文档库 最新最全的文档下载
当前位置:文档库 › 小功率单相并网逆变器并网电流的比例谐振控制

小功率单相并网逆变器并网电流的比例谐振控制

小功率单相并网逆变器并网电流的比例谐振控制
小功率单相并网逆变器并网电流的比例谐振控制

 万方数据

 万方数据

 万方数据

 万方数据

13211塞奎望查兰兰堡竺兰堂

图10实验设备

Fig.10Experimentalfacilities

由图11及图12可见,采用PI控制的电流与网压存在相位误差,与仿真波形吻合,而采用PR控制电流与电压同步,消除了稳态相位误差,并且具有更好波形质量.

图11网压前馈PI控制5110W实验波形

Fig.11Experimentalresultsat500

withgrid-voltagefeed—forwardPIcontroller

图12PR控制500W实验波形

Fig.12Experimentalresultsat

500WwithPRcontroller5结论

PR控制器,由于在系统闭环传递上加入了两个i叫轴上的闭环极点,使得在特定频率上,形成谐振,使其增益增大.利用PR控制器的特点,将其利用在50Hz正弦并网电流指令跟踪控制时,它可以无差的跟踪电流指令,同时由于省略了网压前馈环节,避免了将电网扰动引入电流控制环节.

当不进行谐波补偿控制时,由于PR控制无网压前馈,对于电网电压的测量要求就可以进一步降低,仅进行过零检测来测定电网频率及相角即可,省去了一个电压传感器.

在传统的电压前馈Pl控制器跟随正弦指令过程中,比例环节P占据了主导作用,PR控制是利用谐振控制对于传统PI控制器的一种改进.同时对加入积分环节的PR控制器(PIR)进行了分析比较,其特性与PR控制几乎无异,积分环节作用只在低频时对于闭环控制有微弱的影响.

通过仿真及实验,证明了PR控制器在单相并网电流控制上的优越性:消除了传统网压前馈PI控制器控制时的稳态误差,并提高了并网电流质量.同时,PR控制器正越来越受到各方面的瞩目,相信在不久的将来,会在某些领域内,如单相并网电流控制,取代传统PI控制.

参考文献:

【1]KazmierkowskiM,KrishnanR,BlaabjergF.ControlinPowerElectronics.SelectedProblems[M].NewYork:A-cademicPress.2002.

[2]Cecatic,Den’AquilaA,LiserreM,eta/.DesignofH-

BridgeMuhilevelActiveRectifierforTractionSystems[J].IEEETrans.Onlnd.App.,2003,39(5):1541—1550.【3]YuanX,MerkW,StemmlerH,eta1.Stationary-FrameGeneralizedIntegratorsforCurrentControlofActivePow?

erFilterswithZeroSteady?-StateErrorforCurrentHat--moniesofConcernunderUnbalancedandDistortedOperat.ing

Conditions[J].IEEETrans.onInd.App.,2002,38(2):523—532.

[4]MattavelliP.A

Closed-Loop

SelectiveHarmonicCompen.sationforActiveFilters[J].IEEETram.onInd.App.,2001。37(1):81—89.

[5]TeodorescuR,BlaabjergF,BorupU,eta1.ANewCon-trolStructureforGrid-ConnectedLCLPVlnverterswithZeroSteady.-StateErrorandSelectiveHarmonicCompensa.tion[C]//AppliedPowerElectronicsConferenceandEx.position,APEC’04.NineteenthAnnualIEEE,2004,l:580—586.

[6]HolmesDG,LipoT.PulseWidthModulationforPowerConverters:PrinciplesandPractice[M].JohnWileyandSons.2003.

[7]KriegerAW,SalmonJc.Hvsteresis-BasedCurrentCon.trolAtFixedFrequency,withAResonatingIntegratortoEliminatetheSteadyStateError[C]//ElectricalandCorn.puterEngineering.Canadian

Conference,2005:512—

516. 万方数据

小功率单相并网逆变器并网电流的比例谐振控制

作者:马琳, 金新民, 唐芬, 梁京哲, MA Lin, JIN Xinmin, TANG Fen, LIANG Jingzhe 作者单位:马琳,金新民,唐芬,MA Lin,JIN Xinmin,TANG Fen(北京交通大学,电气工程学院,北京

,100044), 梁京哲,LIANG Jingzhe(北京航天发射技术研究所,北京,100176)

刊名:

北京交通大学学报

英文刊名:JOURNAL OF BEIJING JIAOTONG UNIVERSITY

年,卷(期):2010,34(2)

参考文献(7条)

1.Kazmierkowski M;Krishnan R;Blaabjerg F Control in Power Electronics.Selected Problems 2002

2.Krieger A W;Salmon J C Hysteresis-Based Current Control At Fixed Frequency,with A Resonating Integrator to Eliminate the Steady State Error 2005

3.Holmes D G;Lipo T Pulse Width Modulation for Power Converters:Principles and Practice 2003

4.Teodorescu R;Blaabjerg F;Borup U A New Control Structure for Grid-Connected LCL PV Inverters with Zero Steady-State Error and Selective Harmonic Compensation 2004

5.Mattavelli P A Closed-Loop Selective Harmonic Compensation for Active Filters[外文期刊] 2001(01)

6.Yuan X;Merk W;Stemmler H Stationary-Frame Generalized Integrators for Current Control of Active Power Filters with Zero Steady-State Error for Current Harmonics of Concern under Unbalanced and Distorted Operating Conditions[外文期刊] 2002(02)

7.Cecati C;Dell'Aquila A;Liserre M Design of H-Bridge Multilevel Active Rectifier for Traction Systems[外文期刊] 2003(05)

本文链接:https://www.wendangku.net/doc/af5700482.html,/Periodical_bfjtdxxb201002029.aspx

单相逆变器并网工作原理分析与仿真设计

第2章 基于定频积分的逆变器并网控制 2.1 引言 本章探索了一种基于定频积分控制的可选择独立工作和并网运行两种工作模式的光伏逆变器控制方案,对其工作原理以及并网电流纹波影响因素进行了理论分析,推导了控制方程,并给出了计算机仿真分析结果。 2.2 逆变器并网控制系统总体方案设计 如本文第一章所述,并网型逆变器主要应用在可再生新能源并网发电技术中,因此,对逆变器并网控制方案的研究也必须结合新能源发电的特点,达到最大限度的利用可再生资源。作者设计了一种既可以控制逆变器工作在并网送电状态,又可以控制逆变器工作在独立带载状态的逆变器并网控制系统。逆变器的具体工作模式由工作场合和用户需求决定,系统具有多功能。 本系统采用以定频积分为核心的控制方案。逆变器并网工作时采用基于定频积分的电流控制方案;独立工作时,在并网电流控制方案的基础上加入电压PI 外环,实现输出电压控制。定频积分控制不仅将并网输出电流控制和独立输出电压控制有机地融合在一起,而且使系统在两种工作模式下都具有良好的性能。 2.3 定频积分控制的一般理论 所谓定频积分控制是指保持电路工作的开关频率S f 不变,而通过积分器和 D 触发器来控制开关器件在每个周期的导通时间on T 和关断时间off T 。图2-1所示为定频积分控制的一般原理图。 定频积分控制是基于单周期控制的一种控制方法[43~45]。单周期控制是一种非线性控制技术, 该控制方法的突出特点是:无论是稳态还是暂态,它都能保持受控量(通常为斩波波形)的平均值恰好等于或正比于给定值,即能在一个开关周期,有效的抵制电源侧的扰动,既没有稳态误差,也没有暂态误差,这种控制技术可广泛应用于非线性系统的场合,比如脉宽调制、谐振、软开关式的变换器等。下面具体从理论上分析基于单周控制的定频积分控制的一般原理和特点。

(完整版)单相光伏并网逆变器的研究40本科毕业设计41

单相光伏并网逆变器的研究

轮机工程学院

摘要 能源危机和环境问题的不断加剧,推动了清洁能源的发展进程。太阳能作为一种清洁无污染且可大规模开发利用的可再生能源,具有广阔应用前景。并且伴随“智能电网”理论的兴起,分布式电力系统正日益受到关注,光伏逆变系统作为分布式电力系统的一种重要形式,使得对该领域的研究具有重要的理论与现实意义。 论文在分析光伏逆变系统发展现状与研究热点的基础上,探讨了光伏逆变系统的主要关键技术,对直接影响光伏逆变系统的工作效率以及工作状态的最大功率点跟踪控制、光伏逆变器控制等技术进行了详细研究。 为研究光伏逆变系统,本文建立了一套完整的光伏逆变系统模型,主要包括光伏电池模块,前级DCDC变换器,后级DCAC逆变器,以及相应的控制模块。为了提高系统模型的准确性及稳定性,论文设计了一种输出电压随温度光照改变的光伏电池模型,提出了一种基于Boost 升压变换器的最大功率点跟踪(MPPT)控制策略,并且将正弦脉冲宽度调制技术(SPWM)应用于逆变器控制。最后在MatlabSimulink软件环境下搭建了光伏逆变系统的整体模型,完成系统性的实验验证。 经过仿真实验验证,所提出的光伏逆变系统设计方案正确可行,且输出达到了设计要求,为进一步实现并网功能提供了条件,具有较高的实用参考价值。 关键词:光伏电池;最大功率点跟踪;光伏逆变系统;正弦脉冲调制技术

ABSTRACT With intensify of the energy crisis and environmental problems, the development of clean energy . The solar energy because of its friendly-environmental advantage and renewable property. With the proposition of the Smart Grid, Distributed Power System . As an important form of Distributed Power System, photovoltaic inverter system is the key of the research in this field. This paper discusses the key techniques of photovoltaic inverter system on the basis of analysis of development and research techniques such as maximum power point tracking (MPPT) which work efficiency and work condition and technology of PV inverter. In order to research PV inverter system, this paper builds an integral model, including PV battery model and DCDC converter and DCAC single phase inverter as well as corresponding control models. In order to improve the validity and the stability of the system, the paper

光伏并网逆变器控制与仿真设计

光伏并网逆变器控制与仿真设计 为了达到提高光伏逆变器的容量和性能目的,采用并联型注入变换技术。根据逆变器结构以及光伏发电阵电流源输出的特点,选用工频隔离型光伏并网逆变器结构,并在仿真软件PSCAD中搭建光伏电池和逆变器模型,最后通过仿真与实验验证了理论的正确性和控制策略的可行性。 ?近年来,应用于可再生能源的并网变换技术在电力电子技术领域形成研究热点。并网变换器在太阳能光伏、风力发电等可再生能源分布式能源系统中具有广阔发展前景。太阳能、风能发电的重要应用模式是并网发电,并网逆变技术是太阳能光伏并网发电的关键技术。在光伏并网发电系统中所用到的逆变器主要基于以下技术特点:具有宽的直流输入范围;具有最大功率跟踪(MPPT)功能;并网逆变器输出电流的相位、频率与电网电压同步,波形畸变小,满足电网质量要求;具有孤岛检测保护功能;逆变效率高达92%以上,可并机运行。逆变器的主电路拓扑直接决定其整体性能。因此,开发出简洁、高效、高性价比的电路拓扑至关重要。 ?1 逆变器原理 ?该设计为大型光伏并网发电系统,据文献所述,一般选用工频隔离型光伏并网逆变器结构,如图1所示。光伏阵列输出的直流电由逆变器逆变为交流电,经过变压器升压和隔离后并入电网。光伏并网发电系统的核心是逆变器,而电力电子器件是逆变器的基础,虽然电力电子器件的工艺水平已经得到很大的发展,但是要生产能够满足尽量高频、高压和低EMI的大功率逆变器时仍有很大困难。所以对大容量逆变器拓扑进行研究是一种具有代表性的解决方案。作为太阳能光伏阵列和交流电网系统之间的能量变换器,其安全性,可靠性,逆变效率,制造成本等因素对于光伏逆变器的发展有着举足轻

毕业设计-单相光伏并网逆变器的控制原理及电路实现

第一章绪论 1.1 光伏发电背景与意义 作为一种重要的可再生能源发电技术,近年来,太阳能光伏(Photovoltaie,PV)发电取得了巨大的发展,光伏并网发电已经成为人类利用太阳能的主要方式之一。目前,我国已成为世界最大的太阳能电池和光伏组件生产国,年产量已达到100万千瓦。但我国光伏市场发展依然缓慢,截至2007年底,光伏系统累计安装100MWp,约占世界累计安装量的1%,产业和市场之间发展极不平衡。为了推动我国光伏市场的发展,国家出台了一系列的政策法规,如《中华人民共和国可再生能源法》、《可再生能源中长期发展规划》、《可再生能源十一五发展规划》等。这些政策和法规明确了太阳能发电发展的重点目标领域。《可再生能源中长期发展规划》还明确规定了大型电力公司和电网公司必须投资可再生能源,到2020年,大电网覆盖地区非水电可再生能源发电在电网总发电量中的比例要达到3%以上。对于这一目标的实现,光伏发电无疑会起到非常关键的作用。 当下,我国地方和企业正积极共建兆瓦级以上光伏并网电站,全国已建和在建的兆瓦级并网光伏电站共11个(2008年5月前估计),典型的如甘肃敦煌10MW 并网光伏特许权示范项目,青海柴达木盆地的1000MW大型荒漠太阳能并网电站示范工程,云南石林166MW并网光伏实验示范电站。可以预见,在接下来的几年里,光伏并网发电市场将会为我国摆脱目前的金融危机提供强大的动力,光伏产业依然会持续以往的高增长率,光伏市场的前景仍然令人期待。光伏并网发电系统是利用电力电子设备和装置,将太阳电池发出的直流电转变为与电网电压同频、同相的交流电,从而既向负载供电,又向电网馈电的有源逆变系统。按照系统功能的不同,光伏并网发电系统可分为两类:一种是带有蓄电池的可调度式光伏并网发电系统;一种是不带蓄电池的不可调度式光伏并网发电系统。典型的不可调度式光伏并网发电系统如图1-1所示。

三相光伏并网逆变器的设计

三相光伏并网逆变器的设计毕业设计开题报告 1 选题的目的和意义 随着社会生产的曰益发展,对能源的需求量在不断增长,全球范围内的能源危机也日益突出。地球中的化石能源是有限的,总有一天会被消耗尽。随着化石能源的减少,其价格也会提高,这将会严重制约生产的发展和人民生活水平的提高。可再生能源是满足世界能源需求的一种重要资源,特别是对于我们这个人口大国来讲更加重要。其中太阳能资源在我国非常丰富,其应用具有很好的前景。 光伏并网发电系统是通过太阳能电池板将太阳能转化为电能,并通过并网逆变器将直流电变为与市电同频同相的交流电,并回馈电网。存阳光充足时,太阳能发出的电可供使用,而不使用市网电;在阳光不充足或光伏发电量达不到使用量时,由控制部分自动调节,通过市网电给予补充。此系统主要用于输电线路调峰电站以及屋顶光伏系统。 光伏并网发电系统的核心技术是并网逆变器,在本文中对于单相并网逆变器硬件进行了建摸及设计。给出了硬件主回路并对各部分的功能进行了分析,同时选用Tl公司的DSP芯片TMs320F2812作为控制CPU,阐述了芯片特点及选择的原因。并对并网逆变器的控制及软件实现进行了研究。文中对于光伏电池的最大功率跟踪(MPPT)技术作了闸述并提出了针对本设计的实现方法。最后对安全并网的相关问题进行了分析探讨。 2 本选题的国内外动向 太阳能光伏并网发电始于20世纪80年代,由于光伏并网逆变器在并网发电中所起的核心作用,世界上主要的光伏系统生产商都推出了各自商用的并网逆变器产品。这些并网逆变器在电路拓扑、控制方式、功率等级上都有其各自特点,其性能和效率也参差不齐。目前在国内外市场上比较成功的商用光伏并网逆变器主要有以下几种: 1.德国SMA公司的Sunny Boy系列光伏逆变器艾思玛太阳能技术股份公司(SMA SolarTechnology AG)是全球光伏逆变器第一大生产供应商,并引领着全球光伏领域的技术创新和发展。该公司推出的Sunny Boy系列光伏组串逆变器是目前为止并网光伏发电站最成功的逆变器,市场份额高达60%。其在国内的典型工程包括大兴天普“50kWp大型屋顶光伏并网示范电站"、深圳国际园林花卉博览园1MWp光伏并网发电工程等。 2.奥地利Fronius公司的IG系列光伏逆变器Fronius是专业生产光伏并网逆变器和控制器

电加热器功率计算

一、一般按以下三步进行电加热器的设计计算: 1.计算维持介质温度不变的前提下,实际所需要的维持温度的功率 2.计算从初始温度在规定的时间内加热至设定温度的所需要的功率 3.根据以上两种计算结果,选择加热器的型号和数量。总功率取以上二种功率的最大值并考虑系数。公式: 1.维持介质温度抽需要的功率 KW=C2M3△T/864+P 式中:M3每小时所增加的介质kg/h 2.初始加热所需要的功率 KW = ( C1M1△T + C2M2△T )÷ 864/P + P/2 式中:C1C2分别为容器和介质的比热(Kcal/Kg℃) M1M2分别为容器和介质的质量(Kg) △T为所需温度和初始温度之差(℃) H为初始温度加热到设定温度所需要的时间(h) P最终温度下容器的热散量(Kw) 二、电加热性能曲线下面是一些在电加热计算中经常要用到的性能曲线。

三、设计计算举例: 有一只开口的容器,尺寸为宽500mm,长1200mm,高为600mm,容器重量150Kg。内装500mm高度的水,容器周围都有50mm的保温层,材料为硅酸盐。水需3小时内从15℃加热至70℃,然后从容器中抽取20kg/h 的70℃的水,并加入同样重量的水。需要多大的功率才能满足所要的温度。 技术数据: 1、水的比重:1000kg/m3 2、水的比热:1kcal/kg℃ 3、钢的比热:kg℃ 4、水在70℃时的表面损失4000W/m2 5、保温层损失(在70℃时)32W/m2 6、容器的面积:

7、保温层的面积: 初始加热所需要的功率: 容器内水的加热:C1M1△T = 1×(×××1000)×(70-15) = 16500 kcal 容器自身的加热:C2M2△T = ×150×(70-15) = 990 kcal 平均水表面热损失:× 4000W/m2 × 3h × 1/2 × 864/1000 = kcal 平均保温层热损失:× 32W/m2 × 3h × 1/2 × 864/1000 = kcal (考虑20%的富裕量) 初始加热需要的能量为:(16500 + 990 + + )× = kcal/kg℃ 工作时需要的功率: 加热补充的水所需要的热量:20kg/H × (70-15)×1kcal/kg℃ = 1100kcal 水表面热损失:× 4000W/m2 × 1h × 864/1000 = kcal 保温层热损失:× 32W/m2 × 1h × 864/1000 = kcal (考虑20%的富裕量) 工作加热的能量为:(1100 + + )× = kcal/kg℃ 工作加热的功率为:÷864÷1 = kw 初始加热的功率大于工作时需要的功率,加热器选择的功率至少要。 最终选取的加热器功率为35kw。

单相光伏逆变器

小功率光伏并网逆变器控制的设计 摘要:阐述了一种小功率光伏并网逆变器的控制系统。该光伏并网逆变器由DC/DC变换器与DC/AC变换器两部分组成,其中DC/DC 变换器采用芯片SG3525来控制,DC/AC变换器采用数字信号处理器TMS320F240来控制。由于DSP实时处理能力极强,采用合适的算法能确保逆变电源的输出功率因数非常接近1,输出电流为正弦波形。该控制方案已经在实验室得到验证。 1 引言 21世纪,人类将面临着实现经济和社会可持续发展的重大挑战。在有限资源和保护环境的双重制约下能源问题将更加突出,这主要体现在:①能源短缺;②环境污染;③温室效应。因此,人类在解决能源问题,实现可持续发展时,只能依靠科技进步,大规模地开发利用可再生洁净能源。太阳能具有储量大、普遍存在、利用经济、清洁环保等优点,因此太阳能的利用越来越受到人们的广泛重视,成为理想的替代能源。文中阐述的功率为200W太阳能光伏并网逆变器,将太阳能电池板产生的直流电直接转换为220V/50Hz的工频正弦交流电输出至电网。 2 系统工作原理及其控制方案 2.1 光伏并网逆变器电路原理

太阳能光伏并网逆变器的主电路原理图如图1所示。在本系统中,太阳能电池板输出的额定电压为62V的直流电,通过DC/DC 变换器被转换为400V直流电,接着经过DC/AC逆变后就得到220V/50Hz的交流电。系统保证并网逆变器输出的220V/50Hz正弦电流与电网的相电压同步。 图1 电路原理框图 2.2 系统控制方案 图2为光伏并网逆变器的主电路拓扑图,此系统由前级的DC/DC 变换器和后级的DC/AC逆变器组成。DC/DC变换器的逆变电路可选择的型式有半桥式、全桥式、推挽式。考虑到输入电压较低,如采用半桥式则开关管电流变大,而采用全桥式则控制复杂、开关管功耗增大,因此这里采用推挽式电路。DC/DC变换器由推挽逆变电路、高频变压器、整流电路和滤波电感构成,它将太阳能电池板输出的62V的直流电压转换成400V的直流电压。

电加热器电流功率计算修订版

电加热器电流功率计算 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

1. 口诀 电动机:电热(电加热炉等):单相220,Kw数乘4.5A?电热设备三相380?Kw数乘1.5A?单相380?Kw数乘2.5A三相380?Kw数乘2A? 2. 用途 电流的大小直接与功率有关,也与电压、相别、功率因数(又称力率)等有关。一般有公式可计算。由于工厂常用的都是380/220V三相四线系统,因此可以根据功率的大小直接算出电流。在380三相时(功率因数0.8左右),电动机每K W的电流约为2A。即将“KW 数加一倍”(乘2)就是电流A。这电流也称电动机的额定电流。(例1)5.5KW电动机按“电力加倍”算得电流为11A。(例2)40KW水泵电动机按“电力另倍”算得电流为 80A。电热是指用电阻加热的电阻炉等。三相380V的电热设备,每KW的电流为1.5A。即将“Kw数加一半”(乘1.5)就是电流A。(例3)3KW电加热器按“电热加半”算得电流为4.5A。(例4)15KW电加热炉按“电热加半”算得电流为22.5A。这口诀应不专指电热,对于白治灯为主的照明也适用。虽然照明的灯泡是单相而不是三相,但对照明供电的三相四线仍属三相。只要三相大体平衡也可这样计算。此外,以KVA为单位的电器(如变压器或整流器)和以KVar为单位的移相电容器(提高功率因数用)也都适用。既是说,这后半句虽然说的是电热,但包括所有KVA.KVar为单位的用电设备,以及以KW为单位的电热和照明设备。(例5)12Kw的三相(平衡时)照明干线按“电热加半”算得电流为18A。(例6)30KVA的整流器按“电热加半”算得电流为45A(指380V三相交流侧)。

第五章--单相并网逆变器

第5章单相并网逆变器 后级的DC- AC部分,采用单相全桥逆变电路,将前级 DC- DC输出的400V 直流电转换成220V/50Hz 正弦交流电,完成逆变向电网输送功率。光伏并网逆变器实现并网运行必须满足要求:输出电压与电网电压同频同相同幅值,输出电流与电网电压同频同相(单位功率因数),而且其输出还应满足电网的电能质量要求,这些都依赖于逆变器的有效并网控制策略。 光伏并网逆变器拓扑结构 按逆变器主电路的拓扑结构分类,主要有推挽逆变器、半桥逆变器和全桥逆变器。 5.1.1推挽式逆变电路 推挽式逆变电路由两只共负极的功率开关元件和一个原边带有中心抽头的升压变压器组成。它结构简单,两个功率管可共同驱动,两个开关元件的驱动电路具有公共地,这将简化驱动电路的设计。 U 图5-1 推挽式逆变器电路拓扑 推挽式电路的主要缺点是很难防止输出变压器的直流饱和,另外和单电压极性切换的全桥逆变电路相比,它对开关器件的耐压值也高出一倍。因此适合应用于直流母线电压较低的场合。此外,变压器的利用率较低,驱动感性负载困难。推挽式逆变器拓扑结构如图5-1 所示。 5.1.2半桥式逆变电路 } 半桥式逆变电路使用的功率开关器件较少,电路结构较为简单,但主电路的交流输出电压幅值仅为输入电压的一半,所以在同等容量条件下,其功率开关的额定电流要大于全桥逆变电路中功率元件额定电流,数值为全桥电路的2 倍。由于分压电容的作用,该电路具有较强的抗电压输出不平衡能力,同时由于半桥

式逆变电路控制较为简单,且使用元件少、成本低,因此在小功率等级的逆变电源中常被采用。其主要缺点是直流侧电压利用率低,在同样的开关频率下电网电流的谐波较大。 图5-2 半桥式逆变器电路拓扑 5.1.3全桥式逆变电路 全桥逆变电路可以认为是由2 个半桥逆变电路组成的,在单相电压型逆变电路中是应用最多的电路,主要用于大容量场合。在相同的直流输入电压下,全桥逆变电路的最大输出电压是半桥式逆变电路的2 倍。这意味着输出功率相同时,全桥逆变器的输出电流和通过开关元件的电流均为半桥式逆变电路的一半。 本文采用的是单相全桥式逆变器,其拓扑结构如图5-3 所示,它结构简单且易于控制,在大功率场合中广为应用,可以减少所需并联的元件数。其不足是要求较高的直流侧电压值。 图5-3 单相全桥逆变器电路拓扑 光伏并网逆变器的控制 光伏并网逆变器按控制方式分类,可分为电压源电压控制、电压源电流控制、电流源电压控制和电流源电流控制四种方法。以电流源为输入的逆变器,其直流侧需要串联大电感提供稳定的直流电流输入,但由于此大电感往往会导致系统动态响应差,因此当前大部分并网逆变器均采用以电压源输入为主的方式,即电压型逆变器。采用电压型逆变主电路,可以实现有源滤波和无功补偿的控制,在实际中已经得到了广泛的研究和应用,同时可以有效地进行光伏发电、提高供电质

并网逆变器的电流控制方法

并网逆变器的电流控制方法敬德,1140319060;凯,1140319070;指导老师:王志新(交通大学电气工程系,,200240) 摘要:并网逆变器是光伏发电系统的一个核心部件,其控制技术一直是研究的热点。其使用的功率器件属于电力电子设备,它们固有特性会对系统产生不利的影响,为了防止逆变器中的功率开关器件处于直通状态,通常要在控制开关管的驱动信号中加入死区,这给逆变器输出电压带来了谐波,对电网的电能产生污染。本文对传统的控制方法重复控制、传统的PI控制、dq轴旋转坐标控制、比例谐振控制进行了总结分析,并比较了它们的优缺点。 关键词:并网逆变器,重复控制,传统的PI控制,dq轴旋转坐标控制,比例谐振控制 0引言 随着现代工业的迅速发展,近年来全球围包括煤、石油、天然气等能源日益紧缺,全球将再一次面临能源危机,同时,这些燃料能源的应用对我们所生活的周围环境产生了严重的影响。环境问题受到了人们的广泛关注,为了解决能源紧缺以及环境污染问题,寻找可再生能源是解决这一问题的有效方式。太阳能因其清洁,无污染的优势受到了人们的青睐,太阳能光伏发电是目前充分利用太阳能资源的主要方式之一。太阳能发电主要有单独运行和并网运行两种模式,其中并网运行发展速度越来越快,应用的规模也愈来愈大[1]。逆变器是光伏发电系统中的关键部件,逆变器的工作原理是通过IGBT、GTO、GTR等功率开关管的导通和关断,把直流蓄电池电能、太阳能电池能量等变换为电能质量较高的交流电能,可以把它看成是一种电能转换设备。功率开关管的开关频率一般都比较高,因此利用它们进行电能转换的效率也比较高,但有一个很大的缺点是由它们组成的逆变系统的输出电能却不理想,其输出的波形中包含了很多对电能质量产生不利的方波,而很多场合都要求其输出的是一定幅值和频率的正弦波,所以要寻找更好的控制策略来提高逆变器的电能质量,让

并网逆变器电流控制方法

并网逆变器的电流控制方法陈敬德,1140319060;杨凯,1140319070;指导老师:王志新(上海交通大学电气工程系,上海,200240) 摘要:并网逆变器是光伏发电系统的一个核心部件,其控制技术一直是研究的热点。其使用的功率器件属于电力电子设备,它们固有特性会对系统产生不利的影响,为了防止逆变器中的功率开关器件处于直通状态,通常要在控制开关管的驱动信号中加入死区,这给逆变器输出电压带来了谐波,对电网的电能产生污染。本文对传统的控制方法重复控制、传统的PI控制、dq轴旋转坐标控制、比例谐振控制进行了总结分析,并比较了它们的优缺点。 关键词:并网逆变器,重复控制,传统的PI控制,dq轴旋转坐标控制,比例谐振控制 0引言 随着现代工业的迅速发展,近年来全球范围内包括煤、石油、天然气等能源日益紧缺,全球将再一次面临能源危机,同时,这些燃料能源的应用对我们所生活的周围环境产生了严重的影响。环境问题受到了人们的广泛关注,为了解决能源紧缺以及环境污染问题,寻找可再生能源是解决这一问题的有效方式。太阳能因其清洁,无污染的优势受到了人们的青睐,太阳能光伏发电是目前充分利用太阳能资源的主要方式之一。太阳能发电主要有单独运行和并网运行两种模式,其中并网运行发展速度越来越快,应用的规模也愈来愈大[1]。逆变器是光伏发电系统中的关键部件,逆变器的工作原理是通过IGBT、GTO、GTR等功率开关管的导通和关断,把直流蓄电池电能、太阳能电池能量等变换为电能质量较高的交流电能,可以把它看成是一种电能转换设备。功率开关管的开关频率一般都比较高,因此利用它们进行电能转换的效率也比较高,但有一个很大的缺点是由它们组成的逆变系统的输出电能却不理想,其输出的波形中包含了很多对电能质量产生不利的方波,而很多场合都要求其输出的是一定幅值和频率的正弦波,所以要寻找更好的控制策略来提高逆变器的电能质量,让其输出各项性能指标都满足要求的波形。目前所用的逆变器可以分为以下两类:一类是恒压恒频逆变器,这类逆变器在各种电源持续供电的领域应用广泛,它能够输出电压幅值和频率都是特定值的交流正弦波,简称CVCF 逆变器。第二类是变压变频逆变器,这种逆变器主要用在电动机的调速系统中,它能够输出特定的幅值电压和频率,简称VVVF 逆变器[2]。 本文将对并网逆变器的几种常见控制方法进行总结,如传统的PI控制、基于dq 旋转坐标系的控制、重复控制及比例谐振控制。给出了框图和数学模型,并指出了它们各自的优缺点。 1重复控制 1.1重复控制思想 重复控制是基于内模原理的一种控制方法。所谓内模原理,即在一个闭环调节系统中,在其反馈回路中设置一个内部模型,使该内部模型能够很好的描述系统的外部特性,通过该模型的作用可使系统获得理想的指令跟踪特性,具有很强的抗干扰能力

大功率光伏逆变器介绍

大功率光伏逆变器 (100kwp~500kwp) 一、光伏逆变器简介 逆变器又称电源调整器,根据逆变器在光伏发电系统中的用途可分为独立型电源用和并网用二种。根据波形调制方式又可分为方波逆变器、阶梯波逆变器、正 弦波逆变器和组合式三相逆变器。对于用于并网系统的逆变器,根据有无变压器 又可分为变压器型逆变器和无变压器型逆变器。 (1)并网光伏发电系统并网式光伏发电系统由光伏组件、并网逆变器、计量装置及配电系统组成。光伏组件将太阳光能转换为直流电能,再由逆变器将直流电能转换为高品质的正弦波电流,直接馈入电网或者做为本地用电设备的电力来源。(2)离网光伏发电系统离网式光伏发电系统由光伏组件、控制器、蓄电池、离网逆变器及配电系统组成,与并网式光伏发电系统的工作原理十分相似,唯一不同的是离网系统输出的电力被直接消耗使用而不输送到电网中。离网式系统中配备有蓄电池,用于储存电能,可以满足阳光不足状态下的发电需求。通过控制器可以实现对蓄电池的控制。对于无法接入公共电网的偏远地区,离网式光伏发电系统是解决用电需求最完。 二、产品型号 ESI——————————光伏逆变器 5———————————额定输入电压 1.24vdc 2.48vdc 3.450vdc 3———————————输出电压 2.220vac 3.380vac B———————————变压器功能B可并联N不可并联 100——————————额定输出功率100kw、250kw、500kw X———————————厂商代码X希望电子有限公司T—— —————————T有隔离变压器N无隔离变压器 三、执行标准 .GB/T19939 光伏系统并网技术要求 .GB/T20046 光伏(PV)系统电网接口特性 .GB/T20513 光伏系统性能监测测量、数据交换和分析导则 .GB/Z19964 光伏发电站接入电力系统的技术规定 .GB/T3859.1 半导体变流器基本要求的规定 .GB/T3859.2 半导体变流器应用导则

重复控制逆变器并网电流控制技术研究

龙源期刊网 https://www.wendangku.net/doc/af5700482.html, 重复控制逆变器并网电流控制技术研究 作者:陈凯张杰 来源:《中国测试》2015年第03期 摘要:针对在逆变电源系统中因模型的不精确及系统负载的非线性、以及常规方法中基于完美对消思想设计的重复控制器无法满足逆变电源的控制需求且设计复杂等问题,提出一种新的重复控制器设计方法,利用数字滤波器代替重复控制补偿器,并将内模系数和补偿器等效为同一个低通滤波器。将改进后的重复控制器与PI控制相结合,形成复合式控制系统,进一步提高电流跟踪速度,减小电流谐波含量。并通过运行Matlah仿真模型和具体实验平台测试,验证该方法的可行性和良好性能。 关键词:比例积分控制;重复控制;总谐波失真(THD);并网逆变器 文献标志码:A 文章编号:1674-5124(2015)03-0091-05 0 引言 并网逆变器是分布式并网发电系统的关键部分,它将直流电能变换成交流电能并传输到公共电网,供电网负载使用。为减小对电网的污染,分布式并网发电系统必须具有高功率因数和低并网电流谐波含量。根据IEEE的相关标准,对于太阳能光伏发电系统和风力发电系统,允许的最大电流谐波含量为5%。 应用最为广泛的并网控制算法是比例积分(PI)控制、谐振控制(PR)和重复控制。PI 控制具有简单、易离散、参数整定确定和鲁棒性强等特点,但是其难以精确跟踪时变的交流正弦信号,系统将存在稳态误差;PR控制具有良好的稳态性能,可以提高输出电流质量,但前提是每一个谐波频率都对应一个谐振控制器;重复控制是一种基于内模原理的控制方法。重复控制能够消除周期性误差信号和最小化电流谐波含量,已广泛用于逆变系统中。但是由于重复控制器中周期延时的存在,使得重复控制器不能立即输出,而是延迟到下一个周期才会输出,而对于当前周期的误差信号没有任何调节作用,因此系统动态性能较差。 本文首先分析光伏并网逆变器系统模型和重复控制理论,提出一种改进的重复控制器设计方法,并将改进后的方法用于与PI控制相结合的复合式控制系统。 1 并网电流控制系统建模 并网光伏发电系统一般由光伏电池板、并网逆变器和电网组成。单相并网逆变器的核心部分一般包括逆变电桥和LC滤波器。逆变电桥完成高频调制,实现直流变换为交流,再经LC 滤波器后得到并网电流。并网环节核心电路如图l(a)所示。

加热器功率计算

三、电加热器设计计算举例: 有一只开口的容器,尺寸为宽500mm,长1200mm,高为600mm,容器重量150Kg。内装500mm高度的水,容器周围都有50mm的保温层,材料为硅酸盐。水需3小时内从15℃加热至70℃,然后从容器中抽取20kg/h的70℃的水,并加入同样重量的水。需要多大的功率才能满足所要的温度。 技术数据: 1、水的比重:1000kg/m3 2、水的比热:1kcal/kg℃ 3、钢的比热:0.12kcal/kg℃ 4、水在70℃时的表面损失4000W/m2 5、保温层损失(在70℃时)32W/m2 6、容器的面积:0.6m2 7、保温层的面积:2.52m2 初始加热所需要的功率: 容器内水的加热:C1M1△T = 1×(0.5×1.2×0.5×1000)×(70-15) = 16500 kcal 容器自身的加热:C2M2△T = 0.12×150×(70-15) = 990 kcal 平均水表面热损失:0.6m2 ×4000W/m2 ×3h ×1/2 ×864/1000 = 3110.4 kcal 平均保温层热损失:2.52m2 ×32W/m2 ×3h ×1/2 ×864/1000 = 104.5 kcal (考虑20%的富裕量)

初始加热需要的能量为:(16500 + 990 + 3110.4 + 104.5)×1.2 = 70258.8 kcal/kg℃ 工作时需要的功率: 加热补充的水所需要的热量:20kg/H ×(70-15)×1kcal/kg℃= 1100kcal 水表面热损失:0.6m2 ×4000W/m2 ×1h ×1/2 x 864/1000 = 1036.8kcal 保温层热损失:2.52m2 ×32W/m2 ×1h ×1/2 x864/1000 = 34.84 kcal (考虑20%的富裕量) 工作加热的能量为:(1100 +1036.8 + 34.84)×1.2 = 2605.99 kcal/kg℃工作加热的功率为:2605.99÷864÷1 = 3.02kw 初始加热的功率大于工作时需要的功率,加热器选择的功率至少要27.1kw。 最终选取的加热器功率为35kw。

大功率稳压逆变电源设计方案与制作

大功率稳压逆变电源的设计与制作 作者:关山文章来源:网络 标称功率300W的逆变电源,用于家庭电风扇、电视机,以及日常照明等是不成问题的。笔者曾用过300W逆变器,利用12V/60AH蓄电池向上述家用电器供电,一次充满电后,可使用近5小时。不过,即使蓄电池电压充足,启动180立升的电冰箱仍有困难,因启动瞬间输出电压下降为不足180V而失败。电冰箱压缩机标称功率多为100W左右,实际启动瞬间电流可达2A以上,若欲使启动瞬间降压不十分明显,必须将输出功率提高至600VA。如在增大输出功率的同时,采用PWM稳压系统,可使启动瞬间降压幅度明显减小。无论电风扇还是电冰箱,应用逆变电源供电时,均应在逆变器输出端增设图1中的LC滤波器,以改善波形,避免脉冲上升沿尖峰击穿电机绕组。 采用双极型开关管的逆变器,基极驱动电流基本上为开关电流的 1/β,因此大电流开关电路必须采用多级放大,不仅使电路复杂化,可靠性也变差而且随着输出功率的增大,开关管驱动电流需大于集电极电流的1/β,致使普通驱动IC无法直接驱动。虽说采用多级放大可以达到目的,但是波形失真却明显增大,从而导致开关管的导通/截止损耗也增大。目前解决大功率逆变电源及UPS的驱动方案,大多采用MOS FET管作开关器件。 一、MOSFET管的应用 近年来,金属氧化物绝缘栅场效应管的制造工艺飞速发展,使之漏源极耐压(VDS)达kV以上,漏源极电流(IDS)达50A已不足为奇,因而被广泛用于高频功率放大和开关电路中。 除此而外,还有双极性三极管与MOS FET管的混合产品,即所谓IGBT 绝缘栅双极晶体管。顾名思义,它属MOS FET管作为前级、双极性三极管作为输出的组合器件。因此,IGBT既有绝缘栅场效应管的电压驱动特性,又有双极性三极管饱合压降小和耐压高的输出特性,其关断时间达到0.4μs以下,VCEO 达到1.8kV,ICM达到100A的水平,目前常用于电机变频调速、大功率逆变器和开关电源等电路中。 一般中功率开关电源逆变器常用MOS FET管的并联推挽电路。MOS FET 管漏-源极间导通电阻,具有电阻的均流特性,并联应用时不必外加均流电阻,漏源极直接并联应用即可。而栅源极并联应用,则每只MOS FET管必须采用单独的栅极隔离电阻,避免各开关管栅极电容并联形成总电容增大,导致充电电流增大,使驱动电压的建立过程被延缓,开关管导通损耗增大。 二、MOSFET的驱动 近年来,随着MOS FET生产工艺的改进,各种开关电源、变换器都广泛采用MOS FET管作为高频高压开关电路,但是,专用于驱动MOS FET管的集成

并网逆变器的控制系统及控制方法与制作流程

图片简介: 本技术介绍了一种并网逆变器的控制系统及控制方法,所述的控制系统包括:检测单元、锁相单元、计算单元、乘法器、复位积分器、比较器、RS触发器以及选择开关,选择开关对RS触发器的信号经过选择后得到逆变系统中开关S1、S2、S3、S4的驱动信号g(S1)、g(S2)、g(S3)、g(S4),其中,选择的依据由电网电压ug提供,通过在每个开关周期保持输入电路的能量与输出能量和电路中消耗及储存的能量相等来实现并网逆变器的控制。本技术实现了对可再生能源等直流源不稳定,且电网存在波动情况的并网系统的控制,能够抑制直流侧电源不稳定对并网电流的影响,且提高了并网电流对于电网波动的动态响应速度。 技术要求 1.一种并网逆变器的控制系统,其特征在于,所述的控制系统包括:检测单元、锁相单元、计算单元、乘法器、复位积分器、比较器、RS触发器以及选择开关,其中, 所述的检测单元和选择开关与逆变系统相连,所述的检测单元检测得到逆变系统的并网电压ug、逆变器输出侧A、B点之间的电压uAB和电感电流il,所检测到的信号发送给计算单元以及经过乘法器后送入复位积分器; 所述的锁相单元与所述的检测单元相连,用于对所检测的并网电压的相位和频率进行锁定,用以确定给定并网电流的相位和频率;所述的计算单元、乘法器和复位积分器用于计算及处理所述的检测单元和锁相单元所得到的信号,所述的计算单元和所述的复位积分器的输出端分别与所述的比较器的两个输入端相连; 所述的比较器用于对所述的计算单元和复位积分器处理得到的信号进行对比,用于提供所述的RS触发器 的R端信号,R端为RS触发器的复位端;RS触发器的S端连接时钟信号,RS触发器的输出Q端和端与所述的选择开关相连,所述的选择开关对RS触发器的信号经过选择后得到逆变系统中开关S1、S2、S3、S4的驱动信号g(S1)、g(S2)、g(S3)、g(S4)。

400W大功率稳压逆变器电路

400W大功率稳压逆变器电路 相关元件PDF下载: TL494A1266P30NOS 利用TL494组成的400W大功率稳压逆变器电路。它激式变换部分采用TL494,VT1、VT2、VD3、VD4构成灌电流驱动电路,驱动两路各两只60V/30A的MOS FET开关管。如需提高输出功率,每路可采用3~4只开关管并联应用,电路不变。TL494在该逆变器中的应用方法如下: 第1、2脚构成稳压取样、误差放大系统,正相输入端1脚输入逆变器次级取样绕组整流输出的15V直流电压,经R1、R2分压,使第1脚在逆变器正常工作时有近4.7~5.6V取样电压。反相输入端2脚输入5V基准电压(由14脚输出)。当输出电压降低时,1脚电压降低,误差放大器输出低电平,通过PWM电路使输出电压升高。正常时1脚电压值为5.4V,2脚电压值为5V,3脚电压值为0.06V。此时输出AC电压为235V(方波电压)。第4脚外接R6、R4、C2设定死区时间。正常电压值为0.01V。第5、6脚外接CT、RT设定振荡器三角波频率为100Hz。正常时5脚电压值为1.75V,6脚电压值为3.73V。第7脚为共地。第8、11脚为内部驱动输出三极管集电极,第12脚为TL494前级供电端,此三端通过开关S控制TL494的启动/停止,作为逆变器的控制开关。当S1关断时,TL494无输出脉冲,因此开关管VT4~VT6无任何电流。S1接通时,此三脚电压值为蓄电池的正极电压。第9、10脚为内部驱动级三极管发射极,输出两路时序不同的正脉冲。正常时电压值为1.8V。第13、14、15脚其中14脚输出5V基准电压,使13脚有5V高电平,控制门电路,触发器输出两路驱动脉冲,用于推挽开关电路。第15脚外接5V电压,构成误差放大器反相输入基准电压,以使同相输入端16脚构成高电平保护输入端。此接法中,当第16脚输入大于5V的高电平时,可通过稳

大功率ups不间断电源工频机与高频机完整版

大功率u p s不间断电源工频机与高频机 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

大功率UPS不间断电源工频机与高频机 用户在购买大功率UPS不间断电源的时候,常常面临在工频机和高频机之间进行选择的困惑。就UPS厂商方面而言,当然都认为是自己的好,“公说公有理,婆说婆有理”。提供工频机的厂商说工频机稳定性和可靠性高;提供高频机的厂商会说高频机节省空间,成本相对较低等诸如此类的说法。其实,工频机和高频机到底孰优孰劣,很难一概而论,可以说各有利弊。用户应当在全面认识这两种UPS机型的基础上,客观审视自身的应用和需求,选择适合自己需要的产品。 1 工频机和高频机的原理分析 工频机和高频机是按UPS的设计电路工作频率来区分的。工频机是以传统的模拟电路原理设计,由晶闸管(SCR)整流器、IGBT逆变器、旁路和工频升压隔离变压器组成。因其整流器和变压器工作频率均为工频50Hz,顾名思义叫工频UPS。高频机通常由IGBT高频整流器、电池变换器、逆变器和旁路组成。IGBT可以通过控制加在门极的驱动来控制其开通与关断,IGBT整流器开关频率通常在几千赫到几十千赫,甚至高达上百千赫,远远高于工频机,因此称为高频UPS。 在工频UPS电路中,主路三相交流输入经过换相电感,接到三个SCR桥臂组成的整流器之后变换成直流电压,通过控制整流桥SCR的导通角来调节输出直流电压值。由于SCR属于半控器件,控制系统只能控制开通点,一旦SCR导通之后,即使门极驱动撤消,也无法关断,只有等到其电流为零之后才能自然关断,所以其开通和关断均是基于一个工频周期,不存在高频的开通和关断控制。由于SCR整流器属于降压整流,所以直流母线电压经逆变输出的交流电压比输入交流电压低,要使输出相电压能够得到恒定的220V电压,就必须在逆变输出增加升压隔离变压器。

大功率逆变电源设计开题报告

毕业设计(论文)开题报告书 课题名称大功率逆变电源的设计 学生姓名 学号 系、年级专业电气工程系、测控技术与仪器 指导教师 2008年12月28日

一、课题的来源、目的、意义(包括应用前景)、国内外现状及水平 随着信息网络技术日新月异地发展,正弦波逆变电源作为新一代直流/交流转换电源已经广泛应用于电信、移动、联通、航空航天、金融管理、办公自动化、工业自动控制、医疗卫生、军事科研等各个领域。正弦波逆变电源利用蓄电池的直流电作为输入,经逆变后输出纯净的正弦波交流电,输出电压和频率极为稳定并可长期连续工作,消除了直接使用市电带来的供电中断、电压不稳、杂音干扰和雷电侵入等不利因素,同时克服了小型UPS供电时间短的致命缺陷,确保用电设备连续可靠的工作。配备正弦波逆变电源是系统安全、可靠运行的最佳保障。根据这一实际需求,我们选择了“大功率逆变电源的设计”这一课题。 本课题的主要目的是通过对大功率逆变电源的设计,充分的运用所学的综合理论知识,提高综合设计能力,以及对问题的分析能力和实际操作能力。 本课题主要是利用所学的专业知识,特别是利用自动控制原理、模拟电子技术、电力电子技术等知识设计一大功率逆变电源。同时,学习大功率电源的设计与调试方法,掌握大功率电源有关参数的调试方法本课题中的设计与仿真结果及结论对大功率逆变电源的设计与参数分析有着重要的参考价值。 变流电路即通常所说的电力电子电路,它的基本功能是使交流电能与直流电能进行相互转换,其中将直流电变换成交流电的变换称之为DC/AD变换,也即通常说的逆变。逆变原理早在1931年就在文献中提过,1980年到现在为高频化新技术阶段,开关器件以高速器件为主,开关频率较高,波形改善以PWM法为主,体积重量较小,逆变效率高。现代逆变技术主要包括半导体功率集成器件的应用、功率变换电路和逆变控制技术三部分内容。 本文所涉及的正弦波逆变电源是电力电子技术中的一个重要的组成部分,它的作用是将直流电能变换成电能质量较高的、能满足负载对电压和频率要求的交流电能。随着工业和科技技术的发展,用户对电能质量的要求越来越高,正弦波逆变器的应用面将会越来越广,同时电力电子技术的发展和各种控制技术的发展也必将推动正弦波逆变技术发展。

相关文档