文档库 最新最全的文档下载
当前位置:文档库 › 微分方程 刘向

微分方程 刘向

微分方程   刘向
微分方程   刘向

微分方程

微分方程的基本概念:

微分方程的解—使方程成为恒等式的函数

通解:解中所含独立的任意常数的个数与方程的阶数相同

特解:不含任意常数的解, 其图形称为积分曲线

定解条件:确定通解中任意常数的条件

n 阶方程的初始条件(或初值条件):

)1(00)1(0

000)(,,)(,)(--='='=n n y x y y x y y x y 含未知函数及其导数的方程叫做微分方程 .

一般地 , n 阶常微分方程的形式是0),,,,()(='n y

y y x F ),,,,()1()(-'=n n y y y x f y ( n 阶显式微分方程) 微分方程分类

1.常微分方程

2.偏微分方程

可分离变量方程:有时会使用隐函数求导

u e e e u

u

u d 1)1(?+-+ 齐次方程 一、齐次方程

二、可化为齐次方程

[一]形如)(d d x

y x y ?=的方程叫做齐次方程 . 令,x y u =,则x u y =x

u x u x y d d d d += 代入原方程得)(d d u x u x

u ?=+ 分离变量:x x

u u u

d )(d =-?

两边积分, 得??=-x x u u u

d )(d ?

积分后再用x

y 代替 u, 便得原方程的通解。 [二] *二、可化为齐次方程的方程

111d d c y b x a c y b x a x y ++++=,)0(212≠+c c (见PPT ) 一阶线性微分方程

一、一阶线性微分方程

一阶线性微分方程标准形式:)()(d d x Q y x P x

y =+ 1.解齐次方程:0)(d d =+y x P x

y 故通解为:x x P e

C y d )(?-= 2. 解非齐次方程:)()(d d x Q y x P x

y =+ 故原方程的通解;??????+??=?-C x e x Q e

y x x P x x P d )(d )(d )( 即=y ?-x x P Ce d )(x e x Q e x x P x x P d )(d )(d )(??+?

- 二、伯努利 ( Bernoulli )方程

伯努利方程的标准形式:)1,0()()(d d ≠=+n y x Q y x P x y n

全微分方程

一、全微分方程

使),(若存在y x u y y x Q x y x P y x u d ),(d ),(),(d +=则称 0d ),(d ),(=+y y x Q x y x P 为全微分方程 ( 又叫做恰当方程 )

二次微分方程的通解

第六节 二阶常系数齐次线性微分方程 教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数非齐 次线性微分方程的解法 教学重点:二阶常系数齐次线性微分方程的解法 教学过程: 一、二阶常系数齐次线性微分方程 二阶常系数齐次线性微分方程 方程 y py qy 0 称为二阶常系数齐次线性微分方程 其中p 、q 均为常数 如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解 那么y C 1y 1C 2y 2就是它的通解 我们看看 能否适当选取r 使y e rx 满足二阶常系数齐次线性微分方程 为此将 y e rx 代入方程 y py qy 0 得 (r 2 pr q )e rx 0 由此可见 只要r 满足代数方程r 2 pr q 0 函数y e rx 就是微分方程的解 特征方程 方程r 2 pr q 0叫做微分方程y py qy 0的特征方程 特征方程 的两个根r 1、r 2可用公式 2 422,1q p p r -±+-= 求出 特征方程的根与通解的关系 (1)特征方程有两个不相等的实根r 1、r 2时 函数x r e y 11=、x r e y 22=是方程的两个线性无 关的解

这是因为 函数x r e y 11=、x r e y 22=是方程的解 又x r r x r x r e e e y y )(212121-==不是常数 因此方程的通解为 x r x r e C e C y 2121+= (2)特征方程有两个相等的实根r 1r 2时 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解 这是因为 x r e y 11=是方程的解 又 x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+'' 0 )()2(121111=++++=q pr r xe p r e x r x r 所以x r xe y 12=也是方程的解 且 x e xe y y x r x r ==1112不是常数 因此方程的通解为 x r x r xe C e C y 1121+= (3)特征方程有一对共轭复根r 1, 2i 时 函数y e ( i )x 、y e (i )x 是微分方程的 两个线性无关的复数形式的解 函数y e x cos x 、y e x sin x 是微分方程的两个线性无关 的实数形式的解 函数y 1e ( i )x 和y 2e (i )x 都是方程的解 而由欧拉公式 得 y 1e ( i )x e x (cos x i sin x ) y 2e ( i )x e x (cos x i sin x ) y 1y 22e x cos x ) (2 1cos 21y y x e x +=βα y 1y 22ie x sin x ) (21sin 2 1y y i x e x -= βα 故e x cos x 、y 2e x sin x 也是方程解 可以验证 y 1e x cos x 、y 2e x sin x 是方程的线性无关解

3.1 微分方程模型的建模步骤

第3章微分方程模型 3.1 微分方程模型的建模步骤 在自然科学以及工程、经济、医学、体育、生物、社会等学科中的许多系统,有时很难找到该系统有关变量之间的直接关系——函数表达式,但却容易找到这些变量和它们的微小增量或变化率之间的关系式,这时往往采用微分关系式来描述该系统——即建立微分方程模型。我们以一个例子来说明建立微分方程模型的基本步骤。 例1 某人的食量是10467(焦/天),其中5038(焦/天)用于基本的新陈代谢(即自动消耗)。在健身训练中,他所消耗的热量大约是69(焦/公斤?天)乘以他的体重(公斤)。假设以脂肪形式贮藏的热量100%地有效,而1公斤脂肪含热量41868(焦)。试研究此人的体重随时间变化的规律。 模型分析 在问题中并未出现“变化率”、“导数”这样的关键词,但要寻找的是体重(记为W )关于时间t 的 函数。如果我们把体重W 看作是时间t 的连续可微函数,我们就能找到一个含有的dt dW 微分方程。 模型假设 1.以)(t W 表示t 时刻某人的体重,并设一天开始时人的体重为0W 。 2.体重的变化是一个渐变的过程。因此可认为 )(t W 是关于t 连续而且充分光滑的。 3.体重的变化等于输入与输出之差,其中输入是指扣除了基本新陈代谢之后的净食量吸收;输出就是进行健身训练时的消耗。 模型建立 问题中所涉及的时间仅仅是“每天”,由此,对于“每天” 体重的变化=输入-输出。 由于考虑的是体重随时间的变化情况,因此,可得 体重的变化/天=输入/天—输出/天。 代入具体的数值,得 输入/天 = 10467(焦/天)—5038(焦/天)=5429(焦/天), 输出/天 = 69(焦/公斤?天)×W (公斤)= 69W (焦/天)。 体重的变化/天=t W ??(公斤/天)dt dW t =→?0 考虑单位的匹配,利用 “公斤/天=公斤焦天 焦/41868 /”, 可建立如下微分方程模型

二次微分方程的通解

教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数非齐 次线性微分方程的解法 教学重点:二阶常系数齐次线性微分方程的解法 教学过程: 一、二阶常系数齐次线性微分方程 二阶常系数齐次线性微分方程 方程 y py qy 0 称为二阶常系数齐次线性微分方程 其中p 、q 均为常数 如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解 那么y C 1y 1C 2y 2就是它的通解 我们看看 能否适当选取r 使y e rx 满足二阶常系数齐次线性微分方程 为此将 y e rx 代入方程 y py qy 0 得 (r 2 pr q )e rx 0 由此可见 只要r 满足代数方程r 2 pr q 0 函数y e rx 就是微分方程的解 特征方程 方程r 2 pr q 0叫做微分方程y py qy 0的特征方程 特征方程 的两个根r 1、r 2可用公式 2 422,1q p p r -±+-= 求出 特征方程的根与通解的关系 (1)特征方程有两个不相等的实根r 1、r 2时 函数x r e y 11=、x r e y 22=是方程的两个线性无 关的解 这是因为

函数x r e y 11=、x r e y 22=是方程的解 又x r r x r x r e e e y y )(212121-==不是常数 因此方程的通解为 x r x r e C e C y 2121+= (2)特征方程有两个相等的实根r 1r 2时 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解 这是因为 x r e y 11=是方程的解 又 x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+'' 0 )()2(121111=++++=q pr r xe p r e x r x r 所以x r xe y 12=也是方程的解 且x e xe y y x r x r ==1112不是常数 因此方程的通解为 x r x r xe C e C y 1121+= (3)特征方程有一对共轭复根r 1, 2i 时 函数y e ( i )x 、y e (i )x 是微分方程的 两个线性无关的复数形式的解 函数y e x cos x 、y e x sin x 是微分方程的两个线性无关 的实数形式的解 函数y 1e ( i )x 和y 2e (i )x 都是方程的解 而由欧拉公式 得 y 1e ( i )x e x (cos x i sin x ) y 2e ( i )x e x (cos x i sin x ) y 1y 22e x cos x ) (2 1cos 21y y x e x +=βα y 1y 22ie x sin x ) (21sin 21y y i x e x -=βα 故e x cos x 、y 2e x sin x 也是方程解 可以验证 y 1e x cos x 、y 2e x sin x 是方程的线性无关解 因此方程的通解为

偏微分方程理论的归纳与总结

偏微分方程基本理论的归纳与总结 偏微分方程是储存自然信息的载体,自然现象的深层次性质可以通过数学手段从方程中推导出来.最为一种语言,微分方程在表达自然定律方面比文字具有更强的优越性.微分方程是一个庞大的体系,它的基本问题就是解的存在性和唯一性.该学科的主要特征是不存在一种可以统一处理大多数偏微分方程的适定性问题的普适的方法和理论.这是与常微分方程有显著差异的地方.这种特性使得我们将方程分为许多种不同类型,这种分类的依据主要来自数学与自然现象这两个方面.从数学的角度,方程的类型一般总是对应于一些普遍的理论和工具.换句话讲,如果能建立一个普遍性的方法统一处理一大类方程问题,那么这个类型就被划分出来.而从自然现象的角度,我们又可以根据不同的运动类型以及性质将方程进行分类.当然这两种方式常常不能截然区分,通常它们是相互关联的,这就造成方程的概念有许多重叠现象. 根据数学的特征,偏微分方程主要被分为五大类,它们是: (1)线性与拟微分方程,研究这类方程的主要工具是Fourier分析方法; (2)椭圆型方程,它的方法是先验估计+泛函分析手段; (3)抛物型方程,主要是Galerkin方法,算子半群,及正则性估计; (4)双曲型方程,对应于Galerkin方法; (5)一阶偏微分方程,主要工具是数学分析方法. 从自然界的运动类型出发,偏微分方程可分为如下几大类: (1)稳态方程(非时间演化方程); (2)耗散型演化方程,这类方程描述了时间演化过程中伴有能量损耗与补充的自然运动.相变与混沌是它们的主要内容; (3)保守系统,如具有势能的波方程.该系统控制的运动是与外界隔离的,及无能量输入,也无能量损耗.行波现象与周期运动是它们的主要特征; (4)守恒律系统,这类方程是一阶偏微分方程组,它们与保守系统具有类似的性质,可视为物质流的守恒.激波行为是由守恒律系统来控制. 下面具体来介绍三类经典方程: 三类典型方程:椭圆型方程,抛物型方程,双曲型方程,即偏微分方程模型的建立,解问题的解法以及三类典型方程的基本理论. 关于三类典型方程定解问题的解题方法,它们主要是分离变量法、积分变换法、特征线法、球面平均法、降维法和Green 函数方法. 关于三类典型方程的基本理论——极值原理和能量估计,并由此给出了解的唯一性和稳定性的相关结论. 具体来说,关于二阶线性椭圆形方程,我们研究它的古典解和弱解.前者主要介绍了基本解、调和函数的基本性质、Green 函数、极值原理、最大模估计、能量方法和变分原理;而后者的研究则需要知道Sobolev空间的相关知识再加以研究;关于二阶线性抛物型方程,主要研究它的Fourier 变换、特殊的求解方法、基本解、方程式和方程组的最大值原理以及最大模估计、带有非经典边界条件和非局部项的方程式的最大值原理及能量方法;关于二阶线性双曲型方程,主要研究初值问题的求解方法、初值问题的能量不等式与解的适定性、以及混合问题的能量模估计与解的适定性. 椭圆、抛物和双曲这三类线性偏微分方程解的适定性问题,它们分别以拉普拉斯方程、热传导方程和波动方程作为代表.具体地说,对于某些规则的求解区域试图求出满足特定线性偏微分方程和定解条件的具体解,这就决定了存在性问题;再利用方程本身所具有的特殊性质,将证明所求解是唯一的,也就解决了唯一性问题;关于连续依赖性问题,需要在不同函数空

二阶线性微分方程的解法

二阶常系数线性微分方程 一、二阶常系数线形微分方程的概念 形如 )(x f qy y p y =+'+'' (1) 的方程称为二阶常系数线性微分方程.其中p 、q 均为实数,)(x f 为已知的连续函数. 如果0)(≡x f ,则方程式 (1)变成 0=+'+''qy y p y (2) 我们把方程(2)叫做二阶常系数齐次线性方程,把方程式(1)叫做二阶常 系数非齐次线性方程. 本节我们将讨论其解法. 二、二阶常系数齐次线性微分方程 1.解的叠加性 定理1 如果函数1y 与2y 是式(2)的两个解, 则2211y C y C y +=也是 式(2)的解,其中21,C C 是任意常数. 证明 因为1y 与2y 是方程(2)的解,所以有 0111 =+'+''qy y p y 0222 =+'+''qy y p y 将2211y C y C y +=代入方程(2)的左边,得 )()()(22112211221 1y C y C q y C y C p y C y C ++'+'+''+'' =0)()(2222111 1=+'+''++'+''qy y p y C qy y p y C 所以2211y C y C y +=是方程(2)的解. 定理1说明齐次线性方程的解具有叠加性. 叠加起来的解从形式看含有21,C C 两个任意常数,但它不一定是方程式(2)的通解. 2.线性相关、线性无关的概念

设,,,,21n y y y 为定义在区间I 内的n 个函数,若存在不全为零的常数 ,,,,21n k k k 使得当在该区间内有02211≡+++n n y k y k y k , 则称这n 个函数在区间I 内线性相关,否则称线性无关. 例如 x x 22sin ,cos ,1在实数范围内是线性相关的,因为 0sin cos 12 2≡--x x 又如2,,1x x 在任何区间(a,b)内是线性无关的,因为在该区间内要使 02321≡++x k x k k 必须0321===k k k . 对两个函数的情形,若=21y y 常数, 则1y ,2y 线性相关,若≠2 1y y 常数, 则1y ,2y 线性无关. 3.二阶常系数齐次微分方程的解法 定理 2 如果1y 与2y 是方程式(2)的两个线性无关的特解,则 212211,(C C y C y C y +=为任意常数)是方程式(2)的通解. 例如, 0=+''y y 是二阶齐次线性方程,x y x y cos ,sin 21==是它的 两个解,且≠=x y y tan 2 1常数,即1y ,2y 线性无关, 所以 x C x C y C y C y cos sin 212211+=+= ( 21,C C 是任意常数)是方程0=+''y y 的通解. 由于指数函数rx e y =(r 为常数)和它的各阶导数都只差一个常数因子, 根据指数函数的这个特点,我们用rx e y =来试着看能否选取适当的常数r , 使rx e y =满足方程(2).

Maab求解微分方程组及偏微分方程组

第四讲 Matlab 求解微分方程(组) 理论介绍:Matlab 求解微分方程(组)命令 求解实例:Matlab 求解微分方程(组)实例 实际应用问题通过数学建模所归纳得到的方程,绝大多数都是微分方程,真正能得到代数方程的机会很少.另一方面,能够求解的微分方程也是十分有限的,特别是高阶方程和偏微分方程(组).这就要求我们必须研究微分方程(组)的解法:解析解法和数值解法. 一.相关函数、命令及简介 1.在Matlab 中,用大写字母D 表示导数,Dy 表示y 关于自变量的一阶导数,D2y 表示y 关于自变量的二阶导数,依此类推.函数dsolve 用来解决常微分方程(组)的求解问题,调用格式为: X=dsolve(‘eqn1’,’eqn2’,…) 函数dsolve 用来解符号常微分方程、方程组,如果没有初始条件,则求出通解,如果有初始条件,则求出特解. 注意,系统缺省的自变量为t 2.函数dsolve 求解的是常微分方程的精确解法,也称为常微分方程的符号解.但是,有大量的常微分方程虽然从理论上讲,其解是存在的,但我们却无法求出其解析解,此时,我们需要寻求方程的数值解,在求常微分方程数值解方面,MATLAB 具有丰富的函数,我们将其统称为solver ,其一般格式为: [T,Y]=solver(odefun,tspan,y0) 说明:(1)solver 为命令ode45、ode23、ode113、ode15s 、ode23s 、ode23t 、ode23tb 、ode15i 之一. (2)odefun 是显示微分方程'(,)y f t y =在积分区间tspan 0[,]f t t =上从0t 到f t 用初始条件0y 求解. (3)如果要获得微分方程问题在其他指定时间点012,,,,f t t t t L 上的解,则令tspan 012[,,,]f t t t t =L (要求是单调的). (4)因为没有一种算法可以有效的解决所有的ODE 问题,为此,Matlab 提供了多种求解器solver ,对于不同的ODE 问题,采用不同的solver.

数学建模之微分方程建模与平衡点理论

微分方程 列微分方程常用的方法: (1)根据规律列方程 利用数学、力学、物理、化学等学科中的定理或经过实验检验的规律来建立微分方程模型。 (2)微元分析法 利用已知的定理与规律寻找微元之间的关系式,与第一种方法不同的是对微元而不是直接对函数及其导数应用规律。 (3)模拟近似法 在生物、经济等学科的实际问题中,许多现象的规律性不很清楚,即使有所了解也是极其复杂的,建模时在不同的假设下去模拟实际的现象,建立能近似反映问题的微分方程,然后从数学上求解或分析所建方程及其解的性质,再去同实际情况对比,检验此模型能否刻画、模拟某些实际现象。 一、模型的建立与求解 1.1传染病模型 (1)基础模型 假设:t 时刻病人人数()x t 连续可微。每天每个病人有效接触(使病人治病的接触)的人数为λ,0t =时有0x 个病人。 建模:t 到t t +?病人人数增加 ()()()x t t x t x t t λ+?-=?(1) 0,(0)dx x x x dt λ==(2) 解得: 0()t x t x e λ=(3) 所以,病人人数会随着t 的增加而无限增长,结论不符合实际。 (2)SI 模型

假设:1.疾病传播时期,总人数N 保持不变。人群分为两类,健康者占总人数的比例为s(t),病人占总人数的比例为i(t)。 2.每位病人每天平均有效接触λ人,λ为日接触率。有效接触后健康者变为病人。 依据:患病人数的变化率=Ni(t)(原患病人数)*λs(t)(每个病人每天使健康人变为病人的人数) 建模: di N Nsi dt λ=(4) 由于 ()()1s t i t +=(5) 设t=0时刻病人所占的比例为0i ,则可建立Logistic 模型 0(1),(0)di i i i i dt λ=-=(6) 解得: 01()111kt i t e i -= ??+- ??? (7) 用Matlab 绘制图1()~i t t ,图2 ~di i dt 图形如下, 结论:在不考虑治愈情况下 ①当12i = 时di dt 达到最大值m di dt ?? ???,这时101ln 1m t i λ-??=- ???

偏微分方程理论学习-USTC

偏微分方程理论学习 一. 偏微分方程发展简介 1. 常微分方程 十七世纪微积分创立之后,常微分方程理论立刻就发展起来,当时应用常微分方程,解决几何与理学中的新问题。结果是在天体理学中不仅能得到并解释早先已经知晓的那些事实,而且得到了性的发现(例如,海王星的发现就是在对微分方程分析的基础上作出的)。 2. 偏微分方程 偏微分方程的研究要晚得多,对物理学中出现的偏微分方程研究在十八世纪中叶导致了分析学的一个新的分支------数学物理方程的建立。 J.达朗贝尔(D’Alembert )(1717-1783)、L.欧拉(Euler )(1707-1783)、D.伯努利(Bernoulli )(1700-1782)、J.拉格朗日(Lagrange )(1736-1813)、P.拉普拉斯(Laplace )(1749-1827)、S.泊松(Poisson )(1781-1840)、J.傅里叶(Fourier )(1768-1830)等人的工作为这一学科分支奠定了基础。它们在考察具体的数学物理问题中,所提出的思想与方法,竟适用于众多类型的微分方程,成为十九世纪末偏微分方程一般理论发展的基础。 十九世纪,偏微分方程发展的序幕是由法国数学家傅里叶拉开的,他于1822年发表的《热的解析理论》是数学史上的经典文献之一。傅里叶研究的主要是吸热或放热物体内部任何点处的温度随空间和时间的变化规律。在对物体的物理性状作出一定的限制(如均匀、各向同性)后,他根据物理原理推导出了三维空间的热传导方程 其中k 是一个参数,其值依赖于物体的质料。傅里叶当时解决的是如下特殊的热传导问题:设所考虑的物体为两端保持在温度0度、表面绝热且无热流通过的柱轴。在此情形下求解上述热传导方程,因为柱轴只涉及一维空间,所以这个问题也就是求解偏微分方程 ??? ????<<=>==??=??,0),()0,(,0,0),(,0),0(T T 222l x x f x T t t l T t T x k x , 其中后面两项分别是边界条件和初始条件。傅里叶为解这个方程用了分离变量法,他得到满足方程和边界条件的级数解为 为了满足初始条件,必须有

高阶线性微分方程常用解法介绍

高阶线性微分方程常用解法简介 关键词:高阶线性微分方程 求解方法 在微分方程的理论中,线性微分方程是非常值得重视的一部分内容,这不仅 因为线性微分方程的一般理论已被研究的十分清楚,而且线性微分方程是研究非线性微分方程的基础,它在物理、力学和工程技术、自然科学中也有着广泛应用。下面对高阶线性微分方程解法做一些简单介绍. 讨论如下n 阶线性微分方程:1111()()()()n n n n n n d x d x dx a t a t a t x f t dt dt dt ---++++= (1),其中()i a t (i=1,2,3,,n )及f(t)都是区间a t b ≤≤上的连续函数,如果 ()0f t ≡,则方程(1)变为 1111()()()0n n n n n n d x d x dx a t a t a t x dt dt dt ---++++= (2),称为n 阶齐次线性微分方程,而称一般方程(1)为n 阶非齐次线性微分方程,简称非齐次线性微分方程,并且把方程(2)叫做对应于方程(1)的齐次线性微分方程. 1.欧拉待定指数函数法 此方法又叫特征根法,用于求常系数齐次线性微分方程的基本解组。形如 111121[]0,(3),n n n n n n n d x d x dx L x a a a x dt dt dt ---≡++++=其中a a a 为常数,称为n 阶常系数齐次线性微分方程。 111111111111[]()()()n t n t t t t n n n n n n n t t n n n n n n n d e d e de L e a a a e dt dt dt a a a e F e F a a a n λλλλλλλλλλλλλλλλ---------≡++++=++++≡≡++++其中=0(4)是的次多项式. ()F λ为特征方程,它的根为特征根. 1.1特征根是单根的情形 设12,,,n λλλ是特征方程111()0n n n n F a a a λλλλ--≡++++=的n 个彼此不相等的根,则应相应地方程(3)有如下n 个解:12,,,.n t t t e e e λλλ(5)我们指出这n 个解在区间a t b ≤≤上线性无关,从而组成方程的基本解组. 如果(1,2,,)i i n λ=均为实数,则(5)是方程(3)的n 个线性无关的实值 解,而方程(3)的通解可表示为1212,n t t t n x c e c e c e λλλ=+++其中12,,,n c c c 为任意常数. 如果特征方程有复根,则因方程的系数是实常数,复根将称对共轭的出现.设1i λαβ=+是一特征根,则2i λαβ=-也是特征根,因而于这对共轭复根

二阶常系数齐次线性微分方程的通解证明教学提纲

二阶常系数齐次线性微分方程的通解证明

二阶常系数齐次线性微分方程的通解证明 来源:文都教育 在考研数学中,微分方程是一个重要的章节,每年必考,其中的二阶常系数齐次线性微分方程是一个基本的组成部分,它也是求解二阶常系数非齐次线性微分方程的基础,但很多同学对其求解公式不是十分理解,做题时也感到有些困惑,为了帮助大家对其通解公式有更深的理解和更牢固的掌握,文都网校的蔡老师下面对它们进行一些分析和简捷的证明,供考研的朋友们学习参考。 一、二阶常系数齐次线性微分方程的通解分析 通解公式:设0y py qy '''++=,,p q 为常数,特征方程02=++q p λλ的特征根为 12,λλ,则 1)当12λλ≠且为实数时,通解为1212x x y C e C e λλ=+; 2)当12λλ=且为实数时,通解为1112x x y C e C xe λλ=+; 3)当12,i λλαβ=±时,通解为12(cos sin )x y e C x C x αββ=+; 证:若02=++q p λλ的特征根为12,λλ,则1212(),p q λλλλ=-+ =,将其代入方程0y py qy '''++=中得1212()y py qy y y y λλλλ''''''++=-++= 212212()()()0y y y y y y y y λλλλλλ'''''''=---=---=, 令2z y y λ'=-,则11110x dz z z z z c e dx λλλ'-=? =?=,于是121x y y c e λλ'-=,由一阶微分方程的通解公式得 221212()()()1212[][]dx dx x x x y e c e e dx C e c e dx C λλλλλλ----??=+=+?? (1)

Matlab求解微分方程(组)及偏微分方程(组)

第四讲 Matlab 求解微分方程(组) 理论介绍:Matlab 求解微分方程(组)命令 求解实例:Matlab 求解微分方程(组)实例 实际应用问题通过数学建模所归纳得到的方程,绝大多数都是微分方程,真正能得到代数方程的机会很少.另一方面,能够求解的微分方程也是十分有限的,特别是高阶方程和偏微分方程(组).这就要求我们必须研究微分方程(组)的解法:解析解法和数值解法. 一.相关函数、命令及简介 1.在Matlab 中,用大写字母D 表示导数,Dy 表示y 关于自变量的一阶导数,D2y 表示y 关于自变量的二阶导数,依此类推.函数dsolve 用来解决常微分方程(组)的求解问题,调用格式为: X=dsolve(‘eqn1’,’eqn2’,…) 函数dsolve 用来解符号常微分方程、方程组,如果没有初始条件,则求出通解,如果有初始条件,则求出特解. 注意,系统缺省的自变量为t 2.函数dsolve 求解的是常微分方程的精确解法,也称为常微分方程的符号解.但是,有大量的常微分方程虽然从理论上讲,其解是存在的,但我们却无法求出其解析解,此时,我们需要寻求方程的数值解,在求常微分方程数值解方面,MATLAB 具有丰富的函数,我们将其统称为solver ,其一般格式为: [T,Y]=solver(odefun,tspan,y0) 说明:(1)solver 为命令ode45、ode23、ode113、ode15s 、ode23s 、ode23t 、ode23tb 、ode15i 之一. (2)odefun 是显示微分方程'(,)y f t y =在积分区间tspan 0[,]f t t =上从0t 到f t 用初始条件0y 求解. (3)如果要获得微分方程问题在其他指定时间点012,,, ,f t t t t 上的解,则令 tspan 012[,,,]f t t t t =(要求是单调的). (4)因为没有一种算法可以有效的解决所有的ODE 问题,为此,Matlab 提供

最新31微分方程与微分方程建模法汇总

31微分方程与微分方 程建模法

第三章微分方程模型 3.1微分方程与微分方程建模法 一、微分方程知识简介 我们要掌握常微分方程的一些基础知识,对一些可以求解的微分方程及其方程组,要求掌握其解法,并了解一些方程的近似解法。 微分方程的体系:(1)初等积分法(一阶方程及几类可降阶为一阶的方程) ?Skip Record If...?(2)一阶线性微分方程组(常系数线性微分方程组的解法) ?Skip Record If...?(3)高阶线性微分方程(高阶线性常系数微分方程解法)。其中还包括了常微分方程的基本定理。 0.常数变易法:常数变易法在上面的(1)(2)(3)三部分中都出现过,它是由线性齐次方程(一阶或高阶)或方程组的解经常数变易后求相应的非齐次方程或方程组的解的一种方法。 1.初等积分法:掌握变量可分离方程、齐次方程的解法,掌握线性方程的解法,掌握全微分方程(含积分因子)的解法,会一些一阶隐式微分方程的解法(参数法),会几类可以降阶的高阶方程的解法(恰当导数方程)。 分离变量法:(1)可分离变量方程: ?Skip Record If...? (2) 齐次方程:?Skip Record If...? 常数变易法:(1) 线性方程,?Skip Record If...??Skip Record If...?

(2) 伯努里方程,?Skip Record If...??Skip Record If...? 积分因子法:化为全微分方程,按全微分方程求解。 对于一阶隐式微分方程?Skip Record If...?有 参数法:(1) 不含x或y的方程:?Skip Record If...? (2) 可解出x或y的方程:?Skip Record If...? 对于高阶方程,有 降阶法:?Skip Record If...? 恰当导数方程 一阶方程的应用问题(即建模问题)。 2.一阶线性微分方程组:本部分主要内容有:一是一阶线性微分方程组的基本理论(线性齐次、非齐次微分方程组的通解结构,刘维尔公式等),二是常系数线性微分方程组的解法(求特征根,单根与重根[待定系数法]),三是常数变易法。本部分内容与线性代数关系密切,如线性空间,向量的线性相关与线性无关,基与维数,特征方程、特征根与特征向量,矩阵的若当标准型等。3.高阶线性微分方程:了解高阶线性微分方程的基本理论(线性齐次、非齐次微分方程的通解结构,刘维尔公式等); n阶线性常系数微分方程解法:(1)求常系数齐次线性微分方程基本解组的待定指数函数法;(2)求一般非齐次线性方程解的常数变易法;(3)求特

浅谈微分方程的起源与发展史

浅谈微分方程的起源与发展史 摘要:微分方程起源于17世纪,简单的微分方程分别是牛顿、莱布尼茨和伯努利从几何和力学问题上解决的问题。这些早期发现开始于1690年,这逐渐导致一些特殊的微分方程的“特殊技能”的发展。虽然这些特殊的技术只适用于相对较少的情况下,但是他们可以解决许多微分方程在力学和几何中的问题,所以,他们的研究具有非常重要的现实意义。这些特殊的方法和问题,将有助于我们解决很多问题。 引言:很多的科学问题是需要人们根据事物的变化率来确定事物的特征。比如,我们可以 试着用已知的速度或加速度来计算粒子的位置,又比如,一些放射性物质可能是已知的衰变率,这就要求我们在一个给定的时间内确定材料的总量。通过这些例子,我们可以发现,如果知道自变量、未知函数以及函数的导数(或者微分)组成的关系式,得到的就是微分方程。最后再通过微分方程求出未知函数。 关键字:微分方程起源发展史 一、微分方程的思想萌芽 微分方程就是联系着自变量,未知函数以及其导数的关系式。微分方程理论的发展是跟随着微积分理论的建立发展起来的,一般地,客观世界的时间要服从一定的客观规律,这种连接,用数学语言表达,即是抽象为微分方程,一旦获得或研究的解决方案是明确的空气动力学行为,变量之间的规律是一目了然的。例如在物体运动中,唯一的计算就与瞬间速度之间有着紧密的联系,其结果往往形成一个微分方程,一旦求出解或研究清楚气动力学行为,就明确的掌握了物体的运动规律。 1.1微分方程的起源:微分方程起源于17世纪,简单的微分方程分别是牛顿、莱布 尼茨和伯努利从几何和力学问题上解决的问题。这些早期发现开始于1690年,这逐渐导致一些特殊的微分方程的“特殊技能”的发展。 1.2微分方程在实际问题中的应用:运用微分方程理论解决一些实际问题,即根 据生物学,物理学,化学,几何学等学科的实际问题及相关知识建立微分方程,讨论该方程解的性质,并由所得的解或解的性质反过来解释该实际过程。物质运动和它的变化规律在数学上是用函数关系描述的,但是在实际问题中往往不能直接写出反映运动规律的函数,却比较容易建立这些变量与他们的导数之间的关系式,即微分方程。只有一个自变量的微分方程称为常微分方程,简称微分方程。 例1 传染病模型 传染病(瘟疫)经常在全世界各地流行,假设传染病传播期间其他地区的总 x,在t时的健康人数为)(t y,染病人数不变,为常数n,最开始的染病人数为 人数为)(t x。 因为总人数为常数n

高数(下)要点(含微分方程)——自己整理的

第六章 微分方程 一、一阶微分方程 1、一阶线性方程 )()(x Q y x P dx dy =+ ])([)()(C dx e x Q e y dx x P dx x P +?? =?-通解 2、伯努利方程 )1,0()()(d d ≠=+n y x Q y x P x y n ).()(d d 1111x Q y x P x y n n n =+?---令.1n y z -= 二、可降阶的高阶方程 1.)()(x f y n = n 次积分 2. )',("y x f y = 不显含y 令)('x p y =,化为一阶方程 ),('p x f p =。 3. )',("y y f y = 不显含自变量 令)('y p y =,dy dp p dx y d =22,化为一阶方程。 三、线性微分方程 )()()()(1)1(1)(x f y x a y x a y x a y n n n n =+'+++-- , 0)(≡x f 时称为齐次的,0)(≡/x f 称为非齐次的。 1.二阶线性齐次线性方程 0)()(=+'+''y x Q y x P y (1) 如果函数)(1x y 与)(2x y 是方程(1)的两个解, 则 )()(2211x y C x y C y += 也是(1)的解,其中21,C C 是任意常数。 如果)(1x y 与)(2x y 是方程(1)的两个线性无关的特解, 则 )()(2211x y C x y C y += (21,C C 是任意常数)是(1)的通解. 两个函数)(1x y 与)(2x y 线性无关的充要条件为

C x y x y ≡/) () (21(常数) 2.二阶线性非齐次线性方程 设 )(*x y 是二阶线性非齐次线性方程 )()()(x f y x Q y x P y =+'+'' 的一个特解,)(x Y 是它对应的齐次方程(1)的通解,则 )()(*x y x Y y += 是该方程 的通解. 设)(* 1x y 与 )(*2x y 分别是二阶线性非齐次方程 )()()(1x f y x Q y x P y =+'+'' 与 )()()(2x f y x Q y x P y =+'+'' 的两个特解。则+ )(* 1x y )(* 2x y 是 )()()()(21x f x f y x Q y x P y +=+'+'' 的特解。(叠加原理) 3.二阶线性常系数齐次方程 0'"=++qy py y 特征方程02 =++q pr r ,特征根 ,r r 4.二阶线性常系数非齐次方程 i) 如果 x m e x P x f λ)()(=, 则二阶线性常系数非齐次方程具有形如 x m k e x Q x y λ)(*= 的特解。 其中,)(x P m 是 m 次多项式, )(x Q m 也是系数待定的m 次多项式; 2,1,0=k 依照λ为特征根的重数而取值. i) 如果 []x x P x x P e x f n l x ωωλsin )(cos )()(+=, 则二阶线性常系数非齐次方程的特解可设为 [] x x R x x R e x y m m x k ωωλsin )(cos )() 2()1(*+=

微分方程的maple求解

1、常用函数 1)求解常微分方程的命令dsolve. dsolve(常微分方程) dsolve(常微分方程,待解函数,选项) dsolve({常微分方程,初值},待解函数,选项) dsolve({常微分方程组,初值},{待解函数},选项) 其中选项设置解得求解方法和解的表示方式。求解方法有type=formal_series(形式幂级数解)、type=formal_solution(形式解)、type=numeric(数值解)、type=series(级数解)、method=fourier(通过Fourier变换求解)、method=laplace(通过Laplace变换求解)等。解的表示方式有explicit(显式)、implicit(隐式)、parametric(参数式)。当方程比较复杂时,要想得到显式解通常十分困难,结果也会相当复杂。这时,方程的隐式解更为有用,一般也要简单得多。dsolve为标准库函数。 2)求解一阶线性常微分方程的命令linearsol. 在Maple中求解一阶线性方程既可以用dsolve函数求解,也可以用Detools函数包中的linearsol函数求解。linearsol是专门求解线性微分方程的命令,使用格式为: linearsol(线性方程,待解函数) linearsol的返回值为集合形式的解。 3)偏微分方程求解命令pdsolve. pdsolve(偏微分方程,待解变量,选项) pdsolve(偏微分方程,初值或边界条件,选项) pdsolve为标准库函数,可直接使用。 如果求解成功,将得到几种可能结果: 方程的通解; 拟通解(包含有任意函数,但不足以构造通解); 一些常微分方程的集合;

(完整word版)微分方程稳定性理论简介

第五节 微分方程稳定性理论简介 这里简单介绍下面将要用到的有关内容: 一、 一阶方程的平衡点及稳定性 设有微分方程 ()dx f x dt = (1) 右端不显含自变量t ,代数方程 ()0f x = (2) 的实根0x x =称为方程(1)的平衡点(或奇点),它也是方程(1)的解(奇解) 如果从所有可能的初始条件出发,方程(1)的解()x t 都满足 0lim ()t x t x →∞ = (3) 则称平衡点0x 是稳定的(稳定性理论中称渐近稳定);否则,称0x 是不稳定的(不渐近稳定)。 判断平衡点0x 是否稳定通常有两种方法,利用定义即(3)式称间接法,不求方程(1)的解()x t ,因而不利用(3)式的方法称直接法,下面介绍直接法。 将()f x 在0x 做泰勒展开,只取一次项,则方程(1)近似为: 0'()()dx f x x x dt =- (4) (4)称为(1)的近似线性方程。0x 也是(4)的平衡点。关于平衡点0x 的稳定性有如下的结论: 若0'()0f x <,则0x 是方程(1)、(4)的稳定的平衡点。 若0'()0f x >,则0x 不是方程(1)、(4)的稳定的平衡点 0x 对于方程(4)的稳定性很容易由定义(3)证明,因为(4)的一般解是 0'()0()f x t x t ce x =+ (5) 其中C 是由初始条件决定的常数。

二、 二阶(平面)方程的平衡点和稳定性 方程的一般形式可用两个一阶方程表示为 112212 () (,)()(,) dx t f x x dt dx t g x x dt ?=??? ?=?? (6) 右端不显含t ,代数方程组 1212 (,)0 (,)0f x x g x x =?? =? (7) 的实根0012 (,)x x 称为方程(6)的平衡点。记为00 012(,)P x x 如果从所有可能的初始条件出发,方程(6)的解12(),()x t x t 都满足 101lim ()t x t x →∞ = 20 2lim ()t x t x →∞ = (8) 则称平衡点00 012(,)P x x 是稳定的(渐近稳定);否则,称P 0是不稳定的(不渐 近稳定)。 为了用直接法讨论方法方程(6)的平衡点的稳定性,先看线性常系数方程 11112 22122 () ()dx t a x b x dt dx t a x b x dt ?=+??? ?=+?? (9) 系数矩阵记作 1122a b A a b ??=???? 并假定A 的行列式det 0A ≠ 于是原点0(0,0)P 是方程(9)的唯一平衡点,它的稳定性由的特征方程 det()0A I λ-= 的根λ(特征根)决定,上方程可以写成更加明确的形式: 2120()det p q p a b q A λλ?++=? =-+??=? (10) 将特征根记作12,λλ,则

二次微分方程的通解

二次微分方程的通解 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

第六节 二阶常系数齐次线性微分方程 教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数非齐次线 性微分方程的解法 教学重点:二阶常系数齐次线性微分方程的解法 教学过程: 一、二阶常系数齐次线性微分方程 二阶常系数齐次线性微分方程 方程 ypyqy 0 称为二阶常系数齐次线性微分方程 其中p 、q 均为常数 如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解 那么yC 1y 1C 2y 2就是它的通解 我们看看 能否适当选取r 使ye rx 满足二阶常系数齐次线性微分方程 为此将ye rx 代入方程 ypyqy 0 得 (r 2prq )e rx 0 由此可见 只要r 满足代数方程r 2prq 0 函数ye rx 就是微分方程的解 特征方程 方程r 2prq 0叫做微分方程ypyqy 0的特征方程 特征方程的两个根r 1、r 2可用公式 求出 特征方程的根与通解的关系 (1)特征方程有两个不相等的实根r 1、r 2时 函数x r e y 11=、x r e y 22=是方程的两个线性无关的解 这是因为 函数x r e y 11=、x r e y 22=是方程的解 又x r r x r x r e e e y y )(21212 1-==不是常数 因此方程的通解为 x r x r e C e C y 2121+= (2)特征方程有两个相等的实根r 1r 2时 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解 这是因为 x r e y 11=是方程的解 又

微分方程建模学习

微分方程建模 一般说来,微分方程建模的方法大致可以分为以下的几个步骤: 1.根据实际问题的要求确定要研究的量,包括自变量、未知函数、必要的参数等以及它们各自的变化区间; 2.列方程。可以在合理假设的前提下,利用导数表示斜率、速度、变化率的实际意义,根据一些基本定理(几何的、物理的、化学的或生物学的等等)或规律,找出未知函数的导数(或微分)与相关各量之间的等量关系式,建立微分方程并确定定解条件(注:如果没有现成的定理可供利用,也可以用微元分析法与模拟近似法列出微分方程); 3.解微分方程; 4.对模型的适用性作出评价,即用已知的数据检验微分方程的解是否与实际相符。若结果与实际存在一定的差距,则还要对方程进行修正和调整,直到得出较满意的结果为止。 下面,我们就通过一些实例说明微分方程建模的具体步骤。 一.增长模型 在自然界和社会的经济活动中,许多量的变化都遵循着一个基本的规律:任一单位时间的增量都与该量自身当时的大小成正比。运用这一基本规律,就可以建立起各种各样的增长模型。 1.马尔萨斯人口模型 严格地讲,讨论人口问题所建立的模型应属于离散型模型。但在人口基数很大的情况下,突然增加或减少的只是单一的个体或少数几个个体,相对于全体数量而言,这种改变量是极其微小的,因此,我们可以近似地假设人口随时间连续变化甚至是可微的。这样,我们就可以采用微分方程的工具来研究这一问题。 最早研究人口问题的是英国的经济系家马尔萨斯(Malthus )(1766—1834)。他根据百余年的人口资料,经过潜心研究,在1798年发表的《人口论》中首先提出了人口增长模型。他的基本假设是:任一单位时刻人口的增长量与当时的人口总数成正比,且比例系数为常数。于是,设t 时刻的人口总数为)(t y ,则单位时间人口的增长量即为 t t y t t y ?-?+)()( 根据基本假设,有 t t y t t y ?-?+)()()(t y r ?= (r 为比例系数) 令0→?t ,可得微分方程

相关文档