文档库 最新最全的文档下载
当前位置:文档库 › 三轴数控机床加工精度可靠性分析

三轴数控机床加工精度可靠性分析

三轴数控机床加工精度可靠性分析
三轴数控机床加工精度可靠性分析

官方解读-《中国制造2025》解读之:推动高档数控机床发展讲课稿

《中国制造2025》解读之:推动高档数控机床发展 【发布时间:2015年05月22日】【来源:工信部装备工业司】 《中国制造“2025”》将数控机床和基础制造装备列为“加快突破的战略必争领域”,其中提出要加强前瞻部署和关键技术突破,积极谋划抢占未来科技和产业竞争制造点,提高国际分工层次和话语权。这一战略目标的提出,是由数控机床和基础制造装备产业的战略特征以及发展阶段特征所决定的,我们应认真学习领会,深入贯彻落实。 一、数控机床和基础制造装备具有战略必争的产业特质 1.锚定我国装备制造业全球竞争地位 数控机床和基础制造装备是装备制造业的“工作母机”,一个国家的机床行业技术水平和产品质量,是衡量其装备制造业发展水平的重要标志,“中国制造”2025将数控机床和基础制造装备行业列为中国制造业的战略必争领域之一,主要原因是其对于一国制造业尤其是装备制造业的国际分工中的位置具有“锚定”作用:数控机床和基础制造装备是制造业价值生成的基础和产业跃升的支点,是基础制造能力构成的核心,唯有拥有坚实的基础制造能力,才有可能生产出先进的装备产品,从而实现高价值产品的生产。 2.支撑国防和产业安全的战略需求 在国防安全方面,数控机床和基础制造装备对制造先进的国防装备具有超越经济价值的战略地。现代国防装备中许多关键零部件的材料、结构、加工工艺都有一定的特殊性和加工难度,用普通加工设备

和传统加工工艺无法达到要求,必须采用多轴联动、高速、高精度的数控机床才能满足加工要求。即使在全球一体化的今天,发达国家仍对我国采取技术封锁与限制。在产业安全方面,随着国内制造业升级速度加快,以装备制造业为代表的高技术含量高附加值产业与发达国家竞争加剧,工程机械、电气机械、交通运输装备正处于打入国际高端市场的攻坚期,而国内机床产品在加工精度、可靠性、效率、自动化、智能化和环保等方面还存在一定差距,进而导致产业整体竞争力不强。 3.满足用户领域转型升级的重要支撑 当前机床行业下游用户需求结构出现高端化发展态势,多个行业都将进行大范围、深层次的结构调整和升级改造,对于高质量、高技术水平机床产品需求迫切,总体上来说,中高档数控机床市场需求上升较快,用户需要更多高速、高精度、复合、柔性、多轴联动、智能、高刚度、大功率的数控机床。例如,汽车行业表现出生产大批量、多品种、车型更新快的发展趋势,新能源汽车发展加速,从而要求加工设备朝着精密、高效、智能化方向不断发展。在航空航天产业领域,随着民用飞机需求量的剧增以及军用飞机的跨代发展,新一代飞机朝着轻质化、高可靠性、长寿命、高隐身性、多构型、快速响应及低成本制造等方向发展,新一代技术急切需要更先进的加工装备来承载,航空制造装备朝着自动化、柔性化、数字化和智能化等方向发展。例如,在“两机专项”致力于突破的飞机发动机制造中,发动机叶片、

数控机床精度检测项目及常用工具

数控机床精度检测项目及常用工具 随着数控技术的进一步推广应用,越来越多的数控机床利用自身带有的测头系统来进行工件、刀具尺寸检测及进行仿形数字化。要知道上述功能的实现,与机床自身的精度密切相关,若机床精度不作定期校准,则谈不上准确地完成上述工作。 雷尼绍ML10激光干涉仪线性位移测量软件可提供按下述标准进行的数据分析:BS4656英国三测机标准;BS3800英国机床标准;ISO 230-2国际标准;VDI/DGQ 3441德国工程师学会机床标准;VDI 2617德国工程师学会三测机标准;NMTBA美国机床协会标准;GB10931-89中国国家标准;ASME B89.1.12M美国机械工程师学会标准;ASME B5.54美国机械工程师学会标准;E60—099法国标准;JISB2330日本国家标准。 2 英国雷尼绍公司先进技术 英国雷尼绍公司是专门从事设计、制造高精度检测仪器与设备的世界性跨国公司。主要产品为三坐标测量机及数控机床用测头、激光干涉仪、球杆仪等,为机械制造工业提供了序前(激光干涉仪和球杆仪)、序中(数控机床用工件测头及对刀测头)和序后(三测机用测头及配置)检测的成系列质量保证手段。她的全部技术与产品都旨在保证数控机床精度,改善数控机床性能,提高数控机床效率,可保证和改善数控机床制造厂工作母机的加工精度与质量,扩大制成品的市场。 2.1ML10激光干涉仪 雷尼绍ML10激光干涉仪为机床检定提供了一种高精度仪器,它精度高,达到±1.1PPM(在0~40℃下),测量范围大(线性测长40m,任选80m),测量速度快(60m/min),分辨率高(0.001μm),便携性好。由于雷尼绍激光干涉仪具有自动线性误差补偿功能,可方便恢复机床精度,更受到用户欢迎! 为使大家进一步了解ML10激光干涉仪在检测数控机床精度方面所具有的独特优点,下面着重介绍ML10激光干涉仪在精度检测中的应用。 (1)几何精度检测可用于检测直线度、垂直度、俯仰与偏摆、平面度、平行度等。 (2)位置精度的检测及其自动补偿可检测数控机床定位精度、重复定位精度、微量位移精度等。利用雷尼绍ML10激光干涉仪不仅能自动测量机器的误差,而且还能通过RS232接口自动对其线性误差

加工中心可靠性试验载荷谱的研究

加工中心可靠性试验载荷谱的研究4 黄祖广①赵钦志①盛伯浩②张维① (①国家机床质量监督检验中心,北京100102;②北京机床研究所,北京100102) 摘要:基于对加工中心典型用户的相关切削数据的调研和收集。通过分析与处理构建其分布特性的模型,并进一步对加工中心铣削、钻削、镗削等典型加工工艺的特性进行了分析与研究,建立了加工中心综合功率载荷图谱和转速载荷图谱,确立了加工中心可靠性加速试验所采用的载荷图谱,为开展加工中心可靠性加速测定的仿真试验提供科学的依据。 关健词:加工中心可靠性载荷谱 ResearchontheLoadingChartforReliabilityTestingofMachiningCenter HUANGZuguang①。ZHAOQinzhi①,SHENGBohao②,ZHANGWei① ((王)ChinaNationalMachineToolQualitySupervisionTestingCenter,Beijing100102,CHN; (至)BeijingMachineToolResearchInstitute,Beijing100102,CHN) Abstract:Accordingto therelatingcuttingdatathatwehadgottogetherfromtypicalcustomersofmachiningcen—ter,thispaperhassetuptheintegrationloadingchaaforpowerandrotatespeedofmachiningcenter, whichbasesonthemillingdatathathadbeenstudiedandanalyzedoneachmilling,touringandboringprocessarts andcrafts.Andthispaperhasbuilttheloadingchartforacceleratereliabilitytestingofma-chiningcenter.Inaddition,ithasprovidedthescientificwarrantstocarryonsimulationaccelerate reli—abilitytesttomachiningcenter. Keywords:MachiningCenter;Reliability;LoadingChart 在数控机床可靠性分析,特别是可靠性设计中,数控机床载荷不仅是必不可少的已知条件,而且其是否准确、可靠是可靠性设计成败的关键之一¨o。只有真正了解机床零部件所受的外部载荷才能使设计具有科学依据。同样,在加工中心可靠性分析与仿真试验中,加工中心典型用户载荷不仅是必不可少的前提条件,而且也是加工中心仿真可靠性试验平台构建的关键科学依据之一。由于到目前为止,加工中心的设计大多靠经验类比,缺乏真实全面的外载荷依据,还没建立加工中心载荷谱,不仅无法实现加工中心可靠性设计,而且构建仿真可靠性试验平台也缺乏科学的依据。在数控机床的载荷谱研究方面,“九五”期间,原吉林工业大学(现吉林大学)贾亚洲教授及其学生们开展过“数控车床载荷谱的研究”【2,3J。为进一步开展数控机床载荷谱研究作了一定的探索。但是,对集合了更广泛和多样化工况的加工中心尚未建立载荷谱。使开展可靠性试验研究,构建加工中心可靠性试验仿真平台,缺 {国家“863”攻关项目:2004AA424510乏真实的外载荷科学依据。为此,本文根据开展加工中心可靠性试验的需要,对加工中心典型用户(例如:汽车、模具、航空航天等)有关切削数据(例如:主轴转速、切削用量、进给速度等)进行了调研和收集,并在对收集到近百台加工中心调研和采集的切削数据基础上,从其分布特性人手,对典型用户行业有关切削数据分析与处理,分别对加工中心铣削、钻削、镗削典型加工工艺进行了分析与研究,初步建立了加工中心综合功率载荷图谱和转速载荷图谱,为开展加工中心可靠性加速测定的仿真试验提供科学依据。 l切削数据的采样与处理 1.1切削数据采样 为了提高加工中心载荷谱的准确度,较为完整地建立起加工中心的载荷谱,对汽车、模具、航空航天等行业加工中心典型用户,调研和收集了加工中心加工典型零件有关切削工艺数据,主要包括:切削参数、切 超多黜LUUO R;9}*‘Ⅻ 万方数据

关于数控机床加工精度提高方法的分析(正式)

编订:__________________ 单位:__________________ 时间:__________________ 关于数控机床加工精度提高方法的分析(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-6613-90 关于数控机床加工精度提高方法的 分析(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 本文通过分析数控机床加工过程中误差产生的原因和相关影响因素,对提高数控机床加工精度的方法进行了分析。 数控机床本身具有比较高的生产效率。在批量生产的同时还可以有效控制加工精度。这在很大程度上改变了传统机床加工精度对于操作者的依赖性。现在已经被广泛的应用在机械加工、电力设备制造等的行业。但是,在实际的加工过程中,数控机床对于操作人员自身的要求以及对于机床自身性能的要求也是比较高的。在科技不断进步的今天,人们对于制造业的产品要求也随之升高,数控机床在加工零件产品的过程中对于所处的自然环境要求也不断提高。很多的数控机床在这样的情况下,其加工的精度也不能够满足

数控机床“急停”故障实例分析

数控机床“急停”故障实例分析 数控机床急停报警不能解除的故障比较常见。当故障发生时显示器下方显示“紧急停止”(EMERGENCY STOP),这时,机床操作面板方式开关不能切换,MCC不吸合伺服,主轴放大器不能工作,系统并不发出具体的报警号,根据机床厂PMC报警编辑不同,有时会出现1000号以后的PMC报警。出于安全考虑,机床厂将一些重要的安全信号与紧急停止信号串联,包括紧急停止开关。但是一般维修人员往往仅以为是紧急停止开关连接不良或超程开关连接不良,排除上述两种可能后,就再也无法进行下一步的诊断工作,这说明对紧急停止信号的处理不够了解。下面以FANUC 0i系统为例说明紧急停止的控制原理及其常见故障的处理。 一、紧急停止的控制原理 紧急停止控制的目的是在紧急情况下,使机床上的所有运动部件制动,使其在最短时间内停止运行。《FANUC 连接手册》推荐的急停电路接法如图1所示。 从图1可见,一般紧急停止回路是由“急停”开关和“各轴超程开关”串联的,在这些串联回路中还串联一个24V继电器线圈,继电器的一对触点接到CNC控制单元的急停输入上,继电器的另一对触点接到放大器PSM电源模块上(接CX4的2和3管脚)。若按下急停按钮或机床运行时超程(行程开关断开),则急停继电器线圈断电,其常开触点1、2断开,从而导致控制单元出现急停报警,主接触器线

圈断电,主电路断开,进给电机和主轴电机停止运行。 急停回路接到CNC控制单元的急停输入信号X地址是固定的,即X8.4。数控系统直接读取该信号,当X8.4信号为“0”,系统出现紧急停止报警。 与急停报警紧密相关的信号还有G8.4信号,该信号是PMC送到CNC的紧急停止信号。若G8.4为“0”,系统则出现紧急停止报警。G8.4信号为PMC将X8.4和其他相关的信号进行综合处理的输出信号,如图2所示。 图2 中,梯形图在X8.4后面串接了一个Xn.m信号,比如刀库门开关等(进口机床经常这样处理)。若Xn.m为“0”,即使紧急停止回路一切正常(X8.4为“1”),紧急停止G8.4仍为“0”,系统仍然出现紧急停止报警。 可见,G8.4是“紧急停止”信号树的“根”,而其他外围X信号和R 信号是这一信号树上的“枝”。当出现“紧急停止”不能解除的故障时,如果只查找图1所示的信号而不会从图2中的G8.4去“追根寻源”,则往往不能够排除该类故障。 二、典型急停故障及实例分析 机床出现急停故障时,通常围绕X8.4和G8.4信号进行分析诊断。急停故障主要有以下三种情况。 1.紧急停止输入信号X8.4接线端的电压为0V,X8.4信号为“0”,G8.4为“0”

数控机床加工精度

数控机床加工精度,注意事项及保养 加工前:每日打开机床需进行机床预热、回归机床坐标,以保证机床加工精度。 上件:上件时应注意找正,保持找正误差不超过两丝(包括平面及水平精度),寻找基准角及分中时应注意巡边器不超过工件15CM,压装工件时注意躲避加工面和孔。另外工件必须装夹牢固,防止工件因装夹不稳,飞出伤人。使用行车吊装大件时,注意工件和机床保持一定距离,防止工件与机床发生碰撞。 加工中:注意对刀时需把工件表面擦拭干净以保持对刀精度,钻铰定位孔时,注意钻孔完毕及时用气枪清理孔内残留铁屑,保证铰孔时不会出现夹刀现象,3D加工应注意寻找基准角时注意是否有间隙偏置,需按实际情况偏置刀具补偿,精加工时走刀速度不可以太快,根据3D类型及程序走向,调试进给。另外加工时,注意夹刀长度,在不碰触工件的情况下刀具装夹越短,刀具摆动越小,以保证工件精度。 加工结束:测量精度孔及精铣槽精度保证工件卸下后模具的装配。3D检查有未精铣到的面及加工中出现的问题及时解决,尽量保证一次加工成型。 注意事项及保养 1:注意不可在刀具旋转时靠近主轴,防止发生人身事故!!! 2:进入机床时应小心,防止滑倒,摔伤。!!! 3:应经常检查对刀仪是否精准,经常校正对刀仪,保持对刀仪的精度。 4:刀具装夹时注意清理干净刀柄内锥孔及刀夹,保持刀具表面整洁。 5:清理机床时注意主轴上必须夹刀,防止铁屑进入主轴内锥孔影响加工精度。 6:刀具磨损应根据工件加工后测量后加放刀具补偿。 7:应常检查刀具的装夹是否正常,检查刀夹精度。 8:应常检查寻边器是否损坏,一经发现应及时修理或更换。 9:换装刀具时注意清理机床主轴内锥孔及刀具锥柄保证加工时不会出现因刀具装夹不稳而出现的加工精度偏差。 10:经常检查机床润滑油,确保机床润滑到位。 11:定期检测机床精度,确保精度误差不超过0.02mm。 12:刚学习操作时应注意使用寻边器和对刀仪时格外小心(通常刚操作时,对刀仪和寻边器损坏较频繁)。 13:有时上件和编程时基准不一致导致工件加工错误,应注意减少此类情况。 14:定期更换润滑液,保证机床润滑到位,定期清理润滑油箱内的油污。 15:定期检查润滑油管看是否破裂,如有破裂应及时更换。 16:定期检查,调整丝杆轴向间隙。 17:保持导轨清洁,防止铁屑等影响导轨磨损。 18:使用刀库时应手动换刀空试,确定无误后方可正常使用。 19:开关机时应按照操作步骤进行操作。 20:加工运行时注意机床出现的问题及修改机床及时记录情况。 21:每次保养记录保养情况。 22:刀具的使用及损坏及时记录。 注:操作人员必须严格遵守以上条例!!!

仪器与系统可靠性结课论文

电子信息与自动化学院 《仪器与系统可靠性》 课程结课论文 姓名: 班级: 学号: 专业: 院系:电子信息与自动化学院 2015年6月

仪器系统可靠性原理及分析方法 目录 摘要 (1) 一、可靠性设计基础 (2) (一)可靠性的基本概念 (2) (二)可靠性的发展过程 (2) 1. 过程系统趋向大型化、复杂化 (3) 2.仪表使用环境条件日益严酷 (3) 3. 新材料、新工艺越来越多的采用 (3) 4. 经济效益要求 (3) (四)可靠性学科研究的基本内容与应用 (3) 二、系统可靠性的分析方法 (4) (一)可靠度 (4) (二)故障率 (5) 1.故障率概念 (5) 2.故障率函数曲线 (6) (三)平均寿命 (7) (四)维修度 (8) (五)有效度 (8) (六)重要度 (9) 结论 (9) 参考文献 (9) [摘要] 随着集成电路、微电子技术在各类仪器中的广泛运用,电子仪器的复杂程度越来越高,传统的仪器只能完成测量、显示功能,而现代的智能仪器往往具有只能诊断、智能学习能力。因此,在应用系统中,电子仪器起的作用也越来越大,电子仪器能否可靠地完成其任务,也逐渐成为人们越来越关注的问题。可靠性设计在军事、航空航天以及核工业等行业中尤为重要,在这些行业中使用的仪器,其可靠性设计必须放在首位,否则会产生非常严重的后果。对于某些应用于军事方面的电子仪器,其可靠性不仅会影响仪器的正常使用,而且有时会对战争的胜利起到关键作用;对于某些应用于航空航天的电子仪器,其可靠性非常重要。本文就仪器系统可靠性原理以及分析方法进行介绍说明。 [关键词] 可靠性仪器仪表分析方法

国内外数控机床对比

国内外当下主产机床对比 1 中高档、中低档数控系统的综合比较 以下精选各数控公司的中高档数控系统、中低档数控系统中最佳性能产品加以比较: (1)广州数控GSK21M数控系统 系统具有4轴3联动控制功能,可扩展至7轴4联动控制;支持直线、圆弧、样条曲线插补;最快进给速度可达60m/min;系统具有256点输入输出点;,支持梯形图编程;具有99组刀具长度补偿和刀具半径补偿;直线坐标轴具有反向间隙及螺距误差补偿;系统支持刚性攻丝;系统采用4级密码控制系统操作权限;采用电子盘,用户程序容量可达32MB;系统可通过RS232接口实现与PC机通信,用于传输程序、参数和梯形图。支持U盘存储。 (2)凯恩帝K1000M/T II系列数控系统 系统具有4轴4联动控制功能;数字量输入输出点数可达40/24个,支持梯形图编程;数控系统NC代码处理速度可达10000/18s,最快进给速度可达24m/min;系统具有直线插补、圆弧插补、螺旋线插补等基本插补控制功能;具有刀具半径补偿、刀具长度补偿;具有反向间隙和螺距误差补偿;系统支持刚性攻丝;系统采用4级密码控制系统操作权限;采用电子盘,用户程序容量可达640KB;系统可通过RS232接口实现与PC机通信传输程序、参数和偏置。支持U盘存储。(3)华中数控世纪星HNC-21M/T系列数控系统 系统基于嵌入式PC,具有5轴4联动控制功能,具有脉冲输出接口、模拟量输出接口;数字量输入输出点数可达40/32个;系统最小分辨率1μm,最大移动速度:16m/min;系统具有直线、圆弧、螺旋线、正弦线插补,自动加减速控制;支持小线段连续加工功能,适用于复杂模具加工;系统支持反向间隙补偿,多达5000点的双向螺距误差补偿功能; 8MB Flash程序断电存储,8MBRAM加工缓冲区,可选配硬盘支持2GB数控程序存储;可采用RS232接口传输数控代码,可选配以太网接口;系统具有刀具半径补偿、刀尖半径补偿和刀具长度补偿等。(4)大连大森dasen-3i、dasen-9i 自1995年成立以来,陆续推出了大森Ⅰ型、Ⅱ型、Ⅲ型及大森Ⅵ型数控系统,属于中、低档数控产品。目前供应的大森3i型数控系统是大森Ⅲ型数控系统的升级产品:系统具有3轴3联动控制功能;具有PLC在线显示、编辑、监控功能;加工程序容量可升级为240KB;最快速移动速度可达240m/min;计算机联机传输速度可达19200bps;采用130,000p/r绝对值编码器。 大森9i型数控系统,具有3轴2轴联动控制功能;最小分辨率1μm,最大移动速度30m/min;RS232通信接口;具有反向间隙补偿和螺距误差补偿功能;具有刀具半径、刀尖半径、刀具长度补偿功能;程序容量40MB以上,最多支持100个数控程序;采用内置PLC,数字量输入输出点可达44/44个。 (5)日本FANUC公司Fanuc-0i MB/TB系列数控系统 系统具有4轴4联动控制功能;具有4路D/A模拟量伺服闭环控制接口;数字量输入输出点数可达96/64;分辨率1μm时进给速度可达240m/min,分辨率为0.1μm时进给速度可达100m/min;系统具有直线、圆弧、螺旋线插补功能,支持刚性攻丝;数控系统具有刀具半径补偿、刀具长度补偿,且几何误差、磨损误差可以分别补偿;数控系统支持反向间隙补偿、螺距误差补偿;PMC指令处理速度可达3.3ms/1000步,采用梯形图编程,最大存储容量可达4000步;系统支持密码

数控机床加工精度分析与应用.

数控机床加工精度分析与应用 王美姣 (河南职业技术学院机电系,河南郑州450046 摘要:数控机床是一种高精度、高效率、高柔性、高技术的现代化机电设备,其应用越来越普 及。提高机床效率、保证加工精度、确保产品品质是生产所必需。 关键词:数控机床;加工精度;应用 中图分类号:TG659文献标识码:B文章编 号:167125276(20040320025204 Application and analysis of manufacturing precision of NC machines WAN G Mei2jiao (Henan Vocational&Technical College,Zhengzhou Henan450046,China Abstract:A NC machine tool is a modern mechatronic equipment which has advantage of high precision,high efficiency,high flexibility and advanced technologies.NC machines are being used in more and more fields.It is needed in production to improve efficiency,ensure precision and quality of products. K ey w ords:NC machine tool;manufacturing precision;application 数控机床是按照加工程序自动加工零件,它具有加工精度高、生产效率高、产品品质稳定、加工过程柔性好、加工功能强等特点。加工过程中,只要改变加工程序就能达到加工不同形状、不同精度零件的目的。但并不是每个数控操作人员都能在规定的时间内保证工件的加工精度,提高机床效率,确保产品合格。本文总

数控切割机机床几何精度国家标准

数控切割机机床几何精度国家标准 数控机床的几何精度是综合反映机床主要零部件组装后线和面的形状误差、位置或位移误差。根据GB T 17421.1-1998《机床检验通则第1部分在无负荷或精加工条件下机床的几何精度》国家标准的说明有如下几类: (一)、直线度 1、一条线在一个平面或空间内的直线度,如数控卧式车床床身导轨的直线度; 2、部件的直线度,如数控升降台铣床工作台纵向基准T形槽的直线度; 3、运动的直线度,如立式加工中心X轴轴线运动的直线度。 长度测量方法有:平尺和指示器法,钢丝和显微镜法,准直望远镜法和激光干涉仪法。 角度测量方法有:精密水平仪法,自准直仪法和激光干涉仪法。 (二)、平面度(如立式加工中心工作台面的平面度) 测量方法有:平板法、平板和指示器法、平尺法、精密水平仪法和光学法。 (三)、平行度、等距度、重合度 线和面的平行度,如数控卧式车床顶尖轴线对主刀架溜板移动的平行度; 运动的平行度,如立式加工中心工作台面和X轴轴线间的平行度; 等距度,如立式加工中心定位孔与工作台回转轴线的等距度; 同轴度或重合度,如数控卧式车床工具孔轴线与主轴轴线的重合度。 测量方法有:平尺和指示器法,精密水平仪法,指示器和检验棒法。 (四)、垂直度 直线和平面的垂直度,如立式加工中心主轴轴线和X轴轴线运动间的垂直度; 运动的垂直度,如立式加工中心Z轴轴线和X轴轴线运动间的垂直度。 测量方法有:平尺和指示器法,角尺和指示器法,光学法(如自准直仪、光学角尺、放射器)。(五)、旋转 径向跳动,如数控卧式车床主轴轴端的卡盘定位锥面的径向跳动,或主轴定位孔的径向跳动; 周期性轴向窜动,如数控卧式车床主轴的周期性轴向窜动; 端面跳动,如数控卧式车床主轴的卡判定位端面的跳动。 测量方法有:指示器法,检验棒和指示器法,钢球和指示法。 此资料来源于北京海宝得武汉分公司https://www.wendangku.net/doc/a25866859.html,/

关于数控机床加工精度提高方法的分析正式版

In the schedule of the activity, the time and the progress of the completion of the project content are described in detail to make the progress consistent with the plan.关于数控机床加工精度提高方法的分析正式版

关于数控机床加工精度提高方法的分 析正式版 下载提示:此解决方案资料适用于工作或活动的进度安排中,详细说明各阶段的时间和项目内容完成的进度,而完成上述需要实施方案的人员对整体有全方位的认识和评估能力,尽力让实施的时间进度与方案所计划的时间吻合。文档可以直接使用,也可根据实际需要修订后使用。 本文通过分析数控机床加工过程中误差产生的原因和相关影响因素,对提高数控机床加工精度的方法进行了分析。 数控机床本身具有比较高的生产效率。在批量生产的同时还可以有效控制加工精度。这在很大程度上改变了传统机床加工精度对于操作者的依赖性。现在已经被广泛的应用在机械加工、电力设备制造等的行业。但是,在实际的加工过程中,数控机床对于操作人员自身的要求以及对于机床自身性能的要求也是比较高的。在科技不断进步的今天,人们对于制造业的

产品要求也随之升高,数控机床在加工零件产品的过程中对于所处的自然环境要求也不断提高。很多的数控机床在这样的情况下,其加工的精度也不能够满足实际情况对于零件精度的要求。所以,对于怎样提高数控机床加工精度的问题,是值得我们不断研究的一个问题。正像是美国通用公司的著名工程师佛罗曼说的那样,当前普通的数控机床技术在全世界的范围内已经发展的相对成熟,但是随着制造业不断的进步和社会生产的需要,普通的数控机床已经不能够满足生产的发展实际,我们需要更紧密、制造更渐变,使用更高效的数控机床产品,这是数控机床技术的发展趋势。

数控铣床典型故障分析和维修系统

广州华立科技职业院 毕业设计(论文)中文题目:数控铣床的典型故障分析与维修系统 英文题目:CNC milling machine of typical fault analysis and repair system 学生姓名: 学号: 专业: 指导老师姓名: 论文提交时间:2011-3-25

目录 中英文摘要 (2) 一.数控铣床的结构工作原理简介 (3) 1.1 数控铣床的主要分类 (3) 1.2 按结构分 (5) 1.3按控制方式分 (6) 二. 数据铣床的作业安全规则 (6) 2.1安全规则 (6) 2.2铣床例保作业范围 (7) 三. 数控铣床的常见故障及维修方法 (8) 3.1数控机床故障诊断 (8) 3.2数控机床的故障诊断技术 (9) 3.3数控机床的常见故障排除方法 (12) 3.4数控机床维修后的开机调试 (16) 3.5维修调试后的技术处理 (16) 四. 数控铣床的系统故障与维修 (16) 五. 数控铣床的故障检测与故障排除案例 (19) 案例小结 (21) 致谢 (22) 参考文献 (23)

内容摘要 数控技术的应用不但给传统制造业带来了革命性的变化,使制造业成为工业化的象征,而且随着数控技术的不断发展和应用领域的扩大,对国计民生的一些重要行业国防、汽车等的发展起着越来越重要的作用,这些行业装备数字化已是现代发展的大趋势,。本文阐述了数控铣床参数故障产生的原因、恢复方法,通过各种常见参数故障的排除方法,并结合相关的实际案例分析,提出了行之有效的维修技巧,采用这些维修技巧可以大大提高维修效率。 关键词:数控铣床故障排除方法维修实例数控系统 Abstract The application of numerical control technology not only to the traditional manufacturing industry has brought revolutionary changes, so that the manufacturing sector to become a symbol of industrialization, and with the continuous development of NC technology and expanding the scope of application, beneficial to the people's livelihood of some of the major industries of national defense, automobile and other development plays a more and more important role, these industry equipment digitization is the modern trend of development,. This paper

数控机床精度及性能检验

数控机床精度及性能检验 数控机床的高精度最终是要靠机床本身的精度来保证,数控机床精度包括几何精度和切削精度。另一方而,数控机床各项性能的好坏及数控功能能否正常发挥将直接影响到机床的正常使用。因此,数控机床精度和性能检验对初始使用的数控机床及维修调整后机床的技术指标恢复是很重要的。 一、精度检验 一台数控机床的检测验收工作,是一项工作量大而复杂,试验和检测技术要求高的工作。它要用各种检测仪器和手段对机床的机、电、液、气各部分及整机进行综合性能及单项性能的检测,最后得出对该数控机床的综合评价。这项工作为数控机床今后稳定可靠地运行打下一定的基础,可以将某些隐患消除在考机和验收阶段中,因此,这项工作必须认真、仔细,并将符合要求的技术数据整理归档,作为今后设备维护、故障诊断及维修中恢复技术指标的依据。 1、几何精度检验 几何精度检验,又称静态精度检验,是综合反映机床关键零部件经组装后的综合几何形状误差。数控机床的几何精度的检验工具和检验方法类似于普通机床,但检测要求更高。 几何精度检测必须在地基完全稳定、地脚螺栓处于压紧状态下进行。考虑到地基可能随时间而变化,一般要求机床使用半年后,再复校一次几何精度:在几何精度检测时应注意测量方法及测量工具应用不当所引起的误差。在检测时,应按国家标准规定,即机床接通电源后,在预热状态下,机床各坐标轴往复运动几次,主轴故个等的转速运转十多分钟后进行。 常用的检测工具有精密水平仪、精密方箱、直角尺、平尺、平行光管、千分表、测微仪及高精度主轴心棒等。检测工具的精度必须比所测的几何精度高一个等级。 (一)卧式加工中心几何精度检验 1)x 、y 、z 坐标轴的相互垂直度。 2)工作台面的平行度。 3)x 、Z 轴移动时工作台面的平行度。 4)主轴回转轴线对工作台面的平行度。 5)主轴在Z 轴方向移动的直线度: 6)x 轴移动时工作台边界与定位基准面的平行度。 7)主轴轴向及孔径跳动。 8)回转工作台精度。 具体的检测项目及方法见表2—1。 (二)卧式数控车床几何精度检验 斜床身、带转盘刀架的卧式数控车床,其几何精度检验见表2—2。 2、定位精度的检验 数控机床的定位精度是测量机床各坐标轴在数控系统控制下所能达到的位置精度。根据实测的定位精度数值,可判断零件加工后能达到的精度。 1.直线运动定位精度 这项检测一般在空载条件下进行,对所测的每个坐标轴在全行程内,视机床规格,分每20mm 、50mm 或100mm 间距正向和反向快速移动定位,在每个位置上测出实际移动距离和理论移动距离之差。先进的检测仪器有双频激光干涉仪,用它快速进行五次以上的测量,由处理装置进行计算打印,绘出带±3σ的误差曲线。在该曲线上得出正、反向定位时的平均位置偏差j X 、标准偏差j S ,则位置偏差max min (3)(3)j j j j A X S X S =+--。

数控机床的现状与发展

数控机床现状及发展趋势分析 数控机床的概念 数控机床就是在数字控制下,能在尺寸精度和几何精度两方面完成金属毛坯零件加工成所需要形状的工作母机的总称。数控机床通常由控制系统、伺服系统、检测系统、机械传动系统及其他辅助系统组成。 国产数控机床的发展现状 一、国产数控机床与国际先进水平差距逐渐缩小 数控机床是当代机械制造业的主流装备,国产数控机床的发展经历{HotTag}了30年跌宕起伏,已经由成长期进入了成熟期,可提供市场1,500种数控机床,覆盖超重型机床、高精度机床、特种加工机床、锻压设备、前沿高技术机床等领域,产品种类可与日、德、意、美等国并驾齐驱。特别是在五轴联动数控机床、数控超重型机床、立式卧式加工中心、数控车床、数控齿轮加工机床领域部分技术已经达到世界先进水平。其中,五轴(坐标)联动数控机床是数控机床技术的制高点标志之一。 它集计算机控制、高性能伺服驱动和精密加工技术于一体,应用于复杂曲面的高效、精密、自动化加工,是发电、船舶、航天航空、模具、高精密仪器等民用工业和军工部门迫切需要的关键加工设备。

五轴联动数控机床的应用,其加工效率相当于2台三轴机床,甚至可以完全省去某些大型自动化生产线的投资,大大节约了占地空间和工作在不同制造单元之间的周转运输时间及费用。国产五轴联动数控机床品种日趋增多,国际强手对中国限制的五轴联动加工中心、五轴数控铣床、五轴龙门铣床、五轴落地铣镗床等均在国内研制成功,改变了国际强手对数控机床产业的垄断局面。 二、国产数控机床存在的问题 由于中国技术水平和工业基础还比较落后,数控机床的性能、水平和可*性与工业发达国家相比,差距还是很大,尤其是数控系统的控制可*性还较差,数控产业尚未真正形成。因此加速进行数控系统的工程化、商品化攻关,尽快建成与完善数控机床和数控产业成为当前的主要任务。目前主要问题有: 三、核心技术严重缺乏 统计数据表明,数控机床的核心技术—数控系统,由显示器、控制器伺服、伺服电机和各种开关、传感器构成,中国90%需要国外进口。如在上海设厂的德国吉特迈集团和意大利利雅路机床集团,在烟台建厂的韩国大宇综合机械株式会社,所有的核心技术都被外方掌握。国内能做的中、高端数控机床,更多处于组装和制造环节,普遍未掌握核心技术。国产数控机床的关键零部件和关键技术主要依赖进口,国内真正大而强的企业并不多。目前世界最大的3家厂商是:日

数控机床精度检验

数控机床精度检测 数控机床的高精度最终是要靠机床本身的精度来保证,数控机床精度包括几何精度和切削精度。另一方面,数控机床各项性能的好坏及数控功能能否正常发挥将直接影响到机床的正常使用。因此,数控机床精度检验对初始使用的数控机床及维修调整后机床的技术指标恢复是很重要的。 1、检验所用的工具 1.1、水平仪 水平:0.04mm/1000mm 扭曲:0.02mm/1000mm 水平仪的使用和读数 水平仪是用于检查各种机床及其它机械设备导轨的直线度、平面度和设备安装的水平性、垂直性。 使用方法: 测量时使水平仪工作面紧贴在被测表面,待气泡完全静止后方可读数。水平仪的分度值是以一米为基长的倾斜值,如需测量长度为L的实际倾斜值可以通过下式进行计算: 实际倾斜值=分度值×L×偏差格数

水平仪的读数:水平仪读数的符号,习惯上规定:气泡移动方向和水平移动方向相同时读数为正值,相反时为负值。 1.2、千分表

1.3、莫氏检验棒

2、检验内容 2.1、相关标准(例) 加工中心检验条件第2部分:立式加工中心几何精度检验JB/T8771.2-1998 加工中心检验条件第7部分:精加工试件精度检验JB/T8771.7-1998 加工中心检验条件第4部分:线性和回转轴线的定位精度和重复定位精度检验JB/T8771.4-1998 机床检验通则第2部分:数控轴线的定位精度和重复定位精度的确定JB/T17421.2-2000 加工中心技术条件JB/T8801-1998 2.2、检验内容 精度检验内容主要包括数控机床的几何精度、定位精度和切削精度。 2.2.1、数控机床几何精度的检测 机床的几何精度是指机床某些基础零件本身的几何形状精度、相互位置的几何精度及其相对运动的几何精度。机床的几何精度是综合反映该设备的关键机械零部件和组装后几何形状误差。数控机床的基本性能检验与普通机床的检验方法差不多,使用的检测工具和方法也相似,每一项要独立检验,但要求更高。所使用的检测工具精度必须比所检测的精度高一级。其检测项目主要有: 直线度 一条线在一个平面或空间内的直线度,如数控卧式车床床身导轨的直线度。 部件的直线度,如数控升降台铣床工作台纵向基准T形槽的直线度。 运动的直线度,如立式加工中心X轴轴线运动的直线度。 平面度(如立式加工中心工作台面的平面度) 测量方法有:平板法、平板和指示器法、平尺法、精密水平仪法和光学法。 平行度、等距度、重合度 线和面的平行度,如数控卧式车床顶尖轴线对主刀架溜板移动的平行度。 运动的平行度,如立式加工中心工作台面和X轴轴线间的平行度。 等距度,如立式加工中心定位孔与工作台回转轴线的等距度。 同轴度或重合度,如数控卧式车床工具孔轴线与主轴轴线的重合度。 垂直度 直线和平面的垂直度,如立式加工中心主轴轴线和X轴轴线运动间的垂直度; 运动的垂直度,如立式加工中心Z轴轴线和X轴轴线运动间的垂直度。 旋转 径向跳动,如数控卧式车床或主轴定位孔的径向跳动。 周期性轴向窜动,如数控卧式车床主轴的周期性轴向窜动。 端面跳动,如数控卧式车床主轴的卡判定位端面的跳动。 2.2.2、机床的定位精度检验 数控机床的定位精度是测量机床各坐标轴在数控系统控制下所能达到的位置精度。根据实测的定位精度数值判断机床是否合格。其内容有:

乳化液泵站液压系统可靠性分析

乳化液泵站液压系统可靠性分析 发表时间:2019-04-01T14:40:59.160Z 来源:《电力设备》2018年第28期作者:李强 [导读] 摘要:随着科学技术水平的提高,我国矿山生产过程中乳化液泵站液压系统的应用也逐渐受到重视。 (身份证号:61272819860910xxxx 神东设备维修中心一厂四部内蒙古鄂尔多斯 017209) 摘要:随着科学技术水平的提高,我国矿山生产过程中乳化液泵站液压系统的应用也逐渐受到重视。文章主要对乳化液泵站液压系统可靠性分析的重要性进行分析,并探讨可靠性优化策略。 关键词:乳化液泵站;液压系统;可靠性 引言 矿用乳化液泵站是综采工作面的关键设备,它一方面为机械化综采面单体液压支柱提供基础保障,另一方面将机械能转化为液压能为掘进设备提供转矩。在液压系统中,液压源的稳定性是液压系统稳定性的决定性因素。当系统液压源出现压力波动时,会引起整个系统的压力震荡,加快系统密封元件、管道和压力元件的损坏,严重时会引发系统故障,造成重大事故。 1常规乳化液泵站工作原理 乳化液泵站工作原理为:磁力启动器(6)闭合,给乳化液泵电机(4)供电,驱动乳化液泵(3)工作,将乳化液由液箱(15)经输液管道送到综采工作面液压支架(14),为液压支架提供动力。乳化液泵的输出能力,为单体液压支柱供液的应不小于18MPa,为综采液压支架供液的应不小于30MPa,并且不得超过31.5MPa。乳化液泵采用的是由电动机驱动的电动泵;在运动形式上,采取柱塞驱动的形式,这主要是因为柱塞泵排出压力范围广、可靠性高;从外观结构上,泵分为卧式泵和立式泵,此次设计采用卧式泵,方便维护、维修、操作,可保证工作效率;泵的联数、缸数及作用数也是总体设计时需要考虑的关键问题,在柱塞泵中,一根柱塞和其连杆的组合,称为一联,当柱塞间相位差不同,但一同排出时,联可以称为缸,缸数的多少影响泵的流量脉动。一般而言,缸数越多,其脉动越小,但考虑到制造工艺的方便,此次设计为五缸泵,柱塞往复一次吸入与排出介质的次数称为作用数,因为结构的关系,柱塞泵一般是单作用泵。 图1 常规乳化液泵站液压系统示意图 在乳化液泵站的出液口还安装安全阀(8),作为泵站的的高压保护零件,安全阀的调定压力为泵工作压力的110%~115%左右,超压时,乳化液通过安全阀回流入液箱。图1中蓄能器(11)的主要作用是补充高压系统中的漏损,从而减少卸载阀的动作次数,延长液压系统中液压元件的使用寿命;同时还能吸收高压系统的压力脉动。 2乳化液泵站液压系统可靠性分析的重要作用 综采工作面的支护体系主要由液压支架与乳化液泵站以及控制、调节、保护元件和辅助装置构成。其中,乳化液泵站液压系统是整个工作面支护体系完整系统的一部分。泵站液压系统既能安全可靠地向工作面输送液压支架等液压装置所需压力等级的高压液体,又能将通过回液管道流回乳化液箱的乳化液经过滤净化后,再次输送至工作面液压设备,形成连续无间断的循环供液模式。在功能方面,当液压支架动作时泵站液压系统可以满足其需要,系统可以即时供给高压液体;当液压支架不动作乳化液泵仍在运转时,系统能够自动卸载,保证乳化液泵站安全运行;当液压支架等液压设备动作受阻时,工作液压力超过限定值,系统能够限压保护。乳化液泵站液压系统是综采工作面泵站与液压支架及辅助元件组成的整体系统的一部分。不仅可以向工作面液压装置提供所需压力等级的乳化液体,还可以将输送完能量的乳化液进行回收、过滤后再进行加压,形成连续循环的供液体系。乳化液泵液压系统通常具有以下特点:乳化液泵站液压系统可以满足工作面液压支架及其附属装置的工作用液要求,当工作面液压支架需要压力时,乳化液泵站可以及时提供符合压力及流量要求的乳化液;工作面液压支架不需要供液时,泵站液压系统仍正常运转并自动卸载压力;系统压力超过调定值时,系统可以自动卸载,当压力降至调定值时,系统又可恢复正常工作;保护乳化液泵,空载启动减少对泵体自身的损害;系统内有完善的压力及流量缓冲装置、良好的过滤装置、压力指示装置以及自动配液装置等。 3乳化液泵站液压系统可靠性 3.1建立可靠性模型 在分析乳化液泵的可靠性时,首先要了解乳化液泵中每个元部件的功能、各个元部件之间在功能上的关系,以及各个元部件的功能和故障对整个乳化液泵的影响。用方框代表系统元部件,用短线把各个代表元部件的方框按照功能上的逻辑关系连接起来,就建立了整个系统的可靠性框图。根据可靠性理论,乳化液泵各个元部件之间都是串联关系,其中任何一个元件出现故障都可以导致乳化液泵站故障。因此,乳化液泵站的可靠性模型是由电动机、齿轮副、滑块、曲轴、缸体、进液阀和排液阀组成的串联系统。设U代表乳化液泵站无故障工作的事件,Ui 代表第i个元部件无故障工作的事件。因为乳化液泵站各个元部件之间是串联关系,所以U事件出现等于U1,U2,…Un,事件同时发生,即:U=U1U2…Un。依照概率计算的原则,假如乳化液泵站中各元部件是相互独立的,得出的乳化液泵站可靠度

相关文档
相关文档 最新文档