文档库 最新最全的文档下载
当前位置:文档库 › 电流互感器伏安特性试验及数据分析

电流互感器伏安特性试验及数据分析

电流互感器伏安特性试验及数据分析
电流互感器伏安特性试验及数据分析

电流互感器伏安特性试验及数据分析

一、CT伏安特性试验概述

CT伏安特性:是指在电流互感器一次侧开路的情况下,电流互感器二次侧励磁电流与电流互感器二次侧所加电压的关系曲线,实际上就是铁芯的磁化曲线,即该曲线在初始阶段表现为线性,当铁芯磁化饱和拐点出现时,该曲线表现为非线性。

试验的主要目的:一是检查新投产互感器的铁芯质量,留下CT原始实验数据;二是运行CT停运检验维护时(通常配合机组大修时进行)通过鉴别磁化曲线的饱和程度即拐点位置,以判断运行一定时期后互感器的绕组有无匝间短路等缺陷,以便及时发现设备缺陷,确保设备安全运行。三是对差动保护CT 精度有要求的进行10%误差曲线校核。

二、原理接线

(1)通常情况下电流互感器的电流加到额定值时,电压已达400V以上,用传统试验设备试验时,调压器无法将220V电源升到试验电压,必须使用一个升压变(其高压侧输出电流需大于电流互感器二次侧额定电流)升压,一个PT或万用表读取电压。由于万用表可测最高交流电压为5000V,故可用它直接读取电压而无需另接PT。

(2)利用CT伏特性测试仪试验时,CT伏安特性测试仪一般电压可升至2500V,且具备数字电压、电流显示功能,部分测试仪具备数据处理功能,可直接打印出CT特性曲线。

三试验过程及注意事项

(1)试验前,应将电流互感器二次绕组引线和CT接地线均应拆除,做好防止接地的可靠安全措施,即保证试验时CT各相别可靠独立于应用设备,否则可能造成设备的损坏。

(2)试验时,一次侧可靠开路,从CT二次侧施加电压,参考CT额定电流预先选取几个电流点,一般取10个电流点,即每10%额定电流为一个电流点,逐点读取记录或储存相应电压值、电流值,每个点必须从零开始升压升流,以消除互感器内的剩磁,保证测量数据的准确性。

(3)通入的电流或电压以不超过制造厂技术条件的规定为准,电压应不得高于CT匝间绝缘要求电压。当电压稍微增加一点而电流增大很多时,说明铁芯已接近饱和,应极其缓慢地升压或停止试验,该点即为拐点电压。

(4)试验后,根据试验数据绘出或打印伏安特性曲线,对应相应CT初始伏安特性曲线或最近测量的伏安特性曲线进行比对分析。

(5)恢复电流互感器二次绕组引线和CT接地线以及其它临时安全措施。

四、数据分析

1、电流互感器10%误差曲线校核:只对继电保护有要求的CT二次绕组进行,一般对差动保护用CT要求必须满足10%误差曲线要求。

2、测得的伏安特性曲线与出厂的伏安特性曲线或最近的测量伏安特性曲线比较,拐点电压不应有显著降低。若有显著降低,应检查二次绕组是否存在匝间短路。

3、当CT工作在正常伏安特性曲线的线性非饱和区域时,所测电流包括CT 的励磁电流Ie及流过CT直阻的电流I2两部分,在此区域随着所加电压的增加,流过CT直阻的电流I2随之升高,CT的励磁电流Ie随之升高,因I1=Ie+ I2,所以测量电流I1随之升高。

4、当CT工作在铁芯饱和区域时,所测电流包括CT的励磁电流Ie及流过CT直阻的电流I2两部分,在此区域随着所加电压的略微增加,流过CT直阻的电流I2随之升高非常缓慢,CT的励磁电流Ie随之快速升高,因I1=Ie+ I2,所以测量电流I1随之快速升高,这是因为当铁芯饱和时,大量电流损耗于铁芯发热上,由于CT直阻与CT二次绕组匝数有关,当发生CT二次绕组匝间短路故障时,造成CT直阻R降低,在CT铁芯饱和电流不变的情况下,拐点电压U=I2*R,从而在CT伏安特性曲线上表现为拐点电压U明显降低,据此初步判断CT二次绕组有异常。

五、10%误差校核

电流互感器的变比误差除了与互感器本身的特性有关外,还和互感器二次负载阻抗有关;一般对误差要求的继电保护要求互感器的一次电流等于最大短路电流时,其变比误差应小于10%,校核时在互感器伏安特性曲线上在拐点处做一线性延长线,在横轴找到一个电流I1b,自I1b点作垂线与曲线分别交于B、A点,且

BA=0.1I1b,如果电流互感器一次电流I1I1b,其变比误差就大于10%。

为了便于计算,制造厂家对电流互感器提供了在M10(10%误差曲线)下允许的二次负载阻抗Zen,当我们已知M10(最大短路一次电流)时,从10%误差曲线上可以很方便地得出允许的负载阻抗,如果它大于或等于实际的负载阻抗,误差就满足要求,否则,应设法降低实际负载阻抗,直至满足要求为止.当然,也可以在已知实际负载阻抗后,在该曲线上求出允许的M10(最大短路一次电流),用以与流经电流互感器一次绕组的最大短路电流作比较, 如果它小于或等于实际的负载阻抗,误差就满足要求,否则,应设法降低实际负载阻抗,直至满足要求为止。

以上针对新安装互感器的特性误差检查,若是进行保护装置改造, 互感器不动,可只进行新旧装置的实际的负载阻抗比较,若新装置小于或等于旧装置实际的负载阻抗,则互感器的特性误差肯定满足要求,否则,需进一步以以上方法进行校核。

电流互感器伏安特性的目的

电流互感器伏安特性的目的 电流互感器伏安特性原理 伏安特性中的“伏”就是电压,“安”就是电流,从字面解释,伏安特性就是电流互感器二次绕组的电压与电流之间的关系。如果从小到大调整电压,将所加电压对应的每一个电流画在一个座标系中(电压为纵座标,电流为横座标),所组成的曲线就称为伏安特性曲线。 由于电流互感器铁心具有逐渐饱和的特性,在短路电流下,电流互感器的铁心趋于饱和,励磁电流急剧上升,励磁电流在一次电流中所占的比例大为增加,使比差逐渐移向负值并迅速增大。由于继电器的动作电流一般比额定电流大好几倍,所以作为继电保护用的电流互感器应该保证在比额定电流大好几倍的短路电流下能够使继电器可靠动作。 根据继电保护的运行经验,在实际运行条件下,保护装置所用的电流互感器的电流误差不允许超过10%,而角度误差不超过7度。 为满足上面的要求,在电流互感器使用前,要作“电流互感器的10%误差曲线”,以确定其是否能够投入运行。实际工作中常常采用伏安特性法先测量电流互感器的伏安特性曲线,再绘出“电流互感器的10%误差曲线;同时,通过测量电流互感器的伏安特性曲线,还可以检查二次线圈有没有匝间短路。 试验时将互感器的一次线圈开路,在其二次线圈加电压,用电流表测得在该电压作用下流入二次线圈的电流,就得到电与电压的关系曲线,即为电流互感器的伏安特性曲线。 电流互感器伏安特性的测量可以用ED2000互感器特性综合测试仪 一试验目的 CT伏安特性是指电流互感器一次侧开路,二次侧励磁电流与所加电压的关系曲线,实际上就是铁芯的磁化曲线,因此也叫励磁特性。试验的主要目的是检查互感器的铁芯质量,通过鉴别磁化曲线的饱和程度,计算10%误差曲线,并用以判断互感器的二次绕组有无匝间短路。 二试验方法 接线比较复杂,因为一般的电流互感器电流加到额定值时,电压已达400V以上,单用调压器无法升到试验电压,所以还必须再接一个升压变(其高压侧输出电流需大于或等于电流互感器二次侧额定电流)升压和一个PT读取电压 试验前应将电流互感器二次绕组引线和接地线均拆除。试验时,一次侧开路,从电流互感器本体二次侧施加电压,可预先选取几个电流点,逐点读取相应电压值。通入的电流或电压以不超过制造厂技术条件的规定为准。当电压稍微增加一

电流互感器检测报告

编号:DY-GY-01-CF-0101 干式固体结构电流互感器试验报告设备名称001 1BBA01 #1发电机出线 1.设备参数 型号LZZBJ9-12/175b/4 短时热电流31.5/4 kA/s 额定动稳定电流80 kA 额定绝缘水平值 E 二次绕组1S1-1S2 2S1-2S2 3S1-3S2 / 准确等级5P30 5P30 0.2S / 额定容量(VA) 20 20 20 / 变比1000/1 1000/1 1000/1 / 相别A相B相C相 产品编号170400559 170400558 170400555 制造厂中国大连第一互感器有限公司出厂日期2017.04 2.试验依据 GB 50150-2016 电气装置安装工程电气设备交接试验标准 3.绕组的绝缘电阻及交流耐压试验 测试绕组 出厂耐 压值 (kV) 耐压 值 (kV) 耐压 时间 (min) A相(MΩ)B相(MΩ)C相(MΩ) 耐压前耐压后耐压前耐压前耐压后耐压前一次绕组对二次绕组、末 屏及外壳 / 33 1 6430 5370 5230489052804980一次绕组间/ / / / / / / / / 1S1-1S2对2S1-2S2、 3S1-3S2、4S1-4S2及地 / 2 1 1670 1520 16901580 1590 1890 2S1-2S2对1S1-1S2、 3S1-3S2、4S1-4S2及地 / 2 1 1580 1670 14801350 1460 1570 3S1-3S2对1S1-1S2、 2S1-2S2、4S1-4S2及地 / 2 1 1690 1590 15701470 1540 1680 4S1-4S2对1S1-1S2、 2S1-2S2、3S1-3S2及地 / / / / / / / / / 末屏对二次绕组及地/ / / / / / / / / 备注二次绕组回路耐压采用 2500V 兆欧表代替,试验持续时间为 1min 试验环境环境温度: 34 ℃,湿度:45%RH 试验设备FLUKE1550C 电动兆欧表/量程(250V-5000V); FBG-6kVA/50kV 试验变压器(含操作箱) 试验人员试验日期年月日4.测量绕组直流电阻 相别A相B相C相最大差值(%)一次绕组(μΩ)53.5 53.9 53.6 0.75

电流互感器饱和问题

电流互感器饱和引起的保护误动分析及试验方法 近年来,广东省内多个发电厂出现过高压厂用变压器或起动-备用变压器在区外故障时或厂用大容量电动机起动时差动保护误动作的情况。究其原因,除个别是因为整定值的问题外,大多数是因电流互感器特性不理想甚至饱和而导致的。 众所周知,设计规程中对电流互感器的选型有严格的规定,要求保护用的电流互感器在通过15倍甚至是20倍额定电流的情况下,误差不超过5%或10%,即不出现饱和。而上面提及的出现差动保护误动的情况,无一例外地都选用了保护级的电流互感器。经过对几个电厂的大容量电动机起动电流的核算,最大容量的电动机起动时电流大概是变压器额定电流的3~5倍,远达不到电流互感器额定电流的15倍。那为什么差动保护还会因为电流互感器饱和而误动呢? 下面就电流互感器的工作原理、工作特性对保护的影响及其检验方法进行探讨。 1电流互感器工作原理简述 电流互感器的工作原理与变压器基本相同,因此可以使用变压器的等值电路分析电流互感器。电流互感器的等值电路如图1所示[1]。图1中,Z1为电流互感器原方漏抗,Z2为电流互感器副方漏抗,ZL为电流互感器二次回路的负载阻抗,其 次侧的参量。 正常运行时,漏抗Z1和Z2很小,负载阻抗ZL也很小,而励磁阻抗Zm因为电流互感器铁心磁通不饱和而很大。因此,可忽略励磁电流Im。根据磁势平衡原理,原、副方电流成固定的比例关系为其中N1和N2分别为原、副方绕组匝数。 当铁心磁通密度增大至饱和时,励磁阻抗Zm会随着饱和的程度而大幅下降。此时Im 已不可忽略,即I1与I2不再是线性的比例关系。 电流互感器饱和的原因有两种[2]:一是一次电流过大引起铁心磁通密度过大;二是二次负载(即ZL)过大,在同样的一次电流下,要求二次侧的感应电动势增大,也即要求铁心中的磁通密度增大,铁心因此而饱和。原、副方绕组感应电动势有效值与磁通的关系为 2确定电流互感器饱和点的方法 要研究电流互感器的工作特性,确认其在保护外部故障通过大电流时是否会饱和而影响保护动作的正确性,可通过一些试验方法进行检测。 显然,最直接的试验方法就是二次侧带实际负载,从一次侧通入电流,观察二次电流找出电流互感器的饱和点。但是,对于保护级的电流互感器,其饱和点可能超过15~20倍额定电流,当电流互感器变比较大时,在现场进行该项试验会有困难。 除此之外,还可通过伏安特性试验测出电流互感器的饱和点。如前所述,电流互感器饱和是由于铁心磁通密度过大造成的,而铁心的磁通密度又可通过电流互感器的感应电动势反映出来。因此由伏安特性曲线上的饱和电压值,通过式[3](1)可以计算出电流互感器的饱和电流。伏安特性的试验方法为:原方开路,从副方通入电流,测量副方绕组上的电压降。由于电流互感器的原方开路,没有原方电流的去磁作用,在不大的电流作用下,铁心很容易就会饱和。因此,伏安特性试验并不需要加很大的电流,在现场较容易实现。 3试验 以一次电流互感器的试验为例,说明通过伏安特性试验确定电流互感器饱和点的方法。 试验的电流互感器的额定变比为300 A /5 A,二次额定负载为0.2Ω。 3.1电流互感器变比试验 用电阻约为0.2Ω的导线短接电流互感器副方绕组,从原方通入电流并逐渐加大直至副

互感电路实验报告结论

竭诚为您提供优质文档/双击可除互感电路实验报告结论 篇一:互感器实验报告 综合性、设计性实验报告 实验项目名称所属课程名称工厂供电 实验日期20XX年10月31日 班级电气11-14班 学号05姓名刘吉希 成绩 电气与控制工程学院实验室 一、实验目的 了解电流互感器与电压互感器的接线方法。 二﹑原理说明 互感器(transformer)是电流互感器与电压互感器的统称。从基本结构和工作原理来说,互 感器就是一种特殊变压器。电流互感器(currenttransformer,缩写为cT,文字符号为TA),是一种变换电流的互感器,其二次侧额定电流一般为5A。电压互

感器(voltagetransformer,缩写为pT,文字符号为TV),是一种变换电压的互感器,其二次侧额定电压一般为100V。(一)互感器的功能主要是:(1)用来使仪表、继电器等二次设备与主电路(一次电路)绝缘这既可避免主电路的高电压直接引入仪表、继电器等二次设备,有可防止仪表、继电器等二次设备的故障影响主回路,提高一、二次电路的安全性和可靠性,并有利于人身安全。(2)用来扩大仪表、继电器等二次设备的应用范围通过采用不同变比的电流互感器,用一只5A量程的电流表就可以测量任意大的电流。同样,通过采用不同变压比的电压互感器,用一只100V量程的电压表就可以测量任意高的电压。而且由于采用互感器,可使二次仪表、继电器等设备的规格统一,有利于这些设备的批量生产。 (二)互感器的结构和接线方案 电流互感器的基本结构和接线电流互感器的基本结构 原理如图3-2-1-1所示。它的结构特点是:其一次绕组匝数很少,有的型式电流互感器还没有一次绕组,而是利用穿过其铁心的一次电路作为一次绕组,且一次绕组 导体相当粗,而二次绕组匝数很多,导体很细。工作时,一次绕组串联在一次电路中,而二次绕组则与仪表、继电器等电流线圈相串联,形成一个闭合回路。由于这些电流线圈的阻抗很小,因此电流互感器工作时二次回路接近于短路状

(完整版)电流互感器伏安特性试验

电流互感器伏安特性试验 阿德 一试验目的 CT伏安特性是指电流互感器一次侧开路,二次侧励磁电流与所加电压的关系曲线,实际上就是铁芯的磁化曲线,因此也叫励磁特性。试验的主要目的是检查互感器的铁芯质量,通过鉴别磁化曲线的饱和程度,计算10%误差曲线,并用以判断互感器的二次绕组有无匝间短路。 二试验方法 试验接线如图所示: SVERKER650 二次 接线比较复杂,因为一般的电流互感器电流加到额定值时,电压已达400V以上,单用调压器无法升到试验电压,所以还必须再接一个升压变(其高压侧输出电流需大于或等于电流互感器二次侧额定电流)升压和一个PT读取电压。(如果有FLUKE87型万用表,由于其可测最高交流电压为4000V,可用它直接读取电压而无需另接PT。) 试验前应将电流互感器二次绕组引线和接地线均拆除。试验时,一次侧开路,从电流互感器本体二次侧施加电压,可预先选取几个电流点,逐点读取相应电压值。通入的电流或电压以不超过制造厂技术条件的规定为准。当电压稍微增加一点而电流增大很多时,说明铁芯已接近饱和,应极其缓慢地升压或停止试验。试验后,根据试验数据绘出伏安特性曲线。 三注意事项 1.电流互感器的伏安特性试验,只对继电保护有要求的二次绕组进行。 2.测得的伏安特性曲线与过去或出厂的伏安特性曲线比较,电压不应有显著降低。若有显著降低,应检查二次绕组是否存在匝间短路。当有匝间短路时,其曲线开始部分电流较正常的略低,如图中曲线2、3所示(指保护CT有匝间短路,曲线2为短路1匝,曲线3为短路2匝),因此,在进行测试时,在开始部分应多测几点。 3.电流表宜采用内接法。 4.为使测量准确,可先对电流互感器进行退磁,即先升至额定电流值,再降到0,然后逐点升压。 四典型U-I特性曲线

电流互感器伏安特性及试验

电流互感器伏安特性及试验 伏安特性中的“伏”就是电压,“安”就是电流,从字面解释,伏安特性就是电流互感器二次绕组的电压与电流之间的关系。如果从小到大调整电压,将所加电压对应的每一个电流画在一个座标系中(电压为纵坐标,电流为横坐标),所组成的曲线就称为伏安特性曲线。 由于电流互感器铁心具有逐渐饱和的特性,在短路电流下,电流互感器的铁心趋于饱和,励磁电流急剧上升,励磁电流在一次电流中所占的比例大为增加,使比差逐渐移向负值并迅速增大。由于继电器的动作电流一般比额定电流大好几倍,所以作为继电保护用的电流互感器应该保证在比额定电流大好几倍的短路电流下能够使继电器可靠动作。 FA-102 CT伏安特性测试仪可以完成的试验包括: CT伏安特性试验、CT极性试验、CT 变比极性试验。仪器能自动计算CT的任意点误差曲线,CT变比比差等结果参数。 电流互感器伏安特性试验 一、试验目的 CT 伏安特性是指电流互感器一次侧开路,二次侧励磁电流与所加电压的关系曲线,实际上就是铁芯的磁化曲线,因此也叫励磁特性。试验的主要目的是检查互感器的铁芯质量,通过鉴别磁化曲线的饱和程度,计算10%误差曲线,并用以判断互感器的二次绕组有无匝间短路。 二、试验方法 试验接线如图所示: 接线比较复杂,因为一般的电流互感器电流加到额定值时,电压已达 400V以上,单用调压器无法升到试验电压,所以还必须再接一个升压变(其高压侧输出电流需大于或等于电流互感器二次侧额定电流)升压和一个 PT 读取电压。 试验前应将电流互感器二次绕组引线和接地线均拆除。试验时,一次侧开路,从电流互感器本体二次侧施加电压,可预先选取几个电流点,逐点读取相应电压值。通入的电流或电压以不超过制造厂技术条件的规定为准。当电压稍微增加一点而电流增大很多时,说明铁芯已接近饱和,应极其缓慢地升压或停止试验。试验后,根据试验数据绘出伏安特性曲线。

电流互感器伏安特性测试方法

1 准备好调压器,升流器,电流表,电压表,刀闸。满足相应容量,一般互感器二次是5安,300VA,通流要达到3倍以上,以此计算应通流达15安,电压为60-100伏,调压器等取容量1000VA左右。接好线。 2 一人操作并读一表(如电流表),另一人读另一表(如电压表)并记录。调压器归零位,合上开关,慢慢开始升压,一般不准回调。每5-10%额定电流记录一点,直到明显出现拐点(电流上升很快,电压不怎么升。大约在2-3倍额定电流的时候,我印象不深了。) 3 找到拐点后,调压器归零,停电,绘出曲线。如果试验失败(任何原因使升压中断),应停电从零电压重新开始。 电流互感器伏安特性试验 一试验目的 CT伏安特性是指电流互感器一次侧开路,二次侧励磁电流与所加电压的关系曲线,实际上就是铁芯的磁化曲线,因此也叫励磁特性.试验的主要目的是检查互感器的铁芯质量,通过鉴别磁化曲线的饱和程度,计算10%误差曲线,并用以判断互感器的二次绕组有无匝间短路。 二试验方法: 因为一般的电流互感器电流加到额定值时,电压已达400V以上,单用调压器无法升到试验电压,所以还必须再接一个升压变(其高压侧输出电流需大于或等于电流互感器二次侧额定电流)升压和一个PT读取电压. 试验前应将电流互感器二次绕组引线和接地线均拆除.试验时,一次侧开路,从电流互感器本体二次侧施加电压,可预先选取几个电流点,逐点读取相应电压值.通入的电流或电压以不超过制造厂技术条件的规定为准.当电压稍微增加一点而电流增大很多时,说明铁芯已接近饱和,应极其缓慢地升压或停止试验.试验后,根据试验数据绘出伏安特性曲线.。 三注意事项: 1.电流互感器的伏安特性试验,只对继电保护有要求的二次绕组进行。 2.测得的伏安特性曲线与过去或出厂的伏安特性曲线比较,电压不应有显著降低.若有显著降低,应检查二次绕组是否存在匝间短路,当有匝间短路时,其曲线开始部分电流较正常的略低,如图中曲线2,3所示(指保护CT有匝间短路,曲线2为短路1匝,曲线3为短路2匝),因此,在进行测试时,在开始部分应多测几点. 3.电流表宜采用内接法: 4.为使测量准确,可先对电流互感器进行退磁,即先升至额定电流值,再降到0,然后逐点升压。 典型的U-I特性曲线: (DL/T 596-1996)中关于CT二次保护绕组的伏安发生的规定:与同类型互感器特性曲线或制造厂提供的特性曲线比较,就无明显差别。 在二次加电流分别:0.05A,0.1A,0.2A,0.4A,0.8A,1A,2A,3A,4A,5A.读取每个电流对应下的电压.一般升到5A 时电压基本饱和.超过5A时动作要快.最大不会超过10A.

电流互感器检测项目及试验

一、电压、电流互感器的概述 典型的互感器是利用电磁感应原理将高电压转换成低电压,或将大电流转换成小电流,为测量装置、保护装置、控制装置提供合适的电压或电流信号。电力系统常用的电压互感器,其一次侧电压与系统电压有关,通常是几百伏~几百千伏,标准二次电压通常是100V和100V/ 两种;而电力系统常用的电流互感器,其一次侧电流通常为几安培~几万安培,标准二次电流通常有5A、1A、0.5A等。 1.电压互感器的原理 电压互感器的原理与变压器相似,如图1.1所示。一次绕组(高压绕组)和二次绕组(低压绕组)绕在同一个铁芯上,铁芯中的磁通为Ф。根据电磁感应定律,绕组的电压U与电压频率f、绕组的匝数W、磁通Ф的关系为: 图1.1电压互感器原理 2.电流互感器的原理 在原理上也与变压器相似,如图1.2所示。与电压互感器的主要差别是:正常工作状态下,一、二次绕组上的压降很小(注意不是指对地电压),相当于一个短路状态的变压器,所以铁芯中的磁通Ф也很小,这时一、二次绕组的磁势F (F=IW)大小相等,方向相反。 即电流互感器一、二次之间的电流比与一、二次绕组的匝数成反比。

图1.2电流互感器的原理 3.互感器绕组的端子和极性 电压互感器绕组分为首端和尾端,对于全绝缘的电压互感器,一次绕组的首端和尾端可承受的对地电压是一样的,而半绝缘结构的电压互感器,尾端可承受的电压一般只有几kV左右。常见的用A和X分别表示电压互感器一次绕组的首端和尾端,用a、x或P1、 P2表示电压互感器二次绕组的首端或尾端;电流互感器常见的用L1 、L2分别表示一次绕组首端和尾端,二次绕组则用K1、K2或S1、S2表示首端或尾端,不同的生产厂家其标号可能不一样,通常用下标1表示首端,下标2表示尾端。 当端子的感应电势方向一致时,称为同名端;反过来说,如果在同名端通入同方向的直流电流,它们在铁芯中产生的磁通也是同方向的。标号同为首端或同为尾端的端子而且感应电势方向一致,这种标号的绕组称为减极性,如图1.3a 所示,此时A-a端子的电压是两个绕组感应电势相减的结果。在互感器中正确的标号规定为减极性。 4.电压互感器和电流互感器在结构上的主要差别 (1)电压互感器和电流互感器都可以有多个二次绕组,但电压互感器可以多个二次绕组共用一个铁芯,电流互感器则必需是每个二次绕组都必需有独立的铁芯,有多少个二次绕组,就有多少个铁芯。 (2)电压互感器一次绕组匝数很多,导线很细,二次绕组匝数较少,导线稍粗;而变电站用的高压电流互感器一次绕组只有1到2匝,导线很粗,二次绕组匝数较多,导线的粗细与二次电流的额定值有关。 (3)电压互感器正常运行时,严禁将一次绕组的低压端子打开,严禁将二次绕组短路;电流互感器正常运行时,严禁将二次绕组开路。 5.电压互感器型号意义 第一个字母:J—电压互感器。 第二个字母:D—单相;S—三相;C—串级式;W—五铁芯柱。 第三个字母:G—干式,J—油浸式;C—瓷绝缘;Z—浇注绝缘;R—电容式;S—三相;Q-气体绝缘 第四个字母:W—五铁芯柱;B—带补偿角差绕组。连字符后的字母:GH—高海拔地区使用;TH—湿热地区使用。

电流互感器检测项目及试验

电流互感器检测项目及 试验 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

一、电压、电流互感器的概述 典型的互感器是利用电磁感应原理将高电压转换成低电压,或将大电流转换成小电流,为测量装置、保护装置、控制装置提供合适的电压或电流信号。电力系统常用的电压互感器,其一次侧电压与系统电压有关,通常是几百伏~几百千伏,标准二次电压通常是100V和100V/ 两种;而电力系统常用的电流互感器,其一次侧电流通常为几安培~几万安培,标准二次电流通常有5A、1A、等。 1.电压互感器的原理 电压互感器的原理与变压器相似,如图所示。一次绕组(高压绕组)和二次绕组(低压绕组)绕在同一个铁芯上,铁芯中的磁通为Ф。根据电磁感应定律,绕组的电压U与电压频率f、绕组的匝数W、磁通Ф的关系为: 图电压互感器原理

2.电流互感器的原理 在原理上也与变压器相似,如图所示。与电压互感器的主要差别是:正常工作状态下,一、二次绕组上的压降很小(注意不是指对地电压),相当于一个短路状态的变压器,所以铁芯中的磁通Ф也很小,这时一、二次绕组的磁势F(F=IW)大小相等,方向相反。 即电流互感器一、二次之间的电流比与一、二次绕组的匝数成反比。 图电流互感器的原理 3.互感器绕组的端子和极性 电压互感器绕组分为首端和尾端,对于全绝缘的电压互感器,一次绕组的首端和尾端可承受的对地电压是一样的,而半绝缘结构的电压互感器,尾端可承受的电压一般只有几kV左右。常见的用A和X分别表示电压互感器一次绕组的首端和尾端,用a、x或 P1、 P2表示电压互感器二次绕组的首端或尾端;电流互感器常见的用L1 、L2分别表示一次绕组首端和尾端,二次绕组则用K1、K2或S1、S2表示首端或尾端,不同的生产厂家其标号可能不一样,通常用下标1表示首端,下标2表示尾端。 当端子的感应电势方向一致时,称为同名端;反过来说,如果在同名端通入同方向的直流电流,它们在铁芯中产生的磁通也是同方向的。标号同为首端或同为尾端的端子而且感应电势方向一致,这种标号的绕组称为减极性,如图所示,此时A-a端子的电压是两个绕组感应电势相减的结果。在互感器中正确的标号规定为减极性。 4.电压互感器和电流互感器在结构上的主要差别 (1)电压互感器和电流互感器都可以有多个二次绕组,但电压互感器可以多个二次绕组共用一个铁芯,电流互感器则必需是每个二次绕组都必需有独立的铁芯,有多少个二次绕组,就有多少个铁芯。

电流互感器伏安特性试验及数据分析

电流互感器伏安特性试验 及数据分析 Prepared on 22 November 2020

电流互感器伏安特性试验及数据分析 一、CT伏安特性试验概述 CT伏安特性:是指在电流互感器一次侧开路的情况下,电流互感器二次侧励磁电流与电流互感器二次侧所加电压的关系曲线,实际上就是铁芯的磁化曲线,即该曲线在初始阶段表现为线性,当铁芯磁化饱和拐点出现时,该曲线表现为非线性。 试验的主要目的:一是检查新投产互感器的铁芯质量,留下CT原始实验数据;二是运行CT停运检验维护时(通常配合机组大修时进行)通过鉴别磁化曲线的饱和程度即拐点位置,以判断运行一定时期后互感器的绕组有无匝间短路等缺陷,以便及时发现设备缺陷,确保设备安全运行。三是对差动保护CT 精度有要求的进行10%误差曲线校核。 二、原理接线 (1)通常情况下电流互感器的电流加到额定值时,电压已达400V以上,用传统试验设备试验时,调压器无法将220V电源升到试验电压,必须使用一个升压变(其高压侧输出电流需大于电流互感器二次侧额定电流)升压,一个PT或万用表读取电压。由于万用表可测最高交流电压为5000V,故可用它直接读取电压而无需另接PT。 (2)利用CT伏特性测试仪试验时,CT伏安特性测试仪一般电压可升至 2500V,且具备数字电压、电流显示功能,部分测试仪具备数据处理功能,可直接打印出CT特性曲线。 三试验过程及注意事项

(1)试验前,应将电流互感器二次绕组引线和CT接地线均应拆除,做好防止接地的可靠安全措施,即保证试验时CT各相别可靠独立于应用设备,否则可能造成设备的损坏。 (2)试验时,一次侧可靠开路,从CT二次侧施加电压,参考CT额定电流预先选取几个电流点,一般取10个电流点,即每10%额定电流为一个电流点,逐点读取记录或储存相应电压值、电流值,每个点必须从零开始升压升流,以消除互感器内的剩磁,保证测量数据的准确性。 (3)通入的电流或电压以不超过制造厂技术条件的规定为准,电压应不得高于CT匝间绝缘要求电压。当电压稍微增加一点而电流增大很多时,说明铁芯已接近饱和,应极其缓慢地升压或停止试验,该点即为拐点电压。 (4)试验后,根据试验数据绘出或打印伏安特性曲线,对应相应CT初始伏安特性曲线或最近测量的伏安特性曲线进行比对分析。 (5)恢复电流互感器二次绕组引线和CT接地线以及其它临时安全措施。 四、数据分析 1、电流互感器10%误差曲线校核:只对继电保护有要求的CT二次绕组进行,一般对差动保护用CT要求必须满足10%误差曲线要求。 2、测得的伏安特性曲线与出厂的伏安特性曲线或最近的测量伏安特性曲线比较,拐点电压不应有显着降低。若有显着降低,应检查二次绕组是否存在匝间短路。 3、当CT工作在正常伏安特性曲线的线性非饱和区域时,所测电流包括CT的励磁电流Ie及流过CT直阻的电流I2两部分,在此区域随着所加电压的

电流互感器试验报告

电流互感器试验报告 电气设备试验报告大唐淮南洛河发电厂一期烟气脱硫工程 电流互感器试验报告 安装环境 安装位置电控楼一楼6KVII段2#脱硫增压风机旁路电流互感器设备名称电流互感器试验性质交接试验日期 2008-06-13 天气睛温度 26.2? 湿度66% 试验标准 GB 50150-1991-8 铭牌 型号 LZZBJ9-10A2G 额定电压 6KV 次级线圈编号准确度级容量,VA, 生产日期 2008.4 电流比 200/5 1S-1S0.5 20 12 生产厂家中国.大连第一互感器有限公司 2S-2S 5P20 15 12 A C 出厂编号 080480448 080480499 绝缘电阻测量:,MΩ, 仪器:2500V兆欧表(PC27-5G) 500兆欧表(PC27-1G) 试验项目 A C 初级对次级及地 2500 2500 次级对地 500 500 直流电阻测量及极性检查仪器:直流电阻快速测试仪、HQ2000互感器特性综合测试仪试验项目 A C 直流电阻(mΩ) 0.154 0.120 极性减极性减极性 励磁特性测量仪器:HQ2000互感器特性综合测试仪、标准电压表(0.5级 D26-V 805.60) 标准电流表(0.5级 D26-A 1130.5) 试验项目 A C 电流(A) 1 2 3 4 5 1 2 3 4 5 1S-1S 23.7 23.9 24.2 24.8 25.2 23.5 23.8 24.9 25.0 25.1 12电压(V) 2S-2S 85.2 88.4 91.8 93.6 95.0 82.6 87.9 92.8 95.7 96.2 12 电流比测量仪器:HQ2000互感器特性综合测试仪标准电流表(0.5级 D26-A 1130.5) 试验项目 A C 初级加电流(A) 40 80 120 160 200 40 80 120 160 200

CT电流互感器伏安特性的原理

CT电流互感器伏安特性的目的 电流互感器伏安特性原理 伏安特性中的“伏”就是电压,“安”就是电流,从字面解释,伏安特性就是电流互感器二次绕组的电压与电流之间的关系。如果从小到大调整电压,将所加电压对应的每一个电流画在一个座标系中(电压为纵座标,电流为横座标),所组成的曲线就称为伏安特性曲线。 由于电流互感器铁心具有逐渐饱和的特性,在短路电流下,电流互感器的铁心趋于饱和,励磁电流急剧上升,励磁电流在一次电流中所占的比例大为增加,使比差逐渐移向负值并迅速增大。由于继电器的动作电流一般比额定电流大好几倍,所以作为继电保护用的电流互感器应该保证在比额定电流大好几倍的短路电流下能够使继电器可靠动作。 根据继电保护的运行经验,在实际运行条件下,保护装置所用的电流互感器的电流误差不允许超过10%,而角度误差不超过7度。 为满足上面的要求,在电流互感器使用前,要作“电流互感器的10%误差曲线”,以确定其是否能够投入运行。实际工作中常常采用伏安特性法先测量电流互感器的伏安特性曲线,再绘出“电流互感器的10%误差曲线;同时,通过测量电流互感器的伏安特性曲线,还可以检查二次线圈有没有匝间短路。 试验时将互感器的一次线圈开路,在其二次线圈加电压,用电流表测得在该电压作用下流入二次线圈的电流,就得到电与电压的关系曲线,即为电流互感器的伏安特性曲线。 电流互感器伏安特性的测量可以用ED2000互感器特性综合测试仪 一试验目的 CT伏安特性是指电流互感器一次侧开路,二次侧励磁电流与所加电压的关系曲线,实际上就是铁芯的磁化曲线,因此也叫励磁特性。试验的主要目的是检查互感器的铁芯质量,通过鉴别磁化曲线的饱和程度,计算10%误差曲线,并用以判断互感器的二次绕组有无匝间短路。 二试验方法 接线比较复杂,因为一般的电流互感器电流加到额定值时,电压已达400V以上,单用调压器无法升到试验电压,所以还必须再接一个升压变(其高压侧输出电流需大于或等于电流互感器二次侧额定电流)升压和一个PT读取电压 试验前应将电流互感器二次绕组引线和接地线均拆除。试验时,一次侧开路,从电流互感器本体二次侧施加电压,可预先选取几个电流点,逐点读取相应电压值。通入的电流或电压以不超过制造厂技术条件的规定为准。当电压稍微增加一

电流互感器误差曲线及伏安特性曲线说明

电流互感器误差曲线及伏安特性曲线说明 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

一、电流互感器10%的误差曲线 实际电流互感器存在励磁电流,所以二次电流I2和一次侧实际电流I1电流存在数值大小和相位角度差,且误差大小和二次侧的负载阻抗有关。在互感器准确度一定即允许的二次负荷S2一定时,其二次侧的负载阻抗是与其一次电流或一次电流的平方称反比的,一次电流越大,允许的二次阻抗应越小,否则就影响精度。电流误差是指测得的电流对实际电流I1的相对误差百分值。 规程规定:用于继电保护的电流互感器的电流误差范围为±10%,相位差角不得大于7°。 电流互感器的10%误差曲线,是指互感器生产厂家给出电流互感器的电流误差最大不超过10%时,一次电流对其额定电流的倍数k=与二次侧负荷阻抗Z2的关系曲线。实际查用步骤通常是按电流互感器所处位置的最大三相短路电流来确定其值,从厂家给出的相应型号电流互感器的10%曲线中找出横坐标上允许的阻抗欧姆数,使电流互感器二次侧的仪表总阻抗不超过此Z2值,可保证互感器的电流误差在10%以内。当然实际Z2与互感器的接线方式有关,各种形式下的电流互感器的Z2可按电路原理方法计算。 在实际的电网线路中,如规定整个电网线路能在短路电流达到20倍的时候,整个电路能正常工作(即这个时候的复合误差小于10%),这个时候就要求二次回路的阻抗小于一定值(在本仪器中倍数对应M10 阻抗

对应Z 例如M10为 Z为这个数值表示短路电流为一次侧额定电压的倍时为保复合误差小于10%二次回路复阻抗必须小于)。这个实验对应的是保护用电流互感器。 二伏安特性曲线 测试拐点电压拐点电流 保护用电流互感器的拐点电压一般比较大,一般在20V以上,厂家出产的电流互感器有规定的饱和电压,实际测得的拐点电压要大于厂家所给的值(或对应所给的曲线不发生明显变化),拐点电压过小一般是铁芯质量不合格或发生扎间短路。

电压电流互感器的试验方法

电压电流互感器的常规试验方法 一、电压、电流互感器的概述 典型的互感器是利用电磁感应原理将高电压转换成低电压,或将大电流转换成小电流,为测量装置、保护装置、控制装置提供合适的电压或电流信号。电力系统常用的电压互感器,其一次侧电压与系统电压有关,通常是几百伏~几百千伏,标准二次电压通常是100V 和100V/ 两种;而电力系统常用的电流互感器,其一次侧电流通常为几安培~几万安培,标准二次电流通常有5A、1A、0.5A等。 1.电压互感器的原理 电压互感器的原理与变压器相似,如图1.1所示。一次绕组(高压绕组)和二次绕组(低压绕组)绕在同一个铁芯上,铁芯中的磁通为Ф。根据电磁感应定律,绕组的电压U与电压频率f、绕组的匝数W、磁通Ф的关系为: 图1.1 电压互感器原理

2.电流互感器的原理 在原理上也与变压器相似,如图1.2所示。与电压互感器的主要差别是:正常工作状态下,一、二次绕组上的压降很小(注意不是指对地电压),相当于一个短路状态的变压器,所以铁芯中的磁通Ф也很小,这时一、二次绕组的磁势F(F=IW)大小相等,方向相反。 即电流互感器一、二次之间的电流比与一、二次绕组的匝数成反比。 图1.2 电流互感器的原理 3.互感器绕组的端子和极性 电压互感器绕组分为首端和尾端,对于全绝缘的电压互感器,一次绕组的首端和尾端可承受的对地电压是一样的,而半绝缘结构的电压互感器,尾端可承受的电压一般只有几kV左右。常见的用A和X分别表示电压互感器一次绕组的首端和尾端,用a、x或P1、 P2 表示电压互感器二次绕组的首端或尾端;电流互感器常见的用L1 、

L2分别表示一次绕组首端和尾端,二次绕组则用K1、K2或S1、S2 表示首端或尾端,不同的生产厂家其标号可能不一样,通常用下标1表示首端,下标2表示尾端。 当端子的感应电势方向一致时,称为同名端;反过来说,如 果在同名端通入同方向的直流电流,它们在铁芯中产生的磁通也是同方向的。标号同为首端或同为尾端的端子而且感应电势方向一致,这种标号的绕组称为减极性,如图1.3a所示,此时A-a端子的电压是 两个绕组感应电势相减的结果。在互感器中正确的标号规定为减极性。 4.电压互感器和电流互感器在结构上的主要差别 (1)电压互感器和电流互感器都可以有多个二次绕组,但电压互感器可以多个二次绕组共用一个铁芯,电流互感器则必需是每个二次绕组都必需有独立的铁芯,有多少个二次绕组,就有多少个铁芯。 (2)电压互感器一次绕组匝数很多,导线很细,二次绕组匝数较少,导线稍粗;而变电站用的高压电流互感器一次绕组只有1到2匝,导线很粗,二次绕组匝数较多,导线的粗细与二次电流的额定值有关。 (3)电压互感器正常运行时,严禁将一次绕组的低压端子打开,严禁将二次绕组短路;电流互感器正常运行时,严禁将二次绕组开路。 5.电压互感器型号意义 第一个字母:J—电压互感器。

电压电流互感器的试验方法(完整资料).doc

【最新整理,下载后即可编辑】 电压电流互感器的常规试验方法 一、电压、电流互感器的概述 典型的互感器是利用电磁感应原理将高电压转换成低电压,或将大电流转换成小电流,为测量装置、保护装置、控制装置提供合适的电压或电流信号。电力系统常用的电压互感器,其一次侧电压与系统电压有关,通常是几百伏~几百千伏,标准二次电压通常是100V和100V/ 两种;而电力系统常用的电流互感器,其一次侧电流通常为几安培~几万安培,标准二次电流通常有5A、1A、0.5A等。 1.电压互感器的原理 电压互感器的原理与变压器相似,如图1.1所示。一次绕组(高压绕组)和二次绕组(低压绕组)绕在同一个铁芯上,铁芯中的磁通为Ф。根据电磁感应定律,绕组的电压U与电压频率f、绕组的匝数W、磁通Ф的关系为: 图1.1 电压互感器原理 2.电流互感器的原理 在原理上也与变压器相似,如图1.2所示。与电压互感器的主要差别是:正常工作状态下,一、二次绕组上的压降很小(注意不是指对地电压),相当于一个短路状态的变压器,所以铁芯中

的磁通Ф也很小,这时一、二次绕组的磁势F(F=IW)大小相等,方向相反。 即电流互感器一、二次之间的电流比与一、二次绕组的匝数成反比。 图1.2 电流互感器的原理 3.互感器绕组的端子和极性 电压互感器绕组分为首端和尾端,对于全绝缘的电压互感器,一次绕组的首端和尾端可承受的对地电压是一样的,而半绝缘结构的电压互感器,尾端可承受的电压一般只有几kV左右。常见的用A和X分别表示电压互感器一次绕组的首端和尾端,用a、x或P1、P2表示电压互感器二次绕组的首端或尾端;电流互感器常见的用L1 、L2分别表示一次绕组首端和尾端,二次绕组则用K1、K2或S1、S2表示首端或尾端,不同的生产厂家其标号可能不一样,通常用下标1表示首端,下标2表示尾端。 当端子的感应电势方向一致时,称为同名端;反过来说,如果在同名端通入同方向的直流电流,它们在铁芯中产生的磁通也是同方向的。标号同为首端或同为尾端的端子而且感应电势方向一致,这种标号的绕组称为减极性,如图1.3a所示,此时A-a端子的电压是两个绕组感应电势相减的结果。在互感器中正确的标号规定为减极性。

电压电流互感器的试验方法完整版

电压电流互感器的试验 方法 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

电压电流互感器的常规试验方法 一、电压、电流互感器的概述 典型的互感器是利用电磁感应原理将高电压转换成低电压,或将大电流转换成小电流,为测量装置、保护装置、控制装置提供合适的电压或电流信号。电力系统常用的电压互感器,其一次侧电压与系统电压有关,通常是几百伏~几百千伏,标准二次电压通常是 100V和100V/ 两种;而电力系统常用的电流互感器,其一次侧电流通常为几安培~几万安培,标准二次电流通常有5A、1A、0.5A等。 ? 1.电压互感器的原理 电压互感器的原理与变压器相似,如图1.1所示。一次绕组(高压绕组)和二次绕组(低压绕组)绕在同一个铁芯上,铁芯中的磁通为Ф。根据电磁感应定律,绕组的电压U与电压频率f、绕组的匝数W、磁通Ф的关系为: ? 图1.1 电压互感器原理 2.电流互感器的原理 在原理上也与变压器相似,如图1.2所示。与电压互感器的主要差别是:正常工作状态

下,一、二次绕组上的压降很小(注意不是指对地电压),相当于一个短路状态的变压器,所以铁芯中的磁通Ф也很小,这时一、二次绕组的磁势F(F=IW)大小相等,方向相反。即电流互感器一、二次之间的电流比与一、二次绕组的匝数成反比。 图1.2 电流互感器的原理 3.互感器绕组的端子和极性 电压互感器绕组分为首端和尾端,对于全绝缘的电压互感器,一次绕组的首端和尾端可承受的对地电压是一样的,而半绝缘结构的电压互感器,尾端可承受的电压一般只有几kV左右。常见的用A和X分别表示电压互感器一次绕组的首端和尾端,用a、x或P1、 P2表示电压互感器二次绕组的首端或尾端;电流互感器常见的用L1 、L2分别表示一次绕组首端和尾端,二次绕组则用K1、K2或S1、S2表示首端或尾端,不同的生产厂家其标号可能不一样,通常用下标1表示首端,下标2表示尾端。当端子的感应电势方向一致时,称为同名端;反过来说,如果在同名端通入同方向的直流电流,它们在铁芯中产生的磁通也是同方向的。标号同为首端或同为尾端的端子而且感应电势方向一致,这种标号的绕组称为减极性,如图1.3a所示,此时A-a端子的电压是两个绕组感应电势相减的结果。在互感器中正确的标号规定为减极性。4.电压互感器和电流互感器在结构上的主要差别

电流互感器知识整理

电流互感器知识整理 电流互感器知识简介 为了保证电力系统安全经济运行,必须对电力设备的运行情况进行监视和测量.但一般的测量和保护装置不能直接接入一次高压设备,而需要将一次系统的高电压和大电流按比例变换成低电压和小电流,供给测量仪表和保护装置使用.执行这些变换任务的设备,最 常见的就是我们通常所说的互感器.进行电压转换的是电压互感器(voltagetransformer),而进行电流转换的互感器为电流互感器(currenttransformer),简称为CT.本文将讨论电流互感器的相关基本知识. 1.电流互感器的基本原理 1.1电流互感器的基本等值电路如图1所示. 图1电流互感器基本等值电路 图中,Es—二次感应电势,Us—二次负荷电压,Ip—一次电流,Ip/Kn—二次全电流,Is—二次电流, Ie—励磁电流,N1—一次绕组匝数,N2—二次绕组匝数,Kn—匝数比,Kn=N2/N 1,Xct—二次绕组电抗(低漏磁互感器可忽略),Rct—二次绕组电阻,Zb—二次负荷阻抗(包括二次设备及连接导线),Ze—励磁阻抗. 电流互感器的一次绕组和二次绕组绕在同一个磁路闭合的铁心上.如果一次绕组中有电流流过,将在二次绕组中感应出相应的电动势.在二次绕组为通路时,则在二次绕组中产 生电流.此电流在铁心中产生的磁通趋于抵消一次绕组中电流产生的磁通.在理想条件下,电流互感器两侧的励磁安匝相等,二次电流与一次电流之比等于一次绕组与二次绕组匝数比。 即:IpN1=IsN2 Is=Ip×N1/N2=Ip/Kn 1.2.电流互感器极性标注 电流互感器采用减极性标注的方法,即同时从一二次绕组的同极性段通入相同方向的电流时,它们在铁芯中产生的磁通方向相同。当从一次绕组的极性端通入电流时,二次绕组中感应出的电流从极性端流出,以极性端为参考,一二次电流方向相反,因此称为减极性标准。 由于电流方向相反,且铁心中合成磁通为零。因此得下式: N1Ip-N2Is=0(本来励磁安匝的和为零,但考虑到两个电流的流动方向相对于极性端不同,因此两者为减的关系)。 推出:Is=N1/N2*Ip 可见,一二次电流的方向是一致的,是同相位的,因此我们可以用二次电流来表示一次电流(考虑变比折算)。这正是减极性标注的优点。 1.3.电流互感器的误差 在理想条件下,电流互感器二次电流Is=Ip/Kn,不存在误差。但实际上不论在幅值上(考虑变比折算)和角度上,一二次电流都存在差异。这一点我们可以在图1中看到。实际流入互感器二次负载的电流Is=Ip/Kn-Ie,其中Ie为励磁电流,即建立磁场所需

电流互感器伏安特性试验

电流互感器伏安特性试 验 标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

电流互感器伏安特性试验 阿德 一试验目的 CT伏安特性是指电流互感器一次侧开路,二次侧励磁电流与所加电压的关系曲线,实际上就是铁芯的磁验的主要目的是检查互感器的铁芯质量,通过鉴别磁化曲线的饱和程度,计算10%误差曲线,并用以判路。 二试验方法 试验接线如图所示: SVERKER650 二次 接线比较复杂,因为一般的电流互感器电流加到额定值时,电压已达400V以上,单用调压器无法升到压变(其高压侧输出电流需大于或等于电流互感器二次侧额定电流)升压和一个PT读取电压。(如果有F 交流电压为4000V,可用它直接读取电压而无需另接PT。) 试验前应将电流互感器二次绕组引线和接地线均拆除。试验时,一次侧开路,从电流互感器本体二次侧点,逐点读取相应电压值。通入的电流或电压以不超过制造厂技术条件的规定为准。当电压稍微增加一接近饱和,应极其缓慢地升压或停止试验。试验后,根据试验数据绘出伏安特性曲线。 三注意事项 1.电流互感器的伏安特性试验,只对继电保护有要求的二次绕组进行。 2.测得的伏安特性曲线与过去或出厂的伏安特性曲线比较,电压不应有显着降低。若有显着降低,应检

有匝间短路时,其曲线开始部分电流较正常的略低,如图中曲线2、3所示(指保护CT有匝间短路,曲匝),因此,在进行测试时,在开始部分应多测几点。 3.电流表宜采用内接法。 4.为使测量准确,可先对电流互感器进行退磁,即先升至额定电流值,再降到0,然后逐点升压。 四典型U-I特性曲线 相关主题: 慎用自耦变直接给电柜内回路加电流(电压)量 阿德 在现场进行装置试验时,可能由于试验设备欠缺、条件有限,需要用自耦变进行各种试验,此时一线断开或在自耦变后串接隔离变压器;否则,可能造成交流220V短路,损坏试验设备。 原因解释 可能碰到的错误接线方式:

相关文档