文档库 最新最全的文档下载
当前位置:文档库 › 3 可靠性设计的主要内容

3 可靠性设计的主要内容

3 可靠性设计的主要内容
3 可靠性设计的主要内容

可靠性设计的主要内容

1、研究产品的故障物理和故障模型

搜集、分析与掌握该类产品在使用过程中零件材料的老化、损伤和故障失效等(均为受许多复杂随机因素影响的随机过程)的有关数据及材料的初始性能(强度、冲击韧性等)对其平均值的偏离数据,揭示影响老化、损伤这一复杂物理化学过程最本质的因素,追寻故障的真正原因。研究以时间函数形式表达的材料老化、损伤的规律,从而较确切的估计产品在使用条件下的状态和寿命。用统计分析的方法使故障(失效)机理模型化,建立计算用的可靠度模型或故障模型,为可靠性设计奠定物理数学基础,故障模型的建立,往往以可靠性试验结果为依据。

2、确定产品的可靠性指标及其等级

选取何种可靠性指标取决于产品的类型、设计要求以及习惯和方便性等。而产品可靠性指标的等级或量值,则应依据设计要求或已有的试验,使用和修理的统计数据、设计经验、产品的重要程度、技术发展趋势及市场需求等来确定。例如,对于汽车,可选用可靠度、首次故障里程、平局故障间隔里程等作为可靠性指标,对于工程机械则常采用有效度。

3、合理分配产品的可靠性指标值

将确定的产品可靠性指标的量值合理分配给零部件,以确定每个零部件的可靠性指标值,后者与该零部件的功能、重要性、复杂程度、体积、重量、设计要求与经验、已有的可靠性数据及费用等有关,这些构成对可靠性指标值的约束条件。采用优化设计方法将产品(系统、设备)的可靠性指标值分配给各个零部件,以求得最大经济效益下的各零部件可靠性指标值最合理的匹配。

4、以规定的可靠性指标值为依据对零件进行可靠性设计

即把规定的可靠性指标值直接设计到零件中去,使它们能够保证可靠性指标值的实现。

硬件系统的可靠性设计

硬件系统的可靠性设计

目录 1 可靠性概念 (4) 1.1 失效率 (4) 1.2 可靠度 (5) 1.3 不可靠度 (6) 1.4 平均无故障时间 (6) 1.5 可靠性指标间的关系 (6) 2 可靠性模型 (7) 2.1 串联系统 (7) 2.2 并联系统 (9) 2.3 混合系统 (11) 2.4 提高可靠性的方法 (12) 3 可靠性设计方法 (12) 3.1 元器件 (12) 3.2 降额设计 (13) 3.3 冗余设计 (14) 3.4 电磁兼容设计 (15) 3.5 故障自动检测与诊断 (15) 3.6 软件可靠性技术 (15) 3.7 失效保险技术 (15) 3.8 热设计 (16) 3.9 EMC设计 (16) 3.10 可靠性指标分配原则 (17) 4 常用器件的可靠性及选择 (19) 4.1 元器件失效特性 (19) 4.2 元器件失效机理 (21) 4.3 元器件选择 (23) 4.4 电阻 (23) 4.5 电容 (26) 4.6 二极管 (30) 4.7 光耦合器 (31) 4.8 集成电路 (32) 5 电路设计 (38) 5.1 电流倒灌 (38) 5.2 热插拔设计 (40) 5.3 过流保护 (41) 5.4 反射波干扰 (42) 5.5 电源干扰 (49) 5.6 静电干扰 (51) 5.7 上电复位 (52) 5.8 时钟信号的驱动 (53) 5.9 时钟信号的匹配方法 (55) 6 PCB设计 (60)

6.1 布线 (60) 6.2 去耦电容 (62) 7 系统可靠性测试 (62) 7.1 环境适应性测试 (62) 7.2 EMC测试 (63) 7.3 其它测试 (63) 8 参考资料 (64) 9 附录 (64)

可靠性设计的主要内容

可靠性设计的主要内容 1、研究产品的故障物理和故障模型 搜集、分析与掌握该类产品在使用过程中零件材料的老化、损伤和故障失效等(均为受许多复杂随机因素影响的随机过程)的有关数据及材料的初始性能(强度、冲击韧性等)对其平均值的偏离数据,揭示影响老化、损伤这一复杂物理化学过程最本质的因素,追寻故障的真正原因。研究以时间函数形式表达的材料老化、损伤的规律,从而较确切的估计产品在使用条件下的状态和寿命。用统计分析的方法使故障(失效)机理模型化,建立计算用的可靠度模型或故障模型,为可靠性设计奠定物理数学基础,故障模型的建立,往往以可靠性试验结果为依据。 2、确定产品的可靠性指标及其等级 选取何种可靠性指标取决于产品的类型、设计要求以及习惯和方便性等。而产品可靠性指标的等级或量值,则应依据设计要求或已有的试验,使用和修理的统计数据、设计经验、产品的重要程度、技术发展趋势及市场需求等来确定。例如,对于汽车,可选用可靠度、首次故障里程、平局故障间隔里程等作为可靠性指标,对于工程机械则常采用有效度。 3、合理分配产品的可靠性指标值

将确定的产品可靠性指标的量值合理分配给零部件,以确定每个零部件的可靠性指标值,后者与该零部件的功能、重要性、复杂程度、体积、重量、设计要求与经验、已有的可靠性数据及费用等有关,这些构成对可靠性指标值的约束条件。采用优化设计方法将产品(系统、设备)的可靠性指标值分配给各个零部件,以求得最大经济效益下的各零部件可靠性指标值最合理的匹配。 4、以规定的可靠性指标值为依据对零件进行可靠性设计 即把规定的可靠性指标值直接设计到零件中去,使它们能够保证可靠性指标值的实现。

系统可靠性设计与分析

可靠性设计与分析作业 学号:071130123 姓名:向正平一、指数分布的概率密度函数、分布函数、可靠度函数曲线 (1)程序语言 t=(0:0.01:20); Array m=[0.3,0.6,0.9]; linecolor=['r','b','y']; for i=1:length(m); f=m(i)*exp(-m(i)*t); F=1-exp(-m(i)*t); R=exp(-m(i)*t); color=linecolor(i); subplot(3,1,1); title('指数函数概率密度函数曲线'); plot(t,f,color); hold on subplot(3,1,2); title('指数函数分布函数函数曲线'); plot(t,F,color); hold on subplot(3,1,3); title('指数指数分布可靠度函数曲线 plot(t,R,color); hold on end (3)指数分布的分析 在可靠性理论中,指数分布是最基本、最常用的分布,适合于失效率为常数 的情况。指数分布不但在电子元器件偶然失效期普遍使用,而且在复杂系统和整 机方面以及机械技术的可靠性领域也得到使用。 有图像可以看出失效率函数密度f(t)随着时间的增加不断下降,而失效率随 着时间的增加在不断的上升,可靠度也在随着时间的增加不断地下降,从图线的 颜色可以看出,随着m的增加失效率密度函数下降越快,而可靠度的随m的增加 而不断的增加,则失效率随m的增加减小越快。 在工程运用中,如果某零件符合指数分布,那么可以适当增加m的值,使零 件的可靠度会提升,增加可靠性。 二、正态分布的概率密度函数、分布函数、可靠性函数、失效率函数曲线 (1)程序语言 t=-10:0.01:10; m=[3,6,9]; n=[1,2,3]; linecolor=['r','b','y'];

通用的可靠性设计分析方法

通用的可靠性设计分析方法 1.识别任务剖面、寿命剖面和环境剖面 在明确产品的可靠性定性定量要求以前,首先要识别产品的任务剖面、寿命剖面和环境剖面。 (1)任务剖面“剖面”一词是英语profile的直译,其含义是对所发生的事件、过程、状态、功能及所处环境的描述。显然,事件、状态、功能及所处环境都与时间有关,因此,这种描述事实上是一种时序的描述。 任务剖面的定义为:产品在完成规定任务这段时间内所经历的事件和环境的时序描述。它包括任务成功或致命故障的判断准则。 对于完成一种或多种任务的产品,均应制定一种或多种任务剖面。任务剖面一般应包括:1)产品的工作状态; 2)维修方案; 3)产品工作的时间与程序; 4)产品所处环境(外加有诱发的)时间与程序。 任务剖面在产品指标论证时就应提出,它是设计人员能设计出满足使用要求的产品的最基本的信息。任务剖面必须建立在有效的数据的基础上。 图1表示了一个典型的任务剖面。 (2)寿命剖面寿命剖面的定义为:产品从制造到寿命终结或退出使用这段时间内所经历的全部事件和环境的时序描述。寿命剖面包括任务剖面。 寿命剖面说明产品在整个寿命期经历的事件,如:装卸、运输、储存、检修、维修、任务剖面等以及每个事件的持续时间、顺序、环境和工作方式。 寿命剖面同样是建立产品技术要求不可缺少的信息。 图2表示了寿命剖面所经历的事件。

(3)环境剖面环境剖面是任务剖面的一个组成部分。它是对产品的使用或生存有影响的环境特性,如温度、湿度、压力、盐雾、辐射、砂尘以及振动冲击、噪声、电磁干扰等及其强度的时序说明。 产品的工作时间与程序所对应的环境时间与程序不尽相同。环境剖面也是寿命剖面和任务剖面的一个组成部分。 2.明确可靠性定性定量要求 明确产品的可靠性要求是新产品开发过程中首先要做的一件事。产品的可靠性要求是进行可靠性设计分析的最重要的依据。 可靠性要求可以分为两大类:第一类是定性要求,即用一种非量化的形式来设计、分析以评估和保证产品的可靠性;第二类是定量要求,即规定产品的可靠性指标和相应的验证方法。 可靠性定性要求通常以要求开展的一系列定性设计分析工作项目表达。常用的可靠性定性设计工作项目见表1。

可靠性设计的基本概念与方法

4.6 可靠性设计的基本概念与方法 一、结构可靠性设计概念 1.可靠性含义 可靠性是指一个产品在规定条件下和规定时间内完成规定功能的能力;而一个工业产品(包括像飞机这样的航空飞行器产品)由于内部元件中固有的不确定因素以及产品构成的复杂程度使得对所执行规定功能的完成情况及其产品的失效时间(寿命)往往具有很大的随机性,因此,可靠性的度量就具有明显的随机特征。一个产品在规定条件下和规定时间内规定功能的概率就称为该产品的可靠度。作为飞机结构的可靠性问题,从定义上讲可以理解为:“结构在规定的使用载荷/环境作用下及规定的时间内,为防止各种失效或有碍正常工作功能的损伤,应保持其必要的强刚度、抗疲劳断裂以及耐久性能力。”可靠度则应是这种能力的概率度量,当然具体的内容是相当广泛的。例如,结构元件或结构系统的静强度可靠性是指结构元件或结构系统的强度大于工作应力的概率,结构安全寿命的可靠性是指结构的裂纹形成寿命小于使用寿命的概率;结构的损伤容限可靠性则一方面指结构剩余强度大于工作应力的概率,另一方面指结构在规定的未修使用期间内,裂纹扩展小于裂纹容限的概率.可靠性的概率度量除可靠度外,还可有其他的度量方法或指标,如结构的失效概率F(c),指结构在‘时刻之前破坏的概率;失效率^(().指在‘时刻以前未发生破坏的条件下,在‘时刻的条件破坏概率密度;平均无故障时间MTTF(MeanTimeToFailure),指从开始使用到发生故障的工作时间的期望值。除此而外,还有可靠性指标、可靠寿命、中位寿命,对可修复结构还有维修度与有效度等许多可靠性度量方法。 2..结构可靠性设计的基本过程与特点 设计一个具有规定可靠性水平的结构产品,其内容是相当丰富的,应当贯穿于产品的预研、分析、设计、制造、装配试验、使用和管理等整个过程和各个方面。从研究及学科划分上可大致分为三个方面。 (1)可靠性数学。主要研究可靠性的定量描述方法。概率论、数理统计,随机过程等是它的重要基础。 (2)可靠性物理。研究元件、系统失效的机理,物理成固和物理模型。不同研究对象的失效机理不同,因此不同学科领域内可靠性物理研究的方法和理论基础也不同. (3)可靠性工程。它包含了产品的可靠性分析、预测与评估、可靠性设计、可靠性管理、可靠性生产、可靠性维修、可靠性试验、可靠性数据的收集处理和交换等.从产品的设计到产品退役的整个过程中,每一步骤都可包含于可靠性工程之中。 由此我们可以看出,结构可靠性设计仅是可靠性工程的其中一个环节,当然也是重要的环节,从内容上讲,它包括了结构可靠性分析、结构可靠性设计和结构可靠性试验三大部分。结构可靠性分析的过程大致分为三个阶段。 一是搜集与结构有关的随机变量的观测或试验资料,并对这些资料用概率统计的方法进行分析,确定其分布概率及有关统计量,以作为可靠度和失效概率计算的依据。

硬件系统可靠性设计规范

硬件系统可靠性设计规范 一、概论 可靠性的定义:产品或系统在规定条件下和规定时间内完成规定功能的能力 可靠性及抗干扰设计是硬件设计必不可少的一部分,它包括芯片、器件选择、去耦滤波、印刷电路板布线、通道隔离等。有完善的抗干扰措施,是保证系统精度、工作正常和不产生错误的必要条件。设备可靠性设计规范的一个核心思想是监控过程,而不是监控结果。 二、可靠性设计方法 1、元器件:构成系统的基本部件,作为设计与使用者,主要是保证所选用的元器件的质量或可靠性指标满足设计的要求 2、降额设计:使电子元器件的工作应力适当低于其规定的额定值,从而达到降低基本故障率,保证系统可靠性的目的。幅度的大小可分为一、二、三级降额,一级降额((实际承受应力)/(器件额定应力) < 50%的降额),建议使用二级降额设计方法,一级降额<70% 3、冗余设计:也称为容错技术或故障掩盖技术,它是通过增加完成同一功能的并联或备用单元(包括硬件单元或软件单元)数目来提高系统可靠性的一种设计方法,实现方法主要包括:硬件冗余;软件冗余;信息冗余;时间冗余等 4、电磁兼容设计:系统在电磁环境中运行的适应性,即在电磁环境下能保持完成规定功能的能力。电磁兼容性设计的目的是使系统既不受外部电磁干扰的影响,也不对其它电子设备产生电磁干扰。硬件措施主要有滤波技术、去耦电路、屏蔽技术、接地技术等;软件措施主要有数字滤波、软件冗余、程序运行监视及故障自动恢复技术等 5、故障自动检测及诊断 6、软件可靠性设计:为了提高软件的可靠性,应尽量将软件规范化、标准化、模块化 7、失效保险技术 8、热设计 9、EMC设计:电磁兼容(EMC)包括电磁干扰(EMI)和电磁敏感度(EMS)两个方面 三、可靠性设计准则

软件可靠性技术发展与趋势分析

软件可靠性技术发展及趋势分析 1引言 1)概念 软件可靠性指软件在规定的条件下、规定的时间内完成规定的功能的能力。 安全性是指避免危险条件发生,保证己方人员、设施、财产、环境等免于遭受灾难事故或重大损失。安全性指的是系统安全性。一个单独的软件本身并不存在安全性问题。只有当软件与硬件相互作用可能导致人员的生命危险、或系统崩溃、或造成不可接受的资源损失时,才涉及到软件安全性问题。由于操作人员的错误、硬件故障、接口问题、软件错误或系统设计缺陷等很多原因都可能影响系统整体功能的执行,导致系统进入危险的状态,故系统安全性工作自顶至下涉及到系统的各个层次和各个环节,而软件安全性工作是系统安全性工作中的关键环节之一。 因此,软件可靠性技术解决的是如何减少软件失效的问题,而软件安全性解决的是如何避免或减少与软件相关的危险条件的发生。二者涉及的范畴有交又,但不完全相同。软件产生失效的前提是软件存在设计缺陷,但只有外部输入导致软件执行到有缺陷的路径时才会产生失效。因此,软件可靠性关注全部与软件失效相关的设计缺陷,以及导致缺陷发生的外部条件。由于只有部分软件失效可能导致系统进

入危险状态,故软件安全性只关注可能导致危险条件发生的失效。以及与该类失效相关的设计缺陷和外部输入条件。 硬件的失效,操作人员的错误等也可能影响软件的正常运行,从而导致系统进入危险的状态,因此软件安全性设计时必须对这种危险情况进行分析,井在设计时加以考虑。而软件可靠性仅针对系统要求和约束进行设计,考虑常规的容错需求,井不需要进行专门的危险分析。在复杂的系统运行条件下,有时软件、硬件均未失效,但软硬件的交互 作用在某种特殊条件下仍会导致系统进入危险的状态,这种情况是软件安全性设计考虑的重点之一,但软件可靠性并不考虑这类情况。2)技术发展背景 计算机应用范围快速扩展导致研制系统的复杂性越来越高。软硬件密切耦合,且软件的规模,复杂度及其在整个系统中的功能比重急剧上升,由最初的20%左右激增到80%以上。伴随着硬件可靠性的提高,软件的可靠性与安全性问题日益突出。 在军事、航空航天、医疗等领域,核心控制软件的失效可能造成巨大的损失甚至威胁人的生命。1985年6月至1987年1月,Therac-25治疗机发生6起超大剂量辐射事故,其中3起导致病人死亡。1991年海湾战争。爱国者导弹在拦截飞毛腿导弹中几次拦截失败,其直接原因为软件系统未能及时消除计时累计误差。1996年阿里亚娜5型运载火箭由于控制软件数据转换溢出起飞40秒后爆炸,造成经济损

硬件可靠性及提高

硬件可靠性及提高 一般来说,系统总是由多个子系统组成,而子系统又是由更小的子系统组成,直到细分到电阻器、电容器、电感、晶体管、集成电路、机械零件等小元件的复杂组合,其中任何一个元件发生故障都会成为系统出现故障的原因。因此,硬件可靠性设计在保证元器件可靠性的基础上,既要考虑单一控制单元的可靠性设计,更要考虑整个控制系统的可靠性设计。 1.影响硬件可靠性的因素 (1)元件失效。元件失效有三种:一是元件本身的缺陷,如硅裂、漏气等;二是加工过程、环境条件的变化加速了元件、组件的失效;三是工艺问题,如焊接不牢、筛选不严等。 (2)设计不当。在计算机控制系统中,许多元器件发生的故障并不是元件本身的问题,而是系统设计不合理或元器件使用不当所造成。 在设计过程中,如何正确使用各种型号的元器件或集成电路,是提高硬件可靠性不可忽视的重要因素。 (1)电气性能:元器件的电气性能是指元器件所能承受的电压、电流、电容、功率等的能力,在使用时要注意元器件的电气性能,不能超限使用。(2)环境条件:计算机控制系统的工作环境有时相当恶劣,由于环境因素的影响,不少系统的实验室试验情况虽然良好,但安装到现场并长期运行就频出故障。其原因是多方面的,包括温度、干扰、电源、现场空气等对硬件的影响。因此,设计系统时,应考虑环境条件对硬件参数的影响,元件设备须经老化试验处理。 (3)组装工艺:在硬件设计中,组装工艺直接影响硬件系统的可靠性。由于工艺原因引起的故障很难定位排除,一个焊点的虚焊或似接非接很可能导致整个系统在工作过程中不时地出现工作不正常现象。另外,设计印制电路板时应考虑元器件的布局、引线的走向、引线的分类排序等。

嵌入式系统最小系统硬件设计

引言 嵌入式系统是以应用为中心,软件硬件可裁剪,适应应用系统对功能、可靠性、成本、体积、功耗等综合性严格要求的专用计算机系统。本文主要研究了基于S3C2410的嵌入式最小系统,围绕其设计出相应的存储器、总电源电路、复位电路等一系列电路模块。 嵌入式最小系统 嵌入式最小系统即是在尽可能减少上层应用的情况下,能够使系统运行的最小化模块配置。以ARM内核嵌入式微处理器为中心,具有完全相配接的Flash电路、SDRAM电路、JTAG电路、电源电路、晶振电路、复位信号电路和系统总线扩展等,保证嵌入式微处理器正常运行的系统,可称为嵌入式最小系统。对于一个典型的嵌入式最小系统,以ARM处理器为例,其构成模块及其各部分功能如图1所示,其中ARM微处理器、FLASH和SDRAM模块是嵌入式最小系统的核心部分。

微处理器——采用了S3C2410A ; 电源模块——本电源运用5V 的直流电源通过两个三端稳压器转换成我们所设计的最小系统所需要的两个电压,分别是3.3V 和1.8V ,3.3V 的给VDDMOP ,VDDIO,VDDADC 等供电,而1.8V 的给VDDi 和RTC 供电。 时钟模块(晶振)——通常经ARM 内部锁相环进行相应的倍频,以提供系统各模块运行所需的时钟频率输入。32.768kHz 给RTC 和Reset 模块,产生计数时钟,10MHz 作为主时钟源; Flash 存储模块——存放嵌入式操作系统、用户应用程序或者其他在系统掉电后需要保存的用户数据等; SDRAM 模块——为系统运行提供动态存储空间,是系统代码运行的主要区域; 复位模块——实现对系统的复位; 1.8V 电源LDD 稳压 SDARM 32MB (use JTAG 接口 REST 电路256字 节E2PROM E2PROM UART 串口功能扩展 32768Hz 晶振RTC 时钟源 S3C2410A-20 (ARM920T) (16KB I-Cache,16KB D-Cache) SDARM 32MB (use NOR FLASH 2MB (use

软件可靠性和安全性设计指南

软件可靠性和安全性设计指南 (仅供内部使用) 文档作者:_______________ 日期:___/___/___ 开发/测试经理:_______________ 日期:___/___/___ 产品经理: _______________ 日期:___/___/___ 管理办:_______________ 日期:___/___/___ 请在这里输入公司名称 版权所有不得复制

软件可靠性和安全性设计指南 1 范围 1 .1主题内容 [此处加入主题内容] 1 .2适用范围 [此处加入适用范围] 2 引用标准 GBxxxx 信息处理——数据流程图、程序流程图、系统流程图、程序网络图和系统资源图的文件编制符号及约定。 GB/Txxx 软件工程术语 GB/Txxxxxx 计算机软件质量保证计划规范 GB/T xxxxx 计算机软件配置管理计划规范 GB/T xxxxx 信息处理——程序构造及其表示的约定 GJBxxxx 系统安全性通用大纲 GJBxxxxx 系统电磁兼容性要求 GBxxxx 电能质量标准大纲 GBxxxxx 电能质量标准术语 3 定义 [此处加入定义] 3 .1失效容限 [此处加入失效容限] 3 .2扇入 [此处加入扇入] 3 .3扇出 [此处加入扇出] 3 .4安全关键信息 [此处加入安全关键信息] 3 .5安全关键功能 [此处加入安全关键功能]

3 .6软件安全性 [此处加入软件安全性] 4 设计准则和要求 4 .1对计算机应用系统设计的有关要求 4 .1.1 硬件软件功能的分配原则 [此处加入硬件软件功能的分配原则] 4 .1.2 硬件软件可靠性指标的分配原则[此处加入硬件软件可靠性指标的分配原则] 4 .1.3 容错设计 [此处加入容错设计] 4 .1.4 安全关键功能的人工确认 [此处加入安全关键功能的人工确认] 4 .1. 5 设计安全性内核 [此处加入设计安全性内核] 4 .1.6 记录系统故障 [此处加入记录系统故障] 4 .1.7 禁止回避检测出的不安全状态[此处加入禁止回避检测出的不安全状态] 4 .1.8 安全性关键软件的标识原则 [此处加入安全性关键软件的标识原则] 4 .1.9 分离安全关键功能 [此处加入分离安全关键功能] 4 .2对硬件设计的有关要求 [此处加入对硬件设计的有关要求] 4 .3软件需求分析 4 .3.1 一般要求 [此处加入一般要求] 4 .3.2 功能需求 [此处加入功能需求] 4.3.2.1输入 [此处加入输入] 4.3.2.2处理 [此处加入处理] 4.3.2.3输出 [此处加入输出]

可靠性试验分析及设计

ji 第四章(44) 可靠性试验与设计 四、最小二乘法 用图估法在概率纸上描出[],()i i t F t 点后,凭目视作分布检验判别所作的回归直线往往因人而异,因此最好再通过数值计算求出精确的分布检验结论和求出数学拟合的回归直线。通常用相关系数作分布检验,用最小二乘法求回归直线。 相关系数由下式求得: ()() n i i X X Y Y γ--= ∑ 其中X,Y 是回归直线的横坐标和纵坐标,它随分布的不同而不同。下表是不同分布的 坐标转换 只有相关系数γ 大于临界值0γ时,才能判定所假设的分布成立。0γ临界系数可查相应的临界相关系数表,如给定显著水平0.05α=,n=10,可查表得00.576γ=。若计算的0γγ,则假设的分布成 立。 如果回归的线性方程为 Y mX B =- 则由最小二乘法得到系数为

1 1 111 221 1??1?1 ()n n i i i i n n n i i i i i i i n n i i i i Y m X B N X Y X Y N m X X N =======-+=-=-∑∑∑∑∑∑∑ 代入上表中的不同的分布,就可以得到相应分布的参数估计值。 五、最好线性无偏估计与简单线性无偏估计 1、无偏估计 不同子样有不同的参数估计值?q ,希望?q 在真值q 附近徘徊。若?()E q q =,则?q 为q 的无偏估计。如平均寿命的估计为?i t n q =? ,是否为无偏估计? Q 1 [] ?()[]n i i i i t E t E E n n n q q q === = =? 邋 \ ?q 为q 的无偏估计 2、最好无偏估计定义 若?k q 的方差比其它无偏估计量的方差都小,即?()min ()k k D D q q =,则?k q 为最好无偏估计。 3、线性估计定义 若估计量?q 是子样的一个线性函数,即1 ?n i i i a q ==C ? ,则称?q 为线性估计。 4、最好线性无偏估计 当子样数25n £时,通过变换具有()F m s C -形式的寿命分布函数,其,m s 的最好线性无偏估计为: 1 ?(,,)r j i D n r j X m ==? ?(,,)j C n r j X s =? 其中(,,),(,,)D n r j C n r j 分别为,m s 的无偏估计,有了,,n r j 后,可有专门表格查无偏系数(,,),(,,)D n r j C n r j 。

需求分析与软件可靠性保证

需求分析与软件可靠性保证 摘要:通过对软件测试过程中产生的数据进行分析,对照软件设计过程中需求分析中的错误或缺陷,对有关可靠性指标进行反复度量,明确软件错误的分布以减少其对软件需求分析可靠性的影响,进而对相关的错误或缺陷进行控制。 关键词:需求分析;测试;可靠性评估;模型 requirements analysis and software reliability assurance pang hongbiao (information central of china north industries group corp,beijing100089,china) abstract:the data generated by the software testing process analysis,control errors or defects in the software design process needs analysis,repeated measure of the reliability index of explicit software error distribution in order to reduce the reliability of the software requirements analysis impact,and thus control the errors or defects. keywords:needs analysis;test;reliability;model 需求分析是使用技术手段分析识别软件面向客户的实际需要,并且通过特性的系统描述待开发软件需要实现的功能和解决的问题,以此定义软件所有的操作指令和特征,并最终形成软件的使用说明。因此需求分析在软件设计计划的基础之上,从最先客户的原始

企业网络安全风险分析及可靠性设计与实现研究

企业网络安全风险分析及可靠性设计 与实现研究 摘 要:现今,伴随信息、通信技术的完善,网络攻击技术的革新,网络安全问题日益显现。网络安全的管控,可以从侧面反映网络的安全状态,确保企业的网络安全。网络的安全性,关系企业的长远发展问题,同时也会间接影响社会的发展,作为企业的管理者我们应确保企业网络的安全,进而提高企业的经济效益。因此,本文就从网络安全风险分析、网络可靠性设计、企业网络安全的实现几方面进行一定的探讨,期望可以为企业的正常运行提供一定的帮助。 关键词:企业;网络风险分析;可靠性设计与实现现今,伴随信息、通信技术的完善,计算机网络中信息与数据的汇聚,都给人们的生活带来了极大的便捷性。经由网络系统,不仅提高了企业信息保存、传输的速度;提高了市场的反映速度;还带动了企业业务的新发展。企业内部中的网络信息,在现实运用中都实现了资源共享[1]。但是,在资源共享的前提下,就存在企业内部机密的安全性问题,尤其是现今的网络安全问题频发,我们更应提高对于企业的网络安全问题的关注度。因此,本文就对企业网络安全进行一定的探讨,期望可以对企业的正常运行提供有效帮助。 1网络安全风险分析 1.1安全威胁的分类 网络安全威胁,具体就是指潜在的、会对企业资产形成损失的安全问题。导致安全威胁的因素诸多,具体分类为:恶意攻击;系统软件问题;自然灾害;人为因素等[2]。

1.2网络系统安全影响因素[3] 1.2.1缺乏完善的管理体系 完善的网络管理体系,不单需要投入大量的网络设备,同时也要求有技术的支持。网络安全建设,其主要因素还应建立规范的网络安全管理机制。在任何企业,为了有效的保证网络的安全性,都应注重管理与技术的结合。在企业中,应注重员工的安全教育,同时管理者应依据现实状况,不断的完善企业的管理制度。 1.2.2缺乏网络安全知识 企业中的员工,其安全防范意识欠缺,对于网络安全知识认识较少,常会因个人信息的丢失,导致公司机密文件的泄漏。企业的网络安全,关系到企业的长远发展策略,因此公司应增强员工的安全知识教育,从根本上确保公司的网络安全。首先,企业员工在获取资源时,应该警惕病毒的侵入,防患于未然。其次,企业员工应该对于网络程序的安全性,有自己的初步判断能力,同时安装防病毒软件,并定时进行更新。第三,企业员工中对于文件的管理,应该注重文件的安全问题,应由员工自己管理文件,并设置权限。 1.2.3网络拥塞 网络拥塞,具体讲就是指当用户对网络资源的需求量,超过了网络固有容量的时候,出现的一种网络过载的状况[4]。企业员工的访问时间;交换机与路由器的端口传输速率等,都是造成网络拥塞的原因。当企业中出现网络拥塞的情况,就会出现数据不能进行转发,进而影响正常的网络运转工作,因此,企业在网络管理中,应依据这一情况制定合理的规划。 1.2.4系统漏洞的问题 现今,多数企业都是应用TCP/IP

系统的可靠性设计 和 数据容灾与备份

论系统可靠性设计 摘要:随着计算机网络应用的逐步普及和深入,业务处理越来越依赖于计算机网络系统,网络的可靠性必然是建立网络系统首要考虑的问题之一,否则网络故障会造成巨大的经济损失和社会影响。本人有幸作为项目负责人之一参与了某大学二期网络的建设,并负责了校园网络可靠性的设计和实施。该校园网主要分为行政办公大楼,教学楼群,实验楼群,图书馆,信息中心和网络中心机房6个主要区域。本文主要从电缆级别,通信线路,服务器,网络管理,网络中心系统等方面介绍如何建立高可靠性的应用网络系统,以满足实际需求。 正文: 随着计算机网络应用的逐步普及和深入,业务处理越来越依赖于计算机网络系统,网络的可靠性必然是建立网络系统首要考虑的问题之一,否则网络故障的产生会造成巨大的经济损失和社会影响。2007年7月到2008年7月,作为××公司的一名技术骨干,本人参与了××大学二期网络的建设,全程参与了整个网络可靠性的规划设实施,以下是项目在可靠性方面所采取的方案。 第一级容错,网络电缆。无论是光纤,同轴电缆,双绞线还是组合布线,都可能出现各种 各样的故障。首先由于选用的电缆电气指标达不到要求,造成信号衰减过度,引起网络故障;其二,电缆接插头虚接,松落;其三电缆线受到外界老化,朽蚀,机械等原因损坏。若损坏的电缆只是连接在一个独立的设备,则定位和修复容易,而如果是连接多个网络设备的电缆线路或主干电缆线路损坏,则很难定位及修复。本方案在主干线路和其他重要支路上布置双线甚至多线,当主线断路时,自动切换到辅线工作。为了考虑降低电缆线路同时损坏的可能,电缆布置在不同的路途上。(250) 第二级容错,冗余拓扑。首先,本方案采用了三层的网络拓扑结构,并在分布层和核心 层的交换机之间使用冗余路径,防止网络因单点故障而无法运行,以此提升网络拓扑的可靠性。然而,对网络中的交换机和路由器添加多余路径会在网络中引入需要动态管理的通信环路,处理不当将产生不必要的广播风暴,造成网络瘫痪。所以必须启用生成树协议STP。STP 会特地阻塞可能导致环路的冗余路径,以确保网络中所有目的地之间只有一条逻辑路径。一旦网络出现故障,STP会重新计算路径,将必要的端口解除阻塞,使冗余路径进入活动状态。其次,采用端口聚合技术。端口聚合可将多物理连接当成一个单一的逻辑连接来处理。它允许两个交换器之间通过多个端口并行连接同时传输数据以提供更高的带宽,更大的吞吐量和可恢复性技术。一般来说,两个普通的连接器连接的最大带宽取决于媒介的传输速度(比如100BAST-TX为200M),而是用Trunk技术可以将4个200M的端口捆绑后成为一个高达800M的连接。这一技术的优点是以较低的成本通过捆绑多端口提高带宽,从而消除网络访问中的瓶颈。另外,Trunk还具有自动带宽平衡,即使Trunk只有一个连接存在时,仍然会工作,提供了网络的可靠性。(520) 第三级容错,设备冗余。 首先,该网络采用了双核心拓扑结构。核心层采用两台CISCO C6500交换机,两者之间使用双千兆光纤互联,利用链路聚合技术,在两台核心交换机之间扩大通信吞吐量,提高可靠性,实现复杂均衡的冗余连接。当一条交换机出现故障或核心交换机与汇聚层交换机之间的某条链路出现故障,系统会自动将通信业务快速切换到另一台正常的交换机上,从而实现系统的可靠性。(170) 其次,DNS服务器冗余配置。该校园网里有自己的DNS服务器,服务器采用两台,一台主DNS服务器,一台辅助DNS服务器。这样可以实现DNS服务器的容错,也就是当一天DNS

单片机系统可靠性设计

单片机系统可靠性设计 单片机是典型的嵌入式微控制器,由运算器,控制器,存储器,输入输出设备等构成,相当于一个微型的计算机。下面是小编为你带来的单片机系统可靠性设计,欢迎阅读。 在单片机系统的设计中,为了提升系通过运行的安全性与可靠性,需要针对其硬件系统和软件系统实施可靠性设计,这样才能满足使用需求。本文将针对单片机系统,分别从软件和硬件两个方面来阐述可靠性设计,具有一定的借鉴意义。 单片机系统可靠性设计 随着科学技术的不断进步,人们对于单片机系统的设计也更加关注,不断研究出新的技术,来提升单片机系统运行的可靠性。但是其可靠性与用户需求依然存在着一定的差距,亟需对其进行完善,提升可靠性。 正确设计软件 1.认真设计 对于单片机系统每部分的硬件地址,要清楚明确,对于汇编语言指令以及机器状态影响要了解和掌握,对于CPU内部的RAM功能要划分正确,仔细认真编写单片机系统软件。同时,在编写中,应用软件工程做法,保证程序的透明易懂,提升可维护性和可读性。 2.合理安排中断 按照系统的具体特点,对于工段优先级和中断功能进行

合理的安排,保护和恢复中断现场,防止发生中断冲突。 3.模块化结构 按照系统功能,可以将软件划分为多个模块,保证变成具有清楚的思路,便于调试和阅读,不易出错。 提升可靠性具体措施 1.设计合理的软件陷阱 在运行软件的过程中,有可能会出现失控的情况,例如,受到干扰,或者程序飞逸到非程序区。所以,在重要程序段、程序断裂点、非程序区以及向量区,可以埋设陷阱,从而及时捕捉飞逸程序。 2.指令冗余技术的应用 在不对实时性造成影响的情况下,反复执行同一指令,应用三选二方式实施判定,可以消除一些偶然的干扰,从而提升可靠性。 指令的应用 在进行单片机的地面测井仪的研制时,在对编好程序进行仿真运行时能够通过,但是写入指令时却无法运行,这是就可以将发生问题的字节用NOP代替,从而正常运行。 4.软件消抖方式 在按键操作中经常会发生意外的抖动,为了有效消抖,在处理程序内,可以通过延时再判,保证人机对话运行的可靠性。

软件可靠性设计与分析

软件可靠性分析与设计 软件可靠性分析与设计 软件可靠性分析与设计的原因?软件在使用中发生失效(不可靠会导致任务的失败,甚至导致灾难性的后果。因此,应在软件设计过程中,对可能发生的失效进行分析,采取必要的措施避免将引起失效的缺陷引入软件,为失效纠正措施的制定提供依据,同时为避免类似问题的发生提供借鉴。 ?这些工作将会大大提高使用中软件的可靠 性,减少由于软件失效带来的各种损失。 Myers 设计原则 Myers 专家提出了在可靠性设计中必须遵循的两个原则: ?控制程序的复杂程度

–使系统中的各个模块具有最大的独立性 –使程序具有合理的层次结构 –当模块或单元之间的相互作用无法避免时,务必使其联系尽量简单, 以防止在模块和单元之间产生未知的边际效应 ?是与用户保持紧密联系 软件可靠性设计 ?软件可靠性设计的实质是在常规的软件设计中,应用各种必须的 方法和技术,使程序设计在兼顾用户的各种需求时, 全面满足软件的可靠性要求。 ?软件的可靠性设计应和软件的常规设计紧密地结合,贯穿于常规 设计过程的始终。?这里所指的设计是广义的设计, 它包括了从需求分析开始, 直至实现的全过程。 软件可靠性设计的四种类型

软件避错设计 ?避错设计是使软件产品在设计过程中,不发生错误或少发生错误的一种设计方法。的设计原则是控制和减少程序的复杂性。 ?体现了以预防为主的思想,软件可靠性设计的首要方法 ?各个阶段都要进行避错 ?从开发方法、工具等多处着手 –避免需求错误 ?深入研究用户的需求(用户申明的和未申明的 ?用户早期介入, 如采用原型技术 –选择好的开发方法

?结构化方法:包括分析、设计、实现 ?面向对象的方法:包括分析、设计、实现 ?基于部件的开发方法(COMPONENT BASED ?快速原型法 软件避错设计准则 ? (1模块化与模块独立 –假设函数C(X定义了问题X 的复杂性, 函数E(X定义了求解问题X 需要花费的工作量(按时间计,对于问题P1和问题P2, 如果C(P1>C(P2,则有 E(P1> E(P2。 –人类求解问题的实践同时又揭示了另一个有趣的性质:(P1+P2>C(P1 +C(P2 –由上面三个式子可得:E(P1+ P2> E(P1+E(P2?这个结论导致所谓的“分治法” ----将一个复杂问题分割成若干个可管理的小问题后更易于求解,模块化正是以此为据。 ?模块的独立程序可以由两个定性标准度量,这两个标准分别称为内聚和耦合。耦合衡量不同模块彼此间互相依赖的紧密程度。内聚衡量一个模块内部各个元素彼此结合的紧密程度。 软件避错设计准则 ? (2抽象和逐步求精 –抽象是抽出事物的本质特性而暂时不考虑它们的细节 ?举例

可靠性设计与分析—试卷

《可靠性设计与分析》试卷 单位:成绩: 姓名: 可靠性是指产品在下和内,完成规定功能的能力。 1) 2)产品的故障按照其原因可以分为早期故障和,早期故障是 指产品在寿命的早期因的缺陷等原因发生的故障。 3)可靠性定性要求一般分为六个方面,即简单性、冗余、降额、采用 成熟技术、和。 4)可靠性的定量要求是确定产品的以及验证时机 和,以便在设计、生产、实验验证、使用过程中用量化方法评价或验证产品的可靠性水平。 5)在进行FMEA之前,应首先规定FMEA从哪个产品层次开始到哪个 产品层次结束,这种规定的FMEA层次称为,一般将最顶层的约定层次称为。 6)是指在系统所处的特定条件下出现的、没有预期到(常 常也是不希望有的)的通路,它的出现会引起功能异常或抑制正常功能的实现。 7)空间粒子辐射环境主要由四部分构成,分别是地球辐射 带、、、高空核辐射环境。 8)故障树构图的元素是和。

9)应力分析法用于阶段的故障率预计。 10)各种可靠性设计分析工作主要集中在、 和三个阶段。2.判断题(共20分,每题2分) 如果你认为正确,在括号里划“√”;如果你认为错误,在括号里划“×”。 1)()非工作储备系统的可靠性一定比工作储备系统的可靠性高。 2)()产品经过老炼筛选后可靠性一定提高。 3)()所谓虚单元就是把一些单元组合在一起,构成一个虚拟单元, 从而简化可靠性框图。 4)()系统优化权衡的核心是效能、寿命周期费用两个概念之间的 权衡。 5)()系统可靠性预计是以组成系统的各单元的预计值为基础,根 据系统可靠性模型,对系统基本可靠性和任务可靠性进行预计。 6)()相似产品可靠性预计法要求新产品的预计结果必须好于相似 的老产品。 7)()所有故障都要经历潜在故障到功能故障这一变化过程。 8)()任务可靠性是指产品在规定的任务剖面内完成规定功能的能 力。确定任务可靠性值时仅考虑在任务期间内哪些影响任务完成 的故障。 9)()可靠性定性设计要求项目中,“简化设计”和“余度设计” 是相互矛盾的,因此对同一产品只能取其一项。

硬件系统可靠性设计规范(参考Word)

硬件系统可靠性设计规范 一,概论 可靠性的定义:产品或系统在规定条件下和规定时间内完成规定功能的能力 可靠性及抗干扰设计是硬件设计必不可少的一部分,它包括芯片、器件选择、去耦滤波、印刷电路板布线、通道隔离等。有完善的抗干扰措施,是保证系统精度、工作正常和不产生错误的必要条件。 设备可靠性设计规范的一个核心思想是监控过程,而不是监控结果。 二,可靠性设计方法 ●元器件:构成系统的基本部件,作为设计与使用者,主要是保证所选用的元器件的质量或可靠性指标满 足设计的要求 ●降额设计:使电子元器件的工作应力适当低于其规定的额定值,从而达到降低基本故障率,保证系统可 靠性的目的。幅度的大小可分为一、二、三级降额,一级降额((实际承受应力)/(器件额定应力) < 50%的降额),建议使用二级降额设计方法,一级降额<70% ●冗余设计:也称为容错技术或故障掩盖技术,它是通过增加完成同一功能的并联或备用单元(包括硬件 单元或软件单元)数目来提高系统可靠性的一种设计方法,实现方法主要包括:硬件冗余;软件冗余; 信息冗余;时间冗余等 ●电磁兼容设计:系统在电磁环境中运行的适应性,即在电磁环境下能保持完成规定功能的能力。电磁兼 容性设计的目的是使系统既不受外部电磁干扰的影响,也不对其它电子设备产生电磁干扰。硬件措施主要有滤波技术、去耦电路、屏蔽技术、接地技术等;软件措施主要有数字滤波、软件冗余、程序运行监视及故障自动恢复技术等 ●故障自动检测及诊断 ●软件可靠性设计:为了提高软件的可靠性,应尽量将软件规范化、标准化、模块化 ●失效保险技术 ●热设计 ●EMC设计:电磁兼容(EMC)包括电磁干扰(EMI)和电磁敏感度(EMS)两个方面 三,可靠性设计准则 1,在确定设备整体方案时,除了考虑技术性、经济性、体积、重量、耗电等外,可靠性是首先要考虑的重要因素。在满足体积、重量及耗电等于数条件下,必须确立以可靠性、技术先进性及经济性为准则的最佳构成整体方案。 2,对己投入使用的相同(或相似)的产品,考察其现场可靠性指标,维修性指标及对这两种备标的影响因素,以确定提高当前研制产可靠性的有效措施。 3,在满足技术性要求的情况下,尽量简化方案及电路设计和结构设计,减少整机元器件数量及机械结构零件

可靠性设计

第三篇可靠性设计(五) 1.5 冗余设计技术 冗余设计技术是大幅度提高系统可靠性水平的有效措施之一,当采用其它设计技术使系统难以达到预定的可靠性目标值时,采用冗余设计技术则常常能解决这一难题。冗余设计技术简而言之就是用一台(套)或多台(套)相同单元(系统)构成并联(可采用热备冗余、温备冗余、冷备冗余等方式),当其中的一套单元发生故障时,系统仍能正常工作的设计技术。 由于冗余设计技术需增加成本,因而不是最先采用的设计方法,只有当其它方法都用尽或当元器件及分系统改进的成本高于使用冗余技术成本时,冗余技术才发挥其效用。 1.冗余系统的分类 按工作特点来分,可分为工作冗余和非工作冗余。所谓工作冗余是指与产品的基本成分处于同样的工作状态的冗余,构成方式有并联冗余和表决冗余;非工作冗余则是指与产品的基本成分不同时工作,仅在基本成分失效时才开始工作的冗余方式。 从冗余的程度分为二重冗余、三重冗余、多重冗余以及N中取K的表决冗余。 从冗余的范围分为元件冗余、部件冗余、子系统冗余和系统冗余等。 2.冗余设计及可靠度计算

①.工作冗余 a)、并联冗余 可靠度公式为: b)、表决冗余 (2/3)表决系统的可靠度公式为: (k/N)表决系统的可靠度公式为: ②.非工作冗余 对于非工作冗余的计算则视实际情况而定。 例如某系统在设计过程中对许多单元采用了冗余设计技术,如对其中的局部操作站的终端、中速通讯网的信道、过程控制站的机柜电源等处采用了冗余设计技术,有效

地提高了这几个功能单元及系统的可靠性水平,部分详细计算数据见表1 表 1 采用冗余设计与否的数据对比 正是由于冗余设计技术的采用,从而使该系统的平均无故障工作时间由原来的9700h提高到10400h。 3.冗余设计的特点 ( 1)、冗余设计的局部性 冗余设计不是万能的,多重冗余后,效果并非最好,同时还要受经费的制约。 (2)、部件冗余比全系统冗余更有利提高可靠性 证明如下: 假若有N个单元先串联,然后再冗余,则可靠度为:(式1)

相关文档
相关文档 最新文档