文档库 最新最全的文档下载
当前位置:文档库 › 石墨烯性能简介

石墨烯性能简介

石墨烯性能简介
石墨烯性能简介

第一章石墨烯性能及相关概念

1石墨烯概念

石墨烯(Graphen?是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体。石墨烯狭义上指单层石墨,厚度为0.335nm,仅有一层碳原子。但实际上,10层以内的石墨结构也可称作石墨烯,而10层以上的则被称为石墨薄膜。单层石墨烯是指只有一个碳原子层厚度的石墨,碳原子-碳原子之间依靠共价键相连接而形成蜂窝状结构。完美的石墨烯具有

理想的二维晶体结构,由六边形晶格组成,理论比表面积高达 2.6X 102m2 /g。石墨烯具有优异的导热性能(3X 103W/(m?K))和力学性能(1.06 x 103GPa) 此外,石墨烯稳定的正六边形晶格结构使其具有优良的导电性,室温下的电

子迁移率高达1.5x 104cm2/ (V ? s)。石墨烯特殊的结构、突出的导热导电

性能和力学性能,弓I起科学界巨大兴趣,成为材料科学研究热点

石墨烯结构图

2石墨烯结构

石墨烯指仅有一个原子尺度厚单层石墨层片,由sp2杂化的碳原子紧

密排列而成的蜂窝状晶体结构。石墨烯中碳-碳键长约为0.142nm。每个

晶格内有三个键,连接十分牢固形成了稳定的六边状。垂直于晶面方向上的n 键在石墨烯导电的过程中起到了很大的作用。石墨烯是石墨、碳纳米管、富勒烯的基本组成单元,可以将它看做一个无限大的芳香族分子,平面多环烃的极限情况就是石墨烯。

形象来说,石墨烯是由单层碳原子紧密堆积成二维蜂窝状晶格结构,看上去就像一张六边形网格构成的平面。在单层石墨烯中,每个碳原子通过sp2杂化与周围碳原子成键给构整流变形,每一个六边单元实际上类似苯环,碳原子都贡献出个一个未成键电子。单层石墨烯厚度仅0.35nm ,约为头发丝直径的二十万分之一。

石墨烯的结构非常稳定,碳原子之间连接及其柔韧。受到外力时,碳原子面会发生弯曲变形,使碳原子不必重新排列来适应外力,从而保证了自身的结构稳定性。

石墨烯是有限结构,能够以纳米级条带形式存在。纳米条带中电荷横向移动时会在中性点附近产生一个能量势垒,势垒随条带宽度的减小而增大。因此,通过控制石墨烯条带的宽度便可以进一步得到需要的势垒。这一特性是开发以石墨烯为基础的电子器件的基础。

石墨烯能带结构图

3石墨烯性能

石墨烯是一种超轻材料,面密度为0.77mg/m 2,的主要性能是:一是具 有超

强的导电性。石墨烯的电子迁移率比纳米碳管或硅晶体高,

是硅的100 倍,在室温下可以达到15 000cm 2 /( V ? s)。电阻率比铝、铜和银低很多,

只有10?6Q ? cm 左右。二是具有超强的导热性。石墨烯的导热性能优 于碳纳米管,是铜、铝等金属的数10倍,导热系数高达5300W/m?K 。三是 具有超强的力学性,石墨烯的硬度超过金刚石,断裂强度达到钢铁的100倍。 四是具有超强的透光性。石墨烯的吸光率非常小,透光率咼达 97. 7%。五

是具有超强的比表面积。石墨烯的比表面积每克比普通活性炭高出 1130m 2, 达

到 2630m 2

/g

3.1 石墨烯的光学性能

石墨烯是已知的世上最薄、最坚硬的纳米材料,它几乎是完全透明的,只吸收 2.3%的光,具有优异的光学性能。理论和实验结果表明,单层石墨烯吸收 2.3%的可见光,即透过率为97.7%。从基底到单层石墨烯、双层石墨烯

的可见光透射率依次相差 2.3%,因此可以根据石墨烯薄膜的可见光透射率来

估算其层数。结合非交互狄拉克-费米子理论,模拟石墨烯的透射率,可以得出与实验数据相符的结果。

根据折射和干涉原理,不同层数的石墨烯在光学显微镜下会显示出不同的颜色和对比度,为石墨烯层数的辨别提供了方便。

理论和实验表明大面积石墨烯薄膜同样具有优异的光学性能,且其光学特性岁石墨烯的厚度发生变化。石墨烯薄膜是一种典型的透明导电薄膜,可以取代氧化铟锡(ITO)、掺氟氧化铟(FTO)等传统薄膜材料,即可克服ITO薄膜的脆性缺点,也可解决铟资源稀缺对应用的限制等诸多问题。石墨烯透明导电薄膜可作为染料敏化太阳能电池和液晶设备的窗口层电极。

另外,当入射光的强度超过某一临界值时,石墨烯对其的吸收会达到饱和。这一非线性光学行为成为饱和吸收。在近红外光谱区,在强光辐照下,

由于其宽波段吸收和零带隙的特点,石墨烯会慢慢接近饱和吸收。利用这一

性质,石墨烯可用于超快速光子学,如光纤激光器等。

3.2 石墨烯的电学性能

石墨烯的每个碳原子均为sp2杂化,并贡献剩余一个p轨道电子形成;键, nfe子可以自由移动,赋予石墨烯优异的导电性。由于原子间作用力非常强,

在常温下,即使周围碳原子发生碰撞,石墨烯中的电子收到的干扰也很小。电子在石墨烯中传输时不易发生散射,传输效率1.5X 105cm2/(V-s),约为硅中电子迁移率的140咅。其电导率可达106s/m,而电阻率只约10-6Q?cm,比铜或银更低,为世上电阻率最小的材料。因其电阻率极低,电子迁移的速度极快,因此被期待可用来发展更薄、导电速度更快的新一代电子元件或晶体管。由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板、甚至是太阳能电池。

石墨烯的出现在科学界激起了巨大的波澜。人们发现,石墨烯具有非同

寻常的导电性能,超出钢铁数十倍的强度和极好的透光性,它的出现有望在

现代电子科技领域引发一轮革命。在石墨烯中,电子能够极为高效地迁移,而传统的半导体和导体,例如硅和铜远没有石墨烯表现得好。由于电子和原子的碰撞,传统的半导体和导体用热的形式释放了一些能量,2013年一般的电脑芯片以这种方式浪费72%-81%的电能,石墨烯则不同,它的电子能量不会被损耗,这使它具有了非比寻常的优良特性。

3.3石墨烯的力学性能

石墨烯是一直材料中强度和硬度最高的晶体结构。其抗拉强度和弹性模量分别为125GPa和I.ITPa。石墨烯的强度极限为42N/m2。理想石墨烯的强度约为普通钢的100倍,面积为1m2的石墨烯层片可承受4kg的质量。石墨烯可作为一种典型的二维增强材料,在复合材料领域具有潜在的应用价值。

3.4石墨烯的热学性能

石墨烯的强度比金刚石还要硬,在高温下,还能保持其原有的形态,从

这一点就震撼了物理界,主要是因为石墨烯内碳原子排列是有规有律的,当施加外力作用于石墨烯时,内部的碳原子不会发生位移,只是发生了弯曲变形,就可以抵制外力,保证自己的稳定性。

石墨烯的室温热导率是室温下铜的热导率的10 倍多,导热系数高

5300W/m?K ,高于碳纳米管和金刚石。石墨烯的理论比表面积可达2630m2/g,

用石墨烯支撑的微传感器可以感应单个原子或分子,当气体附着或脱离石墨烯表面时,吸附的分子改变了石墨烯的局部载流子浓度,导致电阻发生阶跃型变化。这一特性可用于制作气体传感器。理论计算表明,石墨烯与锂可形成多孔复合结构,具有极强的氢气储存能力。

3.5石墨烯的磁学性能

石墨烯氢化以后往往会具有铁磁性,主要是由于石墨烯在氢化以后,在边缘处有孤对电子对,这样就使得石墨烯有磁性。研究人员还在有磁场的情况下,做过通过改变温度,看能否让石墨烯的磁性有所变化。确定磁场强度为

1T,当温度T v90K时,石墨烯会表现出顺磁特性;当温度T>90K时,石墨烯会呈现出了反磁特性。

3.6石墨烯的化学性能

石墨烯的电子性质受到了广泛关注,然而石墨烯的化学性质却一直无人问津,至今关于石墨烯化学性能我们只知道的是:石墨烯可以将周围的原

子和分子进行有序的吸附(例如:二氧化氮,氨,钾),这条性质和我们所认知的活性炭有些相似。二氧化氮,氨,钾往往是被作为给体或受体,使得石墨烯内部的碳原子浓度发生变化,然而石墨烯本身就是一种导电材料。其它的吸附物,如氢离子和氢氧根离子则会产生导电性很差的衍生物,但这些

都不是新的化合物,只是石墨烯装饰不同吸附物而已。由于石墨烯和石墨都是碳的同素异形体,从化学的角度上来看,往往它们具有一些相同的性质,所以在一些石墨烯不熟悉的领域可以通过石墨来进行相应的实验,来发现石墨烯的规律,有了这条比较简单又方便的思想,在未来,石墨烯更多的化学性质将会被挖掘出来。

2S

di stance (pm)

3

b( layer

石墨烯的光学、电学、力学以及热学特性示意图

石墨烯基本特性

2004年,英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,用高度定向的热解石墨首次获得了独立存在的高质量石墨烯,打破了传统的物理学观点:二维晶体在常温下不能稳定存在。两人也因此共同获得2010年诺贝尔物理学奖。 石墨烯是一种碳原子分布在二维蜂巢晶体点阵上的单原子层晶体。被认为是构建所有其他维数石墨材料的基本单元,它可以包裹成零维的富勒烯,卷曲成一维的碳纳米管或者堆垛成三维的石墨,如图所示。石墨烯晶体C-C键长为0.142nm,每个碳原子4 个价电子中的3 个通过σ键与临近的3个碳原子相连,S、Px 和Py3个杂化轨道形成强的共价键合,组成sp2杂化结构。这些σ键赋予了石墨烯极其优异的力学性质和结构刚性。拉伸强度高达130Gpa,破坏强度为42N/m,杨氏模量为1.0TPa,断裂强度为125Gpa 与碳纳米管相当。石墨烯的厚度仅为0.35nm左右,是世界上最薄的二维材料。石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯。铅笔在纸上轻轻划过,留下的痕迹就可能是几层甚至仅仅一层石墨烯。(百度百科)石墨烯的硬度比最好的钢铁强100倍,甚至还要超过钻石,是已知的世上最薄、最坚硬的纳米材料。

石墨烯结构示意图(10) 石墨烯目前最有潜力的应用是成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机。传统的半导体和导体,例如硅和铜,由于电子和原子的碰撞,传统的半导体和导体用热的形式释放了一些能量,2013年一般的电脑芯片以这种方式浪费了72%-81%的电能。而在石墨烯中,每个碳原子都有一个垂直于碳原子平面的σz轨道的未成键的p电子,在晶格平面两侧如苯环一样形成高度巡游的大π键,可以在晶体中自由高效的迁移,且运动速度高达光速的1/300,电子能量不会被损耗,赋予了石墨烯良好的导电性。晶格平面两侧高度巡游的大π键电子又使其具有零带隙半导体和狄拉克载流子特性宽

石墨烯性能简介

第一章石墨烯性能及相关概念 1 石墨烯概念 石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体。石墨烯狭义上指单层石墨,厚度为0.335nm,仅有一层碳原子。但实际上,10层以内的石墨结构也可称作石墨烯,而10层以上的则被称为石墨薄膜。单层石墨烯是指只有一个碳原子层厚度的石墨,碳原子-碳原子之间依靠共价键相连接而形成蜂窝状结构。完美的石墨烯具有理想的二维晶体结构,由六边形晶格组成,理论比表面积高达2.6×102m2 /g。石墨烯具有优异的导热性能(3×103W/(m?K))和力学性能(1.06×103 GPa)。此外,石墨烯稳定的正六边形晶格结构使其具有优良的导电性,室温下的电子迁移率高达1.5×104 cm2 / (V·s)。石墨烯特殊的结构、突出的导热导电性能和力学性能,引起科学界巨大兴趣,成为材料科学研究热点。 石墨烯结构图

2 石墨烯结构 石墨烯指仅有一个原子尺度厚单层石墨层片,由 sp2 杂化的碳原子紧密排列而成的蜂窝状晶体结构。石墨烯中碳 -碳键长约为 0.142nm。每个晶格内有三个σ键,连接十分牢固形成了稳定的六边状。垂直于晶面方向上的π键在石墨烯导电的过程中起到了很大的作用。石墨烯是石墨、碳纳米管、富勒烯的基本组成单元,可以将它看做一个无限大的芳香族分子,平面多环烃的极限情况就是石墨烯。 形象来说,石墨烯是由单层碳原子紧密堆积成二维蜂窝状晶格结构,看上去就像一张六边形网格构成的平面。在单层石墨烯中,每个碳原子通过 sp2 杂化与周围碳原子成键给构整流变形,每一个六边单元实际上类似苯环,碳原子都贡献出个一个未成键电子。单层石墨烯厚度仅0.35nm ,约为头发丝直径的二十万分之一。 石墨烯的结构非常稳定,碳原子之间连接及其柔韧。受到外力时,碳原子面会发生弯曲变形,使碳原子不必重新排列来适应外力,从而保证了自身的结构稳定性。 石墨烯是有限结构,能够以纳米级条带形式存在。纳米条带中电荷横向移动时会在中性点附近产生一个能量势垒,势垒随条带宽度的减小而增大。因此,通过控制石墨烯条带的宽度便可以进一步得到需要的势垒。这一特性是开发以石墨烯为基础的电子器件的基础。

石墨烯基础知识简介

1.石墨烯(Graphene)的结构 石墨烯是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢状晶格的平面薄膜,是一种只有一个原子层厚度的二维材料。如图1.1所示,石墨烯的原胞由晶格矢量a1和a2定义每个原胞内有两个原子,分别位于A和B的晶格上。C原子外层3个电子通过sp2杂化形成强σ键(蓝),相邻两个键之间的夹角120°,第4个电子为公共,形成弱π键(紫)。石墨烯的碳-碳键长约为0.142nm,每个晶格内有三个σ键,所有碳原子的p轨道均与sp2杂化平面垂直,且以肩并肩的方式形成一个离域π键,其贯穿整个石墨烯。 如图1.2所示,石墨烯是富勒烯(0维)、碳纳米管(1维)、石墨(3维)的基本组成单元,可以被视为无限大的芳香族分子。形象来说,石墨烯是由单层碳原子紧密堆积成的二维蜂巢状的晶格结构,看上去就像由六边形网格构成的平面。每个碳原子通过sp2杂化与周围碳原子构成正六边形,每一个六边形单元实际上类似一个苯环,每一个碳原子都贡献一个未成键的电子,单层石墨烯的厚度仅为0.335nm,约为头发丝直径的二十万分之一。 图 1.1(a)石墨烯中碳原子的成键形式(b)石墨烯的晶体结构。 图1.2石墨烯原子结构图及它形成富勒烯、碳纳米管和石墨示意图石墨烯按照层数划分,大致可分为单层、双层和少数层石墨烯。前两类具有

相似的电子谱,均为零带隙结构半导体(价带和导带相较于一点的半金属),具有空穴和电子两种形式的载流子。双层石墨烯又可分为对称双层和不对称双层石墨烯,前者的价带和导带微接触,并没有改变其零带隙结构;而对于后者,其两片石墨烯之间会产生明显的带隙,但是通过设计双栅结构,能使其晶体管呈示出明显的关态。 单层石墨烯(Graphene):指由一层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子构成的一种二维碳材料。 双层石墨烯(Bilayer or double-layer graphene):指由两层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子以不同堆垛方式(包括AB堆垛,AA堆垛,AA‘堆垛等)堆垛构成的一种二维碳材料。 少层石墨烯(Few-layer or multi-layer graphene):指由3-10层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子以不同堆垛方式(包括ABC 堆垛,ABA堆垛等)堆垛构成的一种二维碳材料。 石墨烯(Graphenes):是一种二维碳材料,是单层石墨烯、双层石墨烯和少层石墨烯的统称。 由于二维晶体在热力学上的不稳定性,所以不管是以自由状态存在或是沉积在基底上的石墨烯都不是完全平整,而是在表面存在本征的微观尺度的褶皱,蒙特卡洛模拟和透射电子显微镜都证明了这一点。这种微观褶皱在横向上的尺度在8~10nm 范围内,纵向尺度大概为 0.7~1.0nm。这种三维的变化可引起静电的产生,所以使石墨单层容易聚集。同时,褶皱大小不同,石墨烯所表现出来的电学及光学性质也不同。 图1.3 单层石墨烯的典型构象 除了表面褶皱之外,在实际中石墨烯也不是完美存在的,而是会有各种形式的缺陷,包括形貌上的缺陷(如五元环,七元环等)、空洞、边缘、裂纹、杂原子等。这些缺陷会影响石墨烯的本征性能,如电学性能、力学性能等。但是通过一些人为的方法,如高能射线照射,化学处理等引入缺陷,却能有意的改变石墨烯的本征性能,从而制备出不同性能要求的石墨烯器件。 2.石墨烯的性质 2.1 力学特性

石墨烯介绍

1石墨烯概述-结构及性质 1.1 石墨烯的结构 石墨烯是一种由碳原子以sp2杂化连接形成的单原子层二维晶体,碳原子规整的排列于蜂窝状点阵结构单元之中,如图1所示。每个碳原子除了以σ键与其他三个碳原子相连之外,剩余的π电子与其他碳原子的π电子形成离域大π键,电子可在此区域内自由移动,从而使石墨烯具有优异的导电性能。同时,这种紧密堆积的蜂窝状结构也是构造其他碳材料的基本单元,如图2所示,单原子层的石墨烯可以包裹形成零维的富勒烯,单层或者多层的石墨烯可以卷曲形成单壁或者多壁的碳纳米管。 图1 石墨烯的结构示意图 图2石墨烯:其他石墨结构碳材料的基本构造单元,可包裹形成零维富勒烯,卷曲形成一维 碳纳米管,也可堆叠形成三维的石墨 1.2石墨烯的性质 石墨烯独特的单原子层结构,决定了其拥有许多优异的物理性质。如前所述,石墨烯中的每个碳原子都有一个未成键的π 电子,这些电子可形成与平面垂直的π轨道,π 电子可在这种长程π 轨道中自由移动,从而赋予了石墨烯出色的导电性能。研究表明室温下载流子在石墨烯中的迁移率可达到15000cm2/(V·s),相当于光速的1/300,在特定条件,如液氦的温度下,更是可达到250000cm2/(V·s),远远超过其他半导体材料,如锑化铟、砷化镓、硅半

导体等。这使得石墨烯中的电子的性质和相对论性的中微子非常相似。并且电子在晶格中的移动是无障碍的,不会发生散射,使其具有优良的电子传输性质。同时,石墨烯独特的电子结构还使其表现出许多奇特的电学性质,比如室温量子霍尔效应等。由于石墨烯中的每个碳原子均与相邻的三个碳原子结合成很强的σ 键,因此石墨烯同样表现出优异的力学性能。最近,哥伦比亚大学科学家利用原子力显微镜直接测试了单层石墨烯的力学性能,发现石墨烯的杨氏模量约为1100GPa,断裂强度更是达到了130GPa,比最好的钢铁还要高100 倍。石墨烯同样是一种优良的热导体。因为在未掺杂石墨中载流子密度较低,因此石墨烯的传热主要是靠声子的传递,而电子运动对石墨烯的导热可以忽略不计。其导热系数高达5000W/(m·K), 优于碳纳米管,更是比一些常见金属,如金、银、铜等高10 倍以上。除了优异的传导性能及力学性能之外,石墨烯还具有一些其他新奇的性质。由于石墨烯边缘及缺陷处有孤对电子,使石墨烯具有铁磁性等磁性能。由于石墨烯单原子层的特殊结构,使石墨烯的理论比表面积高达2630m2/g。石墨烯也具备独特的光学性能,单层石墨烯在可见光区的透过率达97%以上。这些特性使石墨烯在纳米器件、传感器、储氢材料、复合材料、场发射材料等重要领域有着广泛的应用前景。 图3石墨烯的应用 2石墨烯聚酯复合材料的制备方法 由于石墨烯优异的性质以及低的成本,石墨烯作为聚合物纳米填料被广泛报道。为了获得优异性能的聚合物/石墨烯复合材料,首先要保证石墨烯在聚合物基体中均匀分散。石墨烯的分散与制备方法、石墨烯表面化学、橡胶种类以及石墨烯-橡胶界面有着密切关系。聚合物/石墨烯复合材料的制备方法主要有溶液共混、熔体加工、原位聚合和乳液共混四种方法。 2.1 溶液共混法 溶液共混法主要是采用聚合物本身聚合体系的有机溶剂,充分分散石墨烯于体系中,随着体系聚合反应进行,最后石墨烯均匀分散并充分结合于聚合物基体中,得到石墨烯/聚合物复合材料的一种方法。通常先制备氧化石墨烯作为前驱体,对其进行功能化改性使之能在聚合体系溶剂中分散,还原后与聚合物进行溶液共混,从而制备石墨烯/聚合物复合材料。通过溶液共混制备复合材料的关键是将石墨烯及其衍生物均匀分散在能溶解聚合物的溶剂中。

石墨烯的性能与应用

ANYANG INSTITUTE OF TECHNOLOGY 《材料物理》期末论文 石墨烯的性能及应用 学院名称:数理学院 专业班级:应用物理学11-1班 学生姓名:邢俊俊 学号: 201111020026 2014年6月

石墨烯的性能及应用 摘要:石墨烯其貌不扬,其微片看上去就好像是棉花一样的黑色絮状物,可它为什么如此受追捧?答案其实并不复杂。因为它太轻薄了,只有一个原子厚度,却又非常坚硬。除此之外,它还拥有优秀的导热性、极低的电阻率。在轻薄坚固的同时,它还几乎是完全透明的。这些特性让研究者们能够创造出无限的可能性,无怪乎石墨烯横空出世之时业界震惊。 关键词:石墨烯、新材料、物质、科技 Abstract:Graphene does not seem good, its microchip looks like black cotton floc, but why it can be so popular these days? The answer is not complicated. Because it is so thin and only has one atom thick, it is very hard, however. In addition, it has excellent thermal conductivity and low resistivity. It is in strong light while almost completely transparent. These features allow the researchers are able to create infinite possibilities, no wonder when the industry turned out of graphene shocked. Key words: Graphene, new materials, substances, Technology 1、前言: 石墨烯是一种由碳原子构成的单层片状结构的新材料。是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料。石墨烯一直被认为是假设性的结构,无法单独稳定存在,直至2004年,英国曼彻斯特大学物理学家安德烈?海姆(Andre Geim)和康斯坦丁?诺沃肖洛夫(Konstantin Novoselov),成功地在实验中从石墨中分离出石墨烯,而证实它可以单独存在,两人也因“在二维石墨烯材料的开创性实验”,共同获得2010年诺贝尔物理学奖。 石墨烯是已知的世上最薄、最坚硬的纳米材料,它几乎是完全透明的,只吸

石墨烯的特殊性能

石墨烯的特殊性能 摘要:石墨烯是2004年才发现的一种有奇异性能的新型材料,它是由碳原子组成的二维六角点阵结构,具有单一原子层或几个原子层厚。石墨烯因其具有独特的电子能带结构和具相对论电子学特性,是迄今为止人类发现的最理想的二维电子系统,且具有丰富而新奇的物理特性。本文详细介绍了石墨烯的结构,特殊性能以及对石墨烯原胞进行了5×5×1的扩展,通过密度泛函理论 ( DFT) 和广义梯度近似( GGA)对50个碳原子的本征石墨烯超晶胞进行电子结构计算。 关键字:石墨烯,结构,特殊性能,超晶胞,电子结构计算 一、引言 石墨烯是2004年以来发现的新型电子材料石墨烯是sp2杂化碳原子形成的厚度仅为单层原子的排列成蜂窝状六角平面晶体。在单层石墨烯中,碳碳键长为0.142nm,厚度只有0.334nm。石墨烯是构成下列碳同素异型体的基本单元:例如:石墨,碳纳米管和富勒烯。石墨烯被认为是平面多环芳香烃原子晶体。石墨烯在电子和光电器件领域有着重要和广阔的应用前景正因为如此,石墨烯的两位发现者获得了2010年的诺贝尔物理学奖。

石墨烯是一种没有能隙的半导体,具有比硅高100倍的载流子迁移率,在室温下具有微米级自由程和大的相干长度,因此石墨烯是纳米电路的理想材料,石墨烯具有良好的导热性[3000W/(m〃K)]、高强度(110GPa)和超大的比表面积 (2630mZ/g)。这些优异的性能使得石墨烯在纳米电子器件、气体传感器、能量存储及 复合材料等领域有光明的应用前景 二、石墨烯的特殊性能 石墨烯是一种半金属或者零带隙二维材料,在靠近布里渊区6个角处的低能区,其E-k色散关系是线性的 ,因而电子或空穴的有效质量为零,这里的电子或空穴是相对论粒子,可以用自旋为1/2粒子的狄拉克方程来描述。 石墨烯的电子迁移率实验测量值超过15000cm/(V〃s)(载流子浓度n≈10 cm ),在10~100K范围内,迁移率几乎与温度无关,说明石墨烯中的主要散射机制是缺陷散射,因此,可以通过提高石墨烯的完整性来增加其迁移率,长波的声学声子散射使得石墨烯的室温迁移率大约为200000cm /(V〃s),其相应的电阻率为lO -6 〃cm,

石墨烯的结构、制备、性能及应用研究进展

. . .. . . 报告题目:石墨烯的结构、制备、性能及应用研究进展 一、书目信息: 二、评分标准 1.格式规、容简明扼要。报告中引用的数据、观点等要注明出处20分 2. 报告结构合理,表述清晰20分 3. 石墨烯的结构、性能、制备方法概述正确、新(查阅5篇以上的文献)20分 4. 石墨烯的应用研究进展概述(文献)全、新(查阅5篇以上的文献)20分 5. 心得及进一步的研究展望真实,无抄袭与剽窃现象20分 三、教师评语 请根据写作容给定成绩,填入“成绩”部分。 注1:本页由报告题目、书目信息有学生填写,其余由教师填写。提交试卷时含本页。学生从第二页开始写作,要求见蓝色字体部分。 注2:“阅卷教师评语”部分请教师用红色或黑色碳素笔填写,不可用电子版。无“评语”视为不合规。注3:不符合规试卷需修改规后提交。 摘要 碳是自然界中万事万物的重要组成物质,也是构成生命有机体的主要元素。石墨和金刚石是两种典型的单质碳,也是最早为人们所熟知的两种碳的三维晶体结构,属于天然矿

密封线 石。除石墨和金刚石外,碳材料还包括活性炭、碳黑、煤炭和碳纤维等非晶形式。煤是重 要的燃料。碳纤维在复合材料领域有重要的应用。20 世纪80 年代,纳米材料与技术获得 了极大的发展。纳米碳材料也是从这一时期开始进入历史的舞台。1985 年,由60 个碳原 子构成的“足球”分子:C60被三位英美科学家发现。随后,C70、C86等大分子相继出现, 为碳家族添加了一大类新成员:富勒烯。富勒烯是碳的零维晶体结构,它们的出现开启了 富勒烯化学新篇章。三位发现者于1996 年获诺贝尔化学奖。1991 年,由石墨层片卷曲 而成的一维管状纳米结构:碳纳米管被发现。如今,碳纳米管已经成为一维纳米材料的典 型代表。发现者饭岛澄男于2008 年获卡弗里纳米科学奖。2004 年,一位新成员:石墨 烯,出现在碳材料的“家谱”中。石墨烯的发现者,两位英国科学家安德烈·盖姆(Andre Geim)和康斯坦丁·诺沃肖罗夫(Konstantin Novoselov)于2010 年获诺贝尔物理学 奖。 关键词:碳材料复合材料晶体结构 1 石墨烯的结构 石墨烯是sp2杂化碳原子形成的厚度仅为单层原子的排列成蜂窝状六角平面晶体。在单层石墨烯中,碳碳键长为0.142nm,厚度只有0.334nm。石墨烯是构成下列碳同素异型体的基本单元:例如:石墨,碳纳米管和富勒烯。石墨烯被认为是平面多环芳香烃原子晶体。 2 石墨烯的制备 2.1 物理法制备石墨烯 物理方法通常是以廉价的石墨或膨胀石墨为原料,通过机械剥离法、取向附生法、液相或气相直接剥离法来制备单层或多层石墨烯。这些方法原料易得, 操作相对简单,合成的石墨烯的纯度高、缺陷较少。 2.1.1机械剥离法 机械剥离法或微机械剥离法是最简单的一种方法,即直接将石墨烯薄片从较大的晶体上剥离下来。Novoselovt 等[1]于2004年用一种极为简单的微机械剥离法成功地从高定向热解石墨上剥离并观测到单层石墨烯,验证了单层石墨烯的独立存在。具体工艺如下:首先利用氧等离子在 1 mm厚的高定向热解石墨表面进行离子刻蚀,当在表面刻蚀出宽20 μm—2 mm、深 5 μm的微槽后,用光刻胶将其粘到玻璃衬底上,再用透明胶带反复撕揭,然后将多余的高定向热解石墨去除并将粘有微片的玻璃衬底放入丙酮溶液中进行超声,最后将单晶硅片放入丙酮溶剂中,利用德华力或毛细管力将单层石墨烯“捞出”。 2.1.2取向附生法—晶膜生长

石墨烯纤维纱的性能及其应用

石墨烯纤维纱的性能及其应用 石墨烯的发现 石墨烯是目前发现的最薄、最坚硬、导电性能最强的新型纳米材料,从2004年石墨烯在实验室被正式制备以来,受到全球广泛关注,被誉为“新材料之王”。在国内,相关技术人员通过打开分子链,嵌入金属模板,利用高科技高温煅烧这一航天技术,成功从玉米芯纤维素中研制出生物质石墨烯,全球首创,成为2016年纤维新秀。 用石墨烯纤维面料的独特功效 1、体温即可激发的远红外 石墨烯特有人体体温激发远红外功能,促进血液微循环,加速新陈代谢,有效放松肌肉缓解疲劳,用石墨烯纤维面料制作贴身衣物,亲肤能改善血液微循环,缓解慢性疼痛,有效改善人体亚健康。 2、抗菌抑菌 石墨烯纤维特有抗菌抑菌功能,有效抑制真菌的滋生,抑菌除臭功能显著。 3、吸湿透气 石墨烯纤维同时具有祛湿透气功能,能持久保持肌肤干爽,透气舒适,有效保护私处健康。 4、抗静电 天然抗静电功能,让穿着更舒适。 5、防紫外线 石墨烯纤维同时具防紫外线功能,无论制作贴身衣物还是外穿时装,功能同样出众。

石墨烯纤维的应用范围 、墨烯内暖纤维石墨烯内暖纤维是由生物质石墨烯与各类纤维复合而成的一种智能多功能纤维新材料,具备超越国际先进水平的低温远红外功能,集防静电等作用于一身。 石墨烯内暖纤维长丝、短纤规格齐全,短纤可与棉毛丝麻等纤维以及涤纶腈纶等其他各种纤维等其他各种纤维搭配混纺,长丝可与各种纤维交织,制备不同功能需求的纱线面料。 在纺织领域,可以制成袜类、婴幼服饰、家居面料、户外服装等。石墨烯内暖纤维的用途服装领域,还可以应用于车辆内饰、美容卫材、摩擦材料、过滤材料等。 墨烯内暖绒材料石墨烯内暖绒是由生物质石墨烯均匀分散于涤纶空白切片中进行共混纺丝生产而成。该技术既充分利用了可的低成本生物质资源,又将生物质石墨烯的功能充分展现到纤维中,获得了高性能、高附加值的新型纺织材料。石墨烯内暖绒材料具有远红外升温、保暖透气、抗静电等多功能特性,作为填充材料应用于棉被、羽绒服等,对提升纺织工业创新能力和推动高附加值产品开发具有重大意义和市场价值。

石墨烯结构的分析

石墨烯 石墨烯之所以被广泛应用,是由其自身的内部结构决定的。 石墨烯(Graphene)是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的二维碳纳米材料。 石墨烯内部碳原子的排列方式与石墨单原子层一样以sp2杂化轨道成键,并有如下的特点:碳原子有4个价电子,其中3个电子生成sp2键,即每个碳原子都贡献一个位于pz轨道上的未成键电子,近邻原子的pz轨道与平面成垂直方向可形成π键,新形成的π键呈半填满状态。研究证实,石墨烯中碳原子的配位数为3,每两个相邻碳原子间的键长为 1.42×10-10米,键与键之间的夹角为120°。除了σ键与其他碳原子链接成六角环的蜂窝式层状结构外,每个碳原子的垂直于层平面的pz轨道可以形成贯穿全层的多原子的大π键(与苯环类似),因而具有优良的导电和光学性能。 在石墨烯中,电子能够极为高效地迁移,而传统的半导体和导体,例如硅和铜远没有石墨烯表现得好。由于电子和原子的碰撞,传统的半导体和导体用热的形式释放了一些能量,目前一般的电脑芯片以这种方式浪费了70%-80%的电能,石墨烯则不同,它的电子能量不会被损耗,这使它具有了优良导热特性。 超级电池采用单原子厚度的碳层构成,这项技术能够在最短时间内对手机和汽车快速充电,能够很容易制造并整合成为器件,未来有望制造更小的手机。 石墨烯储能和放电过程中不发生电池反应,只是将电子储存和释放,是物理变化。由此,应当称其为电容,而不是电池。目前,石墨烯应用于电池上的研究基本上有3个方向: 一是以石墨烯形成全新体系电池。就是说以石墨烯制造一个全新体系的电池,在性能上是颠覆性的,称作“超级电池”。使用这种材料制作的电池,能量密度超过600wh/kg,是目前动力锂电池的5倍,一次充电时间只需8分钟,可行驶1000公里;电池重量只有锂离子电池的一半,体积也会大幅缩小,减轻使用该电池汽车的自身重量;电池的使用寿命更长,是传统氢化电池的4倍,锂电池的2倍;其成本将比目前锂电池降低77%。这些物理参数都符合超级电池的要求。 二是以石墨烯强化现有电池性能。将石墨烯运用到现有电池上,改进提升锂电池、太阳能电池等电池性能,力图达到超级电池的性能。对于那些已投巨资建

单层氧化石墨烯性能参数

单层氧化石墨烯性能参数 单层氧化石墨烯性能参数,这是很多人想知道的知识。氧化石墨烯是一种性能很好的新型碳材料,具有较高的比表面积和表面丰富的官能团,应用范围很广,市面上常见的产品有粉末状、片状以及溶液状的。氧化石墨烯可视为一种非传统型态的软性材料,具有聚合物、胶体、薄膜,以及两性分子的特性。下面就由先丰纳米简单的介绍单层氧化石墨烯性能参数。 1、性能 (1)含有丰富的羟基、羧基和环氧基等含氧官能团; (2)易于接枝改性,可与复合材料进行原位复合,从而赋予复合材料导电、导热、增强、阻燃、抗菌抑菌等性能; (3)易于剥离成稳定的氧化石墨烯分散液,易于成膜。 2、用途 应用于橡胶、塑料、树脂、纤维等高分子复合材料领域,还可以应用于锂电正负极材料的复合、石墨烯导热膜、催化剂负载。 3、操作处置与储存 操作人员需穿戴合适的防护服及防护手套;避免与皮肤直接接触,进入眼睛,应立即用大量清水冲洗。产品需密闭贮存于阴凉、通风及干燥的环境,在20℃的环境中贮存效果更佳。远离火种、热源,应与强还原剂、易燃物分开存放。

4、运输 非限制性货物,运输中应注意安全,防止日晒、雨淋、渗漏和标签脱落,严禁抛掷, 轻装轻卸,远离热源,隔绝火源。 如果想要了解更多关于单层氧化石墨烯的内容,欢迎立即咨询先丰纳米。 先丰纳米是江苏先进纳米材料制造商和技术服务商,专注于石墨烯、类石墨烯、碳纳 米管、分子筛、黑磷、银纳米线等发展方向,现拥有石墨烯粉体、石墨烯浆料和石墨烯膜 完整生产线。 自2009年成立以来一直在科研和工业两个方面为客户提供完善服务。科研客户超过 一万家,工业客户超过两百家。 南京先丰纳米材料科技有限公司2009年9月注册于南京大学国家大学科技园内,现 专注于石墨烯、类石墨烯、碳纳米管、分子筛、银纳米线等发展方向,立志做先进材料及 技术提供商。 2016年公司一期投资5000万在南京江北新区浦口开发区成立“江苏先丰纳米材料科技有限公司”,建筑面积近4000平方,形成了运营、研发、中试、生产全流程先进纳米 材料制造和技术服务中心。现拥有石墨烯粉体、石墨烯浆料和石墨烯膜完整生产线,2017年年产高品质石墨烯粉末50吨,石墨烯浆料1000吨。 欢迎广大客户和各界朋友莅临我司指导!欢迎电话咨询或者登陆我们的官网进行查看。

石墨烯复合材料的研究及其应用

石墨烯复合材料的研究及其应用 任成,王小军,李永祥,王建龙,曹端林 摘要:石墨烯因其独特的结构和性能,成为物理化学和材料学界的研究热点。本文综述了石墨烯复合材料的结构和分类,主要包括石墨烯-纳米粒子复合材料、石墨烯-聚合物复合材料和石墨烯-碳基材料复合材料。并简述石墨烯复合材料在催化领域、电化学领域、生物医药领域和含能材料领域的应用。 关键词:石墨烯;复合材料;纳米粒子;含能材料 Research and Application of Graphene composites ABSTRACT: Graphene has recently attracted much interest in physics,chemistry and material field due to its unique structure and properties. This paper reviews the structure and classification of graphene composites, mainly inclouding graphene-nanoparticles composites, graphene-polymer composites and graphene-carbonmaterials composites. And resume the application of graphene composites in the field of catalysis, electrochemistry, biological medicine and energetic materials. Keywords: graphene; composites; nanoparticles; energetic materials 石墨烯自2004年曼彻斯特大学Geim[1-3]等成功制备出以来,因其独特的结构和性能,颇受物理化学和材料学界的重视。石墨烯是一种由碳原子紧密堆积构成的二维晶体,是包括富勒烯、碳纳米管、石墨在内的碳的同素异形体的基本组成单元。石墨烯的制备方法主要有机械剥离法,晶体外延法,化学气相沉积法,插层剥离法以及采用氧化石墨烯的高温脱氧和化学还原法等[4-10]。与碳纳米管类似,石墨烯很难作为单一原料生产某种产品,而主要是利用其突出特性与其它材料体系进行复合.从而获得具有优异性能的新型复合材料。而氧化石墨烯由于其特殊的性质和结构,使其成为制备石墨烯和石墨烯复合材料的理想前驱体。本文综述了石墨烯复合材料的结构、分类及其在催化领域、电化学领域、生物医药领域和含能材料领域的应用。

与石墨烯相关的特征

1 拓扑绝缘体 自然界的材料根据其电学输运性质,可分为导体,半导体和绝缘体。一般的导体中存在着费米面(如图a所示),半导体和绝缘体的费米面存在于禁带之中(如图b所示)。拓扑绝缘体在边界上存在着受到拓扑保护的稳定的低维金属态,这些无能隙的边缘激发处在禁带之中,并且连接价带顶和导带底(如图c,d所示)。从这个意义上讲,拓扑绝缘体是介于普通绝缘体和低维金属之间的一种新物态。根据能带理论,费米能落在晶体材料的带隙中时,材料表现为绝缘体。拓扑绝缘体的材料的能带结构类似于一般绝缘体,存在全局的能隙。但不同于一般的绝缘体,当考虑存在边界的拓扑绝缘体时,将出现贯穿整个能隙的边界态,这些特殊的边界态和体系的拓扑性质(由体系的拓扑数决定)严格对应,因而只要不改变体系的拓扑性质,这些边界态就不会被破坏。 拓扑绝缘体的典型特征是体内元激发存在能隙,但边界上或表面具有受拓扑保护的无能隙边缘激发。拓扑绝缘体的内部的电子能带结构和一般绝缘体相似,它的费米能级位于导带和价带之间,而在其表面存在一些特殊量子态,这些量子态位于块体能带结构的带隙之中,从而允许导电。拓扑绝缘体表面或边界导电是有材料电子态的拓扑结构决定,与表面的具体结构无关。也正是因为其表面金属态的出现由拓扑结构对称性所决定,所以它的存在非常稳定,基本不会受到杂志与无序的影响。 从广义上讲,可分为两大类:一类是破坏时间反演的量子霍尔体系;另一类是最近发现的时间反演不变的拓扑绝缘体。 2半金属 semimetal halfmetal 半金属:介于金属和非金属之间的物质。从能带结构来看,金属中被电子填充的最高能带是半满的或部分填充的,电子能自由运动,有较高的电导率。绝缘体中被电子填充的最高能带是满带(又称价带),价带与导带之间的禁带宽度较大。

石墨烯基础及性能应用

Graphene Fundamentals and Performance Applications 石墨烯基础及性能应用 学校西安建筑科技大学 论文名称石墨烯基础及性能应用 班级材料科学1302 学号130502112 姓名王号强 指导教师李延军 2016年4月28日

目录 1.碳族材料概述 1.1碳的同素异形体—石墨和金刚石1.2碳的同素异形体—富勒烯 1.3碳的同素异形体—碳纳米管 1.4碳的同素异形体—石墨烯 2.石墨烯及类似物的原子结构 2.1石墨烯及石墨烯材料的定义 2.2石墨烯的原子结构 2.3石墨烯与碳纳米管之间的关系2.4其它层状二维晶体 2.4.1氮化硼纳米片层 2.4.2二氧化钛纳米片 2.5纳米结构的石墨烯 3.石墨烯的性质及制备方法 3.1石墨烯的性质 3.2石墨烯的制备方法 4.石墨烯的表征 5.石墨烯的应用

1.碳族元素概述 1.1碳的同素异形体—石墨和金刚石 20世纪80年代以前,人们普遍认为碳有两种同素异形结构:石墨和金刚石。金刚石是闪闪发光且非常坚硬的晶体结构,有四个碳原子分别以sp3杂化(键角109度28分)形式相结合,形成三维的正四面体结构。石墨的结构完全不同于金刚石,碳原子采取sp2杂化(键角120度)形成相应的六方晶体结构。这两种材料的性质差异十分显著,例如,石墨中高度离域的π键网络结构表明,石墨比金刚石具有更高的导电率,而金刚石sp3碳原子有很强的共价键连锁网状结构,具有很高的硬度。加之,由于金刚石很宽的带隙(5.5ev),因而金刚石是一种绝缘体,而石墨是一种导体(带隙约为0.25ev)。 1.2碳的同素异形体—富勒烯 1985年,Kroto等人发现了富勒烯,在其1812种结构中,最稳定的是有12个五边形和20个六边形组成的32面体的笼状结构。一个C60分子的平均外径为1nm。由于富勒烯具有高度对称性,显示出可以在各种表面上滚动的特性,通过轮状富勒烯的转动,设计和合成的纳米车分子可直接在可控的表面上跑动。 1.3碳的同素异形体—碳纳米管 1991年,日本的电镜专家S.lijima在用石墨电弧发制备C60的过程中意外发现碳纳米管,该材料为中空结构管状物,由2—50层石墨层片卷曲而成,各层之间距离0.343nm,两端由半球形的端帽封闭。碳纳米管最有前景的应用是在场发射设备中作为电子发射器。 1.4碳的同素异形体—石墨烯 2004年,英国曼彻斯特大学的Andre Geim和konstantin Novoselov发现了石墨烯(graphene)。他们强行将石墨分离成较小的碎片,从碎片中剥离除较薄的石墨薄片,然后用一种特殊的胶带粘住薄片的两侧,撕开胶带,薄片也随之一分为二,不断重复,就可以得到越来越薄的石墨薄片,而其中部分样品仅由一层碳原子构成的新型的二维原子晶体—石墨烯。石墨烯的垩发现,充实了碳材料家族,形成了从零维的富勒烯、一维的纳米管、二维的石墨烯到三维的金刚石和石墨的完整体系。 2.石墨烯及类似物的原子结构 2.1石墨烯及石墨烯材料的定义 石墨烯仅是指排列在六方晶格中的准二维孤立碳原子层。单层石墨烯(single-layer graphene,SLG)和双层石墨烯(bilayer graphene,BLG)才是零带隙的半导体,它们各自只有一种电子和空穴。对于所谓的少层石墨烯(few-layer graphene,FLG,3-10层)而言,其导带和价带发生重叠,出现电荷载流子(charge carriers)。而更厚的石墨烯结构则被认为是石墨薄膜。 当石墨的层数少于10层时,就会表现出较普通三维石墨不同的电子结构,因此,将10层以下的石墨材料成为石墨烯材料。 2.2石墨烯的原子结构 单层石墨烯是单原子层紧密堆积的二位晶体结构,其中碳原子以六元环形状周期性排列于石墨烯平面内。每个碳原子通过*键与邻近三个原子相连,S、Px和Py三个杂化轨道形成强的共价键结合,组成SP2(120度键角)杂化结构,由于饱和烃的键角为109度28分,故120度的键角张力较小,所以赋予了石墨烯极高的力学性能。剩余的Pz轨道在与平面垂直的垩方向形成π轨道,此π电子可在石墨烯晶体平面内自由移动,而使石墨烯有良好的导电

石墨烯结构

石墨烯结构 石墨烯不仅是已知材料中最薄的一种,还非常牢固坚硬; 作为单质,它在室温下传递电子的速度比已知导体都快。 石墨烯(Graphene)是一种由碳原子构成的单层片 状结构的新材料。是一种由碳原子以sp2杂化轨道组成 六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的 二维材料[1]。石墨烯一直被认为是假设性的结构,无法单独稳定存在[1],直至2004年,英国曼彻斯特大学物理学家安德烈·海姆和康斯坦丁·诺沃肖洛夫,成功地在实验中从石墨中分离出石墨烯,而证实它可以单独存在,两人也因“在二维石墨烯材料的开创性实验”为由,共同获得2010年诺贝尔物理学奖[2]。 石墨烯目前是世上最薄却也是最坚硬的纳米材料[3] ,它几乎是完全透明的,只吸收%的光"[4];导热系数高达5300 W/m·K,高于碳纳米管和金刚石,常温下其电子迁移率*超过15000 cm2/V·s,又比纳米碳管或硅晶体*高,而电阻率只约10-6 Ω·cm,比铜或银更低,为目前世上电阻率最小的材料[1]。因为它的电阻率极低,电子迁移的速度极快,因此被期待可用来发展出更薄、导电速度更快的新一代电子元件或晶体管。由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板、甚至是太阳能电池。 石墨烯另一个特性,是能够在常温下观察到量子霍尔效应。 石墨烯的碳原子排列与石墨的单原子层雷同,是碳原子以sp2混成轨域呈蜂巢晶格(honeycomb crystal lattice)排列构成的单层二维晶体。石墨烯可想像为由碳原子和其共价键所形成的原子尺寸网。石墨烯的命名来自英文的graphite(石墨) + -ene(烯类结尾)。石墨烯被认为是平面多环芳香烃原子晶体。 石墨烯的结构非常稳定,碳碳键(carbon-carbon bond)仅为Å。石墨烯内部的碳原子之间的连接很柔韧,当施加外力于石墨烯时,碳原子面会弯曲变形,使得碳原子不必重新排

石墨烯复合材料的制备、性能与应用

石墨烯复合材料的制备、性能与应用 摘要:纳米科学技术是当今社会科学中一个重要的研究话题。它是现代科学技术的重要内容,也是未来技术的主流。是基础研究与应用探索紧密联系的新兴高尖端科学技术。石墨烯具有独特的结构和优异的电学、热学、力学等性能,自从2004年被成功制备出来,一直是全世界范围内的一个研究热点。由于石墨烯具有巨大的表面体积比和独特的高导电性等特性,石墨烯及其复合材料在电化学领域中有着诱人的应用前景,因此,石墨烯材料的制备及其在电化学领域应用的研究是石墨烯材料研究的一个重要领域。综述了石墨烯与石墨烯复合材料的制备及其在超级电容器、锂离子电池、太阳能电池、燃料电池等电化学领域中应用的研究现状,展望了石墨烯材料的制备及其在电化学领域应用的未来发展前景。 关键词;复合材料纳米材料石墨烯 正文; 一,石墨烯复合材料的制备 石墨烯是2004年才被发现的一种新型二维平面复合材料,其特殊的单原子层决定了它具有丰富而新奇的物理性质。研究表明,石墨烯具有优良的电学性质,力学性能及可加工性。 石墨烯复合材料的制备是石墨烯研究领域的一个重要的课题,如何简单,快速,绿色地制备其复合材料,而又 采用化学分散法大量制备氧化石墨烯,并采用直接共混法制备氧化石墨烯/酚醛树脂纳米复合材料。通过AFM、SEM、FT-IR、TG等对其进行表征,结果表明,氧化石墨烯完全剥离,并在基体中分散均匀,而且两者界面相容性好,提高了复合材料的热稳定性。通过高温热处理使复合材料薄膜在兼顾形貌的同时实现导电,当氧化石墨烯含量为2%(质量分数)时,其导电率为96.23S/cm。 采用原位乳液聚合和化学还原法制备了石墨烯和聚丙乙烯的复合材料。研究表明PS微球通过公家方式连接到石墨烯的表面。通过PS微球修饰后的石墨烯在氯仿中变现良好的分散性。制备的复合材料具有优良的导电性,同时PS的玻璃化温度的热稳定性得到了提高。本研究所提出的方法具有环境友好高效的特点,渴望被采用到其他聚合物和化合物来修饰石墨烯。

石墨烯简介

石墨烯简介 摘要:在碳材料中,石墨烯具有特殊的单层窝蜂状结构,由于特殊的分子结构,使得石墨烯具有优良的化学和物理性质,例如:超高的比表面积超高的比表面积(2630m2/g),导电性能(电导率106S/m),机械性能(杨氏模量有1TPa)等,在高科技领域中展现了巨大的潜力。同时,石墨烯在能源、生物技术、航天航空等领域都展现出宽广的应用前景。但是由于石墨烯片层之间存在范德华力,促使分子层之间易发生团聚,不利于石墨烯的分散,导致电阻率升高和片层厚度增加,无法大规模高质量的制备石墨烯。本文主要介绍石墨烯的结构,性质,制备方法,以及石墨烯在现阶段的应用。 关键词:石墨烯结构性质制备应用 目录 第一部分:石墨烯的结构 第二部分:石墨烯的性质 第三部分:石墨烯的制备方法 第四部分:石墨烯的应用及其前景第五部分:结语

第一部分:石墨烯的结构 严格意义上的石墨烯原子排列与单层石墨的相同,厚度仅有一个原子尺寸,即0.335nm,因此又被称为目前世界上已知的最薄的材料,每个碳原子附近有三个碳原子连接成键,碳.碳键长0.142nm,通过sp2杂化与邻近的三个碳原子成键形成正六边形,连接十分牢固,因此可是称为最坚硬的材料。然后每个正六边形在二维结构平面,不断无限延伸形成了一个巨大的平面多环芳烃[1],如图1-1所示。2007年,Meryer[2]根据自己的研究发现大多数的石墨烯片层呈现单原子厚度,同时表现出有序的结构,通过透射电镜发现,该片层并非完全平整,表现出粗糙的起伏。也正因为这种褶皱的存在,才使得二维晶体结构能够存在。 图1-1石墨烯的结构构型 第二部分:石墨烯的性质 石墨烯在力学、电学、光学、热学等方面具有优异特性。 力学特性石墨烯中,碳原子之间的连接处于非常柔韧的状态.当被施加外部机械 力时,碳原子面会弯曲变形.碳原子不必重新排列来适应外力,因此保持了结构稳定。石墨烯是人类已知强度最高的材料,比世界上强度最高的钢铁高100多倍。 电学特性石墨烯具有超高的电子迁移率,它的导电性远高于目前任何高温超导材 料。曼彻斯特大学的研究小组在室温下测量了单层石墨烯分子的电子迁移率,发现即使在含有杂质的石墨烯中,电荷的迁移率仍可达10000cm2/(v·s)。2008年,海姆研究小组又证明.电子在石墨烯中的迁移率可以达到前所未有的 200000cm2/(v·s)。不久之后,哥伦比亚大学的博洛京(K.Bolotin)将这个数值再次提高到250 000cm2/(v·s)。而目前晶体管的主要材料——单晶硅的电子迁移率只有1400cm2/(v·s),高纯度石墨烯的电子迁移率超过单晶硅150倍以上。此外,石墨烯的电子迁移率几乎不随温度变化而变化。 光学特性石墨烯几乎是完全透明的,只吸收大约2.3%的可见光,光透率高达97.7%。石墨烯层的光吸收与层数成比例.数层石墨烯(FLG)样品中的每一层都可以看做二维电子气,受临近层的扰动极小,其在光学上等效为几乎互不作用的单层石墨烯(SLG)的叠加。单层石墨烯在300~2500纳米间的吸收谱平坦,在紫

石墨烯在热领域的特性及利用

石墨烯在热领域的特性 及利用 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

一.特性机理: 在石墨烯中,碳原子在不停的振动,振动的幅度有可能超过其厚度。其中最重要的石墨烯的晶格振动,不仅仅影响石墨烯的形貌特征,还影响的石墨烯的力学性质、输运特性、热学性质和光电性质。 对石墨烯的热学性质的影响主要是由于石墨烯晶格振动。 由石墨烯的导热系数经验公式 可得如下图表 从图中看出来石墨烯的导热系数随温度的增加而减小。在同一温度下,导热系数随石墨烯的宽度的增加而增加。 由经典的热传导理论可知,随着温度的升高,晶格振动加强,声子运动剧烈,热流中的声子数目也增加。声子间的相互作用或碰撞更加频繁,原子偏离对平衡位置的振幅增大,引起的声子散射加剧,使导热载体(声子)的平均自由程减小。这是石墨烯的导热系数随温度升高而降低的主要原因。对于石墨烯,电子的运动对导热也有一定的贡献,但在高温情况下,晶格振动对石墨烯的导热贡献是主要的,起主导作用。 二.应用: 发热: 由石墨烯制成的加热膜与传统取暖方式相比, 1加热速度快(1min内达到稳定工作温度,而传统取暖如油汀需要20min才能达到稳定温度); 2电热辐射转换效率高(经第三方检测,电热辐射转换效率达80%以上),与传统取暖方式相比可节能省电; 3石墨烯加热膜是整个面加热,温度均匀分布; 4石墨烯加热膜与某些对人体有害辐射的取暖方式相比是安全的。 例子: 1制作理疗护具 石墨烯的高导电、导热性能应用在理疗护具领域,利用石墨烯在发热过程中产生的远红外线,与人体波长相同,产生共振作用,形成热反应,深入皮下组织,使毛细血管扩张,促进血液循环,强化组织新陈代谢,提高机体免疫能力,排除疲劳,缓和酸痛,从而起到消炎、镇痛的理疗保健作用。 2制作发热服 石墨烯智能发热服将石墨烯独特的导热性能和日常穿戴完美结合,为人体营造温暖舒适的感受,通过手机端app的控制可以使得发热服迅速升温,产生对人体有益的远红外线,为生活带来更好的健康理疗体验,重新定义温暖。散热: 石墨烯具有极高的热导率和热辐射系数,单层石墨烯的导热系数可达5300W/mK,不仅优于碳纳米管,更是远高于金属中导热系数最高的银、铜、金、铝等,因此石墨烯作为辅助散热的导热塑料或者膜片具有巨大的应用前景。 1石墨烯导热塑料的开发,可以为各种散热需求提供性能更加优异的新型的散热产品,例如各种电子设备(如LED 灯)的外壳散热,目前国外已经有厂家开发出了成型的导热塑料并进入市场。 例子:飞利浦MASTER LED MR16 新式灯具作为全球首例大功率LED应用,其铝制外壳已经被帝斯曼公司开发出的Stanyl TC 导热塑料所取代,其效果不仅达到了同等级的散热目的,而且整个灯具更轻,耐腐蚀。 2石墨烯制成的散热膜散热性能会大大优于石墨片,实测的热导率可达到1000W/mK以上,同时膜片具有良好的柔韧性易于加工。散热薄膜是计算机、手机制造中的关键材料 例子:苹果手机目前用的散热膜是用石墨片制成的,因此高性能的石墨烯散热薄膜是如智能手机、平板电脑等高性能、超薄电子产品的理想散热材料。

相关文档