文档库 最新最全的文档下载
当前位置:文档库 › Generalized Interference Alignment—Part II Application to Wireless Secrecy

Generalized Interference Alignment—Part II Application to Wireless Secrecy

Generalized Interference Alignment—Part II Application to Wireless Secrecy
Generalized Interference Alignment—Part II Application to Wireless Secrecy

Generalized Interference Alignment—Part II: Application to Wireless Secrecy Liangzhong Ruan,Member,IEEE,Vincent https://www.wendangku.net/doc/aa5559868.html,u,Fellow,IEEE,and Moe Z.Win,Fellow,IEEE

Abstract—In contrast to its wired counterpart,wireless commu-nication is highly susceptible to eavesdropping due to the broadcast nature of the wireless propagation medium.Recent works have proposed the use of interference to reduce eavesdropping capabil-ities in wireless wiretap networks.However,the concurrent effect of interference on both eavesdropping receivers(ERs)and legiti-mate receivers has not been thoroughly investigated,and careful engineering of the network interference is required to harness the full potential of interference for wireless secrecy.This two-part ar-ticle addresses this issue by proposing a generalized interference alignment(GIA)technique,which jointly designs the transceivers at the legitimate partners to impede the ERs without interfering with LRs.In Part I,we have established a theoretical framework for the GIA technique.In Part II,we will?rst propose an ef?-cient GIA algorithm that is applicable to large-scale networks and then evaluate the performance of this algorithm in stochastic wire-less wiretap network via both analysis and simulation.These re-sults reveal insights into when and how GIA contributes to wireless secrecy.

Index Terms—MIMO,interference alignment,wireless secrecy.

I.I NTRODUCTION

A.Background and Survey

C ONFIDENTIAL exchange of messages securely in wire-

less networks has become increasingly important for the modern information society.In contrast to its wired counter-part,wireless transmission is highly susceptible to eavesdrop-ping due to the broadcast nature of the wireless propagation medium[1].Contemporary wireless security systems,based on cryptographic primitives,evolved from schemes developed for traditional wired applications.To overcome challenges associ-ated with broadcast communication,one must augment contem-porary wireless security techniques using strategies that exploit the intrinsic properties of the wireless propagation medium.

A key observation in exploiting these properties is that the broadcast nature generates contrasting effects:It makes the

Manuscript received November05,2014;revised March16,2015;accepted May05,2015.Date of publication August28,2015;date of current version April14,2016.The associate editor coordinating the review of this manuscript and approving it for publication was Dr.Pengfei Xia.This work was supported, in part,by the National Science Foundation under Grants CCF-1116501and CCF-1525705.

L.Ruan and M.Z.Win are with the Laboratory for Information and Decision Systems(LIDS),Massachusetts Institute of Technology,Cambridge,MA02139 USA(e-mail:lruan@https://www.wendangku.net/doc/aa5559868.html,;moewin@https://www.wendangku.net/doc/aa5559868.html,).

https://www.wendangku.net/doc/aa5559868.html,u is with the Electrical and Computer Engineering Department, Hong Kong University of Science and Technology(HKUST),Clear Water Bay, Hong Kong(e-mail:eeknlau@ust.hk).

Color versions of one or more of the?gures in this paper are available online at https://www.wendangku.net/doc/aa5559868.html,.

Digital Object Identi?er10.1109/TSP.2015.2474295secrecy information from a certain legitimate transmitter(LT) vulnerable to malicious interception,but at the same time enables other legitimate partners to impede the eavesdrop-ping receivers(ERs)via interference.Therefore,interference emerges as a potentially valuable resource for wireless network secrecy[2],[3].The idea of enhancing network secrecy through the use of interference has been investigated in several recent works,under the name of arti?cial noise[4],[5],arti?cial noise alignment[6],[7],friendly jamming[8],[9],or cooperative jamming[10]–[12].A major challenge in utilizing interference to enhance secrecy is that while impeding the ERs,interference affects the LRs as well.Hence,without proper coordination, interference may be of little help or even harmful to wireless secrecy in some network con?gurations[8].We envision that a greater secrecy gain will be achieved by simultaneously coordinating multiple legitimate partners such that aggregated interference causes negligible effects at the legitimate receivers (LRs)while impeding ERs.This motivates the need to develop coordinative interference engineering strategies for wireless wiretap networks,which will be referred to as wireless-tap networks.1

Several secrecy-enhancing interference engineering strate-gies have been proposed for small networks with one LT[6]–[8] or one LR[9]–[12].Coordinating aggregated interference from multiple LTs at multiple LRs imposes new challenges on secrecy transmission strategy design.A promising candidate to overcome this challenge is interference alignment(IA)[13].A few studies have adopted the IA scheme proposed in[13]to promote wireless secrecy[14]–[16].However,the scheme in [13]is based on in?nite dimensional symbols that require time or frequency domain symbol extension,making it dif?cult to implement in practice.

To avoid the in?nite dimension issue,researchers have devel-oped spatial-domain IA techniques in which no symbol exten-sion is involved and interference is coordinated and canceled via the?nite signal dimension provided by multiple antennas [17].In Part I,a theoretical framework has been established to address the two key issues of spatial-domain IA,i.e.,feasibility conditions and transceiver design.Moreover,to further enhance the network’s capability of secrecy protection,legitimate jam-mers(LJs)are incorporated to better impede ERs without inter-fering with the LRs.In this paper,this technique is referred to as generalized interference alignment(GIA).To apply the GIA technique to practical wireless-tap networks,the following is-sues need to be addressed:

1“Wireless wiretap”is referred to as“wireless-tap”to emphasize the wireless nature of the propagation medium.

1053-587X?2015IEEE.Personal use is permitted,but republication/redistribution requires IEEE permission.

See https://www.wendangku.net/doc/aa5559868.html,/publications_standards/publications/rights/index.html for more information.

?Design of effective scalable GIA algorithms:In large-scale networks,the limited policy space in transceiver de-sign is insuf?cient to cancel interference on all cross links.

Existing works applying IA to large-scale networks[18],

[19]address this issue by?rst dividing a large network into

small clusters and then performing IA separately on each cluster.However,under this approach,the inter-cluster in-terference is not addressed,and some of it may be the strongest interference perceived by the LRs on a cluster edge.On the other hand,if every LR wishes to cancel the strongest interference it perceives,the feasibility con-ditions of the entire network are coupled together,which normally requires centralized approaches that are not ap-plicable to large networks.Hence,designing effective scal-able GIA algorithms is dif?cult.

?Characterization of the performance of GIA in sto-chastic networks:To obtain insights into the performance of GIA in generic wireless-tap networks,it is desirable to characterize how GIA performs in large-scale stochastic wireless-tap networks.A few works have analyzed the performance of stochastic networks with interference control[20],[21].In these works,the interference control policies at different nodes are independent.However,with GIA,the interference control policies at different LTs and LJs become correlated,making it dif?cult to quantify aggregate interference at LRs and ERs.Therefore,charac-terizing the performance of GIA in stochastic networks is challenging.

B.Contribution of This Work

In this work,we will address the challenges listed above. We consider MIMO wireless-tap networks with LJs.To enable the design of effective and scalable GIA algorithms,we?rst decompose the GIA feasibility conditions to a per-node basis. Based on that,we propose an algorithm that generates a fea-sible alignment set by only requiring each legitimate node to communicate with a few nodes,the number of which does not scale with the size of the network.This algorithm,together with the distributive GIA transceiver design algorithm proposed in Part I,construct a GIA algorithm that is applicable to large-scale wireless-tap networks.We then characterize the performance of the proposed algorithm in stochastic wireless-tap networks. We jointly adopt Cauchy-Schwarz inequality,Chebyshev in-equality,and Chernoff inequality to bound the effect of aggre-gate interference from multiple correlated sources,and obtain the performance of GIA.This result demonstrates the contribu-tion of GIA to network secrecy enhancement.It also illustrates how major network parameters,such as node density and an-tenna con?guration,affect the performance of wireless-tap net-works.We also perform various simulations to obtain insights into when and the how GIA technique bene?ts network secrecy.

C.Notations

The notations are consistent with Part I.Additional notations are listed in the following.

1)Functions:Function,and

are the gamma function and incomplete gamma function,re-spectively,denotes the?oor function,and denotes the complex conjugate of a matrix.

2)Probability Theory:The operators,V,and S denote the expectation,variance,and standard deviation of a random variable,and denotes the probability of an event.

represents complex Gaussian distribution,with mean and standard deviation.

II.P ROBLEM F ORMULATION

In this section,we?rst describe the system model of wire-less-tap networks,then illustrate the potential bene?ts of GIA via a case study,and?nally formulate the alignment set design problem of GIA.

A.System Model

Consider a network consisting of LT-LR pairs,LJs and ERs(The LTs and LJs are indexed from1to and from to,respectively.).LT(or LJ,if),LR,and ER are equipped with,,and antennas,respectively. At each time slot,LT(or LJ)sends independent symbols. LT attempts to send con?dential to LR,while ER attempts to intercept these messages.LJ transmits dummy data to generate interference.

The received signals at LR and ER are given by

(1)

where,,are the channel matrices from LT(or LJ)to LR or ER,whose entries are independent random variables drawn from con-tinuous distributions;is the encoded information symbol at LT(or LJ);is the precoder at LT(or LJ);,is the decoder at LR or ER;and,is the white Gaussian noise zero mean and unit variance. The transmission power of LT(or LJ)is given by

.De?ne the con?guration of the legitimate network as,

.

This work Information-theoretic security as the per-formance metric.From[22],[23],under a given transceiver de-sign,the following secrecy rate is achievable for legitimate link:

(2) in which,,is given by

(3)

From[15],when the transmission power at all LTs and LJs are of the same order,i.e.,for some,, ,the secure degree of freedom(sDoF)can be?ned as

(4)

Fig.1.Con ?guration of the example network.

B.Case Study

Example:As illustrated in Fig.1,consider a MIMO wire-less-tap network,as described in Section II-A,with ,

,antenna con ?guration ,,,,,and data stream

con ?guration

,.The entries of all the channel matrices are independent random variables drawn from

.The transmit power at all nodes is 20dB,i.e.,,.

Compare four different strategies:the ?rst two are non-coop-erative,whereas the other two are cooperative:

A.Zero forcing with 2active LTs :LT 1,2use random

precoders

,,2and LR 1,2use zero forcing to cancel interference,i.e.,

and ,where

.To avoid inter-fering with LR 1and 2,LT 3and LJ 4remain silent,i.e.,

,.

B.Zero forcing with 3active LTs :LT 1,2and 3use random

precoders ,

and ,and LR 1,2and 3use zero forcing to cancel interference from LT 2,3and 1,respec-tively,i.e.,

,and .LJ 4remains silent.

C.:LT 1–3IA to design precoders

.Inter-ference at every LR is aligned into a 1-dimensional

subspace.Speci ?cally,is designed to be an eigen-vector of ,,and .,

,and

are designed as in Strategy B.LJ 4still

remains silent.

D.GIA :LT 1–3and LJ 4adopt a coordinated approach to

design their precoders so that interference at every LR is aligned to a 1-dimensional subspace.Speci ?cally,the LTs and LRs design their transceivers as in Strategy C.LJ 4

designs

so that

,

.

This design is feasible as ,are three vectors in .

The signal space at LR 1,2and ER 1,2,as well as the secrecy rate and sDoF of LR 1,2under the above four strategies,are illustrated and compared in Fig.2.3From this ?gure,Strategy

2Small letters are used for all transceivers as they are vectors in this example.

3Because

the cases of LR 3/ER 3are identical to those of LR 2/ER 2under

Strategy B-D,they are omitted in Fig.2for

conciseness.

Fig.2.Signal space at LR 1,2and ER 1,2under different strategies.

C,D perform better than Strategy A,B.This is because the

channel states between LTs and LRs

are independent of those between LTs and ERs

.Therefore,interference that is aligned at the LRs is not aligned at the ERs almost surely.This fact allow the legitimate network to impede ERs without affecting LRs.Strategy D performs best as its jointly exploits the capability of all legitimate partners,i.e.,LTs,LRs,and LJs,to generate desirable interference.

Remark 2.1(Practical Issues):It is worth noting that the GIA technique proposed in the example

?Requires no channel state for the eavesdropping link .The transceivers of the legitimate partners are functions of the channel state of legitimate links,i.e.,.In other words,no channel state information (CSI)of the eaves-dropping link,i.e.,

is required.?Is effective even if ERs have all the CSI .The perfor-mance of Strategy D comes from the unequal dimension of the interference at the ERs and LRs.Since this property is due to the fact that the two sets of channel state and are independent,it is invariant with respect to the amount of CSI at the ERs.

These properties greatly improve the practicality of the pro-posed GIA technique.For instance,the possible leakage of CSI from the legitimate network to ERs does not affect the perfor-mance of the proposed algorithms.

C.Alignment Set Design

In Section II-B,the potential of GIA technique in secrecy enhancement is demonstrated.To cope with the general cases,the following problem is addressed in Part I:

Problem 2.1(GIA Transceiver Design):Design transceivers

,,that satisfy

the constraints:

(5)

(6)

(7) where

is the alignment set.It characterizes the set of interference to be canceled by GIA.

In Part I,the feasibility conditions of Problem2.1are ana-lyzed for given network con?guration and alignment set. In practice,the network con?guration is usually?xed a priori. Hence,to design feasible GIA strategies,the following problem needs to be addressed:

Problem2.2(Alignment Set Design):Design so that GIA is feasible,i.e.,Problem2.1has solutions.

To develop GIA techniques that are applicable to large-scale networks,it is important to design algorithms that can solve Problem2.2distributively.However,this task is dif?cult due to the following technical challenge.

Challenge of Coupled Feasibility Conditions

As Corollary4.3of Part I shows,for GIA to be feasible,it is necessary that the number of variables in transceiver design is no less than the number of constraints for all subsets of GIA constraints in(7).This fact illustrates that GIA feasibility conditions are inherently coupled with each other.Since there are exponentially many subsets of GIA constraints,the design of a feasible alignment set is complicated.

III.A LGORITHM D ESIGN

In this section,a GIA algorithm is proposed to solve Problem 2.2distributively.

De?nition1(Proper Alignment Subsets):Alignment subsets

,and

are proper iff

(8) Theorem3.1(Proper Alignment Subsets Lead to GIA Feasi-bility):Problem2.1is feasible almost surely if the alignment set can be covered by proper alignment subsets,i.e.,

(9) for some proper alignment subsets and.

Proof:Please refer to Appendix A for the proof. Solution to Coupled Feasibility Conditions

Since(8)is a set of per-node constraints,Theorem3.1provides a mechanism to decompose the GIA feasibility constraints to a per-node basis.This result enables legitimate nodes to distributively design the alignment set,while maintaining the GIA feasibility.

Based on Theorem3.1,the following algorithm is adopted to generate alignment set.Algorithm1(Generate Feasible Alignment Set)?Alignment set selection at the transmitter side:LT(or LJ)selects a few LRs such that satis?es(8).4 Notify the selected LRs.

?Alignment set selection at the receiver side:LR selects among the transmitters which do not select LR in the previous step,and make satisfy(8).?Generate alignment set:Set according to(9). Corollary3.1(Feasibility of Algorithm1):In a MIMO wire-less-tap network,when the alignment set is generated by Al-gorithm1,Problem2.1is feasible almost surely.

Proof:This is a direct consequence of Theorem3.1. Remark 3.1(Scalable GIA Algorithm):The freedom in designing the alignment subsets,,in Algo-rithm1enables the legitimate nodes to distributively select the strongest interfering links and hence effectively manage interference.By?rst performing Algorithm1to design a feasible alignment set and then using the algorithm proposed in Part I to design the transceivers,a distributive GIA algorithm is obtained.In this algorithm,the number of nodes that each node needs to exchange messages with are determined by the alignment subsets and hence does not scale with the size of the network.

IV.P ERFORMANCE A NALYSIS

In this work,homogeneous Poisson point process(PPP)[24] will be employed to model the spatial distribution of stochastic wireless networks.

De?nition2(Stochastic Wireless-Tap Network):?Channel Model:The nodes are distributed in a two-dimen-sional in?nite plane.The channel state between two nodes positioned at is given by

where the elements in are independent random variables following complex Gaussian distribution with zero mean and unit variance and the pathloss

(10)

where is the pathloss exponent and is the cutoff threshold.5

?Legitimate user network:The position of the LTs is mod-eled by a homogeneous PPP with density.For an LT located at,the position of the associated LR is given by

,where is drawn from certain probability 4Here node selection criteria is not speci?ed as it does not affect the feasibility of the alignment set.The selection criteria will be speci?ed in the next section to enable performance analysis.

5Suppose the maximum transmit power of nodes in the network is. Then when,the interference that has been ignored by the pathloss cutoff threshold is insigni?cant compared to white noise.In this case, the pathloss model in(10)is a reasonable approximation of the classical one. The two models will be compared via simulation in Fig.7.

distribution in,with.6Each LR and LT is equipped with and number of antennas,respec-tively.Each LT delivers inde-pendent data streams.Denote.?Legitimate jammer network:The position of the LJs is modeled by a PPP with density.Each LJ has

number of antennas and delivers indepen-dent dummy data streams.

?Eavesdropper network:The position of the ER attempting to intercept the information from the LT at position is given by,where is drawn from certain probability distribution in,with.Each ER is equipped with number of antennas and adopts minimum mean square error decoder.Denote. In the following,the position of a node will be used to replace its index.For example,an LT positioned at is denoted by LT.The set of the positions of LTs,LRs,LJs,and ERs are denoted by,,,and,respectively.

To cancel the strongest interference that each LR perceives, the selection criteria in Algorithm1is speci?ed to enable the nodes to select their nearest neighboring nodes,i.e.,?Transmitter side:LT sets,where

,so that

(11)

(12)

where,and for the LTs and LJs,respectively.

?Receiver side:LR sets

where,,so that

(13)

(14)

(15)

where

De?ne the connection density of the legitimate network and the jammer network,,as the expected number of LTs or LJs that may interfere with a receiver,i.e.,

(16)

(17) 6Otherwise,from(10),the channel between the LR and the associated LT is ,which leads to a trivial result.For the same reason,the distance between LT and the corresponding ER is

limited.Fig.3.Illustration of the correlation between alignment subsets of neighboring nodes.Consider two LTs(or LJs)positioned at and,respectively,where ?has a small norm.Events and are correlated

as the two transmitters perceive

where.

This section focuses on analyzing the sDoF achieved by an LR.Firstly,a lemma which relates the sDoF to the dimension of interference at the LRs and ERs is proved.

Lemma4.1(Dimension of Interference):For LR with cor-responding ER,the sDoF de?ned in(4)is given by

(18) where,is a subspace of the receiving signal space of LR or ER,i.e.,or that has no interference.De?ne,,then

(19)

(20)

Proof:Please refer to Appendix B for the proof.

From Lemma4.1,to analyze the network’s sDoF,the charac-terization of is necessary.However,this is challenging for the following reason.

Challenge of Correlated Alignment Set Selection

As illustrated in Fig.3,events and in the?gure,are correlated.This example shows that the random variables in(19)are correlated for different.This correlation makes it dif?cult to characterize .

This challenge is addressed by the following lemma. Lemma4.2(Characterization of):For LR,de?ne

(21)

(22) Then

(23) Moreover,is bounded within,

(24) S

(25)

Proof:Please refer to Appendix C for the proof. Solution to Correlated Alignment Set Selection

From(23),the major randomness of comes from that of.Equations(24)and(25)show that the expectation of scales at,while its uncertainty in expectation and standard deviation both scale at.Therefore,when is large,the randomness in can be ignored compared to its expectation,i.e.,.As will be discussed further in

Remark4.1,this property bounds the effect of correlated alignment set selection and enables an asymptoti-cally accurate characterization of the sDoF performance. Based on Lemma4.2,the following theorem characterizes the sDoF of the GIA algorithm in a stochastic

network.

Fig.4.Illustration of the sDoF per node described by(27). Theorem4.1(Performance of GIA Algorithm):Indicator

?is de?ned in(26)at the bottom of the page.When

and,the sDoF per node is given by

(27) where,are de?ned in(12).

Proof:Please refer to Appendix D for the proof. Remark4.1(Interpretation of Theorem4.1):Fig.4gives an intuitive illustration of the meaning of the sDoF expression in (27).This expression partitions the operation region into three parts according to the value of the indicator.The sDoF per LR is close to the upper bound in the feasible region, whereas it is close to the lower bound0in the infeasible region. Since the width of the transitory region is on,(27) is asymptotically accurate when.This trend will be shown via simulation in Fig.8.

In practice,it is interesting to understand how a stochastic wireless-tap network performs under various network param-eters.However,as data stream numbers,must be in-tegers,and(26)contains the discontinuous function,it is dif?cult to obtain simple insights.To address this issue,a net-work with high connection density,i.e.,,is analyzed in Appendix E.In this scenario,the width of the transitory re-gion is ignorable,and hence sDoF per node when indicator.De?ne the set of feasible data streams as

.Insights obtained from analysis on the feasible set are summarized as follows.

Remark4.2(Operation Modes of GIA):As illustrated in Fig.5,in a wireless-tap network with high connection density,

(26)

Fig.5.Analysis of the feasible region of a stochastic wireless-tap network with high connection density.In this?gure,.

the set of feasible streams is contained by the region above the jamming line and below the aligning curve.The jamming line means that LTs and LJs have generated just enough interfer-ence to occupy the signal space of the ERs,and the aligning curve indicates that the LTs,LJs,and LRs are on the cutting edge of being able to align all interference at the LRs.The slope and the intersection of the jamming line are and ,respectively.The aligning curve is a combination of a horizontal line and two second order curves.In particular, when,the trapezoid with vertices (0,0),,and lies below the aligning curve.From Fig.5,GIA has three operation modes:

?Pure IA mode:When,the LTs and LRs can generate suf?cient interference to jam the ERs and align all interference at the LRs.The LJs can remain idle without losing optimality in the sDoF sense.?Moderate Jamming mode:When

by adopting a small,the LJs can help the LTs to jam the ERs without reducing the sDoF per LR.?Intensive Jamming mode:When

the LJs need to adopt a large to generate suf?cient interference to jam the ERs.As large is adopted,the sDoF per LR needs to be reduced so as to align the interference at the LRs.

Remark4.3(Role of Network Parameters):The effects of network parameters on sDoF are summarized below.

?LJ density:As Fig.6(a)shows,larger leads to a steeper jamming line.This will increase achievable sDoF per LR if GIA is in the intensive jamming mode.

?LT/LR density:As Fig.6(b)shows,larger?

attens both the jamming line and aligning curve,which

reduces achievable sDoF per

LR.Fig.6.Illustration of how the feasible region of changes w.r.t. to network parameters.(a)Larger;(b)Larger;(c)Larger;

(d)Larger.

?LJ antenna:As Fig.6(c)shows,larger pushes the aligning line to the right.This will bene?t achievable sDoF per LR if GIA is in the intensive jamming mode.?Sum of LT and LR antenna:As Fig.6(d)shows,larger pushes up the aligning curve,and hence increases achievable sDoF per LR.

V.S IMULATION R ESULTS

A.Secrecy Rate Under Different Strategies

First compare the secrecy rate(de?ned in(2))achieved by the proposed GIA technique with the following three baselines.?Cooperative jamming(CJ):The LTs and LRs adopt random transceivers,and the LJs adopt zero-forcing(ZF) precoders to cancel their interference with the LRs.?Pure IA(IA):The LTs and LRs adopt IA to cancel inter-ference.The LJs remain idle.

?IA with arti?cial noise(IAN):The LTs and LRs adopt IA to cancel interference.The LJs generate arti?cial noise by adopting random precoders.

To verify the legitimacy of the pathloss model proposed in (10),the secrecy rates under channel models with and without pathloss cutoff are simulated.

Fig.7illustrates that the proposed GIA technique achieves signi?cant performance gain over the baselines.This is because GIA fully exploits the capability of all legitimate partners to create different amounts of interference at the LRs and ERs. From the slope of the secrecy rate under GIA technique,it can be seen that the sDoF per node is around0.9.It is not exactly1 due to the uncertainty term in(27).Also,it can be seen that the secrecy rate under the two types of channel models are reason-ably close.

B.Width of the Transitory Region

Fig.8illustrates the sDoF per node as a function of the indicator under different network densities.If the region in

Fig.7.Secrecy rate as a function of SNR under different schemes.The network parameters are given by,,,,

,,,and.The distance between an LT and the associated LR and ER are given by

and,

respectively.

Fig.8.sDoF per node as a function of the performance indicator under different user densities.The network parameters are given by,, and.The node density is given by,

,and for the three curves,respectively;then?x,,and modify to change the indicator.

which is used to represent the transi-tory region,one can see that the width of this region scales on .This fact?ts the trend described in Remark4.1.

C.Resource Allocation Between Transmitting and Jamming So far,LTs and LJs are assumed to have a?xed prior role. However,their respective roles may overlap.As illustrated in Fig.9,if part of the LRs are deactivated,then from the point of view of the remaining network nodes,the corresponding LTs effectively become LJs.This conversion empowers the pos-sibility

of allocating resources between transmitting and jam-ming.The comparison between the left and right columns of Fig.9sketches the effect of allocating resources between trans-mitting and jamming.This effect can also be interpreted

from Fig.9.Effects of the resource allocation between transmitting and jamming. Fig.6.The operation of turning LTs to LJs is equivalent to an increase and decrease.From Fig.6(a)and(b),this oper-ation enlarges the feasible region and hence increases the sDoF per node at a cost of having less active LRs.

Fig.10illustrates the effect of resource allocation between transmitting and jamming.We?x the sum of the density of the LTs and LJs,i.e.,,and illustrate the sDoF per node,or per unit area as functions of the density of LTs(note that this is also the density of active LRs). Under each active LR density,all the possible stream combina-tions are exhaustively searched to pick out the com-bination that gives the highest.From the right sub-?gure of Fig.10,in terms of sDoF per unit area,one can roughly separate the operation region into two parts,namely the sparse region and the crowded region.In the sparse region,the bene?t from more active LRs dominates,and hence the sDoF per unit area increases under larger.7In the crowded region,the loss from smaller sDoF per node dominates,and hence be-comes a decreasing function of.Therefore,in practice,it is important to control active LR density so that the network op-erates in a favorable region.

VI.S UMMARY

By creating strong interference at the ERs but little or no in-terference at the LRs,the GIA technique provides an effective tool for wireless secrecy protection.Based on the theoretical framework established in Part I,Part II offers a design for GIA algorithms that is applicable to large-scale networks and char-acterizes the performance of this algorithm in stochastic wire-less-tap networks.Working modes of GIA have been identi?ed and simple insights into how network parameters affect the per-formance of wireless-tap networks have been obtained.Numer-ical results illustrate the contribution of GIA in wireless secrecy protection and con?rm the insights.

7This fact is not always true due to the discrete choices of.For instance,the steep drop indicated in the?gure occurs when changes from 2to1.

Fig.10.sDoF per node/unit area as a function of active LR density.The network parameters are given by,,, ,and.

A PPENDIX A

P ROOF OF T HEOREM3.1

From Theorem4.4of Part I,one only need to show that ma-trix(de?ned in Fig.4of Part I)is full row-rank.Suppose Problem2.1is feasible under alignment subsets and .If the intersection of some alignment subsets are non-empty,e.g.,,then non-overlapping alignment subset can be generated.From Corollary4.1of Part I,since this operation does not change the alignment set,the feasibility of Problem 2.1is preserved.Hence,to prove the theorem,it is suf?cient to consider the case in which

(28) From(9)and(28),every belongs to one and only one alignment subset.Hence,one can reorder the rows of and rewrite the matrix as

(29) where

with

..

.

(30)

..

.

(31)

and the submatrices in are given by

(32) Substituting the condition of proper alignment subset,i.e.,(8), to the expressions of and,i.e.,(9)and(10)of Part I, we get that matrices and in(30)and(31)are full row-rank almost surely.Hence,is full row-rank almost surely.Moreover,from(9)and(10)of Part I,the elements in different submatrices,are independent.Hence(32)assures that is independent of.Therefore,from(29),is full row-rank almost surely.This completes the proof.

A PPENDIX B

P ROOF OF L EMMA4.1

As the entries of the channel matrices are independent random variables drawn from continuous distributions,with probability1,.Substituting this result to(2),

(33) Substituting(33)to(4),(18)is obtained.In the following,the expression of and will be derived.

If a link between LR and LT(or LJ)has zero pathloss,i.e., ,or,there is no interference on this link. Otherwise,the channel state is independent of. In this case,almost surely,where for LTs and for LJs.Hence,with probability1,is given by(19).

Similarly,as the channel state of the eavesdropping network is independent of precoders,(20)is obtained.

A PPENDIX C

P ROOF OF L EMMA4.2

First try to prove(23).Note that

From(13),the sets,,and

do not overlap.Hence,

(34)

where.Substituting(21)and(34)to(19),

(35) where

From(22),.Moreover,from(11)and(14),if,

,which means.With this fact and(35),(23)is obtained. From(15),it is easy to see that is bounded within

.Hence,in the following,the focus is on characterizing the mean and variance of.De?ne

then

(36) To analyze the mean and variance of,?rst analyze those of,.To achieve this task,a characterization the spatial distribution of LRs is needed.

Lemma C.1(Spatial Distribution of LRs):In a stochastic net-work,as described by De?nition2,the position of the LRs is given by a PPP with density.

Proof:From the second item in De?nition2,the position of the LRs is a transformation of that of the LTs,which is a PPP with density.Hence,from[25,Thm.1.3.9],the position of the LRs is also a PPP with density,,where

(37) Here denotes the probability density function of.This completes the proof.

First analyze the expectation.For LR,the positions of the unassociated LTs are given by a homogeneous PPP with density on.Hence

(38) From Lemma C.1,

(39)

(40) Substitute(40)to(38):

(41)

From[26,8.11.2],

(42) By combining(39),(41),and(42),

which is a positive,increasing function of.Hence,when ,is in interval

(43)

Equation(43)is true because,from Stirling’s formula[26, 5.11.7],

(44)

Further noting that is a nonnegative decreasing func-tion of,is in interval

(45)

We next bound the variance of.

Lemma C.2(Bound of the Variance of the Sum of Random Variables):are random variables in.Then

S S(46) Proof:Denote,then

V

(47)

S(48)

where(47)is true due to the Cauchy-Schwarz inequality.This completes the proof.

From Lemma C.2,

S

(49) where function,.

Denote

If,,.Hence V. Otherwise,when,

follows Poisson distribution with mean.Hence,from Chernoff inequality,

(50)

Then S will be bounded by separating the operation region into the following two cases:

Case1:(i.e.,).Substitute(50)into (49),noting that,then

S

(51)

where last inequality is true because of(44).

Case2:(i.e.,).First,prove the following lemma.

Lemma C.3:When,,where

Proof:Since is Poisson random variable with mean,from[27,Thm.2],when

,.This completes the proof. Lemma C.4:When and,

Proof:Note that when,

(52) it can be seen that when,

(53) Noting that,

(54) Substitute(54)to(53),then

This completes the proof.

With the two lemmas proved above,it can be seen that

S

(55)

(56)

(57) where(55)is true because of Lemma C.3and the facts that

(a)is a decreasing function of,

(b)is an increasing function in],

and

(c).

(56)is true because of Lemma C.4and.From(51) and(57),

S

(58) From(36),(45),and(58),(24)and(25)are obtained.

A PPENDIX D

P ROOF OF T HEOREM4.1

From Lemma4.1,to characterize,it is necessary to char-acterize and.Since is addressed by Lemma4.2, the focus here is on.

Lemma D.1(Characterization of):

where

and

V

Proof:The position of LTs and LJs are given by PPPs with density and,respectively.Hence,

and are random variables Poisson distribution, with parameters and,respectively.From the properties of Poisson distribution and(20),Lemma D.1is proved.

Now start the main?ow of the proof of Theorem4.1.When from Lemma D.1and Chebyshev inequality,

(59)

Otherwise,when, noting that,

(60) Similarly,from Lemma4.2and Chebyshev inequality,when

(61) and when,

(62) Substituting(59)–(62)to(18),(27)is obtained.

A PPENDIX E

F EASIBLE R EGION U NDER H IGH C ONNECTION D ENSITY When,the feasible streams

need to satisfy

(63)

(64)

(65) De?ne

(66) Since the quantization error of the function is bounded by (1,0],by substituting(12)to(65),one gets

(67) Hence,the difference between and can be ignored when.Therefore,one can replace by in(63).

After this replacement,(63)is equivalent to the following four inequalities:

(68)

(69)

(70)

(71)

It is easy to see that is a line with slope and intersection,and is a horizontal line with intersection.However,as

and are second order curves,it is dif?cult to give a simple characterization of the feasible region.On the other hand,noting that

?passes through points,,

,and

?passes through points(0,0),, the following proposition summarizes the property of ,and.

Proposition E.1(Properties of the Feasible Region):When

,the points in the interior of trapezoid with vertices(0,0),,

and satisfy(69)–(71).

Proof:Noting that function,with

and is a decreasing function when

(i.e.,),from(66),is an strictly decreasing function of and when.Further noting that(69)–(71) ,if(69)–(71)hold for certain data stream con?gura-tion,then for any satisfying

and,(69)–(71)must hold.Therefore,to prove the proposition,one only need to prove that, for all points on the line segment with end points

and.Since on this line segment,,and thus. This line segment can be expressed as

(72) Substitute(72)into(70)and(71),

Hence,when,

,.This completes the proof.

A CKNOWLEDGMENT

The authors would like to thank A.Conti,R.Cohen,and W.Dai for valuable suggestions and careful reading of the manuscript.

R EFERENCES

[1]M.Bloch,J.Barros,M.R.D.Rodrigues,and S.W.McLaughlin,

“Wireless information-theoretic security,”IEEE Trans.Inf.Theory,

vol.54,no.6,pp.2515–2534,2008.

[2]A.Rabbachin,A.Conti,and M.Z.Win,“Wireless network intrinsic

secrecy,”IEEE/ACM https://www.wendangku.net/doc/aa5559868.html,w.,vol.23,no.1,pp.56–69,Feb.2015.

[3]M.Z.Win,L.Ruan,A.Rabbachin,Y.Shen,and A.Conti,“Multi-tier

network secrecy in the ether,”IEEE Commun.Mag.,vol.53,no.6,pp.

28–32,Jun.2015.

[4]S.Goel and R.Negi,“Guaranteeing secrecy using arti?cial noise,”

IEEE Trans.Wireless Commun.,vol.7,no.6,pp.2180–2189,Jun.

2008.

[5]D.Goeckel,S.Vasudevan,D.Towsley,S.Adams,Z.Ding,and K.

Leung,“Arti?cial noise generation from cooperative relays for ever-

lasting secrecy in two-hop wireless networks,”IEEE Trans.Inf.Foren-

sics Secur.,vol.29,no.10,pp.2067–2076,Dec.2011.

[6]S.A.A.Fakoorian,H.Jafarkhani,and A.L.Swindlehurst,“Secure

space-time block coding via arti?cial noise alignment,”in Proc.

Asilomar Conf.Signals,Syst.,Comput.,Monterey,CA,USA,Nov.

2011,pp.651–655.

[7]A.Khisti and D.Zhang,“Arti?cial-noise alignment for secure multi-

cast using multiple antennas,”IEEE Commun.Lett.,vol.17,no.8,pp.

1568–1571,Aug.2013.

[8]J.P.Vilela,M.Bloch,J.Barros,and S.W.Mclaughlin,“Wireless

secrecy regions with friendly jamming,”IEEE Trans.Inf.Forensics

Secur.,vol.6,no.2,pp.256–266,Jun.2011.

[9]L.Song,Z.Han,B.Jiao,and M.Debbah,“Physical layer security for

two way relay communications with friendly jammers,”in Proc.IEEE

Global Telecommun.Conf.,Miami,FL,USA,Dec.2010,pp.1–6.

[10]L.Dong,Z.Han,A.P.Petropulu,and H.V.Poor,“Improving wire-

less physical layer security via cooperating relays,”IEEE Trans.Signal

Process.,vol.58,no.3,pp.1875–1888,Mar.2010.

[11]J.Huang and A.L.Swindlehurst,“Cooperative jamming for secure

communications in MIMO relay networks,”IEEE Trans.Signal

Process.,vol.59,no.10,pp.4871–4884,Oct.2011.

[12]J.Li,A.P.Petropulu,and S.Weber,“On cooperative relaying schemes

for wireless physical layer security,”IEEE Trans.Signal Process.,vol.

59,no.10,pp.4985–4997,Oct.2011.

[13]V.Cadambe and S.Jafar,“Interference alignment and degrees of

freedom of the-user interference channel,”IEEE Trans.Inf.Theory,

vol.54,no.8,pp.3425–3441,Aug.2008.

[14]O.Koyluoglu,H.El Gamal,https://www.wendangku.net/doc/aa5559868.html,i,and H.Poor,“Interference

alignment for secrecy,”IEEE Trans.Inf.Theory,vol.57,no.6,pp.

3323–3332,Jun.2011.

[15]R.Bassily and S.Ulukus,“Ergodic secret alignment,”IEEE Trans.Inf.

Theory,vol.58,no.3,pp.1594–1611,Mar.2012.

[16]O.O.Koyluoglu,C.E.Koksal,and H.El Gamal,“On secrecy capacity

scaling in wireless networks,”IEEE Trans.Inf.Theory,vol.58,no.5,

pp.3000–3015,May2012.

[17]L.Ruan,https://www.wendangku.net/doc/aa5559868.html,u,and M.Z.Win,“The feasibility conditions for inter-

ference alignment in MIMO networks,”IEEE Trans.Signal Process.,

vol.61,no.8,pp.2066–2077,Apr.2013.

[18]R.Tresch and M.Guillaud,“Performance of interference alignment

in clustered wireless ad hoc networks,”in Proc.IEEE Int.Symp.Inf.

Theory,Austin,TX,USA,Jun.2010,pp.1703–1707.

[19]R.Tresch,G.Alfano,and M.Guillaud,“Interference alignment in

clustered ad hoc networks:High reliability regime and per-cluster

aloha,”in Proc.IEEE Int.Conf.Acoust.,Speech,Signal Process.,

Prague,Czech,May2011,pp.3348–3351.

[20]K.Huang,J.G.Andrews,D.Guo,R.W.Heath,and R.A.Berry,

“Spatial interference cancellation for multi-antenna mobile ad hoc net-

works,”IEEE Trans.Inf.Theory,vol.58,no.3,pp.1660–1676,Mar.

2012.

[21]M.Z.Win,A.Rabbachin,J.Lee,and A.Conti,“Cognitive network

secrecy with interference engineering,”IEEE Netw.,vol.28,no.5,pp.

86–90,Sep.–Oct.2014.

[22]X.Tang,R.Liu,P.Spasojevi?,and H.V.Poor,“Interference assisted

secret communication,”IEEE Trans.Inf.Theory,vol.57,no.5,pp.

3153–3167,May2011.

[23]F.Oggier and B.Hassibi,“The secrecy capacity of the MIMO wiretap

channel,”IEEE Trans.Inf.Theory ,vol.57,no.8,pp.4961–4972,Aug.2011.

[24]M.Z.Win,P.C.Pinto,and L.A.Shepp,“A mathematical theory of net-work interference and its applications,”Proc.IEEE,Special Issue on Ultra-Wide Bandwidth (UWB)Technology &Emerging Applications ,vol.97,no.2,pp.205–230,Feb.2009.

[25]F.Baccelli and B.B ?szczyszyn ,Stochastic Geometry and Wireless Net-works .Paris,France:INRIA &Ecole Normale Supérieure,2009,vol.1.

[26]F.W.J.Olver,D.W.Lozier,R.F.Boisvert,and C.W.Clark ,NIST

Handbook of Mathematical Functions .New York,NY ,USA:Cam-bridge Univ.Press,2010.

[27]K.P.Choi,“On the medians of Gamma distributions and an equation

of Ramanujan,”Proc.Amer.Math.Soc.,vol.121,no.1,pp.245–251,May

1994.Liangzhong Ruan (S’10–M’14)received the Ph.D.degree in electrical engineering and computer sci-ence from the Hong Kong University of Science and Technology (HKUST),Clear Water Bay,in 2013,and the B.Eng.degree in electrical engineering from Tsinghua University,Beijing,China,in 2007.

From 2012to 2013,he was with the Laboratory for Information &Decision Systems (LIDS),Massa-chusetts Institute of Technology (MIT),Cambridge,USA,as a visiting graduate student.He is currently a postdoctoral associate at the Wireless Communica-tion and Network Sciences Laboratory,MIT.His research interests include in-terference management,intrinsic wireless secrecy,and quantum entanglement distillation.

Dr.Ruan has served as an area chair for EUSIPCO’16,a session chair for IEEE Globecom’11,and TPC members for IEEE Globecom’15and VTC’15.He also serves as reviewers for multiple transactions,including IEEE J OURNAL ON S ELECTED A REAS IN C OMMUNICATIONS ,IEEE T RANSACTIONS ON S IGNAL P ROCESSING ,and IEEE T RANSACTIONS ON W IRELESS C OMMUNICATIONS

.

Vincent https://www.wendangku.net/doc/aa5559868.html,u (M’98–SM’01–F’11)obtained B.Eng (Distinction 1st Hons)from the department of EEE,University of Hong Kong,in 1992.He joined the Hong Kong Telecom after graduation for 3years as system engineer.He obtained the Sir Edward Youde Memorial Fellowship,Rotoract Scholarship and the Croucher Foundation Scholarship in 1995and studied for Ph.D.at the University of Cambridge,U.K.He completed the Ph.D.degree in 2years and joined the Bell Labs—Lucent Technologies,New Jersey,in 1997.

He joined the department of ECE,Hong Kong University of Science and Technology (HKUST),Clear Water Bay,in 2004and is currently a Chair Pro-fessor.He has been the technology advisor and consultant for a number of companies such as ZTE and Huawei,ASTRI,leading several R&D projects on B3G,WiMAX and Cognitive Radio.He is also the founder and director of

Huawei-HKUST Innovation Lab.His current research interests include inter-ference mitigation,stochastic optimization,and compressive sensing.

Professor Lau has published over 300papers,including around 150IEEE Transaction papers,and contributed to over 40U.S.patents on wireless systems.In addition,he is also the key contributor of 4IEEE standard contributions which are accepted into the IEEE 802.22speci ?cation.He is also a Fellow of IEEE,Fellow of HKIE,Changjiang Chair Professor and the Croucher Senior Research

Fellow.

Moe Z.Win (S’85–M’87–SM’97–F’04)received both the Ph.D.in Electrical Engineering and the M.S.in Applied Mathematics as a Presidential Fellow at the University of Southern California (USC)in 1998.He received the M.S.in Electrical Engineering from USC in 1989and the B.S.(magna cum laude )in Electrical Engineering from Texas A&M University in 1987.

He is a Professor at the Massachusetts Institute of Technology (MIT)and the founding director of the Wireless Communication and Network Sciences

Laboratory.Prior to joining MIT,he was with AT&T Research Laboratories for ?ve years and with the Jet Propulsion Laboratory for seven years.His research encompasses fundamental theories,algorithm design,and experimentation for a broad range of real-world problems.His current research topics include net-work localization and navigation,network interference exploitation,intrinsic wireless secrecy,adaptive diversity techniques,and ultra-wideband systems.Professor Win is an elected Fellow of the AAAS,the IEEE,and the IET,and was an IEEE Distinguished Lecturer.He was honored with two IEEE Tech-nical Field Awards:the IEEE Kiyo Tomiyasu Award (2011)and the IEEE Eric E.Sumner Award (2006,jointly with R.A.Scholtz).Together with students and colleagues,his papers have received numerous awards,including the IEEE Communications Society’s Stephen O.Rice Prize (2012),the IEEE Aerospace and Electronic Systems Society’s M.Barry Carlton Award (2011),the IEEE Communications Society’s Guglielmo Marconi Prize Paper Award (2008),and the IEEE Antennas and Propagation Society’s Sergei A.Schelkunoff Transac-tions Prize Paper Award (2003).Highlights of his international scholarly initia-tives are the Copernicus Fellowship (2011),the Royal Academy of Engineering Distinguished Visiting Fellowship (2009),and the Fulbright Fellowship (2004).Other recognitions include the International Prize for Communications Cristo-foro Colombo (2013),the Laurea Honoris Causa from the University of Ferrara (2008),the Technical Recognition Award of the IEEE ComSoc Radio Commu-nications Committee (2008),and the U.S.Presidential Early Career Award for Scientists and Engineers (2004).

Dr.Win was an elected Member-at-Large on the IEEE Communications So-ciety Board of Governors (2011–2013).He was the Chair (2004–2006)and Secretary (2002–2004)for the Radio Communications Committee of the IEEE Communications Society.Over the last decade,he has organized and chaired numerous international conferences.He is currently an Editor-at-Large for the IEEE W IRELESS C OMMUNICATIONS L ETTERS .He served as Editor (2006–2012)for the IEEE T RANSACTIONS ON W IRELESS C OMMUNICATIONS ,and as Area Editor (2003–2006)and Editor (1998–2006)for the IEEE T RANSACTIONS ON C OMMUNICATIONS .He was Guest-Editor for the P ROCEEDINGS OF THE IEEE (2009)and for the IEEE J OURNAL ON S ELECTED A REAS IN C OMMUNICATIONS (2002).

用心沟通,传递真情

用心沟通,传递真情 ————培训心得体会 宜章六中邓芳林 以前,我自认为自己还算是一位好老师,功底扎实,对学生负责,内心平和而安详。听了《关于幸福的几个问题》,我真是羞愧难当,我对学生常常不是要求,而是苛求,甚至是残忍,因而,发自内心地感到自己是一名多么不合格的老师呀! 误区一:把教育过于重要化,总想把学生培养成“神”。教育仅仅是人生成长中的一种经历,它应该是自然的、简单的、快乐的。唯有如此,它才真正能够遵循青少年的成长规律,引导每一个独特的个体按照自己固有的潜质去健康地发展,才真正体现教育人性的光辉。世界上没有两片完全相同的树叶,世界上同样没有两个完全相同的人。只有充分了解每个学生的个性,尊重学生的个性,因人而异地进行施教和引导,才能成就一个个鲜活的生命,,从而让学生对教育充满了快乐、自信和向往。反思自我,由于把教育本身看得太重,因而,教育的功利色彩太浓,对学生的框框条条太多太严,常常把学生逼得喘不过气来。一旦学生没有达到自己设定的要求,就自然地产生“恨铁不成钢”的心理,因此,采取的教育方式和手段往往在无意和有意中伤害甚至摧残了学生的心灵。这样的教育,对学生来说不是快乐和幸福,而是折磨和恐惧,是导致问题学生产生的一个重要原因。试问,当今中国的教育,有多少学生是无忧无虑的?教育行政部门不断地喊

“要给学生减负!”,为什么越喊而学生的负担越重呢?现在的小学生比过去的初中生作业要多得多,现在的小六毕业生比过去的高三学生要累得多。真正的根源就是很多老师和家长把教育过于重要化了。 误区二:把教材过于知识化,片面地夸大了知识的重要性。教材仅仅是前人经验的积累和总结,从生存的角度看,它并没有我们想象中的那么重要。客观地讲,教材的一些知识在现实生活中对我们的生存和发展并没有直接的作用,而且随着生产力的发展和客观条件的变化,慢慢地会被淘汰。实际上,真正对人的一生产生重大影响的是人的能力,个人的能力越强,他的生存和发展的空间也就越广阔。因此,除了教材中一些必要的知识我们必须掌握,教材的很多内容仅仅是培养学生能力的一种载体。学生能力的培养需要我们学会与学生平等相处,需要我们重视知识掌握的过程,而不仅仅是知识数量多少的结果。所以,大量重复的机械作业应该得到有效地控制和减少,把更多的时间和精力让学生自己去体会生活、发现生活的奥秘,激发学生对周围事物的兴趣,培养学生的实践能力和创新精神。现在,有太多的教师和家长过于把教材知识化,从而征订或购买大量的教辅资料,催生了各种形式的课外辅导班,把学生的空闲时间剥夺得所剩无几,这不正是捡了芝麻、丢了西瓜吗? 误区三:把对学生的爱过于片面化,往往认为对学生越严越好。爱是尊重,是理解,是宽容,是春风化雨,是润物无声。真诚地尊重学生的人格,正确地面对学生的差异,理智的对待学生的错误,科学的指导学生的个性化发展,本来是一个专业教师应该做到的。而我却

Alignment 光刻对准

University of California, Santa Barbara ME/ECE 141 B Alignment In order to make useful devices the patterns for different lithography steps that belong to a single structure must be aligned to one another. The first pattern transferred to a wafer usually includes a set of alignment marks, which are high precision features that are used as the reference when positioning subsequent patterns, to the first pattern (as shown in figure 1). Often alignment marks are included in other patterns, as the original alignment marks may be obliterated as processing progresses. It is important for each alignment mark on the wafer to be labeled so it may be identified, and for each pattern to specify the alignment mark (and the location thereof) to which it should be aligned. By providing the location of the alignment mark it is easy for the operator to locate the correct feature in a short time. Each pattern layer should have an alignment feature so that it may be registered to the rest of the layers. Figure 1: Use of alignment marks to register subsequent layers Depending on the lithography equipment used, the feature on the mask used for registration of the mask may be transferred to the wafer (as shown in figure 2). In this case, it may be important to locate the alignment marks such that they don't effect subsequent wafer processing or device

国旗下讲话:用心沟通,和谐人际

国旗下讲话:用心沟通,和谐人际 老师、同学们: 本周的5月25日是我国第十五个大中学生心理健康日,“”取谐音“我爱我”一意为爱自己才能更好地爱他人。本月也是我校的“”心理健康活动月,本次活动的主题是:“用心沟通,和谐人际!” 人际关系的好坏会影响一个人的情绪、影响你的活动效率,进而影响你的学习、生活和成长,将来会影响你的工作。美国著名的人际关系专家卡耐基指出:一个人事业的成功,只有15%是由于他的专业技术,另外的85%要靠人际关系和处世技巧。由此可见和谐的人际关系是何等重要。我们学校的心理咨询室接待的许多同学的问题基本上是都是因为在人际关系上不适应造成的。人际关系是影响同学们心理健康的一个重要内容,所以,我们强调“用心沟通,和谐人际!”。本月的27日下午,我校的部分同学将代表我校表演由初一(4)班的黄韵玥同学原创编写的剧本《知心知幸》去参加XX市首届中小学校园心理剧大赛,黄韵玥同学的剧本也是围绕同学间人际关系展开描写的,在此预祝他们能取得好成绩。 在我们的校园生活中,我们常常可以看到许多同学因为一点小事,和其他同学闹别扭,或大吵大闹,甚至动拳脚,造成同学之间的关系紧张,给学习、生活带来不利影响。那

么,作为中学生,如何学会和他人和谐相处呢? 首先,在与人交往的时候,我们要学会真诚相待。一句真诚的话语,一丝真诚的微笑,便可以拉近人们之间的距离,亦能给人以慰藉和鼓舞。 其二,要学会尊重他人。我们每个人都渴望得到别人的重视与尊敬。因此,在与同学交往的过程中,关心和尊重对方是建立友谊,增进沟通的基础。如,与同学交谈时,认真倾听对方的谈话内容,不中途打断别人的讲话,不东张西望,不看书,不看报;遇到与自己不同的意见,让别人充分表达并认真听取。 其三,诚心地赞美和善意地批评。如当看到同学在学习上取得好成绩或发现同学的优点时,不是虚伪地恭维别人,而是诚心诚意地称赞别人的优点。当发现对方的缺点时也不迁就,而是以合理的方式加以批评,并帮助其改正,切不可贬低或嘲弄他人。 其四,我们还应该有宽广的胸怀,用宽容和谅解代替愤怒,你希望别人怎样对你就怎样去对待别人。在与同学交往中,要做到有错就诚恳地道声“对不起”,用真正的道歉去补偿和重建自己与同伴的不良关系。 另外,要做到:不说脏话,不说气话,控制情绪。 同学们以健康的心态,对待周围的人或事,敞开自己的心扉,与他人共享同一片温暖的阳光,相信你会生活得更快

几种视频文件的插入方法

几种视频文件的插入方法: 一、avi、asf、asx、mlv、mpg、wmv等视频文件的插入方法: 1、使用PoerPoint“插入”菜单中的“插入影片”命令法方法简单常用,在这里不再赘述; 2、使用PoerPoint“插入”菜单中的“插入对象”命令法; 3、使用插入控件法 使用这种方法必须保证系统中安装有Windows MediaPlayer或者RealPlayer播放器,首先将视频文件作为一个控件插入到幻灯片中,然后通过修改控件属性,达到播放视频的目的。 步骤如下: (1)运行PowerPoint程序,打开需要插入视频文件的幻灯片; (2)打开“视图”菜单,通过“工具栏”子项调出“控件工具箱”面板,从中选择“其他控件” 按钮单击; (3)在打开的控件选项界面中,选择“Windows Media Player”选项,再将鼠标移动到PowerPoint的幻灯片编辑区域中,画出一个合适大小的矩形区域,这个矩形区域会自动转变 为Windows Media Player播放器的界面; (4)用鼠标选中该播放界面,然后单击鼠标右键,从弹出的快捷菜单中选择“属性”命令, 打开该媒体播放界面的“属性”窗口; (5)在“属性”窗口中,在“URL”设置项处正确输入需要插入到幻灯片中视频文件的详细路径(绝对路径和相对路径都可以)和完整文件名,其他选项默认即可; (6)在幻灯片播放时,可以通过媒体播放器中的“播放”、“停止”、“暂停”和“调节音量” 以及“进度条”等按钮对视频进行自如的控制。 二、rm、ra、rmvb等视频文件的插入方法 使用Windows Media Player控件可以实现mpg、asf、avi、wmv等视频文件的播放,但它不支持RM视频文件的播放,那么如何在PowerPoint中实现RM视频文件的播放呢? 如果通过其他的视频转换软件把RM视频文件转换成A VI或MPG格式的文件再插入,速度慢且转换后的文件体积也大,我们同样可以通过利用PowerPoint中的“控件工具箱”来插 入RM格式的视频文件,方法如下: 1、打开PowerPoint幻灯片文件,打开需要插入视频文件的幻灯片;

高中心理课教案用心沟通让心靠近

高中心理课教案:用心沟通让心靠近 用心沟通让心靠近 【设计背景】 高中阶段是个体一生中非常重要的发展阶段,也是社会化的重要时期,人际交往能力是适应社会生活的基本能力,培养和提高人际交往能力也是素质教育的重要目标之一。高一学生面对新环境,如何融入同伴及如何在团体中被接纳,进而获得友谊,享受快乐,积极有效的进行学习生活,这是急需解决的问题。了解沟通的意义与内涵,学会一定的沟通技巧,才能掌握与学习合适的表达,营造良好的人际关系。 【活动目的】 理解、掌握人际沟通中正确的态度和方法技巧。 【活动形式】 讲授、行为训练、游戏活动、故事、心理体验、讨论交流 【对象】高一年级 【活动步骤】 热身活动:击掌游戏,活动手指,进入课堂。掌声中,我们来开始今天的心理健康课。 游戏:妙手生花 请大家拿好自己的纸,根据指示进行操作,活动期间大家独立完成,也不能提问。 把这张纸上下对折;再把它左右对折;在左上角撕掉一个边长大约为2厘米的等腰直角三角形;然后上下对折;最后在右下角撕掉一个半径为2厘米的扇形。 然后展开,看看结果,取几例全班展示。 问题:同样的一段话,为什么大家的理解如此不同?(缺少沟通和交流) 我们都想拥有和谐健康的人际氛围,能幸福快乐的生活学习是每个人的愿望,但在实际生活中,我们却常常因为缺乏沟通和交流而产生人际适应困扰,就像这些同龄人。 一、积极主动 情境创设:假如你的好朋友遇到下列困境,并向你求助,你会做些什么建议?可任选一题作答。 我有点胖,有时候像男生一样爱抱打不平,同学们常常戏称我叫“猪猪侠”,尽管我表面上不在乎,知道他们是玩笑,其实内心深处我还是不舒服。

宿舍有个家伙,老不告我一声,就乱动我的东西,比如倒我的开水啊,用我的牙膏啊之类,说他吧,显得我小气吧啦的,不说吧,实在憋得慌。 最近觉得父母很罗嗦,老关心学习啊,上大学之类,好像我不知道学习重要似的,唉,是他们到了更年期,还是我到了更年期了? 我觉得我不太喜欢问老师问题,喜欢自己解决,但现在有许多题目不会,周围人也没有人问,我真的没有那个勇气。 我们班的某老师讲课太快了,许多人都听得迷迷糊糊的,而且作业留得也多,我都快受不了了。但是他好像没感觉,依然那么投入。 请学生回答、交流。 小结:最终所有的措施都要回归到到一点,就是大胆主动地进行沟通,事情才可能真正得以解决。 任何人都不会无缘无故地喜欢我们、接纳我们。我们首先主动敞开心扉,接纳、肯定、信任他们,保持主动性,这样别人才会同样对待我们。你希望别人怎样对待你,你就应该首先这样对待别人。主动积极的态度,这是人际沟通的首要前提。 二、倾听反馈 情境创设:人际沟通和交流中,是不是胆子大一点,主动一点就行了呢?还需要什么注意事项呢?请一位学生回答。 备用:也可以请学生念下段文字。 上帝给人们两只耳朵,一张嘴,其实就是要我们多听少说。多听少说,善于倾听别人讲话是一种高雅的素养。因为认真倾听别人讲话,表现了对说话者的尊重,人们也往往会把忠实的听众视作可以信赖的知己。而我们许多人的特点是好表现自己,普遍存在着喜欢别人听自己说,而不喜欢听别人说的问题。 那么,如何培养倾听的习惯?即做到:一要专心,无论是听课,还是听同学发言,都要认真听对方说的每一句话,脑子里不想其他事;二要耐心,不随便插嘴,要听完别人的话,才发表自己的意见;三要细心,当别人的话有错时,要求会评价对方,做到不重复他人的意见。四要虚心,当别人提出不同的意见时,要能虚心接受,边听边修正自己的观点;五要用心,在听取他人意见时不能盲从,要有选择地接受。

用心沟通,做客户的贴心人

用心沟通,做客户的贴心人 不知不觉中我在XX烟草做营销服务工作已有十一个年头,从访销配送员直至今天的客户经理,我默默地一路走来,在烟草行业变革的烈火中不断励炼成长。多年来,我始终以满腔的热情和高度的工作责任感,积极地做好每一项工作,认真履行好自己的岗位职,在平时做的每一件工作中,让我真切的感受到了客户经理工作重要性和对营销服务工作的热爱。 一、沟通从心开始,这是我工作的指导思想。 我常对自己说“客户服务工作首先从推销我个人做起,每一次和零售户的真诚沟通、每一次的拜访都留给客户的一份满意。”作为烟草公司的一名客户经理,同我每天接触最多的就要算是卷烟零售客户了,没有他们的支持,我所做的一切全是无用功,把客户当成朋友、知心人,才会让客户慢慢的接受你,把你当朋友。我始终深信:沟通应从心开始。为了方便零售户有事能及时和我取得联系,我的手机二十四小时都在开机状态,每天接听零售户的电话不下十几个甚至更多。 二、做零售户的贴心参谋,这是我工作的中心。大沙镇南江工业区,有一家位于市场边烟酒商店“XX烟酒行”,对销售公司重点品牌和新品牌有抵触情绪,抱怨这部分卷烟销售慢不挣钱。我在每次拜访中都同这位老板说一些家常,慢慢的引入工作话题,宣传一些行业政策、发展趋势,同老板探讨一些经营方法,并给该客户带一些该区域、同业态客户销售资料,与其探讨存在的不足,建议客户先订购一、二个重点品牌和新品牌上架销售,并提供部分火机进行促销。再加之一些合理化建议:如卷烟专柜避免阳光直射、指导客户合理定购卷烟等。时间长了,感情有了。该商店的重点品牌和新品牌由一个品牌慢慢增至两个、三个。 对待工作,无论想得通还是想不通,都会认真去做,平时,我把大部分时间都投入到工作中,老黄牛般勤勤恳恳,默默地做着自己的工作,认真负责地服务于零售客户。

监控系统安装流程(视频监控安装教程)

监控安装指导与注意事项 A、线路安装与选材 1、电源线:要选“阻燃”电缆,皮结实,在省成本前提下,尽量用粗点的,以减少电源的衰减。 2、视频线:SYV75-3线传输在300米内,75-5线传输500米内,75-7的线可传输800米;超过500米距离,就要考虑采用“光缆”。另外,要注意“同轴电缆”的质量。 3、控制线:一般选用“带屏蔽”2*1.0的线缆,RVVP2*1.0。 4、穿线管:一般用“PVC管”即可,要“埋地、防爆”的工程,要选“镀锌”钢管。 B、控制设备安装 1、控制台与机柜:安装应平稳牢固,高度适当,便于操作维护。机柜架的背面、侧面,离墙距离,考虑到便于维修。 2、控制显示设备:安装应便于操作、牢靠,监视器应避免“外来光”直射,设备应有“通风散热”措施。 3、设置线槽线孔:机柜内所有线缆,依位置,设备电缆槽和进线孔,捆扎整齐、编号、标志。

4、设备散热通风:控制设备的工作环境,要在空调室内,并要清洁,设备间要留的空间,可加装风扇通风。 5、检测对地电压:监控室内,电源的火线、零线、地线,按照规范连接。检测量各设备“外壳”和“视频电缆”对地电压,电压越高,越易造成“摄像机”的损坏,避免“带电拔插”视频线。 C、摄像机的安装 1、监控安装高度:室内摄像机的安装高度以2.5~5米,为宜,室外以3.5~10米为宜;电梯内安装在其顶部。 2. 防雷绝缘:强电磁干扰下,摄像机安装,应与地绝缘;室外安装,要采取防雷措施。 3、选好BNC:BNC头非常关键,差的BNC头,会让你生不如死,一点都不夸张。 4、红外高度:红外线灯安装高度,不超过4米,上下俯角20度为佳,太高或太过,会使反射率低。 5、红外注意:红外灯避免直射光源、避免照射“全黑物、空旷处、水”等,容易吸收红外光,使红外效果大大减弱。 6、云台安装:要牢固,转动时无晃动,检查“云台的转动范围”,是否正常,解码器安装在云台附近。

用心与学生沟通

用心与学生沟通 尊重是道德的最基本的要求,也是高层与深层的道德品质的确证与表征。每个人都有得到尊重的权利,对于成长中的学生更需要尊重。就教学而言,尊重,即是让我们走进学生,了解学生,对学生的兴趣、爱好不强加干涉,尊重他们的选择,以平等、民主的态度对待学生,以平等的身份去做学生的朋友,心平气和的与他们谈心聊天,与学生共享欢乐,共解忧愁。并对学生的选择给予适当的帮助,与学生之间形成畅通无阻的沟通渠道等。 一、尊重学生,不仅是教师应具备的职业道德,而且是保证良好的教育效果的前提 教师不能凌驾于学生之上,应成为学生中的人,表现出对学生的爱,发自肺腑的对朋友的爱。这种爱的表达是无微不至的,不由自主的:课堂中遇到困难时,真诚地与之探讨;学生厌学时,走进他们与之找到原因,并一起克服;夏天里,当我们感到酷热时,为学生洒一盆凉水帮助降温;周末到了,和在校生欢乐的聚一聚,玩一玩;学生感冒了,自然而关切地问一问:“你不舒服吗,别忘了吃药,”或陪着学生一道去看病;当学生闯了祸时,应与之及时沟通,总结教训;课堂上,心平气和的对待持每个学生,并勇于承认自己存在的缺点和不足;在课余,与学生一起聊聊天;学校组织活动时,亲临赛场,为他们呐喊、助威,加油;对经常犯错误的学生,多一些宽容和理解;对“差生”多一些帮助和鼓励。就高中学生来说,他们大多在15岁到20岁之间,世界观已初步形成,自我意识接近成熟,独立性和自觉性已达到较高水平。尤其是改革开放以来,思想的解放、市场经济的发展、竞争意识的增强,无不对学生产生深刻影响。进入高中后,学习生活已不同于初中时期,知识的丰富、视野的拓宽,使他们显得更“成熟”,自我意识、独立意识更强。这个时期尤其渴望得到别人,特别是老师和家长的理解和尊重。教育活动是双向的,教师尊重学生,才能赢得学生的尊敬;学生尊敬老师,老师的教育活动才会卓有成效。教学中可从以下几方面努力:(1)立足情感进行沟通。中学生早恋是老师最头疼的问题之一,因而教师对微妙的男女生间的关系也特别敏感。对高中生异性交往中的问题要尽量避免使用“早恋”这个词,在还没有谈及问题时,已将与学生进行沟通的大门关闭。对有早恋倾向的学生应主动了解他(她)的学习、生活、家庭等情况,找他们谈心,,听取他(她)的观点。然后耐心细致地分析,找到问题的切入点,共同商量解决,如在谈话中让其明白:作为中学生主要的精力是学习,要学会对诱惑说不,要分清主次,该放弃的必须放弃。人生常常要面对选择,放弃也是一种选择。对同学有“喜欢”之情没错,但此时各方面因素要求我们应对它说不。高中生的感情往往是敏感又脆弱的,教师要多给他们一些理解和尊重,一定会收到好的教育效果。即使对那些固执又糊涂的学生也不使用打击、挖苦甚至是伤害的语言,要为以后的教育留有余地,因为教育是一项长期的工程。青年学生的感情是纯洁的,不能任意践踏。如果我们都能够尊重他们的感情,同时用恰当的语言给予正确的引导,是能够收到好的教育效果的。反之,如果由于不尊重学生的感情而伤了学生的心,那是很难补救的,很可能还会适得其反。(2)明确学生的“独立个体性”。学生是教育的主体,要教书育人,就要尊重学生的独立意识充分发挥学生主体性。师生在互相尊重、平等的

用心沟通作文

用心沟通作文 用心沟通作文1: 沟通这两个字对我们每个人来说都很熟悉,它不仅是人和人之间连接心的桥梁,也是人与外界交流的纽带。正是因为某些人忽略了它,所以觉得人生乏味,变得孤独,缺乏自信。 我妈妈就是一个这样的人。在我读大班时,她为了能够更好地照顾我,辞去了工作,专心辅导我的功课和生活起居,每次我在学习 上碰到困难的时候,她都会耐心的给我讲解,晚上我和爸爸回来更 是还有一桌丰盛的晚餐等着我们。她还经常和我们聊天、谈心。 因此我们需要沟通,沟通能带给我们快乐和幸福,能够拯救一个孤独的灵魂,一个孤独的人生。 用心沟通作文2: 威廉·费尔普八岁的时候,和父母一同去林兹莉姑妈家中度假。 一天晚上,有位客人来访。客人看上去非常喜欢他,于是问:“告诉我,你最喜欢什么?” 于是客人就和他谈笑风生,大谈特谈船的知识。客人临走时,威廉依依不舍地和他道别。 虽然客人走了,但威廉意犹未尽,兴高采烈地对姑妈说:“您发现没有,林兹莉姑妈,这位先生真是好得没治了,没想到他和我一样,也喜欢船。” “可是为什么他说的话全都和船有关啊?”威廉有些糊涂了。 姑妈意味深长地说:“那是凶为他人格高尚,他见你对船感兴趣,所以就专门谈能够使你高兴的话题,以便得到你真心的欢迎。” 到什么山头唱什么歌,选对了话题,就等于友好地握住了对方的手,不是吗?

用心沟通作文3: 在闲暇之中,翻开散着墨香的书页,端一杯水,营造出淡淡的书香味,细细地回顾过去,其实与书沟通,乐趣也是妙不可言的。 习惯了人与人之间的沟通,就想拥有一份宁静的交流,你可以与书交流。让它点亮你心中的那灯吧! 我喜欢与书沟通,它让我明白‘一日无书,百事荒芜。’的习惯,让我品味到‘问渠哪得清如许,唯有源头活水来’。的读书之乐。 有一次,我边吃饭,边看书,看得十分投入,仿佛自己也身临其境了,天意弄人,我阴差阳错地夹起一片姜,把我辣得满头大汗。 但从此以后我变得更加爱看书了。 书给予我的,不单单是体会,更多是人生的启迪。 我失败时,书教我勇敢地面对,勇往直前,把失败看作成功的起点,它把我带到成功的彼岸。当我成功时,他叫我再接再厉。与书 沟通,你的生活会更美好。书像一个无声的世界,让我辨清善,恶,美,丑。

用心沟通 平等对话

用心沟通平等对话 ——英语课堂突发案例剖析 【事件回放】 期中考试后的第一个星期三,上午第二节课铃声响起时,作为英语老师的我,站在教室的讲台前,准备上课。上课铃音乐结束后,我和同学们打完招呼,便准备开始今天40分钟的英语学习。因为考虑到现在的孩子们英语学习中有投机主义思想存在,在上次英语课下课时布置作业,我只是强调了上次课堂上学习的两篇小短文要会背诵,但是没有告诉学生,今天的课一定会抽查。为了检查学生课下英语的复习情况,我抽查了近10位同学。在我看来,这10位同学在班级里算是对英语学科学习很感兴趣的。但是抽查的结果令我很意外,只有3位同学顺利的背诵了出来,有一位同学还是在老师每句话第一个单词都给出提示的情况下,才基本背诵出来。我的心里顿时也觉得很失望、很难过,但我还是强压着心里的不满,在第10个同学坐下后,说道:“我们有的学生很虚伪,在老师面前摆出很上进很要学习的样子,但是,只要老师一离开他们的视线,便把学习的事情远远地抛在了脑后。”说完,我便开始继续上课。突然,一位男生高举着手,站了起来。我一开始看见他站起来的时候,还以为是他要上洗手间,心里想:毕竟这是第一节课,和早自习、早操连在一起,没时间上厕所也情有可原,所以心里这样想着,便打算说:“好的,你去吧!”可我的话还没说出口,同学Z便开口道:“老师,你真的觉得我虚伪吗?我觉得我不虚伪的啊……”看着他那张委屈的脸、听着他颤抖的声音,我知道,我的话对他产生了很大的伤害。他继续说着:“其实,我上初中的时候,老师就说过我说瞎话(撒谎)……”哽咽的太厉害了,再加上其他同学都在劝他:“别哭了,别哭了!”此时的他,边嘟哝着边拿着纸擦眼泪,整个人已经不是站在那里,而是扒在课桌上。那时的我,其实心里的感受不知道该如何描述:内疚?感动?欣慰?……真的找不词来形容,但有一点是肯定的,我的眼睛是热热的,但全班人的课堂还是要继续,所谓我安慰到:“快坐下吧,真的很对不起,老师说的话让你这么难过,真的对不起!老师的意思是,不但要有学习的决心,更要有学习的行动。对不起了,可能是老师措辞不当,好好听课吧!”说着,我满脸微笑向他道了歉,希望他能静下来继续认真听课。 【策略措施】 1、放下师道尊严,真诚道歉。“人非圣贤,孰能无过?”承担着当代教育使命的教师,我 们更要有承认错误的勇气,这也是用教师自身的实际行动来教育着现在的孩子们。成长的过程,总是伴随着一次又一次失败的体验,也正是从失败的体验中,我们才从呱呱坠地的那刻起,收获着成长。所以,错了并不是关键,关键在于敢于不敢于承认错误、认真对待并改正错误。所以,作为教师的我,在学生Z反应出情绪的时候,便意识到自己的言语已经触动甚至是伤害了孩子。于是,我很虔诚地跟学生Z连续说了不少于三个对不起,真心地对不起。因为我知道,此时老师的对不起,一定会让孩子的内心得以舒缓,敢于面对他的内心世界。 2、尊重学生人格,细心呵护。不论年龄,不论智商,不论家庭背景,不论健康与否……, 我们身边的每一个人,都应该是一个大写的“人”字,特别是在青少年时期,这个大写的“人”必须被高度的重视,也只有这样,作为教育工作者的我们,才能培养将来合格甚至是优秀的社会人。在学生Z身上,我看到了美好的一面。他坦率而真诚,从他的泪水里,我感觉到他的是非观,知道“虚伪”不是一件值得倡导的事情。那时候,我的脑海里又想起拉那个身背13条人命的杀人狂成瑞龙,他青少年时期被“暴力”开除、不得不走入社会大染缸的事实,让我明白这个时期的孩子太需要人格的尊重、需要我们用心呵护。当然,我知道,学生Z不至于那样,但我也不希望这课堂里的一个小小事件折射出的一系列问题,被我轻易忽视,不希望他这样的心理在将来走向的社会生活中,被

沟通从用心开始

沟通从用心开始 初入学校,新接班级,遇到46个活泼可爱的孩子。在跌跌撞撞中,我也慢慢转换角色,在上课、执勤、备课、午休等事情中忙忙碌碌着,体会着教师生活的充实和精神上的满足。二年级的孩子认知上还不成熟,所以他们在心理上会更多的依赖老师,怎么跟孩子都沟通,到底是严多一点还是柔多一点,我一时有点拿捏不好。 刚开学的第一周,整体感觉孩子们大部分很乖,上课瞪着小眼睛看着老师,几乎没有交头接耳的孩子,我私下很高兴,想到接了一个很好管教的班级应该是件幸福的事。可是在批改孩子们的练习和作业中,我慢慢发现孩子们只是一味的听课,并没有多动脑筋去思考,学过的知识在做题的时候除了几个基础好一点的孩子会举一反三,大部分孩子还是不能做到。了解到这一点,在后面的上课中,我有意引导孩子去思考去自己发掘,但是大部分孩子表现的很一般,表现的兴趣也很淡,也许他们已经习惯被动接受,我内心压力很大,在冷静思考和寻求班主任了解情况后,我决定平静下火气和急躁的心来,用心沟通试试,我拿着练习册和作业找到相关孩子,一个个地聊,了解到他们的心里怎么想的,然后加以开导和鼓励。慢慢第二周我发现,班里许多孩子在不做一些拓展思路或者动脑筋的题,惩罚他们的效果远不如加以鼓励的效果,经过我单聊的孩子在课堂上明显提升了积极思考积极性,在做作业时,做题的正确率也提高了很多。初步掌握住感觉后,我尝试在课堂上和课下利用课间操回来和吃饭前的时间,开始抓

班中基础较弱的孩子,这些孩子本身上课有些注意力不集中,课下做作业也是不太上心。多给他们一些时间和耐心,用心给他们讲解,这些基础弱的孩子进步较慢,但是这些孩子态度慢慢上来了。 沟通从用心开始,相信每个孩子都有自己的闪光点,只是有些孩子基础好,有些孩子基础弱。让孩子在一种轻松的环境中能主动学习这要比简单的教学要艰难的多。培养起孩子们这种习惯,靠简单的急躁和发火只会让孩子离老师越来越远,所以用心沟通,让孩子愿意靠近老师,也更愿意听老师的教导,愿意去主动学习,赢得老师的表扬。

用心沟通

沟通从心开始——用一颗真诚的心去待人处事 “沟通”代表人相互之间理解和信任。“从心开始”表明用真心和真诚筑起心与心之间的桥梁。“从心开始”是沟通的基石和最高境界,只有用真心、用真诚去传情达意,才能使彼此的交流更为顺畅、更为精彩。 在我们日常生活于工作中,做人要用心,用心去感受别人做的事,用心去对待他人。当看到你的朋友产生误解的时候,走上前去把误会解除;当朋友在生活中资源紧缺、生活拮据时,尽自己所能对他施以援手,助其度过难关;当同事焦头烂额的忙于棘手的事情时,不是有句老话叫:“三个臭皮匠抵过一个诸葛亮”,及时帮他出谋划策,他将对你感激不尽。这些我们在生活中处处可见的事实,都是用心去沟通最好的例证。 大家在广告中常见到这样的标语——沟通从心开始。这是中国移动的企业定位,“沟通从心开始”,既是对中国移动历史和现实的写照,也是对未来发展的牵引;既是一种经营方式,也是对社会风尚的倡导。这简简单单的六个字同样可以作为我公司每位员工的警示牌,只要我们每个人从内心去沟通,去做事,才能被领导认可,让领导在第一时间掌握工作进展状态,尽早得到领导的帮助和指点,及时发现工作中存在的问题和不足,并提出指导性的意见。只有有效的沟通,才能上下一致、齐心协力,提升工作效率,把公司越办越强。 那么我们日常工作中有哪些不当的沟通例子?怎样做才是有效的沟通呢? “如果您的意思正是这样,那又为何不这么说?” “我希望他们把话说明白点。” “我不敢肯定自己该做什么。” “他(她)开玩笑时,我希望能明白。” “我实在没听明白。”“恩,应该是这样”等等,这样的一些例子,我们耳熟能详。当我们意识到某件事情没做好时,我们总会把它归因于“思维混乱”所致,可是,却忽略了“沟通”的重要性,是无效的沟通让我们词不达意,语焉不详。要铭记:别人不理解你的话是你没表述清楚而非他人不理解,如果你表述的很清楚,都不是三岁小孩,又有谁理解不了呢?有了问题,请“自省、反思”,这也是我们工作中应当时刻注意的。 同时防止沟通障碍,也是我们需要注意的。那么我们就应当树立正确的印象,一要注意外表:着装时不拘礼节表明您要么对交流沟通的另一方漠不关心,要么您想先声夺人。破烂的牛仔裤和邋里邋遢的运动鞋与笔挺气派的西装给人以截然不同的印象。根据场合的不同,两种着装风格都会给人以完全错误的信息。二要注意措辞:不假思索地使用乡言俚语会得罪他人,也会扭曲信息。举个例说,私下里把顾客或主顾叫作“伙计”似乎给人以一种哥们义气的感觉。但它也不知不觉地传达出对别人的轻慢。三要注意拖沓:不准时赴约表明您不把别人当回事。如果某人守时,别人就会认为他很在意,把别人放在心上,但如果总是迟到,就会给人这样的印象,即沟通的内容是不重要的。 所以要做到有效的沟通,首先注意着装,准确用语,具备正确的时间观,其次与人交流要控制自身情绪,不能意气用事。同时不可主观臆断,完全的不主观是不可能的,但要尽全力避免。再次就是要善于聆听,要用心去考虑对方的感受,做到换位思考,也就是俗话说的:“要是换了你怎么办”。当然最重要的就是要建立良好的沟通氛围,不是有句老话叫:“伸手不打笑脸人”,只要我们时时微笑待人,那么我们将会领略别人的善意。

视频监控系统控件安装(从IE访问)

使用IE访问监控设备的时候,会自动从设备上下载控件并自动注册。当控件HCNetVideoActiveX.cab没有下载或注册成功的时候,则不能正常访问设备。 安装HCNetVideoActiveX.cab控件的方法如下: 1.使用IE访问前的注意事项: 降低IE的安全级别,选择IE“工具”->“Internet选项”->“安全”->“自定义级别”,将涉及到控件下载运行和脚本运行的选项都设置成“启用”和“提示”。然后再打开监控的IP地址,会自动安装控件。 2.使用IE访问的时候提示“网页上有错误”或者有“×”的显示 出现该情况,很有可能是控件没有下载成功或则有残余的控件相关内容没有删除。可参考3.清除控件的方法进行清除处理后,在设置安全级别后进行访问。 3.清除控件的方法: 1.关闭IE,进入Windows系统目录下,找到Downloaded ProgramFiles文件夹中的相关控件信息是否还在,若在,将其删除。(HCNetVideoActiveX.cab对应HCNetVideoActiveX Control,NewHCNetActiveX.cab对应NewHCNetActiveX Control) 2.进入system32文件夹下,确认是否还有残留的相关文件,若存在将其删除。如果是XP 的操作系统,还需要将Windows下LastGood文件夹中的相关文件删除。 HCNetVideoActiveX.cab的相关文件是 HCNetVideoActiveX.ocx,HCNetSDK.dll,playm4.dllShowHCRemCfgWnd.dll RemoteCfgRes_CHI.dll,RemoteCfgRes_ENG.dll,RemoteCfgRes_TRAD.dll. NewHCNetActiveX.cab的相关文件是 newocx.ocx,HCNetSDK.dll, playm4.dll,langchg.dll,ShowHCRemCfgWnd.dll,RemoteCfgRes_CHI.dll, RemoteCfgRes_ENG.dll,RemoteCfgRes_TRAD.dll. 3.在“开始”的“运行”中输入:regedit进入注册表,在“我的电脑”下的第一个文件夹“HKE_CLASSES_ROOT”下查找相关内容,如果存在,则是控件手动注册后,没有手动注销掉,需要用手动注销控件方法将其销毁。 说明:该情况一般适用于有我们提供的控件包,并使用其进行手动注册的情况。具体方法见4.手动注册的方法。 4.如果完成上述步骤后,还是无法下载控件,建议重启下电脑或换台电脑测试。IE浏览涉及到的内容较多,系统其他的插件有可能造成OCX控件下载不成功。 4.手动注册的方法:

用心沟通 做孩子的朋友

用心沟通做孩子的朋友 孩子是我们每个家庭的希望,家庭又是孩子健康成长的摇篮,教育子女是我们每个做父母的天职,家长教育对孩子的影响是潜移默化、天长地久的。以下是我的一些体会,从三个方面来阐述: 一、加强与孩子的沟通和交流,做孩子的朋友。 孩子进入初一后,可能是青春期的缘故,越来越觉得她与我们家长有抵触情绪,也不愿意多讲学校里发生的事,学习情况从不愿讲。怎么回事呢?是不是我以家长的身份与她说话使她反感? 于是,我放下家长的架子经常有意无意地讲一些自己单位的事及自己在工作上碰到的困难。渐渐地,孩子也对我讲一些学校里和学习上的事。对于她学习上的失误我从不直接批评,而是以鼓励和提出希望为主。当孩子考试成绩不理想,回到家看着我的脸色,小心翼翼地告诉我时,我会很平静地跟她交流一下为什么没考好,是因为不会做呢还是其它原因?因为我像朋友似的与她交流,所以她也会告诉我说:“这道题是不会做,那道题是粗心,如果不是自己太粗心,成绩一定会达到多少分。”这时我就会顺势地鼓励她:“不要紧,知道自己的缺点,以后自己上课听仔细,不懂及时问老师,计算时细心点,下次一定会考出好成绩。”顺便再给她讲一个粗心造成不良后果的小故事。 之后有时从学校回来她有时会很主动的把在校内的事情、学习情况和想法告诉我,我也会很认真地听,帮她分析原因、提点想法、供她参考。虽然有时还是免不了不认真、粗心,这时我就会和她开玩笑的说:“什么时候你可以不说如果……”这时她会微笑着说:“老爸别说了,我知道了,要淡定。” 二、注重孩子的品德教育和良好性格的发展。 现在的孩子都是独生子女,家里都是万般的宠爱,也造就他们以自我为中心,从来不考虑别人,也不懂得关心别人。作为家长,我也是处处尽量注意自已的一言一行,尽量不把自已一些情绪、工作压力带给她,以自已较好行为来影响她,凡事都从正面去教育孩子,遇到周遭有一些负面的不良的影响,也会从成人的角度指出和她一起来讨论,让她懂得判断是非的能力。 只要有时间都会抽空和她沟通,让她说说学校的事情和同学相处等等,有的时候遇到问题,还会帮她分析一下,所以女儿也很乐意与我交流。作为家长,我也一直要求自已尽量保

Shaft Alignment

The Lifetime Reliability Solutions Certificate Course in Maintenance and Reliability Module 4 – Precision Maintenance Techniques for Machinery Session 18 Machine Installation – Shaft Alignment 1. Introduction There is no dispute between vibration and reliability trainers, practitioners and commentators that misalignment, and related problems, is the principal cause of problems in rotating machinery. It is generally accepted that this is in the order of 50% of adverse vibration cases, it will of course vary from industry to industry. Attention to alignment issues alone would be a very productive place to start any reliability programme. Unlike bearings, there are no published standards for alignment tolerances. Those that have been prepared have been by industry interest groups, such as API, or by trainers who have had access to a wide input from industry as to what is effective and produces worthwhile results. A popular misconception is that flexible couplings will accommodate misalignment without detriment to other components in the machine, and adopt those criteria. The criteria given for couplings is related to the transmission of the rated torque, they give no consideration to the bearings or seals etc. There are numerous problems which have an influence upon the final alignment result and it is important to address these. Where these other issues have not been attended to an alignment task can take many hours longer than one where they have been, and the final result is most probably not so good or enduring. There is a truth that correcting the contributory problems is probably more important, and ultimately profitable, than the actual alignment itself. This session will look at these related problems and at the techniques of alignment. 30-40

用心沟通做朋友一起学习共进步

用心沟通做朋友一起学习共进步 ―――浅谈孩子的教育问题说起自己的孩子教育问题,大家都是一肚子苦水,现在的家庭大多都是一个孩子,奶奶疼,姥姥爱的,很是溺爱,孩子慢慢就有了这样或那些的问题。作为父母就不知道怎么才好,我也迷茫过,也无所适从过,但是静下心来想想,这样也解决不了问题,孩子的教育第一责任还是在父母,必须从自身做起,慢慢的孩子有了进步。我觉得在教育孩子上,作为父母应该注意以下几个方面: 一、用真心与孩子平等的交流,做孩子的好朋友 大家都在讲好孩子是夸出来的,但是做到这一点又有几个呢?那个做父母的看到自己的孩子犯了错误不发火呢?那个做家长的看到自己的孩子学习不好不生气呢?发火了生气了就会骂他打他,但是这样也解决不了问题的,怎么办呢?我想要是自己的好朋友有了这样的问题,我们会怎么样呢?肯定会坐下来帮他分析问题,解决问题。那么对待自己的孩子也可以静下心来帮他分析为什么会犯这样的错误,下次遇到这样的问题该怎么样解决,一起分析在学习上存在什么样的问题,找到适合他的学习方法,要像帮助朋友那样帮助他,不要用家长的命令的、批评的、高高在上的口气和孩子说话。孩子虽然小,才七八岁,可他们也有了自己的思想,有自己的个性。作为家长应该尊重他的想法,自己的孩子可能在某个方面不如别人,但他也会有自己的优点,所以要多夸奖,多发现孩子的优点。可以利用上下学的路上让他讲自己学校的有趣事,有几个好朋友啊,有什么好玩的啊。这样就能基本了解孩子在学校里所发生的重要事情。接下来我和孩

子讨论并评价这些事情,站在各个角度去分析这些事情。这样时间长了,就会提高孩子判断问题和分析问题的能力,并且还能养成善于观察的习惯,另一方面还锻炼了他的语言表达能力。只要这样坚持经常和孩子谈话,他会觉得你很关心他学校的生活,他会把他在学校的喜怒哀乐都告诉你,你也就可以对他进行适时的指导。我觉得对自己的孩子要做到“三个知道,一个跟上”即知道孩子在干什么、怎么干的、干的怎么样,表扬要跟上。 二、做好与孩子的学校、老师的沟通,共同做好孩子的教育 我们家长的如何配合学校和老师做好对孩子的教育工作,是相当重要的。首先我们家长对孩子的教育问题要有一个正确的认识,对孩子的教育不能单纯依靠学校教育来完成,而必须同时依靠学校教育、家庭教育和社会教育的通力合作。学校教育是一对多的教育,一门课的老师在课堂上对几十个孩子讲课,努力想让讲的内容使每个孩子都能理解,但是,不可能说老师对每个孩子都面面俱到地了解和帮助,这需要时间,这样我们就不能对老师过分苛求,应该努力在孩子心目中树立老师的形象,这一点非常重要。如果我们能够坚持这样树立老师在孩子心目中的地位,孩子就会觉得他的老师很了不起,他就会认真地接受老师的教育,学习成绩也就会更好。家长们可能都有体会,老师说一句话,胜于家长说十句。而且家长的文化程度各不相同,即使文化程度高的家长,但我们小时候受的教育和现在的孩子不同,有时孩子的题目连家长一时都做不出来,所以孩子文化知识的教育主要还得依靠老师和学校。然而家庭教育又有学校教育无法替代的优势。家庭教育是多对一的教育,而且孩子在家里的时间也更长,所以

相关文档