文档库 最新最全的文档下载
当前位置:文档库 › 电机整定值计算方法

电机整定值计算方法

电机整定值计算方法

电机整定值计算方法

660V三相,电机的额定电流经验公式为功率(KW)×1.15 JDB具有过载延时,可以跳过启动电流,可以按额定电流整定,整定为13A

380V 电机的额定电流经验公式为功率(KW)×2

1140V 电机的额定电流经验公式为功率(KW)×0.66

6KV 电机的额定电流经验公式为功率(KW)×0.1

10KV 电机的额定电流经验公式为功率(KW)×0.58

低压电动机保护定值整定精选文档

低压电动机保护定值整 定精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

低压电动机保护定值整定 1、整定原则 、短路保护 电机短路时,电流为8~10倍额定电流Ie。定值推荐取8倍Ie,延时,如果在启动过程中跳闸,可取9倍Ie。 、堵转保护 电机堵转时,电流为4~6倍额定电流Ie。定值5倍Ie,延时1s。 、定时限保护 定时限保护作为堵转后备保护,可取3倍Ie,延时5s。 、反时限保护 启动电流设置为,时间常数设置为2s。电机过载运行时,保护将在49s左右跳闸;2倍Ie电流运行时,保护将在8s左右跳闸;5倍Ie电流运行时,保护将在3秒左右跳闸 、欠载保护 电机运行在空载情况下,电流长期处于小电流运行情况下,欠载保护可用于报警。如果运行条件允许,可作用于跳闸,切除空载运行电机,省电。 欠载电流可取,延时10s。

、不平衡保护 当电机内部两相短路或缺相时,使电机运行不平衡状态,如果长期运行,则会烧毁电机。 不平衡百分比设置为70%,延时2s 、漏电保护 需配置专门漏电互感器LCT,漏电电流取0.4A,延时5s,用于跳闸。 、过压保护 电压长期过压运行,将影响电机的绝缘,甚至造成短路。过压值取(Ue为 220v),延时5s。 、欠压保护 电压过低将引起电机转速降低,电流增大。欠压值取(Ue为220v),延时5s。、TE时间保护 用于增安型电机的过载保护。TE时间取2s。 、工艺联锁保护 用于外部跳闸(DCS跳闸),延时 、晃电再起

对于重要电机,在系统晃电造成停机,恢复供电后要求电机重启。晃电电压 80%Ue,恢复电压,晃电时间可设置为3s,再起延时设置为1s(用于分批启动。根据实际情况设置) 、电机启动时间 在“参数设置”中,根据电机启动过程时间设置,默认为6s。 、额定电流 在“参数设置”中,根据电机实际情况设置,110kw电机,额定电流为207A,互感器选择SCT300,参数中额定电流设置为3.5A。 、CT变比 根据选择的互感器设置,SCT300时,设置为60。 2、定值整定说明: 例子1:110kw电动机,额定电流Ie=207A,选择SCT300,CT变比60 短路保护 8Ie=1656A 折算到二次1656/60=27.6A,在短路保护内,设置短路电流设置为27.6A,保护延时 堵转保护 5Ie=1035A 折算到二次1035/60=17.25A,在堵转保护内,设置堵转电流为17.3A,保护延时1s。(注:堵转保护在电动机启动过程中关闭,启动后打开,因此在启动过程中不会造成堵转保护动作)

电机选型计算-个人总结版(新、选)

电机选型-总结版 电机选型需要计算工作扭矩、启动扭矩、负载转动惯量,其中工作扭矩和启动扭矩最为重要。 1工作扭矩T b计算: 首先核算负载重量W,对于一般线形导轨摩擦系数μ=0.01,计算得到工作力F b。 水平行走:F b=μW 垂直升降:F b=W 1.1齿轮齿条机构 一般齿轮齿条机构整体构造为电机+减速机+齿轮齿条,电机工作扭矩T b的计算公式为: 其中D为齿轮直径。 1.2丝杠螺母机构 一般丝杠螺母机构整体构造为电机+丝杠螺母,电机工作扭矩T b 的计算公式为: 其中BP为丝杠导程;η为丝杠机械效率(一般取0.9~0.95,参考下式计算)。

其中α为丝杠导程角;μ’为丝杠摩擦系数(一般取0.003~0.01,参考下式计算)。 其中β丝杠摩擦角(一般取0.17°~0.57°)。 2启动扭矩T计算: 启动扭矩T为惯性扭矩T a和工作扭矩T b之和。其中工作扭矩T b 通过上一部分求得,惯性扭矩T a由惯性力F a大小决定: 其中a为启动加速度(一般取0.1g~g,依设备要求而定,参考下式计算)。 其中v为负载工作速度;t为启动加速时间。 T a计算方法与T b计算方法相同。 3 负载转动惯量J计算: 系统转动惯量J总等于电机转动惯量J M、齿轮转动惯量J G、丝杠转动惯量J S和负载转动惯量J之和。其中电机转动惯量J M、齿轮转动惯量J G和丝杠转动惯量J S数值较小,可根据具体情况忽略不计,如需计算请参考HIWIN丝杠选型样本。下面详述负载转动惯量J的计算过程。 将负载重量换算到电机输出轴上转动惯量,常见传动机构与公式如下:

J:电机输出轴转动惯量(kg·m2) W:可动部分总重量(kg) BP:丝杠螺距(mm) GL:减速比(≥1,无单位) J:电机输出轴转动惯量(kg·m2) W:可动部分总重量(kg) D:小齿轮直径(mm) 链轮直径(mm) GL:减速比(≥1,无单位) J:电机输出轴转动惯量(kg·m2) J1:转盘的转动惯量(kg·m2) W:转盘上物体的重量(kg) L:物体与旋转轴的距离(mm) GL:减速比(≥1,无单位) 4 电机选型总结 电机选型中需引入安全系数,一般应用场合选取安全系数S=2。则电机额定扭矩应≥S·T b;电机最大扭矩应≥S·T。同时满足负载惯量与电机惯量之间的比值≤推荐值。 最新文件仅供参考已改成word文本。方便更改

电动机整定计算及保护设置

一、循环水泵(4台) Pe=450KW Ue= cos∮= 变比:nl=100/5=20 Ie=Pe/√3×Ue×cos∮=450/××= Iqd=8×Ie=8×=412A(是否是循环水泵启动电流) Ie2=20= (1)速断保护(过流I段) Idzj=Kk×Iqd/nl=×8Ie/nl=×412/20= 延时Tzd=0s (2) 过流保护(过流II段,该保护在电动机起动过程中被闭锁)Idzj=Kk×Ie/nl=×Ie/nl=×20= 延时Tzd= (3) 过负荷 Ig= Kk ×Ie2/=×= 延时Tzd=6s (4)负序电流 Idzj=Kk×Ie/nl=×/20= 延时Tzd= (5) 起动时间tqd=15s, 电机厂家核实

(6) 低电压 Udzj==65V 延时Tzd=9s 二、引风机 Pe=900KW Ue= cos∮= nl=150/5=30 Ie=Pe/√3×Ue×cos∮=560/××= Iqd=8I=8×=868A (1).速断保护(过流I段) Idzj=Kk×Iqd/nl=×8Ie/nl=×868/30= 延时Tzd=0s (2) 过流保护(过流II段,该保护在电动机起动过程中被闭锁)Idzj=Kk×Ie/nl=×Ie/nl=×30= 延时Tzd= (3) 过负荷 Ie2=30= Ig= Kk ×Ie2/=×= 延时Tzd=6s (4)负序电流 Idzj=Kk×Ie/nl=×/30=

延时Tzd= (5) 起动时间tqd=20s 电机厂家核实 (6) 低电压 Udzj==65V 延时Tzd=9s 高压电动机的几种常规保护 一、电动机主要故障 1、定子绕组相间短路、单相接地; 2、一相绕组的匝间短路; 3、电动机的过负荷运行; 4、由供电母线电压降低或短路中断引起的电动机低电压运行; 5、供电母线三相电压不平衡或一相断线引起电动机三相电流不平衡; 6、由于机械故障、负荷过重、电压过低造成转子堵转的故障; 二、电动机主要保护类型及实现的功能基于以上电动机运行过程中本身和供电母线、负荷变化等可能引起的电动机故障,电动机(尤其对于3~10K V 等级电机)可装设以下保护,以实现对电机的保护,或可称为电动机的主要保护。1、二段式过电流保护(过流Ⅰ段、过流Ⅱ段) 作用:主要对于电机相间短路提供保护(过流Ⅰ段);和电动机的堵

三段式电流保护的整定及计算

三段式电流保护的整定及计算 第1章输电线路保护配置与整定计算重点:掌握110KV及以下电压等级输电线路保护配置方法与整定计算原则。 难点:保护的整定计算能力培养要求:基本能对110KV 及以下电压等级线路的保护进行整定计算。 学时:4学时主保护:反映整个保护元件上的故障并能以最短的延时有选择地切除故障的保护称为主保护。 后备保护:主保护拒动时,用来切除故障的保护,称为后备保护。 辅助保护:为补充主保护或后备保护的不足而增设的简单保护。 一、线路上的故障类型及特征: 相间短路接地短路其中,三相相间短路故障产生的危害最严重; 单相接地短路最常见。相间短路的最基本特征是:故障相流动短路电流,故障相之间的电压为零,保护安装处母线电压降低; 接地短路的特征: 1、中性点不直接接地系统特点是:

①全系统都出现零序电压,且零序电压全系统均相等。 ②非故障线路的零序电流由本线路对地电容形成,零序电流超前零序电压90°。 ③故障线路的零序电流由全系统非故障元件、线路对地电容形成,零序电流滞后零序电压90°。显然,当母线上出线愈多时,故障线路流过的零序电流愈大。 ④故障相电压为零,非故障相电压升高为正常运行时的相间电压。 ⑤故障线路与非故障线路的电容电流方向和大小不相同。因此中性点不直接接地系统中,线路单相故障可以反应零序电压的出现构成零序电压保护; 可以反应零序电流的大小构成零序电流保护; 可以反应零序功率的方向构成零序功率方向保护。 2、中性点直接接地系统接地时零序分量的特点: ①故障点的零序电压最高,离故障点越远处的零序电压越低,中性点接地变压器处零序电压为零。 ②零序电流的分布,主要决定于输电线路的零序阻抗和中性点接地变压器的零序阻抗,而与电源的数目和位置无关。 ③在电力系统运行方式变化时,如果输电线路和中性点接地的变压器数目不变,则零序阻抗和零序等效网络就是不变的。但电力系统正序阻抗和负序阻抗要随着系统运行方式而变化,将间接影响零序分量的大小。

电动机电流速断保护继电器的选择及其定值计算.

电动机电流速断保护继电器的选择及其定值计算 电动机保护继电器的选择及其整定正确与否,直接影响到安全运行。实践表明,由于保护继电器和定值没有根据现场实际情况选择和计算,造成电动机保护装置误动、拒动的情况时有发生。本文简介电流速断保护的构成及其定值计算,供电工参考。 1. 电动机保护继电器的选择 无论哪一种电动机,对其保护的原理基本上都是以反映电动机内部故障时正序和零序电流急剧升高这一特征来设计的。反映短路故障的装置一般是电流速断保护和单相接地保护。 电动机内部发生金属多相短路时,理论上说电流幅值会趋向于无穷大,电流速断保护就是利用这一特征快速启动继电器,使故障电动机从电网中退出来。由于电动机起动电流大小悬殊,因此,能够把短路电流和起动电流有效区分开来就成为电流速断保护继电器选择的关键。现在通常采用DL电磁型电流继电器和GL感应型电流继电器。使用DL型电流继电器构成速断保护时,当短路电流达到继电器的整定值后,继电器的动作时间与电流大小无关,因而切断故障速度快、灵敏度高,但不容易躲开电动机起动时的电流,往往在电动机过负荷或者起动时造成误动作。感应型继电器构成速断保护时,动作时间与短路电流大小成反比,因而称为反时限继电器。这种继电器具有瞬时动作元件作用于跳闸,延时动作元件作用于信号或跳闸,其动作可靠性好,能够较好地躲避起动电流和过负荷电流,并且能够把速断保护和过负荷保护结合在一块,大大简化了保护接线。但它也存在两相短路故障时动作时间较慢、调试较复杂、动作特性也不如前者稳定等缺点。因此,在选择保护继电器时,对于空载起动和不易遭受过负荷的电动机宜采用DL型继电器,对于带载起动或者易遭受过负荷的电动机宜采用GL型继电器。 2. 保护继电器的整定计算 无论采用何种继电器构成电流速断保护,其整定的原则都是要躲开电动机起动时的起动电流和瞬间过负荷。继电器一次动作电流的保护定值一般按下式计算: I = KIS 式中:K ―可靠系数。对于DL型取1.4 ~ 1.6,对于GL型取1.8 ~ 2.0 IS ―电动机起动电流,一般取额定电流的5 ~ 7倍 在整定中,可靠系数和起动倍率如果掌握不好,往往容易造成继电器误动作或拒动,一般情况下,可按以下原则掌握。

电机、减速器的选型计算实例

电机减速机的选型计算 1参数要求 配重300kg ,副屏重量为500kg ,初选链轮的分度圆直径为164.09mm ,链轮齿数为27,(详见misimi 手册P1145。副屏移动的最大速度为0.5m/s,加速时间为1s 。根据移动屏实际的受力状况,将模型简化为: 物体在竖直方向上受到的合力为: 惯惯2121F F G G F h ++-= 其中: 115009.84900G m g N ==?= 223009.82940G m g N ==?= 110.55002501F m a N ==? =惯 120.53001501 F m a N ==?=惯 所以: 49002940250150 2360h F =-++=

合力产生的力矩: 0.16409 23602 193.6262h M F r Nm =?=? = 其中:r 为链轮的半径 链轮的转速为: 0.5 6.1/0.082 v w rad s r === 6.1 (1/60)58.3/min 22w n r ππ === 2减速机的选型 速比的确定: 初选电机的额定转速为3000r/min 300051.558.3 d n i n === 初选减速器的速比为50,减速器的输出扭矩由上面计算可知:193.6262Nm 3电机的选型 传动方式为电机—减速机—齿轮-链轮-链条传动,将每一级的效率初定位为0.9,则电机的扭矩为: 44193.62 5.9500.9 d M T Nm i η===? 初选电机为松下,3000r/min ,额定扭矩为:9.55Nm ,功率3kw 转子转动惯量为7.85X10-4kgm 2带制动器编码器,减速器为台湾行星减速器,速比为50,额定扭矩为650NM 4惯量匹配 负载的转动惯量为:

电流保护整定计算例题

例1: 如图所示电力系统网络中,系统线电压为115kV l E =,内部阻抗.max =15s Z Ω,.min =12s Z Ω, 线路每公里正序阻抗1=0.4z Ω,线路长度L AB =80m, L BC =150m, rel 1.25K =Ⅰ,rel 1.15K =Ⅱ ,试保护1 的电流I 、II 保护进行整定计算。 解:1. 保护电流I 段保护整定计算 (1) 求动作电流 set.1 rel k.B.max rel s.min AB == 1.25 1.886kA +E I K I K Z Z ?? ==Ⅰ Ⅰ Ⅰ (2) 灵敏度校验 min .max set.1111=1539.54m 0.4s L Z z ???=-?=???????? min AB 39.5410049.480 L L =?=%%%>15% 满足要求 (3) 动作时间:1 0s t =Ⅰ 2. 保护1电流II 段整定计算 (1) 求动作电流 set.2rel k.C.max rel s.min AB BC == 1.250.7980kA +E I K I K Z Z Z ? ? ==+ⅠⅠⅠ s e t .1r e l s e t .2==1.15 0.798=0.9177kA I K I ?ⅡⅡⅠ (2) 灵敏度校验 k.B.min s.max AB I k.B.min sen set.1 1.223 = ==1.331 1.30.9177I K I >Ⅱ 满足要求 (3)动作时间: 1 20.5s t t t =+?=Ⅱ Ⅰ 例2:图示网络中,线路AB 装有III 段式电流保护,线路BC 装有II 段式电流保护,均采用两相星形接线方式。计算:线路AB 各段保护动作电流和动作时限,并校验各段灵敏度。

(整理)高低压电动机保护定值整定

低压电动机保护定值整定

电动机的主要保护及计算 一、速断保护 1.速断高值:动作电流高定值Isdg计算。按躲过电动机最大起动电流计算,即: Isdg=Krel×Kst×In In=Ie/n TA 式中 Krel——可靠系数1.5; Kst——电动机起动电流倍数(在6-8之间); In——电动机二次额定电流; Ie——电动机一次额定电流; n TA——电流互感器变比。 2. 速断低值:按躲过区外出口短路时电动机最大反馈电流计算。厂用母线出口三相短路时,根据以往实测,电动机反馈电流的暂态值为5.8-5.9,考虑保护固有动作时间为0.04-0.06S,以及反馈电流倍数暂态值的衰减,取Kfb=6计算动作电流低定值,即: Isdd=Krel×Kfb×In=7.8In

式中 Krel——可靠系数1.3; Kfb ——区外出口短路时最大反馈电流倍数,取Kfb=6。 3.动作时间整定值计算。保护固有动作时间,动作时间整定值取: 速断动作时间: tsd=0s. 二、单相接地零序过电流保护(低压电动机) 1.一次动作电流计算。有零序电流互感器TA0的电动机单相接地保护,一次三相电流平衡时,由于三相电流产生的漏磁通不一致,于是在零序电流互感器内产生磁不平衡电流。根据在不同条件下的多次实测结果,磁不平衡电流值均小于0.005Ip(Ip为平衡的三相相电流),于是按躲过电动机起动时最大不平衡电流计算,低电压电动机单相接地保护动作电流可取: I0dz=(0.05-0.15)Ie 式中 I0dz——单相接地零序过电流保护一次动作电流整定值; Ie——电动机一次额定电流。 当电动机容量较大时可取: I0dz=(0.05-0.075)Ie 当电动机容量较小时可取: I0dz=(0.1-0.15)Ie 由于单相接地保护灵敏度足够,根据具体情况,I0dz有时可适当取大一些。根据经验,低电压电动机单相接地保护一次动作电流一般取I0dz=10-40A。 2.动作时间t0dz计算。取: t0dz=0s。 三、负序过电流保护 电动机三相电流不对称时产生负序电流I2,当电动机一次回路的一相断线(高压熔断器一相熔断或电动机一相绕组开焊),电动机一相或两相绕组匝间短路,电动机电源相序接反(电流互感器TA前相序接反)等出现很大的负序电流(I2)时,负序电流保护或不平衡电流(△I)保护(国产综合保护统称负序过电流保护,而国外进口综合保护统称不平衡△I 保护)延时动作切除故障。 1.负序动作电流计算。电动机两相运行时,负序过电流保护应可靠动作。 2.国产综合保护设置两阶段负序过电流保护时,整定计算可同时采用Ⅰ、Ⅱ段负序过电流保护。 (1)负序Ⅰ段过电流保护。按躲过区外不对称短路时电动机负序反馈电流和电动机起动时出现暂态二次负序电流,以及保证电动机在较大负荷两相运行和电动机内部不对称短路时有足够灵敏度综合考虑计算。 1)动作电流,采取经验公式,取: I22dz=(0.6-1)In 一般取I22dz=0.6In 2)动作时间。取: t22dz=(0.5-1)s。 (2)负序Ⅱ段过电流保护。按躲过电动机正常运行时可能的最大负序电流和电动机在较小负荷时两相运行时有足够灵敏度及对电动机定子绕组匝间短路有保护功能考虑。 1)动作电流,用经验公式,取: I22dz=(0.15-0.3)In 一般取I22dz=0.15In 2)动作时间。一般取: t22dz=(10-25)s。

省电力公司发电机保护整定计算讲义

第一节概述 发电机的安全运行对保证电力系统的正常工作和电能质量起着决定性的作用,同时发电机本身也是一个十分贵重的电器元件,因此,应该针对各种不同的故障和不正常运行状态,装设性能完善的继电保护装置。 1故障类型及不正常运行状态: 1.1 故障类型 1)定子绕组相间短路:危害最大; 2)定子绕组一相的匝间短路:可能发展为单相接地短路和相间短路; 3)定子绕组单相接地:较常见,可造成铁芯烧伤或局部融化; 4)转子绕组一点接地或两点接地:一点接地时危害不严重;两点接地时, 因破坏了转子磁通的平衡,可能引起发电机的强烈震动或将转子绕组烧损; 5)转子励磁回路励磁电流急剧下降或消失,即发电机低励或失磁:从电 力系统吸收无功功率,从而引起系统电压下降,如果系统中无功功率储备不足,将使电力系统中邻近失磁发电机的某些电压低于允许值,破坏了负荷与各电源间的稳定运行,甚至可使系统因电压崩溃而瓦解。 6)发电机与系统失步:会出现发电机的机械量和电气量与系统之间的振 荡,这种持续的振荡对发电机组和电力系统产生有破坏力的影响;7)发电机过励磁故障:并非每次都造成设备明显破坏,但多次反复过励 磁,将因过热而使绝缘老化,降低设备的使用寿命。 1.2 不正常运行状态 1)由于外部短路引起的定子绕组过电流:温度升高,绝缘老化;

2)由于负荷等超过发电机额定容量而引起的三相对称过负荷,温度升 高,绝缘老化; 3)由于外部不对称短路或不对称负荷而引起的发电机负序过电流和过 负荷:在转子中感应出100hz的倍频电流,可使转子局部灼伤或使护环受热松脱,从而导致发电机重大事故。此外还会引起发电机100Hz的振动; 4)由于突然甩负荷引起的定子绕组过电压:调速系统惯性较大,在突 然甩负荷时,可能出现过电压,造成发电机绕组绝缘击穿; 5)由于励磁回路故障或强励时间过长而引起的转子绕组过负荷; 6)由于汽轮机主气门突然关闭而引起的发电机逆功率:当机炉保护动作或调速控制回路故障以及某些人为因素造成发电机转为电动机运行时,发电机将从系统吸收有功功率,即逆功率。危害:汽轮机尾部叶片有可能过热而造成事故。 2 汽轮发电机保护类型 1)发电机差动保护:定子绕组及其引出线的相间短路保护; 2)匝间保护:定子绕组一相匝间短路或开焊故障的保护; 3)单相接地保护:对发电机定子绕组单相接地短路的保护; 4)发电机的失磁保护:反应转子励磁回路励磁电流急剧下降或消失; 5)过电流保护:反应外部短路引起的过电流,同时兼作纵差动保护的后备保护; 6)阻抗保护:反应外部短路,同时兼作纵差动保护的后备保护; 7)转子表层负序电流保护:反应不对称短路或三相负荷不对称时发电机定子绕组中出现的负序电流;

微机保护整定计算举例汇总

微机继电保护整定计算举例

珠海市恒瑞电力科技有限公司 目录 变压器差动保护的整定与计算 (3) 线路保护整定实例 (6) 10KV变压器保护整定实例 (9) 电容器保护整定实例 (13) 电动机保护整定计算实例 (16) 电动机差动保护整定计算实例 (19)

变压器差动保护的整定与计算 以右侧所示Y/Y/△-11接线的三卷变压器为例,设变压器的额定容量为S(MVA),高、中、低各侧电压分别为UH 、UM 、UL(KV),各侧二次电流分别为IH 、IM 、IL(A),各侧电流互感器变比分别为n H 、n M 、n L 。 一、 平衡系数的计算 电流平衡系数Km 、Kl 其中:Uhe,Ume,Ule 分别为高中低压侧额定电压(铭牌值) Kcth,Kctm,Kctl 分别为高中低压侧电流互感器变比 二、 差动电流速断保护 差动电流速断保护的动作电流应避越变压器空载投入时的励磁涌流和外部故障的最大不平衡电流来整定。根据实际经验一般取: Isd =(4-12)Ieb /nLH 。 式中:Ieb ――变压器的额定电流; nLH ――变压器电流互感器的电流变比。 三、 比率差动保护 比率差动动作电流Icd 应大于额定负载时的不平衡电流,即 Icd =Kk [ktx × fwc +ΔU +Δfph ]Ieb /nLH 式中:Kk ――可靠系数,取(1.3~2.0) ΔU ――变压器相对于额定电压抽头向上(或下)电压调整范围,取ΔU =5%。 Ktx ――电流互感器同型系数;当各侧电流互感器型号相同时取0.5,不同时取1 Fwc ――电流互感器的允许误差;取0.1 Δfph ――电流互感器的变比(包括保护装置)不平衡所产生的相对误差取0.1; 一般 Icd =(0.2~0.6)Ieb /nLH 。 四、 谐波制动比 根据经验,为可靠地防止涌流误动,当任一相二次谐波与基波之间比值大于15%-20%时,三相差动保护被闭锁。 五、 制动特性拐点 Is1=Ieb /nLH Is2=(1~3)eb /nLH Is1,Is2可整定为同一点。 kcth Uhe Kctm Ume Km **= 3**?=kcth Uhe Kctl Ule Kl

电机减速器的选型计算实例

电机减速器的选型计算 实例 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

电机减速机的选型计算1参数要求 配重300kg,副屏重量为500kg,初选链轮的分度圆直径为164.09mm,链轮齿数为27,(详见misimi手册P1145。副屏移动的最大速度为0.5m/s,加速时间为1s。根据移动屏实际的受力状况,将模型简化为: 物体在竖直方向上受到的合力为: 其中: 所以: 合力产生的力矩: 其中:r为链轮的半径 链轮的转速为: 2减速机的选型 速比的确定: 初选电机的额定转速为3000r/min 初选减速器的速比为50,减速器的输出扭矩由上面计算可知:193.6262Nm 3电机的选型 传动方式为电机—减速机—齿轮-链轮-链条传动,将每一级的效率初定位为0.9,则电机的扭矩为: 初选电机为松下,3000r/min,额定扭矩为:9.55Nm,功率3kw转子转动惯量为 7.85X10-4kgm2带制动器编码器,减速器为台湾行星减速器,速比为50,额定扭矩为650NM 4惯量匹配 负载的转动惯量为:

转换到电机轴的转动惯量为: 惯量比为: 电机选型手册要求惯量比小于15,故所选电机减速器满足要求 减速机扭矩计算方法: 速比=电机输出转数÷减速机输出 ("速比"也称"传动比")知道电机功率和速比及,求减速机扭矩如下公式: 减速机扭矩=9550×电机功率÷电机功率输入转数×速比×使用系数 知道扭矩和减速机输出转数及使用系数,求减速机所需配电机功率如下公式:电机功率=扭矩÷9550×电机功率输入转数÷速比÷使用系数

高压电动机保护整定参考

一、电动给水泵组保护 1.主要技术参数: 额定容量:5400KW CT配置:1000/5 LXZ1-0.5 额定电压:6KV 额定电流I s:649.5A 启动电流:6I n 2.开关类型:真空断路器 保护配置:HN2001 HN2041 3.HN2041定值整定: 3.1电动机二次额定电流I e计算: I e=I n/n r=649.5/(1000/5)=3.25(A) 启动时间:8S 3.2分相最小动作电流I seta、I setc: 1)最小动作电流整定,保证最大负荷下不误动。 按标准继电保护用的电流互感器在额定电流下10P级的比值误差为+3℅,即最大误差为6℅。 I dz= K k. 6℅I s/n lh =2×0.06×3.25=0.39 取I seta= I setc=0.39A 3.3制动系数K Z.的整定原则: 保护动作应避越外部最大短路电流的不平蘅电流,K k应等于其比率制动曲线的斜率I dzmax/I resmax即 K z = I dzmax/I resmax = (K k K fzq K st F j I kmax)/I kmax = 1.5╳2╳0.5╳0.1

=0.15 3.4差动保护时间:t dz=0 s 3.5拐点制动电流I res =3.25A(额定电流作为拐点) 4.HN2001定值整定: 配置:速断保护,定时限过电流I段保护,正序电流定时限保护,负序电流定时限保护,低电压保护,零序定时限过电流保护,过载反时限保护(投信号). 4.1电动机二次额定电流I e计算: I e=I n/n r=649.5/(1000/5)=3.25(A) 4.2速断保护I>>计算: 启动时速断保护定值: 按躲过电动机启动电流整定,可靠系数取1.2。启动电流6 I e根据设计院图纸。 I qd=6 I e=6×3.25=19.5(A) I dz =K k×I qd=1.2×19.5=23.4A 灵敏度校验:取最小运行方式下电动机出口两相短路电流校核灵敏系数K lm: K lm=I(2)d.min/ I dz=16520/4680>2. 运行时速断保护定值: I dz= K k×3Ie=1.1×3×3.25=10.7 A 保护动作时间:t取0秒. 4.3定时限I段过电流保护:

伺服电机计算选择应用实例全解

伺服电机计算选择应用实例 1. 选择电机时的计算条件 本节叙述水平运动伺服轴(见下图)的电机选择步骤。 例:工作台和工件的 W :运动部件(工作台及工件)的重量(kgf )=1000 kgf 机械规格 μ :滑动表面的摩擦系数=0.05 π :驱动系统(包括滚珠丝杠)的效率=0.9 fg :镶条锁紧力(kgf )=50 kgf Fc :由切削力引起的反推力(kgf )=100 kgf Fcf :由切削力矩引起的滑动表面上工作台受到的力(kgf ) =30kgf Z1/Z2: 变速比=1/1 例:进给丝杠的(滚珠 Db :轴径=32 mm 丝杠)的规格 Lb :轴长=1000 mm P :节距=8 mm 例:电机轴的运行规格 Ta :加速力矩(kgf.cm ) Vm :快速移动时的电机速度(mm -1)=3000 mm -1 ta :加速时间(s)=0.10 s Jm :电机的惯量(kgf.cm.sec 2) Jl :负载惯量(kgf.cm.sec 2) ks :伺服的位置回路增益(sec -1)=30 sec -1 1.1 负载力矩和惯量的计算 计算负载力矩 加到电机轴上的负载力矩通常由下式算出: Tm = + Tf Tm :加到电机轴上的负载力矩(Nm) F :沿坐标轴移动一个部件(工作台或刀架)所需的力(kgf) L :电机转一转机床的移动距离=P ×(Z1/Z2)=8 mm Tf :滚珠丝杠螺母或轴承加到电机轴上的摩擦力矩=2Nm F ×L 2πη

无论是否在切削,是垂直轴还是水平轴,F值取决于工作台的重量, 摩擦系数。若坐标轴是垂直轴,F值还与平衡锤有关。对于水平工 作台,F值可按下列公式计算: 不切削时: F = μ(W+fg) 例如: F=0.05×(1000+50)=52.5 (kgf) Tm = (52.5×0.8) / (2×μ×0.9)+2=9.4(kgf.cm) = 0.9(Nm) 切削时: F = Fc+μ(W+fg+Fcf) 例如: F=100+0.05×(1000+50+30)=154(kgf) Tmc=(154×0.8) / (2×μ×0.9)+2=21.8(kgf.cm) =2.1(Nm) 为了满足条件1,应根据数据单选择电机,其负载力矩在不切削时 应大于0.9(Nm),最高转速应高于3000(min-1)。考虑到加/减速, 可选择α2/3000(其静止时的额定转矩为2.0 Nm)。 ·注计算力矩时,要注意以下几点: 。考虑由镶条锁紧力(fg)引起的摩擦力矩 根据运动部件的重量和摩擦系数计算的力矩通常相当小。镶条 锁紧力和滑动表面的质量对力矩有很大影响。 。滚珠丝杠的轴承和螺母的预加负荷,丝杠的预应力及其它一些因 素有可能使得滚动接触的Fc相当大。小型和轻型机床其摩擦力矩 会大大影响电机的承受的力矩。 。考虑由切削力引起的滑动表面摩擦力(Fcf)的增加。切削力和驱 动力通常并不作用在一个公共点上如下图所示。当切削力很大时, 造成的力矩会增加滑动表面的负载。 当计算切削时的力矩时要考虑由负载引起的摩擦力矩。 。进给速度会使摩擦力矩变化很大。欲得到精确的摩擦力矩值,应 仔细研究速度变化,工作台支撑结构(滑动接触,滚动接触和静压 力等),滑动表面材料,润滑情况和其它因素对摩擦力的影响。 。机床的装配情况,环境温度,润滑状况对一台机床的摩擦力矩影 响也很大。大量搜集同一型号机床的数据可以较为精确的计算其负

距离保护整定计算例题

距离保护整定计算例题 题目:系统参数如图,保护1配置相间距离保护,试对其距离I 段、II 段、III 段进行整定,并校验距离II 段、III 段的灵敏度。取z1=0.4Ω/km ,线路阻抗角为75?,Kss=1.5,返回系数Kre=1.2,III 段的可靠系数Krel=1.2。要求II 段灵敏度≥1.3~1.5,III 段近后备≥1.5,远后备≥1.2。 解: 1、计算各元件参数,并作等值电路 Z MN =z 1l MN =0.4?30=12.00 Ω Z NP =z 1l NP =0.4?60=24.00 Ω Z T =100%K U ?T T S U 2=1005.10?5 .311152 =44.08 Ω 2、整定距离I 段 Z I set1=K I rel Z MN =0.85?12=10.20 Ω t I 1=0s Z I set3=K I rel Z NP =0.85?24=20.40 Ω t I 3=0s 3、整定距离II 段并校验灵敏度 1)整定阻抗计算 (1)与相邻线路I 段配合 Z II set1=K II rel (Z MN +Kbmin Z I set3 )=0.8(12+2.07?20.40)=43.38Ω (2)与变压器速断保护配合 Z II set1=K II rel (Z MN +Kbmin Z T )=0.7(12+2.07?44.08)=72.27 Ω 取Z II set1=Min( (1),(2))=43.38Ω

2)灵敏度校验 K II sen = MN set II Z Z 1 =43.38/12=3.62 (>1.5),满足规程要求 3)时限 t II 1=0.5s 4、整定距离III 段并校验灵敏度 1)最小负荷阻抗 Z Lmin Z Lmin = Lman L I U min =Lman N I U 9.0=35 .03 /1109.0?=163.31 Ω Cos ?L =0.866, ?L=30? 2)负荷阻抗角方向的动作阻抗Z act (30?) Z act (30?)= re ss rel L K K K Z min =2 .15.12.131 .163??=75.61 Ω 3)整定阻抗Z III set1,?set =75? (1)采用全阻抗继电器 Z III set1= Z act (30?)=75.61Ω, ?set =75? (2)采用方向阻抗继电器 Z III set1 = )cos() 30(L set act Z ??-?=) 3075(61.75?-?COS =106.94Ω 4)灵敏度校验 方向阻抗:近后备:Ksen=MN set III Z Z 1 =106.94/12=8.91

电动机保护整定计算

数字电动机保护测控装置整定计算(仅供参考)

1 定时限过电流保护整定计算 1.1 电流速断保护 电流速断保护动作电流整定分起动状态速断电流定值和运行状态速断电流整定值,时限可为0s 速断或整定极短的时限。 ? 起动状态电流速断定值I sdzd.s I sdzd.s =qd TA K I h K 式中:K K ——可靠系数(1.2~1.5),一般取1.3 I qd ——为电动机铭牌上的额定起动电流 n TA ——电流互感器变比。 保护灵敏系数K LM 按下式校验,要求K LM ≥2,如灵敏度较高可适当增加定值I sdzd.s 。 K LM = s sdzd TA k I h I .)2(min .≥2 式中:I K )2(min . ——最小运行方式下电动机出口两相短路电流 ? 运行状态电流速断定值I sdzd.0 I sdzd.0= TA qd h I )7.0~6.0( ? 动作时间:T sdzd ≤0.05s ,一般整定为0s 1.2 过电流保护 过流保护动作电流整定分起动状态定值和运行状态定值,起动状态定值也可根据起动电流或堵转电流整定;运行状态定值可按起动电流或堵转电流的一半整定。 ? 起动状态过流电流整定值I glzd.s

I glzd.s =qd TA K I h K 式中:K K ——可靠系数,一般取1.1~1.2 ? 运行状态过流电流整定值I glzd.0 I glzd =0.5I LR (或I glzd =2I e ) 式中:I e ——电动机额定电流 I LR ——电动机铭牌上的堵转电流 ? 动作时间定值:一般整定为1.00~1.50s 1.3 过负荷保护 ? 动作电流I FHZd 定值 I FHZd =f e K K I K 式中:K K ——可靠系数,取1.05~1.2(当动作于信号时取1.05~1.1; 当动作于跳闸时取1.2) K f ——返回系数,取0.95 ? 动作时间定值T glzd 由于过负荷保护在电动机起动过程中自动退出,起动完成后电动机处于运行状态时,过负荷保护才自动投入。因此,过负荷保护整定时间无需躲电动机起动时间,一般按大于定时限过流保护动作时间整定。 T glzd =2~15s 2 长起动保护(DMP-31A )、堵转保护(DMP-31D )整定计算 2.1 长起动(起动堵转)保护整定值 ? 动作电流整定值I zd,s 一般为:

继电保护整定计算例题

如下图所示网络中采用三段式相间距离保护为相间短路保护。已知线路每公里阻抗Z 1=km /Ω,线路阻抗角?=651?,线路AB 及线路BC 的最大负荷 电流I m ax .L =400A ,功率因数cos ?=。K I rel =K ∏rel =,K I ∏ rel =,K ss =2,K res =,电源 电动势E=115kV ,系统阻抗为X max .sA =10Ω,X min .sA =8Ω,X max .sB =30Ω,X min .sB =15Ω;变压器采用能保护整个变压器的无时限纵差保护;t ?=。归算至115kV 的变压器阻抗为Ω,其余参数如图所示。当各距离保护测量元件均采用方向阻抗继电器时,求距离保护1的I ∏∏I 、、段的一次动作阻抗及整定时限,并校 验I ∏∏、段灵敏度。(要求∏sen ≥;作为本线路的近后备保护时,I ∏sen ≥;作为相邻下一线路远后备时,I ∏sen ≥) 解:(1)距离保护1第I 段的整定。 1) 整定阻抗。 11.Z L K Z B A rel set -I I ==Ω=??6.94.0308.0 2)动作时间:s t 01=I 。 (2)距离保护1第∏段的整定。 1)整定阻抗:保护1 的相邻元件为BC 线和并联运行的两台变压器,所以 ∏段整定阻抗按下列两个条件选择。

a )与保护3的第I 段配合。 I -∏∏+=3.min .11.(set b B A rel set Z K Z L K Z ) 其中, Ω=??==-I I 16.124.0388.013.Z L K Z C B rel set ; min .b K 为保护3 的I 段末端发生短路时对保护1而言的最小分支系数(见图 4-15)。 当保护3的I 段末端K 1点短路时,分支系数为sB AB sB sA b X X X X I I K ++==12 (4-3) 分析式(4-3)可看出,为了得出最小分支系数,式中SA X 应取最小值min .SA X ;而SB X 应取最大值max .SB X 。因而 max .min .min .1sB AB sA b X Z X K ++ ==1+30 30 4.08?+= 则 Ω=?+??=∏ 817.25)16.12667.14.030(8.01.set Z b )与母线B 上所连接的降压变压器的无时限纵差保护相配合,变压器保护范围直至低压母线E 上。由于两台变压器并列运行,所以将两台变压器作为一个整体考虑,分支系数的计算方法和结果同a )。 ?? ? ??+=-∏∏2min .1t b B A rel set Z K Z L K Z =Ω=? +??078.66)27.84667.14.030(8.0 为了保证选择性,选a )和b )的较小值。所以保护1第 ∏段动作阻抗为

380V电机保护整定

8、9号机厂用380V电机保护整定计算 系统参数:最小运行方式下两相短路电流。 厂用380 V8段:I(2)min=0.866×13592=11771A 厂用380V9段:I(2)min=0.866×13592=11771A 厂用380V公用段:I(2)min=0.866×10852=9164A 一、厂用380伏8段: 1、8号机#1热网加热器#1疏水泵;#1热网加热器#2疏水泵; #1热网加热器#3疏水泵; #2热网加热器#1疏水泵;#2热网加热器#2疏水泵。容量:90KW,保护CT变比300/5。 整定计算: 1)、速断保护:原则:躲过电机启动电流。 Idz=Kk×Kqd×Ie=1.5×7×90/1.732×0.38=1440A Idzj=1436/300/5=24A T=0s,跳本身开关。 保护灵敏度:KLM=11771/1440=8.2>2,满足要求。 保护接线:不完全星接线。 2)、接地保护:躲过正常运行时最大不平衡电流。 我厂Idz=15A T=0s,跳本身开关。 保护接线:采用零序CT。 2、8号机#1低加疏水泵;#2低加疏水泵;

容量:75KW,保护CT变比200/5。 整定计算: 1)、速断保护:原则:躲过电机启动电流。 Idz=Kk×Kqd×Ie=1.5×7×75/1.732×0.38=1200A Idzj=1200/200/5=30A T=0s,跳本身开关。 保护灵敏度:KLM=11771/1200=9.8>2,满足要求。 保护接线:不完全星接线。 2)、接地保护:躲过正常运行时最大不平衡电流。 我厂Idz=15A T=0s,跳本身开关。 保护接线:采用零序CT。 二、厂用380伏9段: 1、9号机#1热网加热器#1疏水泵;#1热网加热器#2疏水泵; #1热网加热器#3疏水泵; #2热网加热器#1疏水泵;#2热网加热器#2疏水泵。容量:90KW,保护CT变比300/5。 整定计算: 1)、速断保护:原则:躲过电机启动电流。 Idz=Kk×Kqd×Ie=1.5×7×90/1.732×0.38=1440A Idzj=1436/300/5=24A T=0s,跳本身开关。

三段式电流保护整定计算实例

三段式电流保护整定计算实例: 如图所示单侧电源放射状网络,AB 和BC 均设有三段式电流保护。已知:1)线路AB 长20km ,线路BC 长30km ,线路电抗每公里欧姆;2)变电所B 、C 中变压器连接组别为Y ,d11,且在变压器上装设差动保护;3)线路AB 的最大传输功率为,功率因数,自起动系数取;4)T1变压器归算至被保护线路电压等级的阻抗为28欧;5)系统最大电抗欧,系统最小电抗欧。试对AB 线路的保护进行整 定计算并校验其灵敏度。其中25.1=I rel K ,15.1=II rel K ,15.1=III rel K ,85.0=re K 整定计算: ① 保护1的Ⅰ段定值计算 )( 1590)4.0*204.5(337 )(31min .)3(max .A l X X E I s s kB =+=+= )(1990159025.1) 3(max ,1A I K I kB I rel I op =?== 工程实践中,还应根据保护安装处TA 变比,折算出电流继电器的动作值,以便于设定。 按躲过变压器低压侧母线短路电流整定: 选上述计算较大值为动作电流计算值. 最小保护范围的校验: =

满足要求 ②保护1的Ⅱ段限时电流速断保护 与相邻线路瞬时电流速断保护配合 )(105084025.12A I I op =?= =×=1210A 选上述计算较大值为动作电流计算值,动作时间。 灵敏系数校验: 可见,如与相邻线路配合,将不满足要求,改为与变压器配合。 ③保护1的Ⅲ段定限时过电流保护 按躲过AB 线路最大负荷电流整定: )(6.3069.010353105.985.03.115.136max 1.A I K K K I L re ss III rel III op =??????== = 动作时限按阶梯原则推。此处假定BC 段保护最大时限为,T1上保护动作最大时限为,则该保护的动作时限为+=。 灵敏度校验: 近后备时: B 母线最小短路电流:

相关文档
相关文档 最新文档