文档库 最新最全的文档下载
当前位置:文档库 › zy第二讲 函数三要素

zy第二讲 函数三要素

zy第二讲 函数三要素
zy第二讲 函数三要素

第二讲 函数三要素

一、知识回顾:

1、映射:设非空集合A ,B ,若对集合A 中任一元素a ,在集合B 中有唯一元素b 与之对

应,则称从A 到B 的对应为映射,记为f :A→B ,f 表示对应法则,b=f(a)。

a 叫做

b 的原象,b 叫做a 的象。A 中元素在B 中必有唯一对应的象。

2、函数:设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的

任意一个数x ,在集合B 中都有惟一确定的数()x f 和它对应,那么就称

B A f →:为集合A 到集合B 的一个函数,记作:()A x x f y ∈=,.

3、函数的三要素为:定义域、对应关系、值域.

如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等.

4、函数的三种表示方法:解析法、图象法、列表法

5、函数定义域的求法:

列出使函数有意义的自变量的不等关系式,求解即可求得函数的定义域.

常涉及到的依据为:(1)分母不为0;(2)偶次根式中被开方数不小于0;(3)对数的

真数大于0,底数大于零且不等于1;(4)零指数幂的底数不等于

零;(5)实际问题要考虑实际意义等.

抽象函数的定义域要注意两点:(1)定义域就是变量x 的取值范围;

(2)()f 括号里面的范围相等。

6、函数解析式的求法:(1)配凑法、换元法;(2)待定系数法;(3)方程思想;

(4)利用函数奇偶性求解析式。

7、函数值域的求法:(1)观察分析法;(2)配方法;(3)反表示法;(4)判别式法;

(5)换元法;(6)利用函数的单调性。

8、二次函数在某个区间的最值问题——数形结合、分类讨论

二、例题讲解

例1、(1)若)

12(log 1

)(21+=x x f ,则)(x f 的定义域为 ( )

A .? ????-12,0 B.? ????-12,0 C.? ??

??-12,+∞ D .(0,+∞) (2)设x x x f -+=22lg )(,则??

? ??+??? ??=x f x f x g 22)(的定义域为 ( ) A. ()()4,00,4 - B. ()()4,11,4 -- C. ()()2,11,2 -- D. ()()4,22,4 --

例2、求分别满足下列条件的函数的解析式:

(1)x x f ln )12(

=+,求)(x f ;

(2))(x f 是二次函数,若)1(+x f 是偶函数,且1)1(=f , )()(x f x f -+的最小

值为4,求)(x f ;

(3)()1232f x f x x ??-=+ ???

,求()f x .

例3、求下列函数的值域

(1)x x x x x f 2323)(+-= (2)()2f x x =+ (3)1

1)(22+--+=x x x x x f

例4、函数)(x f 是定义在R 上的奇函数,当0>x 时,22)(x x x f -=,

(1)求)(x f 解析式;(2)若]1,2[--∈x 时,1)(-≥tx x f 恒成立,求实数t 的范围;

(3)问是否存在这样的正数b a ,,当],[b a x ∈时,)(x f 的值域为]1,1[a

b ?若存在,

求出所有的b a ,的值;若不存在,说明理由。

三、课后练习

1、设集合A 和集合B 都是自然数集合N ,映射B A f →:把集合A 中的元素n 映射到集合B 中的元素n n +2,则在映射f 下,象20的原象是 ( )

A.2

B.3

C.4

D.5

2、下列各组函数中,表示同一个函数的是 ( ) A. 21

1x y x -=-与1y x =+ B. lg y x =与2

1lg 2y x =

C. x y =与x

a a y log = D. 12-=x y 与1-=x y

3、函数11()322x y g ??

=-????的的定义域是 ( )

A .(],5-∞-

B .)(,5-∞-

C .[5,)-+∞

D . +∞(-5,)

4、下列函数中值域为()∞+,0的是 ( )

A. x y -=215

B.x y -???

??=131 C.121-???

??=x

y D. x y 21-=

5、()11x

f x x +=-,记()()()()()11,,1,2,,k k f x f x f x f f x k +=== 则()2008f x = ( )

A .11x

x +-; B .1

1x x -+; C .x ; D .1

x -;

6、若函数234y x x =--的定义域为[0,]m ,值域为25

[4]4--,,则m 的取值范围是(

A .(]4,0

B .3[3]2,

C .3[]2,4

D .3[2+∞,)

7、给定k ∈N *,设函数f :N *→N *满足:对于任意大于k 的正整数n ,f (n )=n -k .

(1)设k =1,则其中一个函数f 在n =1处的函数值为________________;

(2)设k =4,且当n ≤4时,2≤f (n )≤3,则不同的函数f 的个数为________.

8、已知实数a ≠0,函数f (x )=????? 2x +a ,x <1,-x -2a ,x ≥1, 若f (1-a )=f (1+a ),则a 的值为_______.

9、若函数()2x f 的定义域为[]1,1-,则()2log f x 的定义域为

10、若()01f =,()()(21)f x y f x y x y -=--+,则()f x =

11、若函数()2lg 43y kx kx =++的定义域为R ,则k 的取值范围是

若函数()2lg 43y kx kx =++的值域为R ,则k 的取值范围是

12、求函数的定义域:(1)

x x x y 432+--=

(2)

y =

13、求满足下列条件的函数解析式:(1)2211f x x x x ??+

=+ ??

?,求)(x f ; (2)定义在)1,1(-的函数)(x f 满足()()2lg(1)f x f x x --=+,求()f x (3)奇函数)(x f ,当0≥x 时,2)(-+=-x x e e x f ,求)(x f

14、求值域:(1)()2

2log 65y x x =-+ ;(2

)2y x =-(3)22211x y x -=+

15、已知二次函数2

()163f x x x q =-++:

⑴若函数在区间[]1,1-上存在零点,求实数q 的取值范围;

⑵问:是否存在常数(0)t t ≥,当[],10x t ∈时,()f x 的值域为区间D ,且D 的长度

为12t -。

15、已知二次函数2()163f x x x q =-++:

⑴若函数在区间[]1,1-上存在零点,求实数q 的取值范围;

⑵问:是否存在常数(0)t t ≥,当[],10x t ∈时,()f x 的值域为区间D ,且D 的长度为12t -。

解:⑴ ∵二次函数2()163f x x x q =-++的对称轴是8x =

∴函数()f x 在区间[]1,1-上单调递减

∴要函数()f x 在区间[]1,1-上存在零点须满足(1)(1)0f f -?≤

即 (1163)(1163)0q q +++?-++≤ 解得 2012q -≤≤

⑵ 当881080t t t

时,即06t ≤≤时,()f x 的值域为:[](8),()f f t ,

即 261,163q t t q ??--++??

∴22163(61)166412t t q q t t t -++--=-+=- ∴215520t t -+=

∴t =

t = 当881080t t t

时,即68t ≤<时,()f x 的值域为:[](8),(10)f f ,即 []61,57q q -- ∴57(61)412q q t ---==- ∴8t =经检验8t =不合题意,舍去。

当8t ≥时,()f x 的值域为:[](),(10)f t f ,即 2163,57

t t q q ??-++-?? ∴22

57(163)166012q t t q t t t ---++=-+-=-

∴217720t t -+= ∴8t =或9t = 经检验8t =或9t =满足题意,所以存在常数(0)t t ≥,当[],10x t ∈时,()f x 的值域为区间D ,且D 的长度为12t -。

函数的表示法知识点

函数的表示法 1.函数的三种表示法: 图象法、列表法、解析法 2.分段函数:在自变量的不同变化范围中,对应法则用不同式子来表示的函数称为分段函数。 3.映射:一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射。记作“f :A →B ” 给定一个集合A 到B 的映射,如果a ∈A,b ∈B.且元素a 和元素b 对应,那么,我们把元素b 叫做元素a 的象,b=f (a ),元素a 叫做元素b 的原象. 说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合A 、B 及对应法则f 是确定的;②对应法则有“方向性”,即强调从集合A 到集合B 的对应,它与从B 到A 的对应关系一般是不同的;③对于映射f :A →B 来说,则应满足:(Ⅰ)集合A 中的每一个元素,在集合B 中都有象,并且象是唯一的;(Ⅱ)集合A 中不同的元素,在集合B 中对应的象可以是同一个;(Ⅲ)不要求集合B 中的每一个元素在集合A 中都有原象。 注意:(1)函数一定是映射,映射不一定是函数;(2)函数三要素:定义域、值域、对应法则;(3)B 中的元素未必有原象,即使有原象,也未必唯一;(4)原象集合=定义域,值域=象集合. 4.常用的函数表示法及各自的优点:函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;2 解析法:必须注明函数的定义域;3 图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;4 列表法:选取的自变量要有代表性,应能反映定义域的特征. 注意:解析法:便于算出函数值。列表法:便于查出函数值。图象法:便于量出函数值 5.分段函数:在定义域的不同部分上有不同的解析表达式的函数。在不同的范围里求函数值时必须把自变量代入相应的表达式。分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.(1)分段函数是一个函数,不要把它误认为是几个函数; (2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集. 6.复合函数:如果y 是u 的函数,u 又是x 的函数,即y=f (u ),u=g (x ),那么y 关于x 的函数y=f (g (x ))叫做函数y=f (u )(外函数)和u=g (x )(内函数)的复合函数,其中u 是中间变量,自变量为x 函数值为y.例如:函数212x y += 是由y=2u

2021新高考一轮复习专题2.1 函数概念及三要素(解析版)

第一讲 函数的概念及三要素 1.函数与映射 函数 映射 两个集合A ,B 设A ,B 是两个非空数集 设A ,B 是两个非空集合 对应法则f :A →B 如果按某种对应法则f ,使对于集合A 中的每一个元素x ,在集合B 中都有唯一的元素y 和它对应 如果按某种对应法则f ,使对于集合A 中的每一个元素x ,在集合B 中都有唯一的元素 y 与之对应 名称 称y =f (x ),x ∈A 为从集合A 到集合B 的一个函数 称f :A →B 为从集合A 到集合B 的一个映射 记法 函数y =f (x ),x ∈A 映射:f :A →B 2.函数的有关概念 (1)函数的定义域、值域 在函数y =f (x ),x ∈A 中,x 叫做自变量,所有的输入值x 组成的集合A 叫做函数y =f (x )的定义域;对于 A 中的每一个x ,都有一个输出值y 与之对应.我们将所有输出值y 组成的集合称为函数的值域. (2)函数的三要素:定义域、对应法则和值域. (3)函数的表示法 表示函数的常用方法有解析法、图象法和列表法. 3.分段函数 若函数在其定义域的不同子集上,因对应法则不同而分别用几个不同的式子来表示,这种函数称为分段函数. 分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数. 考向一 函数、映射的判断 【例1】(1)若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( ) 【修炼套路】---为君聊赋《今日诗》,努力请从今日始 【套路秘籍】---千里之行始于足下

学年高中数学必修一122函数的表示法

1.2.2函数的表示法 班级:__________姓名:__________设计人__________日期__________ 课后练习 【基础过关】 1.已知是反比例函数,当时,,则的函数关系式为 A. B. C. D. 2.已知函数若,则的取值范围是 A. B. C. D. 3.已知函数f(x)=,则函数f(x)的图象是( ) A. B. C. D. 4.已知则 v C. D. 5.已知函数,且,则 . 6.已知函数f(x)对于任意实数x满足条件f(x+2)=,若f(1)=-5,则f [f(5)]= .

【解析】由已知条件f(x+2)=可得f(x+4)==f(x),所以 f(5)=f(1)=-5,所以f [f(5)]=f(-5)=f(-1)===- 7.已知,为常数,且,,,方程有两个相等的实数根.求函数的解析式. 8.如图,是边长为2的正三角形,记位于直线左侧的 图形的面积为,试求函数的解析式. 【能力提升】 下图是一个电子元件在处理数据时的流程图: (1)试确定y与x的函数关系式; (2)求f(-3), f(1)的值; (3)若f(x)=16,求x的值.

答案 【基础过关】 1.C 【解析】根据题意可设(k≠0), ∵当x=2时,y=1,∴,∴k=2. 2.D 【解析】若x∈[-1,1],则有f(x)=2?[-1,1],∴f(2)=2;若x?[-1,1],则f(x)=x?[-1,1], ∴f[f(x)]=x,此时若f[f(x)]=2,则有x=2. 【备注】误区警示:本题易将x?[-1,1]的情况漏掉而错选B. 3.A 【解析】当x=-1时,y=0,即图象过点(-1,0),D错;当x=0时,y=1,即图象过点(0,1),C错;当x=1时,y=2,即图象过点(1,2),B错.故选A. 4.C 【解析】∵, ∴. 【备注】无 5. 【解析】, ∴,∴,

函数概念及其基本性质

第二章函数概念与基本初等函数I 一. 课标要求: 函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,从而发展学生对变量数学的认识。教材把指数函数,对数函数,幂函数当作三种重要的函数模型来学习,强调通过实例和图象的直观,揭示这三种函数模型增长的差异及其关系,体会建立和研究一个函数模型的基本过程和方法,学会运用具体函数模型解决一些实际问题. 1.会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成 的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域, 2. 了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象. 3.通过具体实例,了解简单的分段函数,并能简单应用. 4. 结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形. 5. 学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法. 6.理解有理数指数幂的意义,通过具体实例了解实数指数幂的意义,掌握幂的运算. 7.了解指数函数模型的实际背景.理解指数函数的概念和意义,掌握f(x)=a x的符号、意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的有关性质(单调性、值域、特别点). 8.理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用.通过具体函数,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,掌握f(x)=log a x符号及意义,体会对数函数是一类重要的函数模型,能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的有关性质(单调性、值域、特殊点). 9.知道指数函数y=a x与对数函数y=log a x互为反函数(a>0, a≠1),初步了解反函数的概念和f- -1(x)的意义. 10.通过实例,了解幂函数的概念,结合五种具体函数 1 312 ,,, y x y x y x y x - ====的 图象,了解它们的变化情况 11.通过应用实例的教学,体会指数函数是一种重要的函数模型. 12. 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例. 二. 编写意图与教学建议 1.教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学. 2..教材对函数的三要素着重从函数的实质上要求理解,而对定义域、值域的繁难计算,特别是人为的过于技巧化的训练不做提倡,要准确把握这方面的要求,防止拨高教学. 3. 函数的表示是本章的主要内容之一,教材重视采用不同的表示法(列表法、图象法、分析法),目的是丰富学生对函数的认识,帮助理解抽象的函数概念. 在教学中,既要充分发挥图象的直观作用,又要适当地引导学生从代数的角度研究图象,使学生深刻体会数形结合这一重要数学方法.

函数的概念,函数的表示法教案练习答案

姓名 年级 性别 教学课题 函数及其表示 教学 目标 1.函数的基本概念,定义域,值域,区间的概念 2.函数的表示方法 3.映射的概念 重点 难点 重点:函数的基本概念,定义域,值域,映射 难点:对函数,映射定义的的理解 课前检查 作业完成情况:优□ 良□ 中□ 差□ 建议 _______________________________ 第 1次课 1.2.1函数的概念 一.知识点梳理 1.函数的概念: 设A 、B 是两个非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数 记作: y=f(x),x ∈A . 其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域(domain );与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域。 注意: ○ 1 “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”“y=h(x)”等; ○ 2 函数符号“y=f(x)”中的f(x)表示与x 对应的函数值,一个数,而不是f 乘x . 2.构成函数的三要素: 定义域、对应关系和值域 3.区间的概念 a.区间的分类: (1)开区间,如110x <<,a x b <<,用区间分别表示为:(1,10),(a,b ) (2)闭区间,如12x -≤≤,a x b ≤≤,用区间分别表示为:[1,2]-,[,]a b (3)半开半闭区间,如21x -<≤,a x b ≤<,用区间分别表示为:](2,1-,[,)a b (4)无穷区间;如1,2,,x a x a x b ><-≤≥,依次用区间表示为][(1,),(,2),(,,,)a b +∞-∞--∞+∞,还

函数三要素教案

(一)教学目标 1.知识与技能 (1)了解函数三要素的含义,掌握根据函数的三要素判定两个函数是否为同一个函数的方法. (2)会求简单函数的定义域和函数值. 2.过程与方法 通过示例分析,让学生掌握求函数定义域的基本题型及方法,进一步加深对函数概念的理解.通过求出函数的函数值,加深对应法则的认识. 3.情感、态度与价值观 通过动手实践研究数学问题,提高分析问题,解决问题能力;体会成功地解答数学问题的学习乐趣,培养钻研精神. (二)教学重点与难点 重点:掌握函数定义域的题型及求法. 难点:理解函数由定义域与对应法则确定函数这一基本原则.

二、授课内容: 【知识要点】 ⑴定义域———自变量x 的取值范围 函数三要素 ⑵值 域———函数值的集合 ⑶对应法则——自变量x 到对应函数值y 的对应规则 注意:①核心是对应法则;②值域是由定义域与对应法则所确定了的,故确定一个函数只需确定其定义域、对应法则则即可;③如何判断“两个”函数为同一函数;④函数()12-= x x f 的对应法则f :x (平方再 减1整体再开平方)y 。而在此基础上的函数()1+=x f y ,其自变量为式中的x 而不是1+x ,其对应法则x (加1再取f 运算)y ,即x (加1整体平方再整体减1再整体开方)y ,故此时()1)1(12-+=+x x f 。 【典型例题】 1.函数定义域求法 ⑴已知函数的解析式求定义域时需要注意: ①()x f 是整式,则定义域为R ; ②()x f 是分式,则令分母不为0的值为定义域; ③()x f 是偶次根式,则函数定义域为使被开方式为非负数的自变量集合; ④若()x f 由几个部分式子构成,则定义域是使几个部分式子都有意义的值的集合; ⑤函数[]2 )(x f y =的定义域()x f 0≠; ⑥对数函数()x f y a log =(0>a ,且1≠a )的定义域要求()x f >0; ⑵求函数()[]x g f 的定义域,()x g 相当于()x f 中的x 。 ⑶当函数由实际问题给出时,还应考虑实际意义。 例1:求下列函数的定义域 ①()0 2 )1(4--= x x x f ; ②()1 21 12 2+-+ ++=x x x x x f ; ③()x x f 11111++ = 042 ≥-x 22≤≤-x 解析:①由 ? ∴函数定义域为[)(]2,11,2?- 01≠-x 1≠x 012 ≥++x x (Ⅰ) ② 12 ++x x 的判别式0

函数学生版

函数 1、回顾初中有关函数的概念:在一个变化过程中,有两个变量x 和y ,如果给定了一个x 值,相应地就确定唯一的一个y 值,那么我们称y 是x 的 函数. (1)变量:因变量,自变量 在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。 (2)一次函数:①若两个变量y ,x 间的关系式可以表示成y kx b =+(b 为常数,k 不等于0)的形式,则称y 是x 的一次函数。②当b =0时,称y 是x 的正比例函数。 (3)一次函数的图象及性质 ①把一个函数的自变量x 与对应的因变量y 的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。 ②正比例函数y =k x 的图象是经过原点的一条直线。 ③在一次函数中,当k <0, b 0时,则经1、2、4象限;当k >0, b <0时,则经1、3、4象限;当k >0, b >0时,则经1、2、3象限。 ④当k >0时,y 的值随x 值的增大而增大,当k <0时,y 的值随x 值的增大而减少。 (4)二次函数: ①一般式:22 24()24b ac b y ax bx c a x a a -=++=++(0a ≠),对称轴是,2b x a =- 顶点是 2 4,)24b ac b a a -(-; ②顶点式:2 ()y a x m k =++(0a ≠),对称轴是,x m =-顶点是(),m k -; ③交点式:12()()y a x x x x =--(0a ≠),其中(1,0x ),(2,0x )是抛物线与x 轴的交点

2函数三要素-讲义版

函数的三要素 【知识点】 一、函数的定义域 (1)研究一个函数一定在其定义域内研究,所以求定义域是研究任何函数的前提,要树立定义域优先的原则. (2)函数的定义域常由其实际背景决定,若只给解析式时,定义域就是使此式子有意义的实数x 的集合(区间表示). 常见定义域的求法: 常见定义域求法:对于()x f y =而言: ①整式:实数集R ; ②分式:使分母不等于0的实数的集合; [1 (0)x x ≠] ③0指数幂:底数不等于零; [0 (0)x x ≠] ④偶次根式:使根号内的式子大于或等于0的实数的集合; [2(0)n x x ≥] ⑤对数:真数大于零; [log (0)a x x >] ⑥由几个部分的式子构成:使各部分式子都有意义的实数的集合(即各集合的交集); 实际问题:使实际问题有意义的实数的集合. 二、函数的值域 对于)(x f y =,x A ∈,与x 的值相对应的y 的值叫做函数值,函数值的集合{}A x x f ∈|)(叫做函数)(x f y =的值域. 三、解析式 (1)当已知函数的类型时,可用待定系数法求解; (2)当已知表达式为()[]x g f 时,可考虑配凑法或换元法.若易将含x 的式子配成()x g ,用配凑法;若易换元后求出x ,用换元法; (3)若求抽象函数的解析式,通常采用方程组法; (4)求分段函数的解析式时,要注意符合变量的要求. 课程类型: 1对1课程 ? Mini 课程 ? MVP 课程

【课堂演练】 题型一 函数定义域 例1 求下列函数的定义域: (1)1()2 f x x =- (2)0()32(2)f x x x = +- (3)1 ()1 2f x x x =+- 练1 求下列函数的定义域: (1)83y x x =+- (2)22 111 x x y x --= - (3)()3||f x x =- 练2 函数0()(12)13 g x x x x = --的定义域为 . 例2 函数3()1log (63)f x x x = +-的定义域为( ) A .(,2)-∞ B .(2,)+∞ C .[1,2)- D .[1,2]- 练3 函数()3lg(1)f x x x =-+的定义域为( ) A .[1,3)- B .(1,3)- C .(1,3]- D .[1,3] - 练4 函数1 ()ln(31) = +f x x 的定义域是( ) A .1 (,)3- +∞ B .1 (,0)(0,)3- +∞U C .1 [,)3- +∞ D .[0,) +∞ 题型二 函数值域 ? 一次分式值域 例3 求432+-=x y 在?? ? ???-∈1,32x 上的值域.

《管理运筹学》第二课后习题答案

《管理运筹学》(第二版)课后习题参考答案 第1章 线性规划(复习思考题) 1.什么是线性规划?线性规划的三要素是什么? 答:线性规划(Linear Programming ,LP )是运筹学中最成熟的一个分支,并且是应用最广泛的一个运筹学分支。线性规划属于规划论中的静态规划,是一种重要的优化工具,能够解决有限资源的最佳分配问题。 建立线性规划问题要具备三要素:决策变量、约束条件、目标函数。决策变量是决策问题待定的量值,取值一般为非负;约束条件是指决策变量取值时受到的各种资源条件的限制,保障决策方案的可行性;目标函数是决策者希望实现的目标,为决策变量的线性函数表达式,有的目标要实现极大值,有的则要求极小值。 2.求解线性规划问题时可能出现几种结果,哪种结果说明建模时有错误? 答:(1)唯一最优解:只有一个最优点; (2)多重最优解:无穷多个最优解; (3)无界解:可行域无界,目标值无限增大; (4)没有可行解:线性规划问题的可行域是空集。 当无界解和没有可行解时,可能是建模时有错。 3.什么是线性规划的标准型?松弛变量和剩余变量的管理含义是什么? 答:线性规划的标准型是:目标函数极大化,约束条件为等式,右端常数项0≥i b ,决策变量满足非负性。 如果加入的这个非负变量取值为非零的话,则说明该约束限定没有约束力,对企业来说不是紧缺资源,所以称为松弛变量;剩余变量取值为非零的话,则说明“≥”型约束的左边取值大于右边规划值,出现剩余量。 4.试述线性规划问题的可行解、基础解、基可行解、最优解的概念及其相互关系。 答:可行解:满足约束条件0≥=X b AX ,的解,称为可行解。 基可行解:满足非负性约束的基解,称为基可行解。 可行基:对应于基可行解的基,称为可行基。 最优解:使目标函数最优的可行解,称为最优解。 最优基:最优解对应的基矩阵,称为最优基。 它们的相互关系如右图所示: 5.用表格单纯形法求解如下线性规划。

§122函数的表示法

1.2.2函数的表示法 教学目的:(1)明确函数的三种表示方法; (2)在实际情境中,会根据不同的需要选择恰当的方法表示函数; (3)通过具体实例,了解简单的分段函数,并能简单应用; (4)纠正认为“y=f(x)”就是函数的解析式的片面错误认识. 教学重点:函数的三种表示方法,分段函数的概念. 教学难点:根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象.教学过程: 一、引入课题 1.复习:函数的概念; 2.常用的函数表示法及各自的优点: (1)解析法;(2)图象法;(3)列表法. 二、新课教学 (一)典型例题 例1.某种笔记本的单价是5元,买x (x∈{1,2,3,4,5})个笔记本需要y元.试用三种表示法表示函数y=f(x) . 分析:注意本例的设问,此处“y=f(x)”有三种含义,它可以是解析表达式,可以是图象,也可以是对应值表. 解:(略) 注意: ○1函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据; ○2解析法:必须注明函数的定义域; ○3图象法:是否连线; ○4列表法:选取的自变量要有代表性,应能反映定义域的特征. 巩固练习:课本P27练习第1题 例2.下表是某校高一(1)班三位同学在高一学年度几次数学测试的成绩及班级及班级平均分表: 第一次第二次第三次第四次第五次第六次 王伟98 87 91 92 88 95 张城90 76 88 75 86 80 赵磊68 65 73 72 75 82 班平均分88.2 78.3 85.4 80.3 75.7 82.6 请你对这三们同学在高一学年度的数学学习情况做一个分析. 分析:本例应引导学生分析题目要求,做学情分析,具体要分析什么?怎么分析?借助什么工具? 解:(略) 注意: ○1本例为了研究学生的学习情况,将离散的点用虚线连接,这样更便于研究成绩的变化特点; ○2本例能否用解析法?为什么? 巩固练习: 课本P27练习第2题 例3.画出函数y = | x | . 解:(略) 巩固练习:课本P27练习第3题 拓展练习:任意画一个函数y=f(x)的图象,然后作出y=|f(x)| 和y=f (|x|) 的图象,并尝试简要说明三者(图象)之间的关系. 课本P27练习第3题 例4.某市郊空调公共汽车的票价按下列规则制定: (1)乘坐汽车5公里以内,票价2元; (2)5公里以上,每增加5公里,票价增加1元(不足5公里按5公里计算). 已知两个相邻的公共汽车站间相距约为1公里,如果沿途(包括起点站和终点站)设20个汽车站,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象. 分析:本例是一个实际问题,有具体的实际意义.根据实际情况公共汽车到站才能停车,所以行车里

函数的概念练习题

函数的概念练习题 一、填空题 1、函数的 、 、 统称函数的三要素 2、下列几组函数相等的是 。 ①11 12+=--=x y x x y 与②1112+?-=-=x x y x y 与 ③x x y x y +?-=-=1112与④x y x y ==与2⑤x y x y ==与2)( 3、若函数,1)(2+-=x x x f 则=)1(f ,=--+)1()1(n f n f 。 4、函数)(x f y =与a x =的交点个数为 。 5、函数2233x x x x y -+-= 的定义域为 ,函数24x y -=的定义域 为 。 6、函数)3,1[,12)(2-∈+-=x x x x f ,则函数=+)2(x f 。 7、函数)(x f 的定义域为)3,2[-,则)()()(x f x f x g -+=的定义域为 。 8、函数1)(22+=x x x f ,则=)2 1()2(f f 。 二、解答题 9、下列对应那些能称为函数?并说明理由。 (1)R x x x ∈→,1,(2),y x →这里R y R x x y ∈∈±=+,, (3),y x →这里R y R x x y ∈∈= +,,(4),.12R x x x ∈+→ 10、求下列函数的定义域 (1)3 21)(-=x x f (2)22)(x x x f -=

(3)2232)(2 ++--=x x x x f 11、求下列函数的值域。 (1)]3,0[,32)(2∈--=x x x x f (2)),0[,113)(+∞∈+-=x x x x f (3)123 2)(22+-+-=x x x x x f ( 4)x x y 21-+= 12、

函数的三要素学生版

一、函数与映射的基本概念判断 1. 设:f M N →是集合M 到N 的映射,下列说法正确的是 A 、M 中每一个元素在N 中必有象 B 、N 中每一个元素在M 中必有原象 C 、N 中每一个元素在M 中的原象是唯一的 D 、N 是M 中所在元素的象的集合 2. 设集合{1,0,1},{1,2,3,4,5}M N =-=,映射:f M N →满足条件“对任意的x M ∈, ()x f x +是奇数” ,这样的映射f 有____个 3. 设2:x x f →是集合A 到集合B 的映射,若B={1,2},则B A 一定是_____ 4. 若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“值同函数”,那么解析式为2y x =,值域为{4,1}的“值同函数”共有______个 5. 以下各组函数表示同一函数是________________ (1)f (x )=2x ,g (x )=33x ; (2)f (x )=x x ||,g (x )=? ??<-≥;01,01x x (3)f (x )=x 1+x ,g (x )=x x +2; (4)f (x )=x 2-2x -1,g (t )=t 2-2t -1。 二、函数的定义域 1.求下列函数的定义域 (1)2161x x y -+= ;(2 )34x y x +=- 2.(1) 已知)(x f 的定义域为]30(,,求)2(2x x f +定义域。 (2)若函数()x f 23-的定义域为[]2,1-,求函数()x f 的定义域 (3)已知)1(+x f 的定义域为)32[,-,求 2f x y -的定义域。 3. 求函数()f x = 4. 若函数()f x = 3 442++-mx mx x 的定义域为R ,则实数m 的取值范围是 ( )

函数 答案详解

1.1 函数 一、求下列函数的自然定义域: 分析:函数的定义域是使函数有意义的自变量的取值范围(集合),对于一般初等函数,定义域为R ,以下几种类型除外:①“ 1?”:0?≠;② n 为正偶数)”:0?≥; ③“log a ?”:0?>;④“arcsin ,arccos ??”:11-≤?≤ 1 .1ln(3) y x =- 解:23023ln(3)0x x x x ≥??->?<

1 .2()()f x x,g x == 解:不同,因为定义域不同,()f x 的定义域为R ,()g x 的定义域为[0,)+∞ 2.22()sec ()tan 1f x x,g x x ==+ 解:相同,因为定义域和对应法则都相同 (注:1sec cos x x =为正割函数,1csc sin x x =为余割函数,有如下常用的三角恒等式 2222sec 1tan ,csc 1cot x x x x =+=+,请同学们牢记!) 四、判断下列函数奇偶性: 分析:若定义域关于原点对称,则判断奇偶性,主要看()f x -与()f x 的关系,有时需变形后再作比较 1.()1(0,1)1 x x a f x x a a a -=?>≠+ 解:11()()11x x x x a a f x x x f x a a -----=-?=-=++,故()f x 为偶函数 2.( )(ln f x x = 解:()ln(f x x -=-+= ()f x ==-,故()f x 为奇函数 3. 设函数为奇函数,为偶函数,判断的奇偶性. 解:[()][()]f g x f g x -=(因为()g x 为偶函数),故[()]f g x 为偶函数 五、已知,,求及其定义域. 解:由题意,2()ln(1)[()]12()ln(1)()2 x x f x e x x x x ????-==-?=-?= 其定义域为(,1)-∞ 六、设42 1)1(x x x x f +=-,求)(x f . 分析:将复合函数的表达式写成“1x x -”的函数形式,再用换元法 ()f x ()g x [()]f g x 2()x f x e =[()]1f x x ?=-()x ?

函数概念及三要素

函数概念及三要素 1.函数的概念: 设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的 任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数(function ). 记作: y=f(x),x ∈A . 其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域(domain );与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域(range ). 2.分段函数:在定义域内不同的区间上有不同的 。注:分段函数是 个函数,而不是多个函数。 3.复合函数:若(),(),(,)y f u u g x x m n ==∈,那么[]()y f g x =称为复合函数,u 称为中间变量,它的取值范围是()g x 的值域。 方法一:函数定义域的求法 关注:分母、根号、指对数底数对数真数、tan 、零次方的底数 例题:)35lg(lg x x y -+= 的定义域为_______ 方法二:求函数解析式的常用方法 1、配凑法 2、待定系数法 3、换元法 4、解方程组法 例1、已知2(1)23f x x x -=--,则()f x = 。

例2、已知2 (31)965f x x x +=-+,则()f x = 。 例3、已知()f x 是一次函数,且(1)(1)23f x f x x +--=+,则()f x = 。 例4、已知()2()32f x f x x +-=-,则()f x = 。 例5、已知()f x 是奇函数,()g x 是偶函数,并且()()1f x g x x +=+,则()g x = 。 方法三:分段函数 分段函数在其定义域的不同子集上,因对应关系不同,而分别用几个不同的式子来表示,这种函数就称之为分段函数.分段函数虽然有几个部分组成,但它表示的是一个函数.近几年高考考察的频率较高. 1.函数 22, 0,()log , 0.x x f x x x ?=?>?≤则1()4f =____;方程1()2f x -=的解是____. 2. 已知函数11,02()ln ,2 x f x x x x ?+<≤?=??>?,如果关于x 的方程()f x k =有两个不同的实根,那么实数k 的取 值范围是( ) (A ) (1,)+∞ (B )3[,)2+∞ (C )32[,)e +∞ (D )[ln 2,)+∞

最新函数三要素经典习题(含答案)

函数的三要素练习题 (一)定义域 1 、函数()f x = ) A 、[2,2]- B 、(2,2)- C 、(,2)(2,)-∞-+∞ D 、{2,2}- 2 _ _ _; 定义域为________; [1,1]-; [4,9] 3、若函数(1)f x + (21)f x -的定义域是 ;函数 1(2)f x +的定义域为 。1][,)2 +∞ 4、知函数()f x 的定义域为[]1,1-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。11m -≤≤ 5、求下列函数的定义域 (1)2|1|)43(43 2-+--=x x x y 解:(1)???-≠≠?≠-+≥-≤?≥--3 102|1|410432x x x x x x x 且或 ∴x ≥4或x ≤-1且x ≠-3,即函数的定义域为 (-∞,-3 )∪(-3,-1)∪[4,+∞] (2)y = {|0}x x ≥ (3)0 1(21)1 11y x x = +-++(二)解析式 1. 设X={x|0≤x ≤2},Y={y|0≤y ≤1},则从X 到Y 可建立映射的对应法则是( ) (A )x y 32= (B )2)2(-=x y (C )24 1x y = (D )1-=x y 2. 设),(y x 在映射f 下的象是)2 ,2(y x y x -+,则)14,6(--在f 下的原象是( ) (A ))4,10(- (B ))7,3(-- (C ))4,6(-- (D ))2 7,23(-- 3. 下列各组函数中表示同一函数的是 (A )x x f =)(与2)()(x x g = (B )||)(x x x f =与?????-=22)(x x x g )0()0(<>x x (C )||)(x x f =与33 )(x x g = (D )1 1)(2--=x x x f 与)1(1)(≠+=t t x g 4. 已知函数y f x =+()1定义域是[]-23,,则y f x =-()21的定义域是( )

人教A版高一数学函数的概念知识点总结与例题讲解

函数的概念知识点总结 本节主要知识点 (1)函数的概念. (2)函数的三要素与函数相等. (3)区间的概念及其表示. 知识点一 函数的概念 初中学习的函数的传统定义 一般地,如果在一个变化过程中,有两个变量x 和y ,对于x 的每一个值,y 都有唯一的值与之对应,我们就说x 是自变量,y 是因变量,此时也称y 是x 的函数. 函数的近代定义 设A , B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()x f 和它对应,那么就称f :B A →为从集合A 到集合B 的一个函数,记作 )(x f y =,A x ∈. 其中,x 叫作自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫作函数值,函数值的集合{}A x x f y y ∈=),(叫做函数的值域.显然,值域是集合B 的子集. 对函数的近代定义的理解 (1)只有两个非空的数集之间才可能建立函数关系.定义域或值域为空集的函数是不存在的. 如x x y --= 11就不是函数. (2)注意函数定义中的“三性”:任意性、存在性和唯一性. 任意性:集合A 中的任意一个元素x 都要考虑到. 存在性:集合A 中的任意一个元素x ,在集合B 中都存在对应元素y . 唯一性:在集合B 中,与每一个元素x 对应的元素y 是唯一的.

(3)集合B 不一定是函数的值域,值域是集合B 的子集. 在集合B 中,可以存在元素在集合A 中没有与之对应者. 例1. 讨论二次函数的定义域和值域. 解:二次函数的一般式为()02≠++=a c bx ax y ,为整式函数,所以其定义域为R ,其值域的确定分为两种情况: ①当0>a 时,函数的值域为?????? -≥a b ac y y 442; ②当0

(完整版)2高中数学函数解题技巧方法总结

高中数学函数知识点总结 1. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域) 相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备) 2. 求函数的定义域有哪些常见类型? ()() 例:函数的定义域是y x x x = --432 lg ()()()(答: ,,,)022334Y Y 函数定义域求法: ● 分式中的分母不为零; ● 偶次方根下的数(或式)大于或等于零; ● 指数式的底数大于零且不等于一; 对数式的底数大于零且不等于一,真数大于零。 ● 正切函数 x y tan = ??? ??∈+≠∈Z ππk k x R x ,2,且 ● 余切函数 x y cot = ()Z π∈≠∈k k x R x ,,且 ● 反三角函数的定义域 函数y =arcsinx 的定义域是 [-1, 1] ,值域是,函数y =arccosx 的定义域是 [-1, 1] ,值域是 [0, π] ,函数y =arctgx 的定义域是 R ,值域是.,函数y =arcctgx 的定义域是 R ,值域是 (0, π) . 当以上几个方面有两个或两个以上同时出现时,先分别求出满足每一个条件的自变量的范围,再取他们的交集,就得到函数的定义域。 3. 如何求复合函数的定义域? []的定,则函数,,的定义域是如:函数)()()(0)(x f x f x F a b b a x f -+=>-> 义域是_____________。 [](答:,)a a - 复合函数定义域的求法:已知)(x f y =的定义域为[]n m ,,求[])(x g f y =的定义域,可由n x g m ≤≤)(解 出x 的范围,即为 [])(x g f y =的定义域。 例 若函数 )(x f y =的定义域为?? ? ???2,21,则)(log 2x f 的定义域为 。 分析:由函数 )(x f y =的定义域为?? ? ???2,21可知:221≤≤x ; 所以)(log 2x f y =中有2log 212≤≤x 。

函数概念及其三要素

函数概念及其相关概念(2课时) 考点一:由函数的概念判断是否构成函数 函数概念:设A 、B 是非空的数集,如果按照某种确定的关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数。 例1. 下列从集合A 到集合B 的对应关系中,能确定y 是x 的函数的是( ) ① A={x x ∈Z},B={y y ∈Z},对应法则f :x →y= 3 x ; ② A={x x>0,x ∈R}, B={y y ∈R},对应法则f :x →2 y =3x; ③ A=R,B=R, 对应法则f :x →y=2 x ; 变式1. 下列图像中,是函数图像的是( ) ① ② ③ ④ 变式2. 下列式子能确定y 是x 的函数的有( ) ①2 2 x y +=2 ②111x y -+ -= ③y=21x x -+- A 、0个 B 、1个 C 、2个 D 、3个 变式3. 已知函数y=f (x ),则对于直线x=a (a 为常数),以下说法正确的是( ) A. y=f (x )图像与直线x=a 必有一个交点 B. y=f (x )图像与直线x=a 没有交点 C. y=f (x )图像与直线x=a 最少有一个交点 D. y=f (x )图像与直线x=a 最多有一个交点 考点二:同一函数的判定 函数的三要素:定义域、对应关系、值域。 如果两个函数的定义域相同,并且对应关系完全一致,我们就称这两个函数相等。 例2. 下列哪个函数与y=x 相同( ) A. y=x B. 2 y x = C. () 2 y x = D.y=t 变式1.下列函数中哪个与函数3 2y x =-相同( ) A. 2y x x =- B. 2y x x =-- C. 3 2y x x =-- D. 2 2y x x -= 变式2. 下列各组函数表示相等函数的是( ) O O O O X X X X y y y y

§122函数的表示法(一).docx

§1.2.2函数的表示法(一) 我们学习了函数的概念及其三耍素,它们初?指的各是什么呢?复习巩固,推陈出新 一、函数的基本概念及其三要素 1.函数的概念 设A、B是非空数集,如果按照某种确定的对应关系f,使对于集合A屮的任意一个数x,在集合B中都有惟一确定的数f (x)和它对应,那么称f: A T B为从集合A到集合B的一个函数,记作:y=f (x), xwA? 2.函数的三要素是什么? 定义域、值域和对应法则是函数的三要素. 今天我们继续研究函数的表示方法. 二、函数的表示法 初屮函数的三种表示方法有哪些?各有什么优点? 函数的表示方法有三种 1.解析法:用数字表达式表示两个变量之I'可的对应关系. 优点:简明,给出自变量x可求出函数值. 2.图像法:用图像表示两个变量之间的对应关系 优点:直观形象,反映变化趋势. 3.列表法:列出表格来表示两个变量之间的对应关系 优点:不需计算,就可看出函数值.注意:①区间是集合; 练习下列三个实例表示的函数各是运用了什么表示方法? (1)一枚炮弹发射后,经过26s落到地面击中目 标.炮弹的射高为845m,且炮弹距 ? ? 地血的高度h(单位:m)随吋间t(单位:s)变 化的规律是:h=130t-5t2. (*) 第一张幻灯片 第二张幻灯片 张幻灯片

(2)近几十年来,大气层中的臭氧迅 速减少,因而出现了臭氧层空洞问题.图 中的曲线显示了南极上空臭氧层空洞的 面积从1979?2001年的变化情况. 19791981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 南极臭氧层空洞的面枳第三张 幻灯片 3026252015105 .UJ23US

相关文档
相关文档 最新文档