文档库 最新最全的文档下载
当前位置:文档库 › 分子生物学英文版Chapter9

分子生物学英文版Chapter9

分子生物学总结(朱玉贤版)(2020年10月整理).pdf

结合着下载的资料复习吧~~~~ 绪论 分子生物学的发展简史 Schleiden和Schwann提出“细胞学说” 孟德尔提出了“遗传因子”的概念、分离定律、独立分配规律 Miescher首次从莱茵河鲑鱼精子中分离出DNA Morgan基因存在于染色体上、连锁遗传规律 Avery证明基因就是DNA分子,提出DNA是遗传信息的载体 McClintock首次提出转座子或跳跃基因概念 Watson和Crick提出DNA双螺旋模型 Crick提出了“中心法则” Meselson与Stah用N重同位素证明了DNA复制是一种半保留复制 Jacob和Monod提出了著名的乳糖操纵子模型 Arber首次发现DNA限制性内切酶的存在 Temin和Baltimore发现在病毒中存在以RNA为模板,逆转录成DNA的逆转录酶 哪几种经典实验证明了DNA是遗传物质? (Avery等进行的肺炎双球菌转化实验、Hershey 利用放射性同位素35S和32P分别标记T2噬菌体的蛋白质外壳和DNA) 第二章染色体与DNA 第一节染色体 一、真核细胞染色体的组成 DNA:组蛋白:非组蛋白:RNA = 1:1:(1-1.5):0.05 (一)蛋白质(组蛋白、非组蛋白) (1)组蛋白:H1、H2A、H2B、H3、H4 功能:①核小体组蛋白(H2A、H2B、H3、H4)作用是将DNA分子盘绕成核小体

②不参加核小体组建的组蛋白H1,在构成核小体时起连接作用 (2)非组蛋白:包括以DNA为底物的酶、作用于组蛋白的酶、RNA聚合酶等。常见的有(HMG蛋白、DNA结合蛋白) 二、染色质 染色体:分裂期由染色质聚缩形成。 染色质:线性复合结构,间期遗传物质存在形式。 常染色质(着色浅) 具间期染色质形态特征和着色特征染色质 异染色质(着色深) 结构性异染色质兼性异染色质 (在整个细胞周期内都处于凝集状态)(特定时期处于凝集状态)三、核小体 由H2A、H2B、H3、H4各2 分子组成的八聚体和绕在八聚体外的DNA、一分 子H1组成。八聚体在中央,DNA分子盘绕在外,由此形成核心颗粒。,H1结合在核心颗粒外侧DNA双链的进出口端,如搭扣将绕在八聚体外DNA链固定,核心颗粒之间的连接部分为连接DNA。 核小体的定位对转录有促进作用

药学分子生物学题库

前四章 1.tRNA分子结构特征为(C) A.有密码环 B.3’端有多聚A C.有反密码环 D.3’端有C-C-U E.以上都不正确 2.关于2.原核生物启动子结构中,描述正确的是(C) A. –25bp处有Hogness盒 B.–10bp处有GC盒 C. –10bp处有Pribnow盒 D. –35bp处有CAA T盒 E.以上都不正确 3.关于蛋白质生物合成时肽链延伸,叙述不正确是(D ) A.核蛋白体沿着mRNA每移动一个密码子距离,合成一个肽键’ B.受大亚基上转肽酶的催化 C.活化的氨基酸进入大亚基A位

D .肽链延伸方向为C端→N端 E.以上都不正确 4.摆动配对是指( A ) A .反密码的第1位碱基 B.反密码的第2位碱 C.反密码的第3位碱基 D.密码的第1位碱基 E.以上都不正确 5.人类基因组大小(bp)为( B ) A. 3.5×108 B. 3.0×109 C. 2.0 ×109 D. 2.5×109 E.以上都不正确 6.以下有关转录叙述,错误的是(C ) A .DNA双链中指导RNA合成的链是模板链 B .DNA双链中不指导RNA合成的链是编码链 C.能转录RNA的DNA序列称为结构基因 D.染色体DNA双链仅一条链可转录 E.以上都不正确 7.与CAP位点结合的物质是(C )

A.RNA聚合酶 B.操纵子 C.分解(代谢)物基因激活蛋白 D.阻遏蛋白 E.以上都不正确 8.目前认为基因表达调控的主要环节是(C) A.基因活化 B.转录起始 C.转录后加工 D.翻译起始 E.以上都不正确 9.顺式作用元件是指(A ) A.基因的5’侧翼序列 B.基因的3’侧翼序列 C.基因的5’、3’侧翼序列D基因的5’、3’侧翼序列以外的序列 E.以上都不正确 10.反式作用因子是指(b)

分子生物学问题汇总

Section A 细胞与大分子 简述复杂大分子的生物学功能及与人类健康的关系。 Section C 核酸的性质 1.DNA的超螺旋结构的特点有哪些? A 发生在闭环双链DNA分子上 B DNA双链轴线高卷曲,与简单的环状相比,连接数发生变化 C 当DNA扭曲方向与双螺旋方向相同时,DNA变得紧绷,为正超螺旋,反之变得松弛为负超螺旋。自然界几乎所有DNA分子超螺旋都为负的,因为能量最低。 2.简述核酸的性质。 A 核酸的稳定性:由于核酸中碱基对的疏水效应以及电荷偶极作用而趋于稳定 B 酸效应:在强酸和高温条件下,核酸完全水解,而在稀酸条件下,DNA的核苷键被选择性地断裂生成脱嘌呤核酸 C 碱效应:当PH超出生理范围时(7-8),碱基的互变异构态发生变化 D 化学变性:一些化学物质如尿素,甲酰胺能破坏DNA和RNA二级结构中的 而使核酸变性。 E 粘性:DNA的粘性是由其形态决定的,DNA分子细长,称为高轴比,可被机械力和超声波剪切而粘性下降。 F 浮力密度:1.7g/cm^3,因此可利用高浓度分子质量的盐溶液进行纯化和分析 G 紫外线吸收:核酸中的芳香族碱基在269nm 处有最大光吸收 H 减色性,热变性,复性。 思考题:提取细菌的质粒依据是核酸的哪些性质? 质粒是抗性基因,,在基因组或者质粒DNA中用碱提取法。 Sectio C 课前提问 1.在1.5mL的离心管中有500μL,取出10 μL稀释至1000 μL后进行检测,测得A260=0.15。 问(1):试管中的DNA浓度是多少? 问(2):如果测得A280=0.078, .A260/A280=?说明什么问题? (1)稀释前的浓度:0.15/20=0.0075 稀释后的浓度:0.0075/100=0.75ug/ml (2)0.15/0.078=1.92〉1.8,说明DNA中混有RNA样品。 2.解释以下两幅图

612生物化学与分子生物学

中科院研究生院硕士研究生入学考试 《生物化学与分子生物学》考试大纲 一、考试内容 1.蛋白质化学 考试内容 ●蛋白质的化学组成,20种氨基酸的简写符号 ●氨基酸的理化性质及化学反应 ●蛋白质分子的结构(一级、二级、高级结构的概念及形式) ●蛋白质一级结构测定的一般步骤 ●蛋白质的理化性质及分离纯化和纯度鉴定的方法 ●蛋白质的变性作用 ●蛋白质结构与功能的关系 考试要求 ●了解氨基酸、肽的分类 ●掌握氨基酸与蛋白质的物理性质和化学性质 ●了解蛋白质一级结构的测定方法(目前关于蛋白质一级结构测定的新方法和新思路很多,而教科书和教学中 涉及的可能不够广泛,建议只让学生了解即可) ●理解氨基酸的通式与结构 ●理解蛋白质二级和三级结构的类型及特点,四级结构的概念及亚基 ●掌握肽键的特点 ●掌握蛋白质的变性作用 ●掌握蛋白质结构与功能的关系 2.核酸化学 考试内容 ●核酸的基本化学组成及分类 ●核苷酸的结构 ●DNA和RNA一级结构的概念和二级结构要特点;DNA的三级结构 ●RNA的分类及各类RNA的生物学功能 ●核酸的主要理化特性 ●核酸的研究方法 考试要求 ●全面了解核酸的组成、结构、结构单位以及掌握核酸的性质 ●全面了解核苷酸组成、结构、结构单位以及掌握核苷酸的性质 ●掌握DNA的二级结构模型和核酸杂交技术 ●了解microRNA的序列和结构特点(近年来针对非编码RNA的研究越来越深入,建议增加相关考核) 3. 糖类结构与功能 考试内容 ●糖的主要分类及其各自的代表 ●糖聚合物及其代表和它们的生物学功能 ●糖链和糖蛋白的生物活性 考试要求 ●掌握糖的概念及其分类 ●掌握糖类的元素组成、化学本质及生物学功用 ●理解旋光异构 ●掌握单糖、二糖、寡糖和多糖的结构和性质 ●掌握糖的鉴定原理 4. 脂质与生物膜 考试内容

现代分子生物学总结(朱玉贤、最新版)

现代分子生物学总结(朱玉贤、最新版)

一、绪论 两个经典实验 1、肺炎球菌在老鼠体内的毒性实验:先将光滑型致病菌(S型)烧煮杀活性以后、以及活的粗糙型细菌(R型)分别侵染小鼠发现这些细菌自然丧失了治病能力;当他们将经烧煮杀死的S型细菌和活的R型细菌混合再感染小鼠时,实验小鼠每次都死亡。解剖死鼠,发现有大量活的S型细菌。实验表明,死细菌DNA 进行了可遗传的转化,从而导致小鼠死亡。 2、T2噬菌体感染大肠杆菌:当细菌培养基中分别带有35S或32P标记的氨基酸或核苷酸,子代噬菌体就相应含有35S标记的蛋白质或32P标记的核酸。分别用这些噬菌体感染没有放射性标记的细菌,经过1~2个噬菌体DNA 复制周期后进行检测,子代噬菌体中几乎不含带35S标记的蛋白质,但含30%以上的32P 标记。说明在噬菌体传代过程中发挥作用的可能是DNA而不是蛋白质。 基因的概念:基因是产生一条多肽链或功能RNA分子所必需的全部核苷酸序列。

二、染色体与DNA 嘌呤嘧啶 腺嘌呤鸟嘌呤胞嘧啶尿嘧啶胸腺嘧啶 染色体 性质:1、分子结构相对稳定;2、能够自我复制,使亲、子代之间保持连续性;3、能指导蛋白质的合成,从而控制生命过程;4、能产生可遗传的变异。 组蛋白一般特性:1、进化上极端保守,特别是H3、H4;2、无组织特异性;3、肽链上氨基酸分布的不对称性;4、存在较普遍的修饰作用;5、富含赖氨酸的组蛋白H5 非组蛋白:HMG蛋白;DNA结合蛋白;A24非组蛋白

真核生物基因组DNA 真核细胞基因组最大特点是它含有大量的重复序列,而且功能DNA序列大多被不编码蛋白质的非功能蛋白质所隔开。人们把一种生物单倍体基因组DNA的总量称为C值,在真核生物中C 值一般是随着生物进化而增加的,高等生物的C 值一般大于低等动物,但某些两栖类的C值甚至比哺乳动物还大,这就是著名的C值反常现象。真核细胞DNA序列可被分为3类:不重复序列、中度重复序列、高度重复序列。 真核生物基因组的特点:1、真核生物基因组庞大,一般都远大于原核生物的基因组;2、真核基因组存在大量的的重复序列;3、真核基因组的大部分为非编码序列,占整个基因组序列的90%以上,这是真核生物与细菌和病毒之间的最主要的区别;4、真核基因组的转录产物为单顺反之;5、真核基因组是断裂基因,有内含子结构;6、真核基因组存在大量的顺式元件,包括启动子、增强子、沉默子等;7、真核基因组中存在大量的DNA多态性;8、真核基因组具有端粒结构。

生物化学与分子生物学问答题

机体是如何维持血糖平衡的(说明血糖的来源、去路及调节过程)? 血液中的葡萄糖称为血糖,机体血糖平衡是糖、脂肪、氨基酸代谢协调的结果,也是肝、肌、脂肪组织等器官代谢协调的结果(由于血糖的来源与去路保持动态平衡,血糖是组织、中枢神经、脑能量来源的主要保证)。 A.血糖来源(3分) 糖类消化吸收:食物中的糖类经消化吸收入血,这是血糖最主要的来源;肝糖原分解:短期饥饿后,肝中储存的糖原分解成葡萄糖进入血液;糖异生作用:在较长时间饥饿后,氨基酸、甘油等非糖物质在肝内异生合成葡萄糖;其他单糖转化成葡萄糖。 B.血糖去路(4分) 氧化供能:葡萄糖在组织细胞中通过有氧氧化和无氧酵解产生ATP,为细胞供给能量,此为血糖的主要去路。合成糖原:进食后,肝和肌肉等组织将葡萄糖合成糖原以储存。转化成非糖物质:可转化为甘油、脂肪酸以合成脂肪;可转化为氨基酸、合成蛋白质。转变成其他糖或糖衍生物(戊糖磷酸途径),如核糖、脱氧核糖、氨基多糖等。血糖浓度高于肾阈时可随尿排出一部分。 C.血糖的调节(2分) 胰岛素是体内唯一降低血糖的激素,但胰岛素分泌受机体血糖的控制(机体血糖升高胰岛素分泌减少)。胰岛素分泌增加,糖原合酶活性提高、糖原磷酸化酶活性降低,糖原分解降低、糖原合成提高,血糖降低。否则相反(胰岛素分泌减少,糖原合酶活性降低、糖原磷酸化酶活性提高,糖原分解提高、糖原合成降低,血糖提高)。胰高血糖素、肾上腺素作用是升高机体血糖。胰高血糖素、肾上腺素分泌增加,糖原合酶活性降低、糖原磷酸化酶活性提高,糖原分解提高、糖原合成降低,血糖提高。否则相反。 老师,丙酮酸被还原为乳酸后,乳酸的去路是什么 这个问题很重要。 肌组织产生的乳酸的去向包括:大量乳酸透过肌细胞膜进入血液,在肝脏进行糖异生转变为葡萄糖。大量乳酸进入血液,在心肌中经LDH1催化生成丙酮酸氧化供能;部分乳酸在肌肉内脱氢生成丙酮酸而进入到有氧氧化供能。大量乳酸透过肌细胞膜进入血液,在肾脏异生为糖或经尿排出体外。 下面问题你能回答出来不 1说明脂肪氧化供能的过程 (1)脂肪动员:脂肪组织中的甘油三酯在HSL的作用下水解释放脂酸和甘油。 (2)脂酸氧化:经脂肪酸活化、脂酰CoA进入线粒体、β-氧化、乙酰CoA进入三羧酸循环彻底氧化成H2O 和CO2并释放能量。 (3)甘油氧化:经磷酸化、脱氢、异构转变成3-磷酸甘油醛,3-磷酸甘油醛循糖氧化分解途径彻底分解生成H2O 和CO2并释放能量。 1.丙氨酸异生形成葡萄糖的过程 答:(1)丙氨酸经GPT催化生成丙酮酸。(2)丙酮酸在线粒体内经丙酮酸羧化酶催化生成草酰乙酸,后者经苹果酸脱氢酶催化生成苹果酸出线粒体,在胞液中经苹果酸脱氢酶催化生成草酰乙酸,后者在磷酸烯醇式丙酮酸羧激酶作用下生成磷酸烯醇式丙酮酸。(3)磷酸烯醇式丙酮酸循糖酵解途径至1,6-双磷酸果糖。1,6-双磷酸果糖经果糖双磷酸酶催化生成6-磷酸果糖,再异构成6-磷酸葡萄糖。6-磷酸葡萄糖在葡萄糖-6-磷酸酶作用下生成葡萄糖。

分子生物学基础知识要点

Northern blot:是DNA/RNA的杂交,它是一项用于检测特异性RNA的技术,RNA混合物首先按照它们的大小和相对分子量通过变性琼脂糖凝胶电泳加以分离,凝胶分离后的RNA 通过southern印迹转移到尼龙膜或硝酸纤维素膜上,再与标记的探针进行杂交反应,通过杂交结果分析可以对转录表达进行定量或定性。它是研究基因表达的有效手段。与Southern blot 相比,它的条件更严格些,特别是RNA容易降解,前期制备和转膜要防止Rnase的污染。实验步骤:1.用具的准备2.用RNAZaP去除用具表面的RNase酶污染3.制胶4. RNA样品的制备5.电泳6.转膜7.探针的制备8.探针的纯化及比活性测定9.预杂交10.探针变性11.杂交12.洗膜13.曝光14.去除膜上的探针15.杂交结果 半定量PCR要求比普通PCR更严格一些,另外往往通过转膜后的同位素杂交检测或凝胶成像后的灰度测定比较样品间的差异。 半定量RT-PCR一般是在没有条件做实时PCR 的情况下使用,用于测定体内目的基因的表达增加减少与否,即通过目的基因跑出来的电泳带与管家基因(如β-actin)的电泳带的相对含量比较,观测目的基因表达增减,另外还要做一个β-actin的内参照对照。 实时荧光定量PCR技术,是指在PCR反应体系中加入荧光基团,利用荧光信号积累实时监测整个PCR进程,最后通过标准曲线对未知模板进行定量分析的方法。 1.实时荧光定量PCR无需内标 2.内标对实时荧光定量PCR的影响 Sybr green(荧光染料掺入法)和Taqman probe(探针法) 检测两种蛋白质相互作用方法 1共纯化、共沉淀,在不同基质上进行色谱层析 2蛋白质亲和色谱基本原理是将一种蛋白质固定于某种基质上(如Sepharose),当细胞抽提液经过改基质时,可与改固定蛋白相互作用的配体蛋白被吸附,而没有吸附的非目标蛋白则随洗脱液流出。被吸附的蛋白可以通过改变洗脱液或者洗脱条件而回收下来。 3免疫共沉淀免疫共沉淀是以抗体和抗原之间的专一性作用为基础的用于研究蛋白质相互作用的经典方法。改法的优点是蛋白处于天然状态,蛋白的相互作用可以在天然状态下进行,可以避免认为影响;可以分离得到天然状态下相互作用的蛋白复合体。缺点:免疫共沉淀同样不能保证沉淀的蛋白复合物时候为直接相互作用的两种蛋白。另外灵敏度不如亲和色谱高4 Far-Western 又叫做亲和印记。将PAGE胶上分离好的凡百样品转移到硝酸纤维膜上,然后检测哪种蛋白能与标记了同位素的诱饵蛋白发生作用,最后显影。缺点是转膜前需要将蛋白复性。 1.酵母双杂交 2.GSTpull-down实验 3.免疫共沉淀 4.蛋白质细胞内定位 RACE是基于PCR技术基础上由已知的一段cDNA片段,通过往两端延伸扩增从而获得完整的3'端和5'端的方法 1.此方法是通过PCR技术实现的,无须建立cDNA文库,可以在很短的时间内获得有 利用价值的信息 2.节约了实验所花费的经费和时间。 3.只要引物设计正确,在初级产物的基础上可以获得大量的感兴趣基因的全长 基因特异性引物(GSPs)应该是: 23-28nt 50-70%GC Tm值≥65度,Tm值≥70度可以获得好的结果 注意事项 1.cDNA的合成起始于polyA+RNA。如果使用其它的基因组DNA或总RNA,背景会很高

药学分子生物学重点

药学分子生物学 绪论 基因诊断:应用分子生物学技术,检测人体某些基因结构或表达的变化,或检测病原体基因组在人体内的存在,从而达到诊断或监控疗效的目的 基因治疗:通过特定的分子生物学技术,关闭或降低异常表达的基因;或将正常的外源基因导入体内特定的靶细胞以弥补缺陷基因;或将某种特定基因导入体细胞表达一产生特定的蛋白质因子,实现对疾病的治疗作用 药物基因组学:研究遗传变异对药物效能和毒性的影响,开辟药物研发的领域、促进合理用药的发展、加强临床前及临床药理的研究并对药物经济学产生重要影响。 第一章核酸的分子结构、性质和功能 DNA双螺旋结构 DNA分子是由两条互补的多核苷酸链组成的。两条链以一定的空间距离,在同一轴上相互盘旋起来构成双螺旋结构。 DNA双链呈反向平行。一条链的走向从5’到3’,另一条链的走向从3’到5’。 A=T,G≡C 各对碱基上下之间的距离为3.4?,每个螺距的距离34 ?,包括10对碱基。 ★中心法则 DNA是自身复制的模板 DNA通过转录将遗传信息传递给中间物质RNA RNA通过翻译将遗传信息表达为蛋白质 在某些病毒中,RNA可以自我复制,并且在某些病毒蛋白质合成中,RNA可以在逆转录酶的作用下合成DNA DNA的结构与功能 一级结构:DNA分子中脱氧核苷酸连接及其排列顺序,是物种间差异的根本原因 1为RNA和蛋白质一级结构编码的信息 2基因选择性表达的调控信息 二级结构:是指通过分子间相互作用形成的双链DNA或称为双螺旋DNA 三级结构:双螺旋DNA进一步扭曲盘绕则形成其三级结构,超螺旋是DNA三级结构的主要形式 三链DNA: DNA分子中的单链与双链相互作用形成的三链结构 1基因表达抑制物:选择性阻断靶基因,抑制其转录 2阻断序列专一性蛋白质的结合,影响DNA与蛋白质结合及DNA复制、转录 RNA的结构与功能 mRNA是蛋白质合成的直接模板,将细胞核内DNA的碱基顺序按互补配对原则,抄录并转送到胞质的核糖体,用以决定蛋白质合成的氨基酸序列 ★核内不均一RNA(hnRNA):真核生物mRNA的原始转录物是分子量极大的前体,在核内加工过程中形成分子大小不等的中间产物,被称为hnRNA ★开放阅读框(ORF):mRNA分子上从起始密码(AUG)开始到终止密码子结束这一段连续的核苷酸序列,即mRNA分子上的编码区。是一个特定蛋白质多肽链的编码序列

(完整版)分子生物学总结完整版

分子生物学 第一章绪论 分子生物学研究内容有哪些方面? 1、结构分子生物学; 2、基因表达的调节与控制; 3、DNA重组技术及其应用; 4、结构基因组学、功能基因组学、生物信息学、系统生物学 第二章DNA and Chromosome 1、DNA的变性:在某些理化因素作用下,DNA双链解开成两条单链的过程。 2、DNA复性:变性DNA在适当条件下,分开的两条单链分子按照碱基互补原则重新恢复天然的双螺旋构象的现象。 3、Tm(熔链温度):DNA加热变性时,紫外吸收达到最大值的一半时的温度,即DNA分子内50%的双链结构被解开成单链分子时的温度) 4、退火:热变性的DNA经缓慢冷却后即可复性,称为退火 5、假基因:基因组中存在的一段与正常基因非常相似但不能表达的DNA序列。以Ψ来表示。 6、C值矛盾或C值悖论:C值的大小与生物的复杂度和进化的地位并不一致,称为C值矛盾或C值悖论(C-Value Paradox)。 7、转座:可移动因子介导的遗传物质的重排现象。 8、转座子:染色体、质粒或噬菌体上可以转移位置的遗传成分 9、DNA二级结构的特点:1)DNA分子是由两条相互平行的脱氧核苷酸长链盘绕而成;2)DNA分子中的脱氧核苷酸和磷酸交替连接,排在外侧,构成基本骨架,碱基排列在外侧;3)DNA分子表面有大沟和小沟;4)两条链间存在碱基互补,通过氢键连系,且A=T、G ≡ C(碱基互补原则);5)螺旋的螺距为3.4nm,直径为2nm,相邻两个碱基对之间的垂直距离为0.34nm,每圈螺旋包含10个碱基对;6)碱基平面与螺旋纵轴接近垂直,糖环平面接近平行 10、真核生物基因组结构:编码蛋白质或RNA的编码序列和非编码序列,包括编码区两侧的调控序列和编码序列间的间隔序列。 特点:1)真核基因组结构庞大哺乳类生物大于2X109bp;2)单顺反子(单顺反子:一个基因单独转录,一个基因一条mRNA,翻译成一条多肽链;)3)基因不连续性断裂基因(interrupted gene)、内含子(intron)、外显子(exon);4)非编码区较多,多于编码序列(9:1) 5)含有大量重复序列 11、Histon(组蛋白)特点:极端保守性、无组织特异性、氨基酸分布的不对称性、可修饰作用、富含Lys的H5 12、核小体组成:由组蛋白和200bp DNA组成 13、转座的机制:转座时发生的插入作用有一个普遍的特征,那就是受体分子中有一段很短的被称为靶序列的DNA会被复制,使插入的转座子位于两个重复的靶序列之间。 复制型转座:整个转座子被复制,所移动和转位的仅为原转座子的拷贝。 非复制型转座:原始转座子作为一个可移动的实体直接被移位。 第三章DNA Replication and repair 1、半保留复制:DNA生物合成时,母链DNA解开为两股单链,各自作为模板(template)按碱

生物化学与分子生物学试题库完整

“生物化学与分子生物学” 题库 第二军医大学基础医学部 生物化学与分子生物学教研室编制 2004年7月

第一篇生物大分子的结构与功能 第一章蛋白质的结构与功能 一、单项选择题(A型题) 1.蛋白质的一级结构是指下面的哪一种情况?( ) A、氨基酸种类的数量 B、分子中的各种化学键 C、氨基酸残基的排列顺序 D、多肽链的形态和大小 E、氨基酸的连接方式 2.关于蛋白质分子三级结构的描述,其中错误的是:( ) A、天然蛋白质分子均有这种结构 B、具有三级结构的多肽链都有生物学活性 C、三级结构的稳定性主要是次级键维系 D、亲水基团多聚集在三级结构的表面 E、骨架链原子的空间排布 3、学习“蛋白质结构与功能”的理论后,我们认识到错误概念是()。 A、蛋白质变性是肽键断裂所致 B、蛋白质的一级结构决定其空间结构 C、肽键的键长较单键短,但较双键长 D、四级结构蛋白质必定由二条或二条以上多肽链组成 E、蛋白质活性不仅取决于其一级结构,还依赖于高级结构的正确 4、通过“蛋白质、核酸的结构与功能”的学习,认为错误的概念是()。 A、氢键是维系多肽链β-折叠的主要化学键 B、DNA分子的二级结构是双螺旋,维系其稳定的重要因素是碱基堆积力 C、蛋白质变性后可以恢复,但DNA变性后则不能恢复 D、谷氨酸、半胱氨酸和甘氨酸三者组成GSH E、蛋白质亚基具有三级结构,而tRNA三级结构呈倒L形 5、“蛋白质分子结构与功能”一章学习,告之我们以下概念不对的是()。 A、氢键不仅是维系β-折叠的作用力,也是稳定β-转角结构的化学键 B、活性蛋白质均具有四级结构 C、α-螺旋的每一圈包含3.6个氨基酸残基 D、亚基独立存在时,不呈现生物学活性的 E、肽键是不可以自由旋转的 6、关于蛋白质分子中α-螺旋的下列描述,哪一项是错误的?() A、蛋白质的一种二级结构 B、呈右手螺旋

(完整word版)药学分子生物学题库.docx

前四章 1.tRNA 分子结构特征为(C) A.有密码环 B.3 ’端有多聚 A C.有反密码环 D.3 ’端有 C-C-U E.以上都不正确 2.关于 2.原核生物启动子结构中,描述正确的是( C ) A. –25bp 处有 Hogness盒 B.–10bp 处有 GC 盒 C. –10bp 处有 Pribnow 盒 D. –35bp 处有 CAA T 盒 E.以上都不正确 3.关于蛋白质生物合成时肽链延伸,叙述不正确是( D ) A.核蛋白体沿着mRNA 每移动一个密码子距离,合成一个肽键’ B.受大亚基上转肽酶的催化 C.活化的氨基酸进入大亚基 A 位 D . 肽链延伸方向为 C 端→N端 E.以上都不正确 4.摆动配对是指(A) A .反密码的第 1 位碱基 B.反密码的第 2 位碱 C.反密码的第 3 位碱基 D.密码的第 1 位碱基 E.以上都不正确 5.人类基因组大小( bp)为(B) A. 3.5 10×8 10× 99 D. 2.510× 9 E.以上都不正确B. 3.0 C. 2.010× 6.以下有关转录叙述,错误的是(C) A .DNA 双链中指导 RNA 合成的链是模板链 B .DNA 双链中不指导 RNA 合成的链是编码链 C.能转录 RNA 的 DNA 序列称为结构基因 D.染色体 DNA 双链仅一条链可转录 E.以上都不正确 7.与 CAP 位点结合的物质是( C) A.RNA 聚合酶 B.操纵子 C.分解(代谢)物基因激活蛋白 D.阻遏蛋白 E.以上都不正确 8.目前认为基因表达调控的主要环节是(C) A.基因活化 B.转录起始 C.转录后加工 D.翻译起始 E.以上都不正确 9.顺式作用元件是指(A) A.基因的 5’侧翼序列 B.基因的 3’侧翼序列 C.基因的 5’、3’侧翼序列 D 基因的 5’、3’侧翼序列以外的序列 E.以上都不正确 10.反式作用因子是指(b) A.具有激活功能的调节蛋白 B. 具有抑制功能的调节蛋白 C.对自身基因具有激活功能的调节蛋白 D.对另一基因具有功能的调节蛋白 E.以上都不正确 11.cAMP 与 CAP 结合, CAP 介导正性调节发生在( C ) A.有葡萄糖及cAMP 较高时 B.有葡萄糖及cAMP 较低时 C.没有葡萄糖及cAMP 较高时 D. 没有葡萄糖及cAMP 较低时 E.以上都不正确 12.乳糖操纵子上Z、 Y 、 A 基因产物是( B )

现代分子生物学总结题库

第一章、基因的结构和功能实体及基因组 1、基因定义 基因(遗传因子)是遗传的物质基础,是DNA(脱氧核糖核酸)分子上具有遗传信息的特定核苷酸序列的总称,携带有遗传信息的DNA序列,是具有遗传效应的DNA分子片段,是控制性状的基本遗传单位,通过指导蛋白质的合成来表达自己所携带的遗传信息,从而控制生物个体的性状表现。 2、DNA修复 DNA修复(DNA repairing)是细胞对DNA受损伤后的一种反应,这种反应可能使DNA结构恢复原样,重新能执行它原来的功能;但有时并非能完全消除DNA的损伤,只是使细胞能够耐受这DNA的损伤而能继续生存。也许这未能完全修复而存留下来的损伤会在适合的条件下显示出来(如细胞的癌变等),但如果细胞不具备这修复功能,就无法对付经常在发生的DNA损伤事件,就不能生存。对不同的DNA损伤,细胞可以有不同的修复反应。3、DNA损伤 DNA损伤是复制过程中发生的DNA核苷酸序列永久性改变,并导致遗传特征改变的现象。情况分为:substitutation (替换)deletion (删除)insertion (插入)exon skipping (外显子跳跃)。 DNA损伤的改变类型:a、点突变:指DNA上单一碱基的变异。嘌呤替代嘌呤(A与G之间的相互替代)、嘧啶替代嘧啶(C与T之间的替代)称为转换(transition);嘌呤变嘧啶或嘧啶变嘌呤则称为颠换(transvertion)。b、缺失:指DNA链上一个或一段核苷酸的消失。c、插入:指一个或一段核苷酸插入到DNA链中。在为蛋白质编码的序列中如缺失及插入的核苷酸数不是3的整倍数,则发生读框移动(reading frame shift),使其后所译读的氨基酸序列全部混乱,称为移码突变(frame-shift mutaion)。d、倒位或转位:(transposition)指DNA链重组使其中一段核苷酸链方向倒置、或从一处迁移到另一处。 e、双链断裂:对单倍体细胞一个双链断裂就是致死性事件。 4、同源重组 同源重组,(Homologus Recombination)是指发生在姐妹染色单体(sister chromatin) 之间或同一染色体上含有同源序列的DNA分子之间或分子之内的重新组合。同源重组需要一系列的蛋白质催化,如原核生物细胞内的RecA、RecBCD、RecF、RecO、RecR等;以及真核生物细胞内的Rad51、Mre11-Rad50等等。同源重组反应通常根据交叉分子或holiday 结构(Holiday Juncture Structure) 的形成和拆分分为三个阶段,即前联会体阶段、联会体形成和Holiday 结构的拆分。 a、基因敲除 基因敲除(geneknockout),是指对一个结构已知但功能未知的基因,从分子水平上设计实验,将该基因去除,或用其它顺序相近基因取代,然后从整体观察实验动物,推测相应基因的功能。这与早期生理学研究中常用的切除部分-观察整体-推测功能的三部曲思想相似。基因敲除除可中止某一基因的表达外,还包括引入新基因及引入定点突变。既可以是用突变基因或其它基因敲除相应的正常基因,也可以用正常基因敲除相应的突变基因。 b、因转移法 同源重组(homologousrecombination)是将外源基因定位导人受体细胞染色体上的方法,因为在该座位有与导人基因同源的序列,通过单一或双交换,新基因片段可替换有缺陷的基因片段,达到修正缺陷基因的目的。位点特异性重组是发生在两条DNA链特异位点上的重组,重组的发生需一段同源序列即特异性位点(又称附着点;attachmentsite,att)和位点特异性的蛋白因子即重组酶参与催化。重组酶仅能催化特异性位点间的重组,因而重组具有特异性和高度保守性。

分子生物学知识点归纳

分子生物学 1.DNA的一级结构:指DNA分子中核苷酸的排列顺序。 2.DNA的二级结构:指两条DNA单链形成的双螺旋结构、三股螺旋结构以及四股螺旋结构。3.DNA的三级结构:双链DNA进一步扭曲盘旋形成的超螺旋结构。 4.DNA的甲基化:DNA的一级结构中,有一些碱基可以通过加上一个甲基而被修饰,称为DNA的甲基化。甲基化修饰在原核生物DNA中多为对一些酶切位点的修饰,其作用是对自身DNA产生保护作用。真核生物中的DNA甲基化则在基因表达调控中有重要作用。真核生物DNA中,几乎所有的甲基化都发生于二核苷酸序列5’-CG-3’的C上,即5’-mCG-3’. 5.CG岛:基因组DNA中大部分CG二核苷酸是高度甲基化的,但有些成簇的、稳定的非甲基化的CG小片段,称为CG岛,存在于整个基因组中。“CG”岛特点是G+C含量高以及大部分CG二核苷酸缺乏甲基化。 6.DNA双螺旋结构模型要点: (1)DNA是反向平行的互补双链结构。 (2)DNA双链是右手螺旋结构。螺旋每旋转一周包含了10对碱基,螺距为3.4nm. DNA 双链说形成的螺旋直径为2 nm。每个碱基旋转角度为36度。DNA双螺旋分子表面 存在一个大沟和一个小沟,目前认为这些沟状结构与蛋白质和DNA间的识别有关。(3)疏水力和氢键维系DNA双螺旋结构的稳定。DNA双链结构的稳定横向依靠两条链互补碱基间的氢键维系,纵向则靠碱基平面间的疏水性堆积力维持。 7.核小体的组成: 染色质的基本组成单位被称为核小体,由DNA和5种组蛋白H1,H2A,H2B,H3和H4共同构成。各两分子的H2A,H2B,H3和H4共同构成八聚体的核心组蛋白,DNA双螺旋缠绕在这一核心上形成核小体的核心颗粒。核小体的核心颗粒之间再由DNA和组蛋白H1构成的连接区连接起来形成串珠样结构。 8.顺反子(Cistron):由结构基因转录生成的RNA序列亦称为顺反子。 9.单顺反子(monocistron):真核生物的一个结构基因与相应的调控区组成一个完整的基因,即一个表达单位,转录物为一个单顺反子。从一条mRNA只能翻译出一条多肽链。10.多顺反子(polycistron): 原核生物具有操纵子结构,几个结构基因转录在一条mRNA 链上,因而转录物为多顺反子。每个顺反子分别翻译出各自的蛋白质。 11.原核生物mRNA结构的特点: (1) 原核生物mRNA往往是多顺反子的,即每分子mRNA带有几种蛋白质的遗传信息。 (2)mRNA 5‘端无帽子结构,3‘端无多聚A尾。 (3)mRNA一般没有修饰碱基。 12.真核生物mRNA结构的特点: (1)5‘端有帽子结构。即7-甲基鸟嘌呤-三磷酸鸟苷m7GpppN。 (2)3‘端大多数带有多聚腺苷酸尾巴。 (3)分子中可能有修饰碱基,主要有甲基化。 (4)分子中有编码区和非编码区。 14.tRNA的结构特点 (1)tRNA是单链小分子。 (2)tRNA含有很多稀有碱基。 (3)tRNA的5‘端总是磷酸化,5’末端核苷酸往往是pG. (4)tRNA的3‘端是CCA-OH序列。是氨基酸的结合部位。 (5)tRNA的二级结构形状类似于三叶草,含二氢尿嘧啶环(D环)、T环和反密码子环。

分子生物学总结完整版

分子生物学总结完整版 1、结构分子生物学; 2、基因表达的调节与控制; 3、DNA重组技术及其应用; 4、结构基因组学、功能基因组学、生物信息学、系统生物学 第二章DNA and Chromosome 1、DNA的变性:在某些理化因素作用下,DNA双链解开成两条单链的过程。 2、 DNA复性:变性DNA在适当条件下,分开的两条单链分子按照碱基互补原则重新恢复天然的双螺旋构象的现象。 3、 Tm(熔链温度): DNA加热变性时,紫外吸收达到最大值的一半时的温度,即DNA分子内50%的双链结构被解开成单链分子时的温度) 4、退火:热变性的DNA经缓慢冷却后即可复性,称为退火 5、假基因:基因组中存在的一段与正常基因非常相似但不能表达的DNA序列。以Ψ来表示。 6、 C值矛盾或C值悖论:C值的大小与生物的复杂度和进化的地位并不一致,称为C值矛盾或C值悖论(C-Value Paradox)。 7、转座:可移动因子介导的遗传物质的重排现象。 8、转座子:染色体、质粒或噬菌体上可以转移位置的遗传成分

9、 DNA二级结构的特点:1)DNA分子是由两条相互平行的脱氧核苷酸长链盘绕而成;2)DNA分子中的脱氧核苷酸和磷酸交替连接,排在外侧,构成基本骨架,碱基排列在外侧;3)DNA分子表面有大沟和小沟;4)两条链间存在碱基互补,通过氢键连系,且A=T、G ≡ C(碱基互补原则);5)螺旋的螺距为 3、4nm,直径为2nm,相邻两个碱基对之间的垂直距离为0、34nm,每圈螺旋包含10个碱基对;6)碱基平面与螺旋纵轴接近垂直,糖环平面接近平行 10、真核生物基因组结构:编码蛋白质或RNA的编码序列和非编码序列,包括编码区两侧的调控序列和编码序列间的间隔序列。特点:1)真核基因组结构庞大哺乳类生物大于2X109bp;2)单顺反子(单顺反子:一个基因单独转录,一个基因一条mRNA,翻译成一条多肽链;)3)基因不连续性断裂基因(interrupted gene)、内含子(intron)、外显子(exon);4)非编码区较多,多于编码序列(9:1) 5)含有大量重复序列1 1、Histon(组蛋白)特点:极端保守性、无组织特异性、氨基酸分布的不对称性、可修饰作用、富含Lys的H5 12、核小体组成: 由组蛋白和200bp DNA组成 13、转座的机制:转座时发生的插入作用有一个普遍的特征,那就是受体分子中有一段很短的被称为靶序列的DNA会被复

现代分子生物学总结

第一章、基因的结构与功能实体及基因组 1、基因定义 基因(遗传因子)就是遗传的物质基础,就是DNA(脱氧核糖核酸)分子上具有遗传信息的特定核苷酸序列的总称,携带有遗传信息的DNA序列,就是具有遗传效应的DNA分子片段,就是控制性状的基本遗传单位,通过指导蛋白质的合成来表达自己所携带的遗传信息,从而控制生物个体的性状表现。 2、DNA修复 DNA修复(DNA repairing)就是细胞对DNA受损伤后的一种反应,这种反应可能使DNA结构恢复原样,重新能执行它原来的功能;但有时并非能完全消除DNA的损伤,只就是使细胞能够耐受这DNA的损伤而能继续生存。也许这未能完全修复而存留下来的损伤会在适合的条件下显示出来(如细胞的癌变等),但如果细胞不具备这修复功能,就无法对付经常在发生的DNA 损伤事件,就不能生存。对不同的DNA损伤,细胞可以有不同的修复反应。 3、DNA损伤 DNA损伤就是复制过程中发生的DNA核苷酸序列永久性改变,并导致遗传特征改变的现象。情况分为:substitutation (替换)deletion (删除)insertion (插入)exon skipping (外显子跳跃)。DNA损伤的改变类型:a、点突变:指DNA上单一碱基的变异。嘌呤替代嘌呤(A与G之间的相互替代)、嘧啶替代嘧啶(C与T之间的替代)称为转换(transition);嘌呤变嘧啶或嘧啶变嘌呤则称为颠换(transvertion)。b、缺失:指DNA链上一个或一段核苷酸的消失。c、插入:指一个或一段核苷酸插入到DNA链中。在为蛋白质编码的序列中如缺失及插入的核苷酸数不就是3的整倍数,则发生读框移动(reading frame shift),使其后所译读的氨基酸序列全部混乱,称为移码突变(frame-shift mutaion)。d、倒位或转位:(transposition) 指DNA链重组使其中一段核苷酸链方向倒置、或从一处迁移到另一处。e、双链断裂:对单倍体细胞一个双链断裂就就是致死性事件。 4、同源重组 同源重组,(Homologus Recombination)就是指发生在姐妹染色单体(sister chromatin) 之间或同一染色体上含有同源序列的DNA分子之间或分子之内的重新组合。同源重组需要一系列的蛋白质催化,如原核生物细胞内的RecA、RecBCD、RecF、RecO、RecR等;以及真核生物细胞内的Rad51、Mre11-Rad50等等。同源重组反应通常根据交叉分子或holiday结构(Holiday Juncture Structure) 的形成与拆分分为三个阶段,即前联会体阶段、联会体形成与Holiday 结构的拆分。 a、基因敲除 基因敲除(geneknockout),就是指对一个结构已知但功能未知的基因,从分子水平上设计实验,将该基因去除,或用其它顺序相近基因取代,然后从整体观察实验动物,推测相应基因的功能。这与早期生理学研究中常用的切除部分-观察整体-推测功能的三部曲思想相似。基因敲除除可中止某一基因的表达外,还包括引入新基因及引入定点突变。既可以就是用突变基因或其它基因敲除相应的正常基因,也可以用正常基因敲除相应的突变基因。 b、因转移法 同源重组(homologousrecombination)就是将外源基因定位导人受体细胞染色体上的方法,因为在该座位有与导人基因同源的序列,通过单一或双交换,新基因片段可替换有缺陷的基因片段,达到修正缺陷基因的目的。位点特异性重组就是发生在两条DNA链特异位点上的重组,重组的发生需一段同源序列即特异性位点(又称附着点;attachmentsite,att)与位点特异性的蛋白因子即重组酶参与催化。重组酶仅能催化特异性位点间的重组,因而重组具有特异性与高度保守性。 5、碱基错配对修复

生物化学与分子生物学名词解释

生物化学与分子生物学名词解释

生化名解 1、肽单元(peptide unit):参与肽键的6个原子Ca1、C、O、N、H、Ca2位于同一平面,Ca1和Ca2在平面上所处的位置为反式构型,此同一平面上的6个原子构成了肽单元,它是蛋白质分子构象的结构单元。Ca是两个肽平面的连接点,两个肽平面可经Ca的单键进行旋转,N—Ca、Ca—C是单键,可自由旋转。 2、结构域(domain):分子量大的蛋白质三级结构常可分割成1个和数个球状或纤维状的区域,折叠得较为紧密,具有独立的生物学功能,大多数结构域含有序列上连续的100—200个氨基酸残基,若用限制性蛋白酶水解,含多个结构域的蛋白质常分成数个结构域,但各结构域的构象基本不变。 3、模体(motif):在许多蛋白质分子中,二个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象。一个模序总有其特征性的氨基酸序列,并发挥特殊功能,如锌指结构。 4、蛋白质变性(denaturation):在某些物理和化学因素作用下,其特定的空间构象被破坏,也即有序的空间结构变成无序的空间结构,从而导致其理化性质的改变和生物活性的丧失。主要发生二硫键与非共价键的破坏,不涉及一级结构中氨基酸序列的改变,变性的蛋白质易沉淀,沉淀的蛋白质不一定变性。 5、蛋白质的等电点( isoelectric point, pI):当蛋白质溶液处于某一pH时,

而改变酶的活性,此过程称为共价修饰。主要包括:磷酸化—去磷酸化;乙酰化—脱乙酰化;甲基化—去甲基化;腺苷化—脱腺苷化;—SH与—S—S—互变等;磷酸化与脱磷酸是最常见的方式。 10、酶原和酶原激活(zymogen and zymogen activation):有些酶在细胞内合成或初分泌时只是酶的无活性前体,必须在一定的条件下水解开一个或几个特定的肽键,使构象发生改变,表现出酶的活性,此前体物质称为酶 原。由无活性的酶原向有活性酶转化的过程称为酶原激活。酶原的激活,实际是酶的活性中心形成或暴露的过程。 11、同工酶(isoenzyme isozyme):催化同一化学反应而酶蛋白的分子结构,理化性质,以及免疫学性质都不同的一组酶。它们彼此在氨基酸序列,底物的亲和性等方面都存在着差异。由同一基因或不同基因编码,同工酶存在于同一种属或同一个体的不同组织或同一细胞的不同亚细胞结构中,它使不同的组织、器官和不同的亚细胞结构具有不同的代谢特征。 12、糖酵解(glycolysis):在机体缺氧条件下,葡萄糖经一系列酶促反应生成丙酮酸进而还原生成乳酸的过程称为糖酵解(糖的无氧氧化)。糖酵解的反应部位在胞浆。主要包括由葡萄糖分解成丙酮酸的糖酵解途径和由丙酮酸转变成乳酸两个阶段,1分子葡萄糖经历4次底物水平磷酸化,净生成2分子ATP。关键酶主要有己糖激酶,6-磷酸果糖激酶-1和丙酮酸激酶。它的意义是机体在缺氧情况下获取能量的有效方式;某些细胞在氧供应正常情况下的重要供能途径。

分子生物学试验基础知识

分子生物学实验基础知识 分子生物学是在生物化学基础上发展起来的,以研究核酸和蛋白质结构、功能等生命本质的学科,在核酸、蛋白质分子水平研究发病、诊断、治疗和预后的机制。其中基因工程(基因技术,基因重组)是目前分子生物学研究热点,这些技术可以改造或扩增基因和基因产物,使微量的研究对象达到分析水平,是研究基因调控和表达的方法,也是分子水平研究疾病发生机制、基因诊断和基因治疗的方法。转化(trans formation)、转染、转导、转位等是自然界基因重组存在的方式,也是人工基因重组常采用的手段。基因重组的目的之一是基因克隆(gene clone),基因克隆可理解为以一分子基因为模板扩增得到的与模板分子结构完全相同的基因。使需要分析研究的微量、混杂的目的基因易于纯化,得以增量,便于分析。 外来基因引起细胞生物性状改变的过程叫转化(transformation),以噬菌体把外源基因导入细菌的过程叫转染(transfection)。利用载体(噬菌体或病毒)把遗传物质从一种宿主传给另一种宿主的过程叫转导(transduction)。一个或一组基因从一处转移到基因组另一处的过程叫转位(transposition),这些游动的基因叫转位子。 一、基因工程的常用工具 (一)载体 载体(Vector)是把外源DNA(目的基因)导入宿主细胞,使之传代、扩增、表达的工具。载体有质粒(plasmid)、噬菌体、单链丝状噬菌体和粘性末端质粒(粘粒)、病毒等。载体具有能自我复制;有可选择的,便于筛选、鉴定的遗传标记;有供外源DNA插入的位点;本身体积小等特征。 质粒存在于多种细菌,是染色体(核)以外的独立遗传因子,由双链环状DNA组成,几乎完全裸露,很少有蛋白质结合。质粒有严紧型和松弛型之分。严紧型由DNA多聚酶Ⅲ复制,一个细胞可复制1-5个质粒。而松弛型由DNA多聚酶Ⅰ复制,一个细胞可复制30-50个质粒,如果用氯霉素可阻止蛋白质合成,使质粒有效利用原料,复制更多的质粒。质粒经过改造品种繁多,常用的有pBR322、pUC系列等。这些质粒都含有多个基本基因,如复制起动区(复制原点Ori),便于复制扩增;抗抗生素标记(抗氨芐青霉素Ap r、抗四环素Tc r等)或大肠埃希菌部分乳糖操纵子(E.coli LacZ)等,便于基因重组体的筛选;基因发动子(乳糖操纵子Lac、色氨酸操纵子Trp等)和转录终止序列,便于插入的外源基因转录、翻译表达。质粒上还有许多限制性内切酶的切点,即基因插入位点,又叫基因重组位点,基因克隆位点。 常用噬菌体载体有单链噬菌体M13系统;双链噬菌体系统。噬菌体应和相应的宿主细胞配合使用。以上载体各有特点,便于选择,灵活应用。 (二)工具酶

相关文档
相关文档 最新文档