f (x )在(-∞,+∞)单调递减. (ⅱ)若a >0,则由f ′(x )=0得x =-ln a .

相关文档 最新文档