文档库 最新最全的文档下载
当前位置:文档库 › Investigation of spindle bearing preload on dynamics andstability limit in milling

Investigation of spindle bearing preload on dynamics andstability limit in milling

Investigation of spindle bearing preload on dynamics andstability limit in milling
Investigation of spindle bearing preload on dynamics andstability limit in milling

Investigation of spindle bearing preload on dynamics and stability limit in milling E.Ozturk a,*,U.Kumar b,S.Turner a,T.Schmitz c

a AMRC with Boeing,University of Shef?eld,UK

b University of Florida,USA

c University of North Carolina at Charlotte,USA

Submitted by M.A.Davies(1),Charlotte,USA.

1.Introduction

Advances in high-speed spindle designs,machine tool designs,

and cutting tool materials/coatings have enabled increased cutting

speeds and material removing rates in metal cutting.In some

instances,however,the dynamic?exibility of the tool-holder-

spindle-machine,THSM,assembly can limit the allowable depth of

cut due to chatter.Given the receptance,or frequency response

function,FRF,at the tool point,stability lobe diagrams,SLD,can be

used to select spindle speed-depth of cut combinations that

provide stable cutting conditions[1–3].

Many studies have been conducted to model the tool tip FRF

using receptance coupling techniques[e.g.4–8].While most of

these efforts have focused on non-rotating spindles,work has also

been completed for rotating cases[9].In modern spindle designs,

the spindle bearing preload can be automatically decreased at

higher speeds to reduce heat generation and increase bearing life.

This,in turn,can modify the THSM assembly dynamics and,

therefore,the process stability.In these instances,the FRF of the

THSM obtained from the zero speed preload condition may not be

accurate for non-zero speed cases.Because spindle designs are

often proprietary and not available to the machine user,the study

of spindle dynamics at varying preloads generally requires a

combined experimental/analytical approach.

The effect of preload has been investigated by several

researchers[10–12].Lin and Tu[10]demonstrated that increased

bearing preload results in higher natural frequencies for the

system.Cao and Altintas[11]also demonstrated this effect;

additionally,they showed that higher spindle speed results in a

decrease in natural frequencies due to centrifugal forces.Jiang and

Mao[12]reported temperature rise and increased dynamic

stiffness with increased preload.They proposed a hydraulic

system that can automatically change the preload on the bearings.

Use of higher preload at low spindle speeds and lower preload at

high spindle speed is recommended for increased service life of the

bearings.Although the effect of preload on natural frequencies and

dynamic stiffness are demonstrated previously in the literature,

the effect of preload on the spindle FRF,tool tip FRF,and stability

diagrams has not been widely studied.

In this work,the effect of variable preload on the spindle

dynamics is?rst investigated(Section2).The tool tip FRF for a

representative tool and tool holder assembly is then presented for

different preload settings.The preload adjustment was achieved

using the hydraulic system on a StarragHeckert ZT-1000CNC

machining center which enables the preload value to be manually

adjusted via the CNC controller.Further,in order to increase the

service life of the bearings,the preload pressure is automatically

adjusted depending on the spindle speed(see Section3).Therefore,

the THSM assembly dynamics,which can be represented by modal

parameters(natural frequency,damping ratio and stiffness),

become spindle speed dependent.In Section4,a stability model

that incorporates the spindle speed-dependent FRFs is described.

The SLD[13,14]for varying preload is presented in Section5and

compared with experimental cuts.

2.Effect of preload

2.1.On spindle dynamics

To identify the spindle-machine dynamics under variable

preload,a standard artifact(i.e.a standard tool holder with a

uniform cylindrical geometry beyond the?ange)was inserted in

the spindle for each preload setting.The preload settings were

changed manually via the CNC controller.The zero speed,direct

displacement-to-force FRF at the artifact’s free end was measured

by impact testing,where an instrumented hammer was used to

apply the force and a low mass accelerometer was used to measure

the response(see Fig.1).

CIRP Annals-Manufacturing Technology61(2012)343–346

A R T I C L E I N F O

Keywords:

Bearing

Chatter

Preload

A B S T R A C T

Many spindle designs offer automatic,speed-dependent preload adjustments to improve the bearing

service life.This can result in spindle speed-dependent dynamic properties at the tool tip and errors in

process stability predictions.In order to improve stability prediction accuracy for a representative tool

and tool holder assembly,the tool tip frequency response functions are measured for different bearing

preload https://www.wendangku.net/doc/aa5800594.html,ing stability models,stability limits are then predicted.Effects of bearing preload on the

stability limits are demonstrated via simulations and cutting tests.

?2012CIRP. *Corresponding author.

Contents lists available at SciVerse ScienceDirect

CIRP Annals-Manufacturing Technology

journal homepage:https://www.wendangku.net/doc/aa5800594.html,/cirp/default.asp

0007-8506/$–see front matter?2012CIRP.

https://www.wendangku.net/doc/aa5800594.html,/10.1016/j.cirp.2012.03.134

In order to isolate the spindle-machine dynamics from the artifact-spindle-machine measurements,the inverse receptance coupling procedure was implemented [7].In this approach,each mode in the measurement bandwidth was individually ?t using an analytical ?xed-free Euler–Bernoulli beam model [15].Given the parameters for the displacement-to-force FRF model,the (unmea-sured)displacement-to-couple,rotation-to-force,and rotation-to-couple FRFs could be predicted.Once all four assembly FRFs were known,the spindle-machine dynamics were determined by analytically extracting a model of the portion of the artifact beyond the ?ange from the assembly response via inverse receptance coupling.Measurements were performed for discrete commanded preload values from 46bar to 21bar.Fig.2shows the spindle-machine FRFs for the preload values of 46bar (default zero speed preload),33bar,and 21bar.As the preload decreases,it is observed that the most ?exible mode (initially at 1646Hz)also decreases in frequency.(See Table 1,where the preload was also measured using a WIKA pressure gauge on the spindle).The difference between the measured and commanded preload values was not identi?ed,but is presumed to be due to the uncalibrated pressure gauge.

2.2.On tool tip FRF

The effect of preload on the tool tip FRF (in machine X direction)for a representative tool holder and tool is presented in Fig.3for three different preload values (46,35,and 20bar),where 46bar is the default preload at zero speed and 20bar is the minimum allowable preload.The preload value was again changed manually via the CNC controller.Machine X and Z directions correspond to radial directions of the tool and machine Y is in the tool axis direction in the machine set-up used.The tool holder was a BILZ Thermogrip T2000-100shrink-?t holder with an HSK-A63spindle interface and the tool was a SANDVIK R216.32-20025-AP20A H10F

carbide tool with a 20mm in diameter and two ?utes.The helix angle and stick-out length were 308and 75mm,respectively.

As seen in Fig.3,the tool tip FRF at 46bar and 35bar are similar,but there is considerable difference in tool tip FRF when the preload is reduced to 20bar.For the three preload values,the modal data (natural frequency,v n ,viscous damping ratio,z ,and stiffness,k )for the three dominant modes in the X and Z directions were obtained;modal data for the X direction is provided in Table 2.In order to describe the change in the modal data in terms of the preload,P (bar),for each mode,a second order polynomial was ?t for each term in Table 2.Polynomial ?ts for the ?rst mode are presented in Eq.(1):

v n 1z 1k 12

435?à2:17?10à1P 2t2:00?101P t5:15?1021:00?10-4P 2à7:94?10-3P t2:05?10-1à1:22?104P 2t1:05?106P à2:38?10

6

243

5

(1)

The three corresponding mode shapes are presented in Fig.4for the 46bar preload.The mode shapes for the 35bar preload were similar to the 46bar results.The ?rst four points from the top are on the tool holder and the rest are on the tool.Based on the mode shapes,it is believed that the ?rst mode is a spindle mode,while the second and third modes are tool holder and tool

modes,

Fig.1.Standard artifact direct FRF measurement.

-8

R e a l (m /N )

-8

Frequency (Hz)

I m a g (m /N )Fig.2.Spindle-machine FRFs for three different preload values in Z direction.

Table 1

Natural frequency shift with variable preload.

Commanded preload (bar)

Measured preload (bar)

Natural frequency (Hz)

4645164639371636333015942722155121

17

1546

Fig.3.Tool tip FRFs for three different preload values.

Table 2

Tool tip FRF modal data for three different preload values.

X-direction Preload (bar)

46

35

20

Mode 1

v n (Hz)973.9947.8827.4z (%)

5.2

5.0

8.7

k (N/m)

2.00?107

1.94?107

1.37?107

Mode 2

v n (Hz)2036.0

2005.9

1947.7

z (%)

2.5

2.5

2.0

k (N/m)

5.11?107

4.55?107

4.16?107

Mode 3

v n (Hz)2738.5

2768.8

2771.1

z (%)

5.4

5.7

4.6

k (N/m)

6.16?107

5.77?107

7.03?107

E.Ozturk et al./CIRP Annals -Manufacturing Technology 61(2012)343–346

344

respectively.As the preload decreases,the natural frequency and

stiffness decrease in the ?rst and second modes.Damping increases in the ?rst mode due to increased friction with decreased preload.Conversely,the damping of the second mode decreases and natural frequency of the third mode increases with decreased preload.This demonstrates the complexity of the combined system response.

3.Spindle speed and preload relation

On the tested spindle,preload is automatically adjusted according to spindle speed to increase the service life of the bearings.The preload pressure on the bearings is at its maximum value,P max ,when the spindle is at zero speed.Up to a critical spindle speed,n c ,the preload is equal to P max ,afterwards it drops linearly to the minimum preload value,P min ,at the maximum spindle speed,n max .Fig.5illustrates the change of preload,P ,with the spindle speed,n ,for the entire spindle speed range.For the tested spindle P max ,P min ,n max and n c are 46bar,20bar,24,000rev/min (rpm)and 11,267rpm,respectively.The preload is auto-matically varied between 11,267rpm and 24,https://www.wendangku.net/doc/aa5800594.html,ing this variation in preload with spindle speed,the modal parameters (represented using polynomial ?ts based on the preload)may also be written as functions of spindle speed.

4.Spindle speed-dependent stability model

In the previous two sections,it was shown that preload affects the tool tip FRF and that preload is automatically adjusted depending on the spindle speed.Subsequently,the tool tip FRF is spindle speed-dependent for the tested spindle.Moreover,cutting force coef?cients can also be cutting speed,hence spindle speed-dependent.In the milling stability model developed by Budak and Altintas [14],an eigenvalue problem is solved at each frequency within the chatter frequency range for the selected tool tip FRF.Then,spindle speeds corresponding to the limiting chip width (axial depth in milling)and chatter frequency pairs are determined for each lobe number.However,this approach must be modi?ed for spindle speed-dependent tool tip FRFs and/or cutting force coef?cients [16,17].The following procedure was employed here.Since it is a search algorithm,a tolerance value for spindle speed was set as n tol .

Set the spindle speed range and spindle speed increment. For each spindle speed,n i :

calculate the modal data and tool tip FRF

scan the chatter frequency around the natural frequencies of the system (in order to increase the accuracy of the method,the chatter frequency increment should be small)

calculate the stability limits and phase shift between the current and previous vibration marks [14]for each chatter frequency

eliminate negative stability limits and higher stability limits for the same frequency.

For each lobe,calculate the spindle speeds using the chatter frequency,phase shift,and lobe number [14]

determine the spindle speeds that are equal to n i with a tolerance of n tol

select the spindle speed value and lobe number that results in the minimum stability limit.

Plot the corresponding stability limits with respect to spindle speed.

5.Simulations and experiments

The workpiece material was AL6082-T6.For the speci?ed tool and the workpiece combination,the cutting force coef?cients were identi?ed at 5different speeds in the 4000–23,000rpm spindle range and for a feed range of 0.05–0.15mm/tooth through the mechanistic method [2].The calculated tangential and radial cutting force coef?cients,K tc and K rc ,are tabulated in Table 3.Second order polynomials in terms of cutting speed were ?t to the cutting force coef?cients data to represent the speed dependency in the stability diagram predictions.

The example process is a down milling operation where radial depth is 10mm,feed per tooth is 0.1mm/tooth and feed direction is along machine X axis.Three different cases were simulated to show the effect of both varying preload and spindle speed dependent cutting force coef?cients.

Firstly,the constant preload and constant force coef?cients (CP-CF)case is simulated using the standard stability milling model [2]and presented in Fig.6.As the default preload at zero speed which is 46bar,the tool tip FRF at 46bar preload is used in this simulation.Moreover,the cutting force coef?cients at 16,500rpm were used as constant cutting force coef?cients.

Secondly,using the stability model in Section 4,the stability limits for the variable preload and constant force coef?cients (VP-CF)were calculated and they are presented in Fig.6(solid line).The predicted absolute (minimum)stability limit decreases with increased spindle speed in this case.This is expected because it was shown that preload decreases with higher spindle speed and the tool tip stiffness (generally)decreases with decreased preload.The predictions for the ?rst case and second case are close to each other at low spindle speeds,while the difference increases at higher spindle speeds.This is due to the linear decrease of preload above 11,267rpm (see Fig.5).

In the third case,variation of cutting force coef?cients with cutting speed is also taken into account.Finally,the stability limits for variable preload and variable force coef?cients (VP-VF)are plotted in Fig.6(dashed line).Compared to the second case,varying force coef?cients result in a slight decrease in the stability limits.

In order to compare with the simulation results,experimental cuts at 11,020,14,800,16,500,21,500and 23,000rpm were planned.Since the ?ute length was 20mm,the maximum cutting

Y

Mode 1

Mode 2

Mode 3

1

Fig.4.3mode shapes at 46bar preload.

Fig.5.Preload pressure vs.spindle speed.

Table 3

Calculated K tc and K rc with respect to spindle speeds.

RPM

V (m/min)

K tc (MPa)K rc (MPa)4000251.3777.0401.78000502.7645.0213.011,020692.4521.8117.016,5001036.7483.586.423,000

1445.1

533.0

66.6

E.Ozturk et al./CIRP Annals -Manufacturing Technology 61(2012)343–346

345

depth in the tests was limited to 18mm.Hence,cutting tests at axial depths in the range from 6to 18mm were performed for each spindle speed.The 25tests were labelled as stable or unstable (chatter)according to the resulting surface quality and these are plotted in Fig.6.Example photographs of a stable surface (16,500rpm,18mm)and a surface with chatter marks (21,500rpm,18mm)are included in Fig.6.

Analysing the Fig.6,it is seen that assuming constant preload fails to predict the decrease in stability limits at higher spindle speeds.On the other hand,including the variable preload effect clearly improves the accuracy of stability limit predictions at higher spindle speeds.Addition of the variable force coef?cients slightly improves the agreement at high spindle speeds but results in an increased error in prediction around 11,000rpm region.This may be due to errors induced with the ?t used in the cutting force coef?cients at this cutting speed zone.Alternatively,the error may be due to the not modelled effects like thermal effects,centrifugal forces and gyroscopic effects which are discussed in more detail in the next session.

6.Discussion

Variable preload is not the only source of spindle dynamics variation with spindle speed.At high rotational speeds,thermal effects,gyroscopic effects and centrifugal forces may also need to be considered.Cao et al.[17]reported that hydraulically preloaded bearings can recover the thermally induced preloads.Furthermore,temperature rise effects are reduced by decreasing the preload [12].In fact,the main reason for decreasing the preload on the spindle used in the study is to minimize the temperature rise so that the service life of the bearings is increased.Therefore,it is anticipated that the thermal effects for this spindle are minimized.

In the literature,there are con?icting results about the effects of centrifugal forces and gyroscopic effects on the stability limits at high spindle speeds.Movahhedy and Mosaddegh [18]demonstrated that gyroscopic effects at high spindle speeds cause decrease in stability limits.Chen and Hwang [19]reported that centrifugal forces at high spindle speeds result in bearing softening and,therefore,cause decreased stiffness.Conversely,without differ-entiating between gyroscopic effects and centrifugal forces,Gagnol et al.[20]showed that dynamic stiffness is increased at higher spindles resulting in higher stability limits.Schmitz et al.[16]experimentally identi?ed an increase in dynamic stiffness and stability limits at high spindle speeds for a particular spindle system.

In order to differentiate the effect of the centrifugal forces and gyroscopic effects from preload effects,rotating FRF measure-ments using the standard artifact are planned as future work.These tests will be made at several different spindle speeds and they will be compared with the zero speed impact test at speci?c preload values which correspond to the selected spindle speeds (based on the automatic preload adjustment pro?le).The potential differences from these tests will isolate the centrifugal force/gyroscopic effects.For the presented case,even if the centrifugal forces and gyroscopic forces are not negligible,the preload effects for the spindle studied here are likely to dominate since the

stability predictions reasonably agree with the experimental results.

7.Conclusion

This paper presents the effect of bearing preload on the spindle and tool tip FRFs.The relationship between preload and spindle speed on the tested spindle is provided.Due to the automatic variation in preload with the spindle speed by the hydraulic preload adjustment system,the tool tip FRF is spindle speed dependent.A stability model that incorporates the speed-dependent FRFs and cutting force coef?cients is presented.Simulated stability diagrams are compared with experimental cuts.The methodology presented in this paper can be applied to increase the accuracy of the stability limit predictions on spindles that apply a variable preload function.

Acknowledgements

The authors gratefully acknowledge the SAMULET Programme,Rolls-Royce Plc.,and the National Science Foundation for funding this work and StarragHeckert AG for supplying information about the relation between the preload and the spindle speed on the StarragHeckert ZT-1000machining centre.Assistance of Ravi Bilkhu and Malik Bensbai in the cutting tests is also appreciated.

References

[1]Tlusty J (1999)Manufacturing Processes and Equipment ,Prentice Hall,Upper

Saddle River,NJ.

[2]Altintas Y (2000)Manufacturing Automation ,Cambridge University Press,UK.[3]Schmitz T,Smith KS (2009)Machining Dynamics:Frequency Response to

Improved Productivity ,Springer,NY.

[4]Schmitz T,Donaldson R (2000)Predicting High-Speed Machining Dynamics by

Substructure Analysis.Annals of the CIRP 49/1:303–308.

[5]Schmitz T,Davies M,Medicus K,Snyder J (2001)Improving High-Speed

Machining Material Removal Rates by Rapid Dynamic Analysis.Annals of the CIRP 50/1:263–268.

[6]Park S,Altintas Y,Mohaveddy M (2003)Receptance Coupling for End mills.

International Journal of Machine Tools and Manufacture 43:889–896.

[7]Schmitz T,Duncan GS (2005)Three-component Receptance Coupling Sub-structure for Tool Point Dynamics Prediction.Journal of Manufacturing Science and Engineering 127:781–790.

[8]Budak E,Ertu

¨rk A,O ¨zgu ¨ven HN (2006)A Modeling Approach for Analysis and Improvement of Spindle-holder-tool Assembly Dynamics.CIRP Annals Manu-facturing Technology 55/1:369–372.

[9]Cheng C-H,Duncan GS,Schmitz T (2007)Rotating Tool Point Frequency

Response Prediction using RCSA.Machining Science and Technology 11:433–446.

[10]Lin CW,Tu JF (2007)Model-based Design of Motorized Spindle Systems to

Improve Dynamic Performance at High Speeds.Journal of Manufacturing Processes 9:94–108.

[11]Cao Y,Altintas Y (2007)Modeling of Spindle-bearing and Machine Tool

Systems for Virtual Simulation of Milling Operations.International Journal of Machine Tool and Manufacture 47:1342–1350.

[12]Jiang S,Mao H (2010)Investigation of Variable Optimum Preload for a

Machine Tool Spindle.International Journal of Machine Tools and Manufacture 50:19–28.

[13]Altintas Y,Budak E (1995)Analytical Prediction of Stability Lobes in Milling.

Annals of the CIRP 44/1:357–362.

[14]Budak E,Altintas Y (1998)Analytical Prediction of Chatter Stability Condition

of Multi-Degree of Freedom Systems in Milling.Part I:Modeling,Part II:Application.Journal of Dynamic System Measurement and Control 120:22–36.[15]Kumar U,Schmitz T (2012)Spindle Dynamics Identi?cation for Receptance

Coupling Substructure Analysis.Precision Engineering .https://www.wendangku.net/doc/aa5800594.html,/10.1016/j.precisioneng.2012.01.007.

[16]Schmitz T,Ziegert J,Stanislaus C (2004)A Method for Predicting Chatter

Stability for Systems with Speed-dependent Spindle Dynamics.Transactions of NAMRI/SME ,32.

[17]Cao H,Bing L,Zhengji H (2012)Chatter Stability of Milling with Speed-varying

Dynamics of Spindles.International Journal of Machine Tools and Manufacture 52:50–58.

[18]Movahhedy MR,Mosaddegh P (2006)Prediction of Chatter in High Speed

Milling including Gyroscopic Effects.International Journal of Machine Tools and Manufacture 46:996–1001.

[19]Chen J-S,Hwang Y-W (2006)Centrifugal Force Induced Dynamics of a Motor-ized High-speed Spindle.International Journal of Advanced Manufacturing Technology 30:10–19.

[20]Gagnol V,Bouzgarrou BC,Ray P,Barra C (2007)Model-based Chatter Stability

Prediction for High-speed Spindles.International Journal of Machine Tools and Manufacture

47:1176–1186.

Fig.6.Stability diagram for constant and variable preload and experimental results.

E.Ozturk et al./CIRP Annals -Manufacturing Technology 61(2012)343–346

346

汽车轮毂轴承设计1

双列圆锥滚子汽车轮毂轴承的标准化设计[转载] 目前,轴承行业的设计部门所处的环境在发生变化。这主要表现在两个方面:一是技术的进步和变化非常快;二是市场对产品质量、价格、交货期的要求水平不断提高。可以说,企业如何应对如此激烈的市场竞争,已经成为各企业需要面对的重大问题。 近几年,我国汽车行业处于高速发展时期,产销量不断提高,从长远发展考虑,各制造商和用户对整车质量提出了更高的要求,而对汽车轮毂轴承更是提出了非常苛刻的要求。例如不断地降低成本,高使用寿命,高可靠性,进一步提高汽车能源效率等等。如图1所示为汽车行业对汽车轮毂轴承及其结构的要求。 国内的汽车轴承生产商在产品开发环节上多处于模仿设计(订货型设计),设计上缺乏自主设计要求,设计人员的随意性较大,在设计过程中缺乏产品系列标准化思想的指导,这样不可避免地就会在设计和管理环节上产生和累积一些问题。对保证系列产品的整体质量、设计管理和生产成本控制等方面都是很不利的。 为满足越来越广泛的市场需求,提高产品的竞争能力,在产品设计中“零件标准化、部件通用化、产品系列化”是提高产品质量、降低成本、得到多品种多规格产品的重要途径。同时采用标准化零件,在不同规格或不同产品中都能提高部分零件或部件的通用程度,便于管理、维修,且能大大降低成本。从设计管理角度来讲,产品的结构设计决定产品的价值和生产效率,对产、销活动的影响很大,技术上和管理上存在很大的不确定性,并且对设计人员个体的技术和经验的依赖性非常大,所以产品设计工作掌握和管理起来难度较大。我们都会尽可能通过在管理上一些有效的方法措施来降低产品设计和管理的风险,其中标准化最为直接有效。 汽车轮毂轴承属于非标准轴承,并且轴承结构设计发展得非常快。汽车轮毂轴承可分为汽车轮毂球轴承和汽车轮毂圆锥滚子轴承两个大类,其中汽车轮毂球轴承的标准化程度比较高,汽车轮毂圆锥滚子轴承的标准化程度很低。对于汽车轮毂圆锥滚子轴承来说,轴承的外形尺寸及内部沟道结构等都没有统一的标准化设计方法和标准,各个生产商相同外形尺寸的产品的内部结构相差很大,缺乏统一的设计方法和设计理论支持。不仅国内、外的产品结构系列差别大,而且国外先进的汽车轴承生产商之间的产品结构系列相差也是比较大的,此系列轴承产品的结构设计、互换性、标准化及通用化等诸多方面还存在很大的提高空间,其标准化道路势在必行。 结构特点 对于汽车轮毂轴承系列产品来说,汽车轮毂轴承的特点是双列双内圈轴承结构,具有一定的接触角;可承受重负荷、冲击负荷,使用范围广;可施加预压来提高轴系刚性;适宜于背对背安装;安装时无须调

premiere pro CS4中英文对照表

Adobe Premiere Pro CS4 千与千寻2011 页0 英文Absorption Additive Dissolve Adjust Time by Alpha blurriness Alpha Adjust Alpha Glow Alignment All premultiplied Amount 中文吸收附加溶解调整时间Alpha 模糊英文Audio Units Audio samples Audio option Audio Gain 中文音频单位音频采样音频设置音频增益音频交错自动颜色试听英文Balance Balance Magnitude Balance Gain Balance Black Angle Level 中文均衡平衡幅度平衡增益平衡角度黑电平蓝色灰度蓝色基准蓝色增益黑平衡带状擦除频带选择舱门弯曲贝济埃曲线with 黑色限制模糊混合混合模式混合原素材增加边界宽度边界颜色亮度烘托图层(纹理) 烘托通道Alpha 通道Audio Interleave 调整Alpha 通道Auto Color 辉光Audition 对齐全部预先做Auto Bezier 到Auto Contrast 数量Auto White level Automate To Sequence Axis Blue Gamma Blue Pedestal 自动贝济埃Blue Gain 曲线自动对比度Black Balance 自动对比度Band wipe Amount to 均化数量Equalize Ambience Intensity 强度Amount to decolor Amount to Tint Anchor Point Anchor point Angle Anti_aliasing Quality Anti_aliasing ForBest Quality Anti_alias Anti——flicker Attack Artihmetic Auto Amounts Auto Black Level 脱色数量着色数量缩放高度锚点角度抗锯齿质量自动匹配到Band select 序列Bard doors 轴Average Pixel 平均像素颜Bend Colors 色Audio mixer Bezier 调音台Apply Apply Style 采用采用样式Black Blur Apply Style With Font Size Style 抗锯齿最高Apply Color Only 质量Apply Style 抗锯齿Library Asprct 抗抖动发作算法自动效果自动黑电平Ambience Intensity Linght Color Asprct 采用样式和Blend 字号只采用样式Blend mode 中的颜色附加样式库Blend with original 体态纵横比Boost Broder width Broder Color Brightness 周围灯光颜Bump layer 色Bump channel Auto Contrast 自动对比度Black clip Blur Dimensions Blur Length Blurriness Block above Block below Blue Value Blend with layer 黑场部分模糊方向模糊长度模糊块在上块在下蓝色值混合图层Bulge Build form one Image Bump Basic Bevel Bevel Border Block Size Blue weighting Bottom 3D Alphe Edges 膨胀Calculations Blur View 运算模糊百分比相机视图垂直单元格水平单元格中心聚合中心剥落中心分割通道从一个图像Camera 组建Camera 撞击基础3D Cells Vertical 斜角Alpha Cells Horizontal 通道Center merge 斜角边缘边缘块尺寸蓝色分量底部块溶解块宽度块高度基线偏移倒角置于顶层Center peel Center split Channel Channel Checker Checker Chorus Clip Clipping Blur Board Wipe Bottom ringhtvertex 右下角Bottom Center Tangent Bottom ringt tangent Bottom left tangent Branching Branch Branch Branch Angle Seg-length width 底部中心通道模糊棋盘划格擦除合唱素材剪裁底部右侧切Block Dissolve 点左侧顶部切Block width 点Block Height 分支分支角度分支长度分支宽度Baseline shift Bevel Bring to Front Brightness&contrast 亮度& 对比Bring ward 度Broadcast Color 广播级色彩Browse Broadcast Locale Brush Position 本地广播指标笔触位置笔触硬度For 前移一层浏览Clip Result 剪辑效果数Values 值Color Correction 颜色修整Compressor Columns Contrast Constant Constan Gain Power 压缩列数对比度恒定增益恒定能量色彩校正色彩平衡使用合成合成于后退Brush Hardness Brush Spacing (ecs)笔触间隔时间Bruh Time 笔触时间属properties 性Brush Strokes 笔触Brush Angle Brush Brush length Strokes 笔触角度size 笔触尺寸Strokes 笔触长度Color correction Color balance Composite Using Composite In Back Composite Front In 合成于前进Comments Color Color Dodge only 注释颜色减淡只有颜色色彩平衡分离颜色Change color 改变颜色Color Tolerance Color Edges 颜色容差查找边缘色标颜色色标透不明度循环发散Change to 转换颜色color Channel Mixer 通道混合器Chroma Chroma Chroma Max Mix 色度最大色度最小色度棋盘色彩纯度键圆圈电影转换曲率of 球形中心材质核心堆存限制值Color stop color

汽车前轮毂轴承适用车型对照表

汽车前轮毂轴承适用车型对照表 型号:DAC25520037 适用车型:富康,奇瑞QQ,吉利后轮,专用轴承。 型号:DAC25520042 适用车型:奔奔后轮。 型号:DAC25520043 适用车型:吉利,雪铁龙,标志。 型号:DAC25550043 适用车型:雷诺。 型号:DAC25600045 适用车型:标志307,凯旋。 型号:DAC27520045/43 适用车型:尼桑日产。型号:DAC27530043 型号:DAC28580042 适用车型:长安汽车,昌河汽车,佳宝前轮专用轴承。 型号:DAC28580044 适用车型:雨燕后轮专用轴承。 型号:DAC28610042 适用车型:丰田专用轴承。 型号:DAC29530037 适用车型:越翔后轮专用轴承型号:DAC30580042 型号:DAC30600337 适用车型:拉达,菲亚特前轮专用轴承。 型号:DAC30630042 适用车型:丰田汽车专用轴承。 型号:DAC30640042 适用车型:丰田汽车专用轴承。 型号:DAC30680045 适用车型:斯柯达汽车专用轴承 型号:DAC32550032 适用车型:沙拉本汽车专用轴承 型号:DAC32720045 适用车型:丰田姬先达用轴承 型号:DAC34640037 适用车型:拉达,欧宝,大众,大宇,乐丰,乐驰,前轮,专用轴承。 型号:DAC34660037 适用车型:本田雅阁,沃克斯,豪尔,赛宝前轮,专用。 型号:DAC3562W-S 适用车型:北斗星,哈飞,路宝,奔奔,爱迪尔前轮。 型号:DAC35620040 适用车型:奥扩王子前轮专用轴承。 型号: DAC35640037 适用车型:幸福使者,老夏利前轮专用轴承。

premiere pro 中英文对照

premiere pro菜单命令中英文对照(按字母顺序排列) 5.1 5.1环绕立体声 (channel)value 通道值 10/8 bit black point 黑点参数 10/8 bit white point 白点参数 3D glasses 三维眼镜 3D motion 3D过渡/三维运动转换 3D view 三维查看 4 color gradient 四色渐变 5.1 mixdown type 5.1混音类型 abort capture on dropped frames 丢失帧则中断采集 Absorption 吸收 action safe area 动作安全区域 activate 激活 Add 添加 add anchor point tool 添加节点工具 add track 添加轨道 add/remove keyframes 添加/删除关键帧 additive dissolve 附加溶解 adjust 调整 adobe bridge 媒体管理软件 adobe dynamic link Adobe 动态链接

adobe media encoder Adobe 媒体编码器 advanced gif options 高级选项 align objects 对齐对象 alignment 对齐选项 all marker 所有标记 all scopes 全部显示 alpha alpha 通道 alpha adjust alpha 调整 alpha blurriness alpha 通道模糊 alpha glow Alpha 辉光 alpha glow settings Alpha 辉光设置 alpha scale alpha 缩放 Amount 数量 amount of noise 噪点数量 amount to decolor 删除量 amount to equalize 重新分布亮度值的程度amount to tint 指定色彩化的数量amplitude 振幅 anchor 定位点 anchor 交叉 anchor point 定位点 Angle 角度 Antialias 抗锯齿 Antialiasing 反锯齿

premiere pro中英文对照按字母顺解析

premiere pro中英文对照(按字母顺序排列)更多组 5.1 5.1环绕立体声 (channel)value 通道值 10/8 bit black point 黑点参数 10/8 bit white point 白点参数 3D glasses 三维眼镜 3D motion 3D过渡 3D view 三维查看 4 color gradient 四色渐变 5.1 mixdown type 5.1混音类型 A组 abort capture on dropped frames 丢失帧则中断采集 absorption 吸收 action safe area 动作安全区域 activate 激活 add 添加 add anchor point tool 添加节点工具 add track 添加轨道 add/remove keyframes 添加/删除关键帧

additive dissolve 附加溶解 调整adjust adobe bridge 媒体管理软件 adobe dynamic link Adobe动态链接adobe media encoder Adobe媒体编码器advanced gif options 高级选项 align objects 对齐对象 alignment 对齐选项 all marker 所有标记 all scopes 全部显示 alpha alpha通道 alpha adjust alpha调整 alpha blurriness alpha通道模糊 alpha glow Alpha辉光 alpha glow settings Alpha辉光设置 alpha scale alpha 缩放 amount 数量 amount of noise 噪点数量 amount to decolor 删除量 amount to equalize 重新分布亮度值的程度amount to tint 指定色彩化的数量amplitude 振幅

圆锥滚子轴承

1定义 圆锥滚子轴承属于分离型轴承,轴承的内、外圈均具有锥行滚道。该类轴承按所装滚子的列数分为单列、双列和四列圆锥滚子轴承等不同的结构型式。单列圆锥滚子轴承可以承受径向负荷和单一方向轴向负荷。当轴承承受径向负荷时,将会产生一个轴向分力,所以当需要另一个可承受反方向轴向力的轴承来加以平衡。单列圆锥滚子轴承承受轴向负荷的能力取决于接触角,即外圈滚道角度,角度越大,轴向负荷能力也越大。圆锥滚子轴承中用量最多的是单列圆锥滚子轴承。在轿车的前轮轮毂中,用上了小尺寸的双列圆锥滚子轴承。四列圆锥滚子轴承用在大型冷、热轧机等重型机器中。 2结构特点 圆锥滚子轴承的类型代号为30000[1],圆锥滚子轴承为分离型轴承。一般情况下,尤其是在GB/T307.1-94《滚动轴承向心轴承公差》中所涉及到的尺寸范围内的圆锥滚子轴承外圈与内组件之间是百分之百可以通用互换使用的。 外圈的角度以及外滚道直径尺寸已与外形尺寸相同被标准化规定了。不允许在设计制造时更改。以致使圆锥滚子轴承的外圈与内组件之间可在世界范围内通用互换。 圆锥滚子轴承主要用于承受以径向载荷为主的径向与轴向联合载荷。与角接触球轴承相比、承载能力大,极限转速低。圆锥滚子轴承能够承受一个方向的轴向载荷,能够限制轴或外壳一个方向的轴向位移。 3分类 单列圆锥滚子轴承有一个外圈,其内圈和一组锥形滚子由筐形保持架包罗成的一个内圈组件。外圈可以和内圈组件分离,按照ISO圆锥滚子轴承外形尺寸标准的规定,任何一个标准型号的圆锥滚子轴承外圈或内圈组件应能和同型号外圈或内圈组件实现国际性互换。即同型号的外圈除外部尺寸、公差需符合ISO492 (GB307)规定外,内圈组件的圆锥角、组件锥体直径等也必须符合互换的有关规定。[1]

premiere视频特效中英文对照

Premiere特效应用中英文对照 一、Adjust(调整)视频特效组 1.Auto Color(自动色彩)、Auto Contrast(自动对比度)、Auto Level(自动色阶) 这三个命令将对图像的色彩、对比度和色阶按照一定数值进行自动调整。如果图像值与这三个命令的自动值相近的话,图像应用该命令后效果不明显。这三个命令的值也可通过手动修改。 2.Brightness & Contrast(亮度与对比度) 本视频滤镜效果将改变画面的亮度和对比度。类似于电视中的亮度和对比度的调节,但在这里调整则是对滑块的移动, 3.Channel Mixer(通道合成器) 使用本视频滤镜效果,能用几个颜色通道的合成值来修改一个颜色通道。使用该效果可创建使用其他颜色调整工具很难产生的颜色调整效果,通过从每个颜色通道中选择其中一部分就能合成为高质量的灰度级图像,创建高质量的棕褐色或其他色调的图像,已经交换或复制通道, 4.Color Balance(色彩平衡) 本视频滤镜效果利用滑块来调整RGB颜色的分配比例,使得某个颜色偏重以调整其明暗程度。本过滤属于随时间变化的特技, 5.Convolution Kernel(明暗锐化) 本视频滤镜效果使用一道内定的数学表达式,通过矩阵文本给内定表达式输入数据,来计算每个像素的周围像素的涡旋值,进而得到丰富的视频效果。可以从提供的模式菜单中选择数据模式进行修改,也可以重新输入新的值(只要效果认为在Convolution Matrix(回旋矩阵)文本框中,中心的数字为该像素的亮度计算值(所输入的数字会乘以像素的亮度值),周围的数字是该像素周围的像素所需要的计算值,在此框内所输入的数值会乘以周围像素的亮度值。 在Misc(杂项)框架中的Scale文本框中输入的数将作为除数,像素点包括周围像素点的像素点与输入给“环境中心像素点的数据矩阵”对应点的乘积之和为被除数。Offset文本框是一个计算结果的偏移量(与所得的商相加)。 所有数值允许的输入范围很大,可从-99999~999999,但实际使用的没有这么大,要根据演示效果而定。 假如发现定义的一套数据很实用,并且以后还要使用,可单击Save按钮将其存储起来,并记住文件夹和文件名(或存储到软盘上)。下次通过单击Load按钮将其装载到当前的数据定义格式中,即可使用。 假如想使用内定的图像转换数据格式,应该单击图7-20中间上方的按钮,从弹出的菜单中选择相应的选项。内定的图像转换数据格式是十分有用的工具,它可让图像变得模糊或清楚。为能充分说明问题,图7-21列出了几种典型的效果供参考。这是从图7-20中选择

滚动轴承在汽车中的应用

滚 动 轴 承 在 汽 车 中 的 应 用 及 问 题 车辆31 夏华翅 2130105019

滚动轴承在汽车中的应用 内容提要:汽车轴承泛指汽车各部位使用的各种通用和专用滚动轴承。汽车 轴承的发展主要表现为通用轴承应用范围的扩大、专用轴承的发展以及轴承性能与寿命的提高。专用轴承的发展使汽车轴承在结构与功能上逐步形成了有别于通用轴承的一些特色。 关键词:汽车轴承设计维修保养 一、分类与安装部位 一辆汽车通常有约30种50套轴承安装在不同的转动部位。在实际中,一般按安装或使用部位对汽车轴承进行分类。 与汽车划分为发动机、传动系、转向系及空调系统相对应,按安装部位汽车轴承可首先划分为发动机轴承、传动系轴承、转向系轴承及空调机轴承等类轴承,继而可进一步细分至上述系统的各个部件乃至轴承的具体安装部位汽。由于汽车和轴承设计的多样化,不同汽车的同类部件常采用不同的部件结构和轴承结构。采用轴承安装部位图和相应的轴承型谱表可以更为详细和直观地表示轴承的安装部位,并可通过同时给出轴承型号、外形尺寸及其安装部位揭示部件与轴承内在联

系。 二、发展概况 随着汽车技术的发展,汽车轴承的设计、制造、试验及应用技术都取得了很大的发展。但从应用的角度考虑,可将汽车轴承的发展概括为主要是通用轴承的扩大应用、专用轴承的发展以及轴承性能与寿命的提高。 (一)通用轴承的扩大应用 汽车结构的改进、品种与规格的发展、性能与寿命的提高以及汽车设计、轴承设计的多样化导致了通用轴承应用范围的扩大。 迄今,在汽车中直接应用的通用轴承已覆盖通用轴承几乎所有的基本结构类型、越来越多的系列和越来越多的规格,而对直接应用的通用轴承的改进和发展则导致产生了一些新的通用轴承系列和专用轴承。(二)专用轴承的发展 在通用轴承的基础之上逐步发展起来的一些汽车专用轴承具有传统滚动轴承所不具备的、与汽车应用联系紧密的结构与功能特征。在这些汽车专用轴承中,以轮毂轴承和离合器分离轴承结构与功能的扩展

PR中英文对照讲解

Premiere Pro中英文对照 一、菜单命令 1、File(文件) New Project 新项目快捷命令是Ctrl+N New 新建 Bin(文件包)、Storyboard(故事板)、Title(字幕)、Universal Counting Leader(普遍的计算机领导者)、Bars and tone(节线和音调)、Black Video(黑色视频)、Color Matte (不光滑颜色)和Offline File(脱机文件) Open 打开命令快捷键为Ctrl+O Open Recent File 打开最近的文件 Open Recent Project 打开最近的项目 Close 关闭快捷键为Ctrl+W Save 保存快捷键为Ctrl+S Save As 另存为快捷键为Ctrl+Shift+S Revert 恢复 Capture 捕获 Batch Capture(批处理捕获)、Movie Capture(电影捕获)、Stop Motion(停止运动)和Audio Capture(音频捕获) Import 输入 Export Clip 输出片断 Export Timeline 输出时间线 Get Properties For 获取属性 Page Setup 页面设置 Print 打印 Exit 退出 2、Edit (编辑) Undo 取消操作 Redo 重复操作 Cut 剪切 Copy 复制 Paste 粘贴

Paste to Fit 粘贴到适合 Paste Attributes 粘贴属性 Paste Attributes Again 重复粘贴属性 Clear 清除 Duplicate Clip 片断副本 Deselect All 取消全部选定 Select All 全部选定 Find 查找 Locate Clip 查找片断 Edit Uriginal 编辑初始化 Preferences 参数选择 3、Project(剧本) Project Settings 剧本设置 General(普通)、Video(视频)、Audio(音频)、Keyframe and Rendering(关键帧和渲染)和Capture(捕获) Settings Viewer 查看设置 Remove Unused Clips 移动不常用素材 Replace Clips 取代素材 Automate to Timeline 使时间线自动化 Export Bin from Project 从剧本输出文件包 Utilities 效用 Batch Processing(整批过程)和Project Trimmer(剧本整理) 4、Clip(素材) Properties 属性快捷键为Ctrl+Shift+H Set Clip Name Alias 设置素材名称别名快捷键为Ctrl+H Add Clip to Project 添加素材到剧本快捷键为Ctrl+J Inset in Edit Line 插入到编辑线 Overlay at Edit Line 覆盖编辑线 Enable Clip on Timeline 在时间线上激活素材 Lock Clip on Timeline 在时间线上锁定素材 Unlink Audio and Video 解开音频和视频

premiere转场特效中英文翻译、详解

Premiere转场特效中英文翻译、详解Motion(3D运动) Cube Spin(立方体旋转):可使影片A和影片B分别以立方体的两个面过渡转换。 Curtain(窗帘):使影片A如同窗帘一样被拉起,显示影片B。 Doors(门):使影片B如同关门一样覆盖影片A。 Flip Over(空翻):使影片A翻转到影片B。可输入空翻的影像数量和设置空白区域颜色。 Fold Up(折叠):使影片A像纸一样被重复折叠,显示影片B。 Spin(旋转):使影片B从影片A中心展开。 Spin Away(旋转离开):使影片B从影片A中心旋转出现。 Swing In(摆入):使影片B过渡到影片A产生内关门的效果。 Swing Out(摆出):使影片B过渡到影片A产生外关门的效果。 Tumble Away(翻筋斗):使影片A旋转翻入影片B。 Disslove(溶解):主要是根据两幅图像相似的色彩和亮度等,使其产生淡入淡出的效果。 Additive Dissolve(附加溶解):使影片A以加亮模式淡化为影片B。 Cross Dissolve(交叉溶解):使影片A淡化为影片B。为标准的淡入淡出切换特效。 Dip to Black(浸入黑场):使影片A以变暗的模式淡化为影片B。 Dither Dissolve(抖动溶解):使影片B以点的方式出现,取代影片A。 Non-Additive Dissolve(非附加溶解):使影片A与影片B的亮度叠加消溶。 Random Invert(随意翻转):以随意块方式使影片A过渡到影片B,并在随意块中显示反色效果。可设置水平和垂直随意快的数量。 GPU Transitions(GPU 转换) Card Flip(卡片翻转):使影片A分割成若干个矩形,然后矩形依次翻转显示影片B。 Center Peel(中心到四角):影片A在正中心分为4块分别向四角卷起,露出影片B。 Page Curl(卷页):使影片A从左上角向右下角卷动,露出影片B。

PR视频特效及视频转场特效中英文对照表

premiere pro2.0视频转场特效英汉对照 premiere汉化后有些功能就会损伤,所以我不是很喜欢使用汉化版本的Adobe软件。我一直觉得一些常用的工具,用熟了就能记住,不过也有一些特别的工具还真的汉化了以后才能方便的找到!下面是我收集的premiere pro2.0视频转场特效英汉对照,希望对你有帮助! 1、3D过渡(3D motion) 英文名中文名备注 Cube spin 立方体旋转 Curtain 窗帘 Doors 关门 Flip over 翻页 Fold up 折叠 Spin 翻转中心向左右扩展 Spin away 旋转中心旋转出 Swing in 内关门 Swing out 外关门 Tumble away 筋斗翻出 2、溶解(Dissolve) 英文名中文名备注 Additive Dissolve 附加溶解 Cross Dissolve 交叉溶解 Dip to Black 加入暗场溶解 Dither Dissolve 淡入淡出 Non-Additive Dissolve 无附加溶解 Random Invert 随机颠倒附加上了颗粒溶解 3、圈入(Iris) 英文名中文名备注 Iris Box 盒装圈出中心点在画面中央 Iris Cross 十字形圈出 Iris Diamond 菱形圈出 Iris Points 四点圈出从四个角圈出整个画面 Iris Round 圆形圈出 Iris Shapes 形状圈出可以设置菱形、椭圆形或者矩形 Iris Star 五角星圈出 4、映射(Map) 英文名中文名备注 Channel Map 通道映射可以设置三基色、alpha、灰度等通道 Luminance Map 亮度映射画面1亮度降低 5、卷页(Page Peel)

PR视频特效及视频转场特效中英文对照表备课讲稿

P R视频特效及视频转场特效中英文对照表

premiere pro2.0视频转场特效英汉对照 premiere汉化后有些功能就会损伤,所以我不是很喜欢使用汉化版本的Adobe软件。我一直觉得一些常用的工具,用熟了就能记住,不过也有一些特别的工具还真的汉化了以后才能方便的找到!下面是我收集的premiere pro2.0视频转场特效英汉对照,希望对你有帮助! 1、3D过渡(3D motion) 英文名中文名备注 Cube spin 立方体旋转 Curtain 窗帘 Doors 关门 Flip over 翻页 Fold up 折叠 Spin 翻转中心向左右扩展 Spin away 旋转中心旋转出 Swing in 内关门 Swing out 外关门 Tumble away 筋斗翻出 2、溶解(Dissolve) 英文名中文名备注 Additive Dissolve 附加溶解 Cross Dissolve 交叉溶解

Dip to Black 加入暗场溶解 Dither Dissolve 淡入淡出 Non-Additive Dissolve 无附加溶解 Random Invert 随机颠倒附加上了颗粒溶解 3、圈入(Iris) 英文名中文名备注 Iris Box 盒装圈出中心点在画面中央 Iris Cross 十字形圈出 Iris Diamond 菱形圈出 Iris Points 四点圈出从四个角圈出整个画面 Iris Round 圆形圈出 Iris Shapes 形状圈出可以设置菱形、椭圆形或者矩形 Iris Star 五角星圈出 4、映射(Map) 英文名中文名备注 Channel Map 通道映射可以设置三基色、alpha、灰度等通道Luminance Map 亮度映射画面1亮度降低 5、卷页(Page Peel) 英文名中文名备注 Center Peel 中心卷页由中心向四周 Page Peel 左上角卷页

轴承的分类及部分轴承型号参数

轴承 轴承分为两大类:滑动轴承和滚动轴承 一。、滑动轴承 滑动轴承,在滑动摩擦下工作的轴承。滑动轴承工作平稳、可靠、无噪声。 在液体润滑条件下,滑动表面被润滑油分开而不发生直接接触,还可以大大减小摩擦损失和表面磨损,油膜还具有一定的吸振能力。但起动摩擦阻力较大。轴被轴承支承的部分称为轴颈,与轴颈相配的零件称为轴瓦。为了改善轴瓦表面的摩擦性质而在其内表面上浇铸的减摩材料层称为轴承衬。轴瓦和轴承衬的材料统称为滑动轴承材料。滑动轴承应用场合一般在低速重载工况条件下,或者是维护保养及加注润滑油困难的运转部位。 滑动轴承种类很多。 ①按能承受载荷的方向可分为径向(向心)滑动轴承和推力(轴向)滑动轴承两类。 ②按润滑剂种类可分为油润滑轴承、脂润滑轴承、水润滑轴承、气体轴承、固体润滑轴承、磁流体轴承和电磁轴承7类。 ③按润滑膜厚度可分为薄膜润滑轴承和厚膜润滑轴承两类。 ④按轴瓦材料可分为青铜轴承、铸铁轴承、塑料轴承、宝石轴承、粉末冶金轴承、自润滑轴承和含油轴承等。 ⑤按轴瓦结构可分为圆轴承、椭圆轴承、三油叶轴承、阶梯面轴承、可倾瓦轴承和箔轴承等。 二、滚动轴承 1、深沟球轴承 1深沟球轴承 深沟球轴承结构简单,使用方便,是生产批量最大,应用范围最广的一类轴承。它主要用一承受径向载荷,也可承受一定的轴向载荷。当轴承的径向游隙加大时,具有角接触轴承的功能,可承受较大的轴向载荷。应用于汽车,拖拉机,机床,电机,水泵,农业机械,纺织机械等。 标记示例:滚动轴承6216 GB/T276-1994

注:1.GB/T276-1994仅给出轴承型号及尺寸,安装尺寸摘自GB/T5868-1986 2、圆柱滚子轴承 圆柱滚子轴承的滚子通常由一个轴承套圈的两个挡边引导,保持架.滚子和引导套圈组成一组合件,可与另一个轴承套圈分离,属于可分离轴承。此种轴承安装,拆卸比较方便,尤其是当要求内.外圈与轴.壳体都是过盈配合时更显示优点。此类轴承一般只用于承受径向载荷,只有内.外圈均带挡边的单列轴承可承受较小的定常轴向载荷或较大的间歇轴向载荷。主要用于大型电机,机床主轴,车轴轴箱,柴油机曲轴以及汽车,托牢记的变箱等 3、调心球轴承 调心球轴承有两列钢球,内圈有两条滚道,外圈滚道为内球面形,具有自动调心的性能。可以自动补偿由于轴的绕曲和壳体变形产生的同轴度误差,适用于支承座孔不能保证严格同轴度的部件中。该中轴承主要承受径向载荷,在承受径向载荷的同时,亦可承受少量的轴向载荷,通常不用于承受纯轴向载荷,如承受纯轴向载荷,只有一列钢球受力。主要用在联合收割机等农业机械,鼓风机,造纸机,纺织机械,木工机械,桥式吊车走轮及传动轴上。 4、调心滚子轴承 调心滚子轴承句有两列滚子,主要用于承受径向载荷,同时也能承受任一方向的轴向载荷。该种轴承径向载荷能力高,特别适用于重载或振动载荷下工作,但不能承受纯轴向载荷;调心性能良好,能补偿同轴承误差。主要用途:造纸机械、减速装置、铁路车辆车轴、轧钢机齿轮箱座、破碎机、各类产业用减速机等 5、滚针轴承 滚针轴承装有细而长的滚子(滚子长度为直径的3~10倍,直径一般不大于5mm),因此径向结构紧凑,其内径尺寸和载荷能力与其他类型轴承相同时,外径最小,特别适用与径向安装尺寸受限制的支承结构。根据使用场合不同,可选用无内圈的轴承或滚针和保持架组件,此时与轴承相配的轴颈表面和外壳孔表面直接作为轴承的内.外滚动表面,为保持载荷能力和运转性能与有套圈轴承相同,轴或外壳孔滚道表面的硬度.加工精度和表面和表面质量应与轴承套圈的滚道相仿。此种轴承仅能承受径向载荷。例如:万向节轴,液压泵,薄板轧机,凿岩机,机床齿轮箱,汽车以及拖拉机机变速箱等 6、角接触球轴承

PR英文对照

Prmiere pro 2.0中英文对照 5.1 5.1环绕立体声 (channel)value 通道值 10/8 bit black point 黑点参数 10/8 bit white point 白点参数 3D glasses 三维眼镜 3D motion 3D过渡 3D view 三维查看 4 color gradient 四色渐变 5.1 mixdown type 5.1混音类型 abort capture on dropped frames 丢失帧则中断采集absorption 吸收 action safe area 动作安全区域 activate 激活 add 添加 add anchor point tool 添加节点工具 add track 添加轨道 add/remove keyframes 添加/删除关键帧 additive dissolve 附加溶解 adjust 调整 adobe bridge 媒体管理软件 adobe dynamic link Adobe动态链接

adobe media encoder Adobe媒体编码器advanced gif options 高级选项 align objects 对齐对象 alignment 对齐选项 all marker 所有标记 all scopes 全部显示 alpha alpha通道 alpha adjust alpha调整 alpha blurriness alpha通道模糊 alpha glow Alpha辉光 alpha glow settings Alpha辉光设置 alpha scale alpha 缩放 amount 数量 amount of noise 噪点数量 amount to decolor 删除量 amount to equalize 重新分布亮度值的程度amount to tint 指定色彩化的数量amplitude 振幅 anchor 定位点 anchor 交叉 anchor point 定位点 angle 角度

pr英汉对照第二部分

第二部分: decay 组合素材强度减弱的比例 default 默认 default crawl 默认水平滚动 default roll 默认垂直滚动 default sequence 默认序列设置 default still 默认静态 defringing 指定颜色通道 delay 延时 delete anchor point tool 删除节点工具delete render files 删除预览文件delete style 删除样式 delete tracks 删除轨道 delete workspace 删除工作界面denoiser 降噪 density 密度 depth 深度 deselect all 取消全选 detail amplitude 细节振幅 detail level 细节级别 device control 设备控制 devices 设备

diamond 菱形 difference matte key 差异抠像dip to black 黑色过渡 direct 直接 direction 角度 directional blur 定向模糊directional lights 平行光disperse 分散属性 displace 位移 displacement 转换 display format 时间显示格式display mode 显示模式dissolve 溶解 distance 距离 distance to image 图像距离distort 扭曲 distribute objects 分布对象dither dissolve 颗粒溶解doors 关门 down 下 draft 草图 draft quality 草稿质量

最全pr英汉对照28页

第一部分: 5.1 5.1环绕立体声 (channel)value 通道值 10/8 bit black point 黑点参数 10/8 bit white point 白点参数 3D glasses 三维眼镜 3D motion 3D过渡 3D view 三维查看 4 color gradient 四色渐变 5.1 mixdown type 5.1混音类型 abort capture on dropped frames 丢失帧则中断采集 absorption 吸收 action safe area 动作安全区域activate 激活 add 添加 add anchor point tool 添加节点工具add track 添加轨道 add/remove keyframes 添加/删除关键帧 additive dissolve 附加溶解 adjust 调整 adobe bridge 媒体管理软件adobe dynamic link Adobe动态链接adobe media encoder Adobe媒体编码器 advanced gif options 高级选项 align objects 对齐对象 alignment 对齐选项 all marker 所有标记 all scopes 全部显示 alpha alpha通道 alpha adjust alpha调整 alpha blurriness alpha通道模糊alpha glow Alpha辉光 alpha glow settings Alpha辉光设置alpha scale alpha 缩放 amount 数量 amount of noise 噪点数量 amount to decolor 删除量 amount to equalize 重新分布亮度值的程度 amount to tint 指定色彩化的数量amplitude 振幅 anchor 定位点 anchor 交叉

最全pr英汉对照

第一部分:环绕立体声(Channel)ValUe 通道值10/8 bit black POint 黑点参数10/8 bit White POint 白点参数3D glasses三维眼镜3D motion 3D 过渡3D VieW三维査看 4 COIOr gradient 四色渐变mixdown type混音类型abort CaPtUre On dropped frames 丢失帧则中断采 集absorption 吸收action Safe area动作安全区域activate 激活add添加add anchor POint tool添加节点工具add track添加轨道 add/remove keyframes添加/删除关键帧additive dissolve 附加溶解adjust调整adobe bridge媒体管理软件adobe dynamic Iink AdObe 动态链接adobe media encoder AdObe 媒体编码器advanced gif OPtiOnS 高级选项align ObjeCtS对齐对象alignment对齐选项all marker所有标记all SCOPeS全部显示alpha alpha 通道alpha adjust alpha 调整alpha blurriness alpha 通道模糊alpha glow AIPha 辉光alpha 创OW SettingS AlPha 辉光设置alpha SCaIe alpha 缩放amount数量amount Of noise 噪点数量amount to decolor 删除量amount to equalize更新分布亮度值的程度amount to tint指定色彩化的数就amplitude 振幅anchor定位点anchor交叉anchor POint 定位点angle角度antialias抗锯齿antialiasing 反锯齿anti-flicker filter 去闪烁滤镜append StyIe Iibrary 加载样式库apply audio transition 应用音频转换apply PhaSe map to alpha 应用相位图到alpha 通道apply StyIe应用样式apply StyIe COlOr Only仅应用样式颜色apply StyIe With font SiZe应用样式字体大小apply VideO transition 应用视频转换arc tool扇形工具area type tool水平段落文本工具arithmetic 计算arrange 排列aspect比例assume this frame rate手动设置帧速率audio音频audio effects音频特效audio gain 音频增益audio hardware 音频硬件audio in音频入点audio master meters音频主电平表audio mixer 混音器audio OPtiOnS音频选项audio OUt音频出点audio OUtPUt mapping音频输出映射audio PreVieWS 音频预演audio SamPleS音频釆样audio transitions 音频转换audio transitions default duration 默认音频切换持续时间auto black IeVel 自动黑色auto COlOr自动色彩auto COntraSt自动对比度auto IeVeIS自动色阶auto SaVe自动保存auto White IeVel 自动白色auto-generate dvd markers 自动生成DVD 标签automatch time自动匹配时间automate to SeqUenCe 序列自动化automatic quality 自动设置automatically SaVe every 自动保存时间automatically SaVe PrOjeCtS 自动保存average pixel COlOrS平均像素颜色background COlOr 背景色balance 平衡balance angle白平衡角度balance gain增加白平衡 balance magnitude设置平衡数量band Slide带形滑行band WiPe带形擦除bandpass带通滤波barn doors挡光板bars and tone彩条色调栅栏based On CUrrent title 基于当前字幕based On template基于字幕模板baseline Shift 基线basic 3D基本三维bass低音batce CaPtUre批量采集bend弯曲bend SettingS弯曲设置best最佳质量between 两者bevel斜面填充bevel alpha alpha 导角bevel edges边缘倾斜bin文件夹black & White 黑白black input IeVel黑色输入量black VideO 黑屏blend混合blend With Iayer 与层混合blend With Original 混合来源层blending混合选项blending mode混合模式block dissolve 块面溶解block Width/block height板块宽度和板块高度blue蓝色 blue blurriness蓝色通道模糊blue SCreen key 蓝屏抠像blur & sharpen模糊与锐化blur Center模糊中心blur dimensions 模糊方向blur dimensions 模糊维数blur length模糊程度blur method模糊方式blurriness模糊强度blurs斜面边框boost Iight光线亮度border边界bottom 卜branch angle分支角度branch seg. Length分支片段长度branch SegmentS 分支段数branch Width 分支宽度branching 分支brightness 亮度 brightness & COntraSt 亮度与对比度bring forward 提前一层bring to front放在前层broadcast COIOrS广播级颜色broadcast IOCaIe指定PAL或NTSC两种电视制式browse浏览brush hardness画笔的硬度brush opacity画笔的不透明度brush POSitiOn 画笔位置brush SiZe画笔尺寸brush SPaCing绘制的时间间隔brush StrOkeS画笔描边brush time PrOPertieS应用画笔属性(尺寸和硬度)到每个笔触段或者整个笔触过程CaICUIatiOnS 计算器Camera blur镜头模糊Camera VieW相机视图 Camera VieW SettingS照相机镜头设置 CaPtUre 采集 CaPtUre format 采集格式CaPtUre SettingS 采集设置CeIl Pattern单元图案Center中心 Center at CUt选区中间切换 Center gradient 平铺Center merge中心融合Center Of SPhere 球体中心Center Peel中心卷页Center SPlit中心分裂CenterteXtUre纹理处于中心Center X 中心X Center Y 中心Y Change by颜色转换的执行方式Change COlOr转换颜色Change to COIOr转换到颜色Channel 通道Channel blur通道模糊ChanneI map通道映射图Channel map SettingS通道映射图设置Channel mixer通道混合Channel VOIUme 通道音量 CheCker WiPe方格擦除 CheCkerbOard 棋盘格

相关文档