文档库 最新最全的文档下载
当前位置:文档库 › 时间序列分析其在数据挖掘中的应用

时间序列分析其在数据挖掘中的应用

时间序列分析其在数据挖掘中的应用

指导2003级信息与计算科学专业毕业设计课题登记表

数据挖掘研究现状综述

数据挖掘 引言 数据挖掘是一门交叉学科,涉及到了机器学习、模式识别、归纳推理、统计学、数据库、高性能计算等多个领域。 所谓的数据挖掘(Data Mining)指的就是从大量的、模糊的、不完全的、随机的数据集合中提取人们感兴趣的知识和信息,提取的对象一般都是人们无法直观的从数据中得出但又有潜在作用的信息。从本质上来说,数据挖掘是在对数据全面了解认识的基础之上进行的一次升华,是对数据的抽象和概括。如果把数据比作矿产资源,那么数据挖掘就是从矿产中提取矿石的过程。与经过数据挖掘之后的数据信息相比,原始的数据信息可以是结构化的,数据库中的数据,也可以是半结构化的,如文本、图像数据。从原始数据中发现知识的方法可以是数学方法也可以是演绎、归纳法。被发现的知识可以用来进行信息管理、查询优化、决策支持等。而数据挖掘是对这一过程的一个综合性应用。

目录 引言 (1) 第一章绪论 (3) 1.1 数据挖掘技术的任务 (3) 1.2 数据挖掘技术的研究现状及发展方向 (3) 第二章数据挖掘理论与相关技术 (5) 2.1数据挖掘的基本流程 (5) 2.2.1 关联规则挖掘 (6) 2.2.2 .Apriori算法:使用候选项集找频繁项集 (7) 2.2.3 .FP-树频集算法 (7) 2.2.4.基于划分的算法 (7) 2.3 聚类分析 (7) 2.3.1 聚类算法的任务 (7) 2.3.3 COBWEB算法 (9) 2.3.4模糊聚类算法 (9) 2.3.5 聚类分析的应用 (10) 第三章数据分析 (11) 第四章结论与心得 (14) 4.1 结果分析 (14) 4.2 问题分析 (14) 4.2.1数据挖掘面临的问题 (14) 4.2.2 实验心得及实验过程中遇到的问题分析 (14) 参考文献 (14)

时间序列分析方法及应用7

青海民族大学 毕业论文 论文题目:时间序列分析方法及应用—以青海省GDP 增长为例研究 学生姓名:学号: 指导教师:职称: 院系:数学与统计学院 专业班级:统计学 二○一五年月日

时间序列分析方法及应用——以青海省GDP增长为例研究 摘要: 人们的一切活动,其根本目的无不在于认识和改造世界,让自己的生活过得更理想。时间序列是指同一空间、不同时间点上某一现象的相同统计指标的不同数值,按时间先后顺序形成的一组动态序列。时间序列分析则是指通过时间序列的历史数据,揭示现象随时间变化的规律,并基于这种规律,对未来此现象做较为有效的延伸及预测。时间序列分析不仅可以从数量上揭示某一现象的发展变化规律或从动态的角度刻画某一现象与其他现象之间的内在数量关系及其变化规律性,达到认识客观世界的目的。而且运用时间序列模型还可以预测和控制现象的未来行为,由于时间序列数据之间的相关关系(即历史数据对未来的发展有一定的影响),修正或重新设计系统以达到利用和改造客观的目的。从统计学的内容来看,统计所研究和处理的是一批有“实际背景”的数据,尽管数据的背景和类型各不相同,但从数据的形成来看,无非是横截面数据和纵截面数据两类。本论文主要研究纵截面数据,它反映的是现象以及现象之间的关系发展变化规律性。在取得一组观测数据之后,首先要判断它的平稳性,通过平稳性检验,可以把时间序列分为平稳序列和非平稳序列两大类。主要采用的统计方法是时间序列分析,主要运用的数学软件为Eviews软件。大学四年在青海省上学,基于此,对青海省的GDP十分关注。本论文关于对1978年到2014年以来的中国的青海省GDP(总共37个数据)进行时间序列分析,并且对未来的三年中国的青海省GDP进行较为有效的预测。希望对青海省的发展有所贡献。 关键词: 青海省GDP 时间序列白噪声预测

时间序列分析——最经典的

【时间简“识”】 说明:本文摘自于经管之家(原人大经济论坛) 作者:胖胖小龟宝。原版请到经管之家(原人大经济论坛) 查看。 1.带你看看时间序列的简史 现在前面的话—— 时间序列作为一门统计学,经济学相结合的学科,在我们论坛,特别是五区计量经济学中是热门讨论话题。本月楼主推出新的系列专题——时间简“识”,旨在对时间序列方面进行知识扫盲(扫盲,仅仅扫盲而已……),同时也想借此吸引一些专业人士能够协助讨论和帮助大家解疑答惑。 在统计学的必修课里,时间序列估计是遭吐槽的重点科目了,其理论性强,虽然应用领域十分广泛,但往往在实际操作中会遇到很多“令人发指”的问题。所以本帖就从基础开始,为大家絮叨絮叨那些关于“时间”的故事! Long long ago,有多long估计大概7000年前吧,古埃及人把尼罗河涨落的情况逐天记录下来,这一记录也就被我们称作所谓的时间序列。记录这个河流涨落有什么意义当时的人们并不是随手一记,而是对这个时间序列进行了长期的观察。结果,他们发现尼罗河的涨落非常有规律。掌握了尼罗河泛滥的规律,这帮助了古埃及对农耕和居所有了规划,使农业迅速发展,从而创建了埃及灿烂的史前文明。

好~~从上面那个故事我们看到了 1、时间序列的定义——按照时间的顺序把随机事件变化发展的过程记录下来就构成了一个时间序列。 2、时间序列分析的定义——对时间序列进行观察、研究,找寻它变化发展的规律,预测它将来的走势就是时间序列分析。 既然有了序列,那怎么拿来分析呢 时间序列分析方法分为描述性时序分析和统计时序分析。 1、描述性时序分析——通过直观的数据比较或绘图观测,寻找序列中蕴含的发展规律,这种分析方法就称为描述性时序分析 描述性时序分析方法具有操作简单、直观有效的特点,它通常是人们进行统计时序分析的第一步。 2、统计时序分析 (1)频域分析方法 原理:假设任何一种无趋势的时间序列都可以分解成若干不同频率的周期波动 发展过程: 1)早期的频域分析方法借助富里埃分析从频率的角度揭示时间序列的规律 2)后来借助了傅里叶变换,用正弦、余弦项之和来逼近某个函数 3)20世纪60年代,引入最大熵谱估计理论,进入现代谱分析阶段 特点:非常有用的动态数据分析方法,但是由于分析方法复杂,结果抽象,有一定的使用局限性 (2)时域分析方法

模糊数学在数据挖掘领域综述

模糊数学在数据挖掘研究综述 一、模糊数学 关于数学的分类,根据所研究对象的确定性可以分为经典数学、随机数学以及模糊数学。三者的关系如图1所示。经典数学建立在集合论的基础上,一个对象对于一个集合要么属于,要么不属于,两者必居其一,且仅居其一,绝不可模棱两可,由于这个要求,大大限制了数学的应用范围,使它无法处理日常生活中大量的不明确的模糊现象与概念。随着发展,过去那些与数学毫无关系或关系不大的学科如生物学,心理学,等都迫切要求定量化和数学化。 图1依照研究对象是否确定的数学分类 在日常生活中,我们经常会遇到一些模糊不清的概念。例如,“高个子”、“矮个子”等。如果把1.80米的人算高个子,那么,身高1.76米的人算不算高个子呢?这就很难说,因为“高个子”,“矮个子”并没有二者明确的标准,因而这些概念就显得模糊不清。为了适应这些学科自身的特点,只有通过改造数学,使它应用的面更为广泛。模糊数学就是研究事物这种模糊性质的一门数学学科。 模糊数学诞生于1965年,创始人是美国自动控制专家查德,他最早提出了模糊集合的概念,引入了隶属函数。自诞生之日起,就与电子计算机息息相关。今天精确的数学计算当然是不可少的,然而,当我们要求脑功能的时候,精确这个长处反而成了短处。例如,我们在判别走过的人是谁时,总是将来人的高矮,胖瘦、走路姿势与大脑存储的样子进行比较,从而作出判断。一般说来,这不是件难事,即使是分别多年的老友,也会很快地认出他来,但是若让计算机做这件事,使用精确数学就太复杂了。得测量来人的身高、体重、手臂摆的角度以及鞋底对地面的正压力、磨擦力、速度、加速度等数据,而且非要精确到后几十位才肯罢休。如果有位熟人最近稍为瘦了或胖了一些,计算机就“翻脸不认了”。显然,这样的“精确”容易使人糊涂。由此可见,要使计算机能模拟人功能,一定程度的模糊是必要的。模糊数学就是在这样的背景下诞生的。 随机数学与模糊数学都是对不确定性量的研究,但与模糊数学不同的是,随机数学是研究随机现象统计规律性的一个数学分支,涉及四个主要部分:概率论、随机过程、数理统计、随机运筹。随机数学更强调对数据的统计规律;而模糊数学强调的是变量的定义的模糊性。 模糊数学是一门新兴学科,过去那些与数学毫不相关或关系不大的学科(如生物学、心理学、语言学、社会科学等)都有可能用定量化和数学化加以描述和处理,从而使数学的应用范围大大扩展。它已初步应用于模糊控制、模糊识别、模糊聚类分析、模糊决策、模糊评判、系统理论、信息检索、医学、生物学等各个方面,并且在气象、结构力学、控制、心理学等方面已有具体的研究成果。模糊数学最重要的应用领域是计算机职能,它与新一代计算机的研制有密切的联系。 二、模糊计算

【文献综述】时间序列预测――在股市预测中的应用

文献综述 信息与计算科学 时间序列预测――在股市预测中的应用 时间序列是一种重要的高维数据类型, 它是由客观对象的某个物理量在不同时间点的采样值按照时间先后次序排列而组成的序列, 在经济管理以及工程领域具有广泛应用. 例如证券市场中股票的交易价格与交易量、外汇市场上的汇率、期货和黄金的交易价格以及各种类型的指数等, 这些数据都形成一个持续不断的时间序列. 利用时间序列数据挖掘, 可以 ]1[ 获得数据中蕴含的与时间相关的有用信息, 实现知识的提取. 时间序列分析方法最早起源于1927年, 数学家耶尔(Yule)提出建立自回归(AR)模型来预测市场变化的规律, 接着, 在1931年, 另一位数学家瓦尔格(Walker)在A R模型的启发下, 建立了滑动平均(MA)模型和自回归、滑动平均(ARMA)混合模型, 初步奠定了时间序列分析方法的基础, 当时主要应用在经济分析和市场预测领域. 20世纪60年代,时间序列分析理论和方法迈入了一个新的阶段, 伯格(Burg)在分析地震信号时最早提出最大熵谱(MES)估计理论, 后来有人证明AR模型的功率谱估计与最大熵谱估计是等效的, 并称之为现代谱估计. 它克服了用传统的傅里叶功率谱分析(又称经典谱分析)所带来的分辨率不高和频率漏泄严重等固有的缺点, 从而使时间序列分析方法不仅在时间域内得到应用, 而且扩展到频率域内, 得到更加广泛的应用, 特别是在各种工程领域内应用功率谱的概念更加方便和普遍. 到20世纪70年代以后, 随着信号处理技术的发展, 时间序列分析方法不仅在理论上更趋完善, 尤其是在参数估计算法、定阶方法及建模过程等方面都得到了许多改进, 进一步地迈向实用化, 各种时间序列分析软件也不断涌现, 逐渐成为分析随机数据序列不可缺少的有效工具 ]2[ 之一. 随着时间序列分析方法的日趋成熟, 其应用领域越来越广泛, 主要集中在预报预测领域, 例如气象预报、市场预测、地震预报、人口预测、汛情预报、产量预测, 等等. 另一个应用领域是精密测控, 例如精密仪器测量、精密机械制造、航空航天轨道跟踪和监控,以及遥控遥测、精细化工控制等. 再一个应用领域是安全检测和质量控制. 在工程施工和维修中经常会出现异常险情, 采用仪表监测和时间序列分析方法可以随时发现问题, 及早排除故障, 以保证生产安全和质量要求. 以上仅仅列举了某些应用领域,实际上还有许多应用, 不胜 ]4,3[ 枚举. 股票市场在中国社会经济生活中起着越来越重要的作用. 截至2006年底, 沪深两市总市值为89403.89亿元, 市值规模上升至全球第10位, 亚洲第3位. 由于中国股票市场在国民经济中的地位和作用不断提高, 无论是从政府宏观决策层面还是从具体投资者微观层面

大数据时代的空间数据挖掘综述

第37卷第7期测绘与空间地理信息 GEOMATICS &SPATIAL INFORMATION TECHNOLOGY Vol.37,No.7收稿日期:2014-01-22 作者简介:马宏斌(1982-),男,甘肃天水人,作战环境学专业博士研究生,主要研究方向为地理空间信息服务。 大数据时代的空间数据挖掘综述 马宏斌1 ,王 柯1,马团学 2(1.信息工程大学地理空间信息学院,河南郑州450000;2.空降兵研究所,湖北孝感432000) 摘 要:随着大数据时代的到来,数据挖掘技术再度受到人们关注。本文回顾了传统空间数据挖掘面临的问题, 介绍了国内外研究中利用大数据处理工具和云计算技术,在空间数据的存储、管理和挖掘算法等方面的做法,并指出了该类研究存在的不足。最后,探讨了空间数据挖掘的发展趋势。关键词:大数据;空间数据挖掘;云计算中图分类号:P208 文献标识码:B 文章编号:1672-5867(2014)07-0019-04 Spatial Data Mining Big Data Era Review MA Hong -bin 1,WANG Ke 1,MA Tuan -xue 2 (1.Geospatial Information Institute ,Information Engineering University ,Zhengzhou 450000,China ; 2.Airborne Institute ,Xiaogan 432000,China ) Abstract :In the era of Big Data ,more and more researchers begin to show interest in data mining techniques again.The paper review most unresolved problems left by traditional spatial data mining at first.And ,some progress made by researches using Big Data and Cloud Computing technology is introduced.Also ,their drawbacks are mentioned.Finally ,future trend of spatial data mining is dis-cussed. Key words :big data ;spatial data mining ;cloud computing 0引言 随着地理空间信息技术的飞速发展,获取数据的手 段和途径都得到极大丰富,传感器的精度得到提高和时空覆盖范围得以扩大,数据量也随之激增。用于采集空间数据的可能是雷达、红外、光电、卫星、多光谱仪、数码相机、成像光谱仪、全站仪、天文望远镜、电视摄像、电子 显微镜、CT 成像等各种宏观与微观传感器或设备,也可能是常规的野外测量、人口普查、土地资源调查、地图扫描、 地图数字化、统计图表等空间数据获取手段,还可能是来自计算机、 网络、GPS ,RS 和GIS 等技术应用和分析空间数据。特别是近些年来,个人使用的、携带的各种传感器(重力感应器、电子罗盘、三轴陀螺仪、光线距离感应器、温度传感器、红外线传感器等),具备定位功能电子设备的普及,如智能手机、平板电脑、可穿戴设备(GOOGLE GLASS 和智能手表等),使人们在日常生活中产生了大量具有位置信息的数据。随着志愿者地理信息(Volunteer Geographic Information )的出现,使这些普通民众也加入到了提供数据者的行列。 以上各种获取手段和途径的汇集,就使每天获取的 数据增长量达到GB 级、 TB 级乃至PB 级。如中国遥感卫星地面站现在保存的对地观测卫星数据资料达260TB ,并以每年15TB 的数据量增长。比如2011年退役的Landsat5卫星在其29年的在轨工作期间,平均每年获取8.6万景影像,每天获取67GB 的观测数据。而2012年发射的资源三号(ZY3)卫星,每天的观测数据获取量可以达到10TB 以上。类似的传感器现在已经大量部署在卫 星、 飞机等飞行平台上,未来10年,全球天空、地空间部署的百万计传感器每天获取的观测数据将超过10PB 。这预示着一个时代的到来,那就是大数据时代。大数据具有 “4V ”特性,即数据体量大(Volume )、数据来源和类型繁多(Variety )、数据的真实性难以保证(Veracity )、数据增加和变化的速度快(Velocity )。对地观测的系统如图1所示。 在这些数据中,与空间位置相关的数据占了绝大多数。传统的空间知识发现的科研模式在大数据情境下已经不再适用,原因是传统的科研模型不具有普适性且支持的数据量受限, 受到数据传输、存储及时效性需求的制约等。为了从存储在分布方式、虚拟化的数据中心获取信息或知识,这就需要利用强有力的数据分析工具来将

《时间序列分析及应用:R语言》读书笔记

《时间序列分析及应用:R语言》读书笔记 姓名:石晓雨学号:1613152019 (一)、时间序列研究目的主要有两个:认识产生观测序列的随机机制,即建立数据生成模型;基于序列的历史数据,也许还要考虑其他相关序列或者因素,对序列未来的可能取值给出预测或者预报。通常我们不能假定观测值独立取自同一总体,时间序列分析的要点是研究具有相关性质的模型。 (二)、下面是书上的几个例子 1、洛杉矶年降水量 问题:用前一年的降水量预测下一年的降水量。 第一幅图是降水量随时间的变化图;第二幅图是当年降水量与去年降水量散点图。 win.graph(width=4.875, height=2.5,pointsize=8) #这里可以独立弹出窗口 data(larain) #TSA包中的数据集,洛杉矶年降水量 plot(larain,ylab='Inches',xlab='Year',type = 'o') #type规定了在每个点处标记一下 win.graph(width = 3,height = 3,pointsize = 8) plot(y = larain,x = zlag(larain),ylab = 'Inches',xlab = 'Previous Year Inches')#zlag 函数(TSA包)用来计算一个向量的延迟,默认为1,首项为NA

从第二幅图看出,前一年的降水量与下一年并没有什么特殊关系。 2、化工过程 win.graph(width = 4.875,height = 2.5,pointsize = 8) data(color) plot(color,ylab = 'Color Property',xlab = 'Batch',type = 'o') win.graph(width = 3,height = 3,pointsize = 8) plot(y = color,x = zlag(color),ylab = 'Color Property',xlab = 'Previous Batch Color Property') len <- length(color) cor(color[2:len],zlag(color)[2:len])#相关系数>0.5549 第一幅图是颜色属性随着批次的变化情况。

可视化空间数据挖掘研究综述

可视化空间数据挖掘研究综述 贾泽露1,2 刘耀林2 (1. 河南理工大学测绘与国土信息工程学院,焦作,454000;2. 武汉大学资源与环境科学学院,武汉,430079)摘要:空间数据挖掘针对的是更具有可视化要求的地理空间数据的知识发现过程,可视化能提供同用户对空间目标心理认知过程相适应的信息表现和分析环境,可视化与空间数据挖掘的结合是该领域研究发展的必然,并已成为一个研究热点。论文综述了空间数据挖掘和可视化的研究现状,重点阐述了空间数据挖掘中的可视化化技术及其应用,并对可视化空间数据挖掘的发展趋势进行了阐述。 关键词:数据挖掘;空间数据挖掘;数据可视化;信息可视化;GIS; 空间信息获取技术的飞速发展和各种应用的广泛深入,多分辨率、多时态空间信息大量涌现,以及与之紧密相关的非空间数据的日益丰富,对海量空间信息的综合应用和处理技术提出了新的挑战,要求越来越高。空间数据挖掘技术作为一种高效处理海量地学空间数据、提高地学分析自动化和智能化水平、解决地学领域“数据爆炸、知识贫乏”问题的有效手段,已发展成为空间信息处理的关键技术。然而,传统数据挖掘“黑箱”作业过程使得用户只能被动地接受挖掘结果。可视化技术能为数据挖掘提供直观的数据输入、输出和挖掘过程的交互探索分析手段,提供在人的感知力、洞察力、判断力参与下的数据挖掘手段,从而大大地弥补了传统数据挖掘过程“黑箱”作业的缺点,同时也大大弥补了GIS重“显示数据对象”轻“刻画信息结构”的弱点,有力地提高空间数据挖掘进程的效率和结果的可信度[1]。空间数据挖掘中可视化技术已由数据的空间展现逐步发展成为表现数据内在复杂结构、关系和规律的技术,由静态空间关系的可视化发展到表示系统演变过程的可视化。可视化方法不仅用于数据的理解,而且用于空间知识的呈现。可视化与空间数据挖掘的结合己成为必然,并已形成了当前空间数据挖掘1与知识发现的一个新的研究热点——可视化空间数据挖掘(Visual Spatial Data Mining,VSDM)。VSDM技术将打破传统数据挖掘算法的“封闭性”,充分利用各式各样的数据可视化技术,以一种完全开放、互动的方式支持用户结合自身专业背景参与到数据挖掘的全过程中,从而提高数据挖掘的有效性和可靠性。本文将对空间数据挖掘、可视化的研究概况,以及可视化在空间数据挖掘中的应用进行概括性回顾总结,并对未来发展趋势进行探讨。 一、空间数据挖掘研究概述 1.1 空间数据挖掘的诞生及发展 1989年8月,在美国底特律市召开的第一届国际联合人工智能学术会议上,从事数据库、人工智能、数理统计和可视化等技术的学者们,首次出现了从数据库中发现知识(knowledge discovery in database,KDD)的概念,标志着数据挖掘技术的诞生[1]。此时的数据挖掘针对的 作者1简介:贾泽露(1977,6-),男,土家族,湖北巴东人,讲师,博士,主要从事空间数据挖掘、可视化、土地信息系统智能化及GIS理论、方法与应用的研究和教学工作。 作者2简介:刘耀林(1960,9- ),男,汉族,湖北黄冈人,教授,博士,博士生导师,武汉大学资源与环境科学学院院长,现从事地理信息系统的理论、方法和应用研究和教学工作。

数据挖掘分类算法研究综述终板

数据挖掘分类算法研究综述 程建华 (九江学院信息科学学院软件教研室九江332005 ) 摘要:随着数据库应用的不断深化,数据库的规模急剧膨胀,数据挖掘已成为当今研究的热点。特别是其中的分类问题,由于其使用的广泛性,现已引起了越来越多的关注。对数据挖掘中的核心技术分类算法的内容及其研究现状进行综述。认为分类算法大体可分为传统分类算法和基于软计算的分类法两类。通过论述以上算法优缺点和应用范围,研究者对已有算法的改进有所了解,以便在应用中选择相应的分类算法。 关键词:数据挖掘;分类;软计算;算法 1引言 1989年8月,在第11届国际人工智能联合会议的专题研讨会上,首次提出基于数据库的知识发现(KDD,Knowledge DiscoveryDatabase)技术[1]。该技术涉及机器学习、模式识别、统计学、智能数据库、知识获取、专家系统、数据可视化和高性能计算等领域,技术难度较大,一时难以应付信息爆炸的实际需求。到了1995年,在美国计算机年会(ACM)上,提出了数据挖掘[2](DM,Data Mining)的概念,由于数据挖掘是KDD过程中最为关键的步骤,在实践应用中对数据挖掘和KDD这2个术语往往不加以区分。 基于人工智能和信息系统,抽象层次上的分类是推理、学习、决策的关键,是一种基础知识。因而数据分类技术可视为数据挖掘中的基础和核心技术。其实,该技术在很多数据挖掘中被广泛使用,比如关联规则挖掘和时间序列挖掘等。因此,在数据挖掘技术的研究中,分类技术的研究应当处在首要和优先的地位。目前,数据分类技术主要分为基于传统技术和基于软计算技术两种。 2传统的数据挖掘分类方法 分类技术针对数据集构造分类器,从而对未知类别样本赋予类别标签。在其学习过程中和无监督的聚类相比,一般而言,分类技术假定存在具备环境知识和输入输出样本集知识的老师,但环境及其特性、模型参数等却是未知的。 2.1判定树的归纳分类 判定树是一个类似流程图的树结构,其中每个内部节点表示在一个属性上的测试,每个分支代表一个测试输出,而每个树叶节点代表类或类分布。树的最顶层节点是根节点。由判定树可以很容易得到“IFTHEN”形式的分类规则。方法是沿着由根节点到树叶节点的路径,路径上的每个属性-值对形成“IF”部分的一个合取项,树叶节点包含类预测,形成“THEN”部分。一条路径创建一个规则。 判定树归纳的基本算法是贪心算法,它是自顶向下递归的各个击破方式构造判定树。其中一种著名的判定树归纳算法是建立在推理系统和概念学习系统基础上的ID3算法。 2.2贝叶斯分类 贝叶斯分类是统计学的分类方法,基于贝叶斯公式即后验概率公式。朴素贝叶斯分类的分类过程是首先令每个数据样本用一个N维特征向量X={X1,X2,?X n}表示,其中X k是属性A k的值。所有的样本分为m类:C1,C2,?,C n。对于一个类别的标记未知的数据记录而言,若P(C i/X)>P(C j/X),1≤ j≤m,j≠i,也就是说,如果条件X下,数据记录属于C i类的概率大于属于其他类的概率的话,贝叶斯分类将把这条记录归类为C i类。 建立贝叶斯信念网络可以被分为两个阶段。第一阶段网络拓扑学习,即有向非循环图的——————————————————— 作者简介:程建华(1982-),女,汉族,江西九江,研究生,主要研究方向为数据挖掘、信息安全。

数据挖掘中的软计算方法及应用综述

摘要文章对数据挖掘中软计算方法及应用作了综述。对模糊逻辑、遗传算法、神经网络、粗集等软计算方法,以及它们的混合算法的特点进行了分析,并对它们在数据挖掘中的应用进行了分类。 关键词数据挖掘;软计算;模糊逻辑;遗传算法;神经网络;粗集 1 引言 在过去的数十年中,随着计算机软件和硬件的发展,我们产生和收集数据的能力已经迅速提高。许多领域的大量数据集中或分布的存储在数据库中[1][2],这些领域包括商业、金融投资业、生产制造业、医疗卫生、科学研究,以及全球信息系统的万维网。数据存储量的增长速度是惊人的。大量的、未加工的数据很难直接产生效益。这些数据的真正价值在于从中找出有用的信息以供决策支持。在许多领域,数据分析都采用传统的手工处理方法。一些分析软件在统计技术的帮助下可将数据汇总,并生成报表。随着数据量和多维数据的进一步增加,高达109的数据库和103的多维数据库已越来越普遍。没有强有力的工具,理解它们已经远远超出了人的能力。所有这些显示我们需要智能的数据分析工具,从大量的数据中发现有用的知识。数据挖掘技术应运而生。 数据挖掘就是指从数据库中发现知识的过程。包括存储和处理数据,选择处理大量数据集的算法、解释结果、使结果可视化。整个过程中支持人机交互的模式[3]。数据挖掘从许多交叉学科中得到发展,并有很好的前景。这些学科包括数据库技术、机器学习、人工智能、模式识别、统计学、模糊推理、专家系统、数据可视化、空间数据分析和高性能计算等。数据挖掘综合以上领域的理论、算法和方法,已成功应用在超市、金融、银行[4]、生产企业 [5]和电信,并有很好的表现。 软计算是能够处理现实环境中一种或多种复杂信息的方法集合。软计算的指导原则是开发利用那些不精确性、不确定性和部分真实数据的容忍技术,以获得易处理、鲁棒性好、低求解成本和更好地与实际融合的性能。通常,软计算试图寻找对精确的或不精确表述问题的近似解[6]。它是创建计算智能系统的有效工具。软计算包括模糊集、神经网络、遗传算法和粗集理论。 2 数据挖掘中的软计算方法 目前,已有多种软计算方法被应用于数据挖掘系统中,来处理一些具有挑战性的问题。软计算方法主要包括模糊逻辑、神经网络、遗传算法和粗糙集等。这些方法各具优势,它们是互补的而非竞争的,与传统的数据分析技术相比,它能使系统更加智能化,有更好的可理解性,且成本更低。下面主要对各种软计算方法及其混合算法做系统性的阐述,并着重强调它们在数据挖掘中的应用情况。 2.1 模糊逻辑 模糊逻辑是1965年由泽德引入的,它为处理不确定和不精确的问题提供了一种数学工具。模糊逻辑是最早、应用最广泛的软计算方法,模糊集技术在数据挖掘领域也占有重要地位。从数据库中挖掘知识主要考虑的是发现有兴趣的模式并以简洁、可理解的方式描述出来。模糊集可以对系统中的数据进行约简和过滤,提供了在高抽象层处理的便利。同时,数据挖掘中的数据分析经常面对多种类型的数据,即符号数据和数字数据。nauck[7]研究了新的算法,可以从同时包含符号数据和数字数据中生成混合模糊规则。数据挖掘中模糊逻辑主要应用于以下几个方面: (1)聚类。将物理或抽象对象的集合分组成为由类似的对象组成的多个类的过程被称为聚类。聚类分析是一种重要的人类行为,通过聚类,人能够识别密集的和稀疏的区域,因而发现全局的分布模式,以及数据属性之间有趣的关系。模糊集有很强的搜索能力,它对发现的结构感兴趣,这会帮助发现定性或半定性数据的依赖度。在数据挖掘中,这种能力可以帮助

数据仓库与数据挖掘的综述

Southwest university of science and technology 数据挖掘课程报告 数据仓库与数据挖掘的综述 学院名称计算机科学与技术 专业名称计科 学生姓名 学号 指导教师吴珏 二〇一六年11月

摘要 通过对数据仓库与数据挖掘的学习和大致的了解,主要提出了一种基于数据仓库的数据挖掘系统的决策支持系统的框架。该文章把数据仓库、数据挖掘工具和知识库结合在一起,提高了数据挖掘的效率。增加了挖掘数据的效率和价值实用性! 一、概述 近十几年来,人们利用信息技术生产和搜集数据的能力大幅度提高,千万万个数据库被用于商业管理、政府办公、科学研究和工程开发等等,并且这一势头仍将持续发展下去。于是,一个新的挑战被提了出来:在这被称之为信息爆炸的时代,信息过量几乎成为人人需要面对的问题。如何才能不被信息的汪洋大海所淹没,从中及时发现有用的知识,提高信息利用率呢?要想使数据真正成为一个公司的资源,只有充分利用它为公司自身的业务决策和战略发展服务才行,否则大量的数据可能成为包袱,甚至成为垃圾。因此,面对"人们被数据淹没,人们却饥饿于知识的挑战,数据挖掘和知识发现(DMKD)技术应运而生,并得以蓬勃发展,越来越显示出其强大的生命力。 数据挖掘(Data Mining)就是从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。还有很多和这一术语相近似的术语,如从数据库中发现知识(KDD)、数据分析、数据融合(Data Fusion)

以及决策支持等。人们把原始数据看作是形成知识的源泉,就像从矿石中采矿一样。原始数据可以是结构化的,如关系数据库中的数据,也可以是半结构化的,如文本、图形、图像数据,甚至是分布在网络上的异构型数据。发现知识的方法可以是数学的,也可以是非数学的;可以是演绎的,也可以是归纳的。发现了的知识可以被用于信息管理、查询优化、决策支持、过程控制等,还可以用于数据自身的维护。因此,数据挖掘是一门很广义的交叉学科,它汇聚了不同领域的研究者,尤其是数据库、人工智能、数理统计、可视化、并行计算等方面的学者和工程技术人员。 数据仓库,英文名称为Data Warehouse,可简写为DW或DWH。数据仓库,是为企业所有级别的决策制定过程,提供所有类型数据支持的战略集合。它是单个数据存储,出于分析性报告和决策支持目的而创建。为需要业务智能的企业,提供指导业务流程改进、监视时间、成本、质量以及控制。 今天,越来越多的企业认识到要从以往的事务处理和决策中总结经验,利用现有的数据进行分析和推理,建立企业的决策支持系统(DSS)以提高决策的质量。企业如果不能快速精确的收集和分析信息,将无法进行科学而有效的决策。建立数据仓库(Data warehouse)将能很的解决这一问题,使企业从大量的业务信息中筛选出所需的信息,并做出正确的决策。数据仓库不是单一的产品,而是综合了多种信息技术的计算环境。它将全企业的运行数据汇集到一个精心设计的关系数据库中,并将它们转换成面向主题(Subject-oriented)的形

应用时间序列分析 -

姓名:葛国峰学号:1122307851 编号:33 习题2.3 2.解: data b; input y@@; time=intnx('month','1jan1975'd,_n_-1); format time data; cards; 330.45 330.97 331.64 332.87 333.61 333.55 331.90 330.05 328.58 328.31 329.41 330.63 331.63 332.46 333.36 334.45 334.82 334.32 333.05 330.87 329.24 328.87 330.18 331.50 332.81 333.23 334.55 335.82 336.44 335.99 334.65 332.41 331.32 330.73 332.05 333.53 334.66 335.07 336.33 337.39 337.65 337.57 336.25 334.39 332.44 332.25 333.59 334.76 335.89 336.44 337.63 338.54 339.06 338.95 337.41 335.71 333.68 333.69 335.05 336.53 337.81 338.16 339.88 340.57 341.19 340.87 339.25 337.19 335.49 336.63 337.74 338.36 ; run; proc gplot; plot y*time; symbol1v=dot i=join c=black w=3; proc arima data=b; identify var=y nlag=24; run; (1)序列图:

数据挖掘文献综述

湘潭大学 本科生专业文献综述 题目: 数据挖掘文献综述 姓名: 林勇 学院: 信心工程学院学院 专业: 自动化 班级: 一班 学号: 2010550113 指导教师: 张莹

0前言 随着计算机技术的迅猛发展,人类正在步入信息社会。面对今天浩如烟海的信息,如何帮助人们有效地收集和选择所感兴趣的信息,更关键的是如何帮助用户在日益增多的信息中自动发现新的概念并自动分析它们之间的关系,使之能够真正地做到信息处理的自动化,这已成为信息技术领域的热点问题。数据挖掘就是为满足这种要求而产生并迅速发展起来的,可用于开发信息资源的一种新的数据处理技术。 1什么是数据挖掘 数据挖掘(Data Mining),也叫数据开采,数据采掘等,是按照既定的业务目标从海量数据中提取出潜在、有效并能被人理解的模式的高级处理过程。在较浅的层次上,它利用现有数据库管理系统的查询、检索及报表功能,与多维分析、统计分析方法相结合,进行联机分析处理,从而得出可供决策参考的统计分析数据。在深层次上,则从数据库中发现前所未有的、隐含的知识。OLAF'的出现早于数据挖掘,它们都是从数据库中抽取有用信息的方法,就决策支持的需要而言两者是相辅相成的。OLAP可以看作一种广义的数据挖掘方法,它旨在简化和支持联机分析,而数据挖掘的目的是便这一过程尽可能自动化。数据挖掘基于的数据库类型主要有:关系型数据库、面向对象数据库、事务数据库、演绎数据库、时态数据库、多媒体数据库、主动数据库、空间数据库、遗留数据库、异质数据库、文本型、Internet信息库以及新兴的数据仓库(Data Warehouse)等。而挖掘后获得的知识包括关联规则、特征规则、区分规则、分类规则、总结规则、偏差规则、聚类规则、模式分析及趋势分析等。 1.1 数据挖掘的任务 数据挖掘的两个高层目标是预测和描述。前者指用一些变量或数据库的若干已知字段预测其它感兴趣的变量或字段的未知的或未来的值;后者指找到描述数据的可理解模式。根据发现知识的不同,我们可以将数据挖掘任务归纳为以下几类: (1)特征规则。从与学习任务相关的一组数据中提取出关于这些数据的特征式,这些特征式表达了该数据集的总体特征.例如可以从某种疾病的症状中提取

数据挖掘综述

数据挖掘综述 1、产生背景 随着计算机的产生和大量数字化的存储方法的出现,我们借助计算机来收集和分类各种数据资料,但是不同存储结构存放的大量数据集合很快被淹没,便导致了结构化数据库以及DBMS的产生。 但是随着信息时代的到来,信息量远远超过了我们所能处理的范围,从商业交易数据、科学资料到卫星图片、文本报告和军事情报,以及生活中各种信息,这也就是“数据爆炸但知识贫乏”的网络时代,面对巨大的数据资料,出现了新的需求,希望能够更好的利用这些数据,进行更高层次的分析,从这些巨大的数据中提取出对我们有意义的数据,这就是知识发现(KDD,Knowledge Discovery in Databases),数据挖掘应运而生。 2、数据库系统技术的演变 1)20世纪60年代和更早 这个时期是数据收集和数据库创建的过程,原始文件的处理2)20世纪70年代---80年代初期 有层次性数据库、网状数据库、关系数据库系统 3)20世纪80年代中期—现在 高级数据库系统,可以应用在空间、时间的、多媒体的、主动的、流的和传感器的、科学的和工程的。 4)20世纪80年代后期—现在

高级数据分析:数据仓库和数据挖掘 5)20世纪90年代—现在 基于web的数据库,与信息检索和数据信息的集成6)现在---将来 新一代的集成数据域信息系统 3、数据挖掘概念 数据挖掘(Data Mining),就是从大量数据中获取有效的、新颖的、潜在的有用的,最终可以理解的模式的非平凡过程。数据挖掘,又称为数据库中知识发现(KDD,Knowledge Discovery in Databases),也有人把数据挖掘作为数据库中知识发现过程的一个基本步骤。 数据挖掘基于的数据库类型主要有:关系型数据库、面向对象数据库、事务数据库、演绎数据库、时态数据库、多媒体数据库、主动数据库、空间数据库、遗留数据库、异质数据库、文本型、Internet信息库以及新兴的数据仓库等。 4、数据挖掘特点和任务 4.1数据挖掘具有以下几个特点: 1)处理的数据规模十分庞大,达到GB,TB数量级,甚至更大2)查询一般是决策制定者(用户)提出的即时随机查询,往往不能形成精确的查询要求,需要靠系统本身寻找其可能感兴 趣的东西。 3)在一些应用(如商业投资等)中,由于数据变化迅速,因此

时间序列分析及其应用

时间序列分析及其应用 摘要:本文介绍了目前时间序列分析的发展状况以及应用情况,对常见的几种趋势拟合及其预测方法进行了简要叙述。 关键词:时间序列趋势建模 1 引言 时间序列分析是一种动态数据处理的统计方法。该方法基于随机过程理论和数理统计学方法,研究随机数据序列所遵从的统计规律,以用于解决实际问题。它包括一般统计分析(如自相关分析,谱分析等),统计模型的建立与推断,以及关于时间序列的最优预测、控制与滤波等内容。经典的统计分析都假定数据序列具有独立性,而时间序列分析则侧重研究数据序列的互相依赖关系。后者实际上是对离散指标的随机过程的统计分析,所以又可看作是随机过程统计的一个组成部分。时间序列是按时间顺序的一组数字序列。时间序列分析就是利用这组数列,应用数理统计方法加以处理,以预测未来 事物的发展。时间序列分析是定量预测方法之一,它的基本原理:一是承认事物发展的延续性。应用过去数据,就能推测事物的发展趋势。二是考虑到事物发展的随机性。任何事物发展都可能受偶然因素影响,为此要利用统计分析中加权平均法对历史数据进行处理。 2 时间序列分析的趋势及建模 时间序列分析的成分有:(1)长期趋势,即时间序列随时间的变化而逐渐增加或减少的长期变化的趋势;(2)季节变动,即时间序列在一年中或固定时间内,呈现出的固定规则的变动;(3)循环变动,即

沿着趋势线如钟摆般地循环变动;(4)不规则变动,即在时间序列中由于随机因素影响所引起的变动。 时间序列建模基本步骤是:用观测、调查、统计、抽样等方法取得被观测系统时间序列动态数据;根据动态数据作相关图,进行相关分析,求自相关函数。相关图能显示出变化的趋势和周期,并能发现跳点和拐点。跳点是指与其他数据不一致的观测值。如果跳点是正确的观测值,在建模时应考虑进去,如果是反常现象,则应把跳点调整到期望值。拐点则是指时间序列从上升趋势突然变为下降趋势的点。如果存在拐点,则在建模时必须用不同的模型去分段拟合该时间序列,例如采用门限回归模型。然后辨识合适的随机模型,进行曲线拟合,即用通用随机模型去拟合时间序列的观测数据。 主要的趋势拟合方法有平滑法、趋势线法和自回归模型。对于很多情况,时间序列具有季节趋势,比如气象学中的气温、降雨量,水文学中雨季和干季的河流水量等等。这就需要分析时间序列时,将季节趋势考虑在内。季节性预测法的基本步骤是(1)对原时间序列求移动平均,以消除季节变动和不规则变动,保留长期趋势;(2)将原序列y除以其对应的趋势方程值(或平滑值),分离出季节变动(含不规则变动),即季节系数=tsci/趋势方程值(tc或平滑值);(3)将月度(或季度)的季节指标加总,以由计算误差导致的值去除理论加总值,得到一个校正系数,并以该校正系数乘以季节性指标从而获得调整后季节性指标;(4)求预测模型,若求下一年度的预测值,延长趋势线即可;若求各月(季)的预测值,需以趋势值乘以各月份(季

数据分析-时间序列的趋势分析

数据分析-时间序列的趋势分析 无论是网站分析工具、BI报表或者数据的报告,我们很难看到数据以孤立的点单独地出现,通常数据是以序列、分组等形式存在,理由其实很简单,我们没法从单一的数据中发现什么,用于分析的数据必须包含上下文(Context)。数据的上下文就像为每个指标设定了一个或者一些参考系,通过这些参照和比较的过程来分析数据的优劣,就像中学物理上的例子,如果我们不以地面作为参照物,我们无法区分火车是静止的还是行进的,朝北开还是朝南开。 在实际看数据中,我们可能已经在不经意间使用数据的上下文了,趋势分析、比例分析、细分与分布等都是我们在为数据设置合适的参照环境。所以这边通过一个专题——数据的上下文,来总结和整理我们在日常的数据分析中可以使用的数据参考系,前面几篇主要是基于内部基准线(Internal Benchmark)的制定的,后面会涉及外部基准线(External Benchmark)的制定。今天这篇是第一篇,主要介绍基于时间序列的趋势分析,重提下同比和环比,之前在网站新老用户分析这篇文章,已经使用同比和环比举过简单应用的例子。 同比和环比的定义 定义这个东西在这里还是再唠叨几句,因为不了解定义就无法应用,熟悉的朋友可以跳过。 同比:为了消除数据周期性波动的影响,将本周期内的数据与之前周期中相同时间点的数据进行比较。早期的应用是销售业等受季节等影响较严重,为了消除趋势分析中季节性的影响,引入了同比的概念,所以较多地就是当年的季度数据或者月数据与上一年度同期的比较,计算同比增长率。 环比:反应的是数据连续变化的趋势,将本期的数据与上一周期的数据进行对比。最常见的是这个月的数据与上个月数据的比较,计算环比增长率,因为数据都是与之前最近一个周期的数据比较,所以是用于观察数据持续变化的情况。 买二送一,再赠送一个概念——定基比(其实是百度百科里附带的):将所有的数据都与某个基准线的数据进行对比。通常这个基准线是公司或者产品发展的一个里程碑或者重要数据点,将之后的数据与这个基准线进行比较,从而反映公司在跨越这个重要的是基点后的发展状况。 同比和环比的应用环境

相关文档
相关文档 最新文档