文档库 最新最全的文档下载
当前位置:文档库 › 毕业设计外文翻译---汽车的转向控制

毕业设计外文翻译---汽车的转向控制

毕业设计外文翻译---汽车的转向控制
毕业设计外文翻译---汽车的转向控制

毕业设计外文资料翻译

设计题目: 小型特种车辆制动系统改进设计

译文题目: Spin control for cars

学生姓名:

学号:

专业班级:车辆工程

指导教师:

正文:汽车的转向控制附件:Spin control for cars 指导教师评语:

签名:年月日

正文:汽车的转向控制

全文:版权所有1995年美国机械工程师学会控制系统稳定性是针对提高驾驶安全性提出的一系列措施中最新的一个。这个系统能够在40毫秒内实现从制动开始到制动恢复的过程,这个时间是人的反应时间得七倍。他们通过调整汽车扭矩或者通过应用汽车左侧或右侧制动,如果需要甚至两者兼用,来实现准确的行车路线。这个系统已被应用于奔驰S600汽车了。

稳定的机械自动系统能够在制动时发现肇端,并且在驾驶人员发现能够反应以前实现车辆的减速。

安全玻璃,安全带,撞击缓冲区,安全气囊,ABS系统,牵引力控制系统还有现在的稳定调节系统。汽车安全系统的连续升级,已经产生了一种为保护汽车所有者安全的设计模式。稳定调节系统帮助驾驶员从不可控制的曲线制动中解脱出来,从而避免了汽车的摆动滑行和交通事故。

利用计算机和一系列传感器,稳定调节系统能够检测到制动轮的打滑并且比人更快的恢复对汽车的方向控制。系统每百万分之一秒作出一次快速捕捉,以及断断汽车是否在按照驾驶员的路线行驶。如果检测到汽车行驶路线和驾驶员驾驶路线存在一个微小的偏差,系统会在瞬间纠正发动机扭矩或者应用汽车左右制动。过程的标准反应时间是40毫秒----人的平均反应时间的七分之一。

罗伯特博世工程系统负责人安东·范·桑特解释说:“一个稳定的控制系统能够‘感觉到”驾驶员想要运动的方向,通过控制转向角度,油门踏板的位置,制动板的状态来确定汽车实际运动路线的偏航比率(汽车偏离方向轴的角度)和横向加速度”。项目负责人阿明·马勒领导着范桑特的工作小组和奔驰汽车公司的工程师发明了第一个完全有效的稳定调节系统,该系统由发动机扭矩控制系统,制动系统,牵引控制系统组成以实现理想与现实运动之间的最小差距。

汽车安全专家相信稳定调节系统能够减少交通事故的发生,至少是在伤亡严重的事故方面。安全统计表明,多数的单车撞击事故伤亡(占伤亡事故发生的4%),事故能够通过应用这项新技术避免。这项新系统的额外费用主要用于一系列目前汽车日益普遍应用的制动/牵引控制锁组件。

稳定调节系统技术首次应用于欧洲的奔驰S600汽车,是由德国斯图加特市的罗伯特博世公司和奔驰公司在过去几年共同研制的。该系统在博世公司被称为汽车动力控制

(VDC),而默西迪称它为稳定电控系统(ESP),作用就是在任何状况下维持车辆的稳定性。博世公司开发了这项系统,奔驰公司把它应用于车辆。工程师默西迪丝在柏林应用戴姆勒奔驰汽车虚拟驾驶模拟器在极限情况下对系统进行评估,例如极强的侧风。然后他们在瑞典的安杰普劳附近的后娜瓦安湖的冰面上进行性能测试。工作通常是在公路上进行以适用于公共汽车和大卡车,例如避免的折合问题。

稳定调节系统将在1995年中应用于欧洲S系列产品上,随后会在1996年进入美国市场(1995年11月产品)。用户可以选择750美元的系统,就像应用于默西迪丝的试验用的V8发动机上的,也可以选择价格为2400美元的应用于六缸发动机汽车的系统。后者的系统中差不多有1650美元是用于牵引控制系统,该系统是稳定性系统的先决条件。

并不是只有博世公司一家在开发这样的安全系统,美国密歇根州的ITT(美国国际电信公司)汽车公司的奥伯恩·希尔,在1995年1月底特律北美国际汽车展览会上展示了了?忣????峂?悇管理系统(ASMS),“车辆控制器应该像空对地导弹的控制器那样,比较而言,事实上那已经实现了,不同的是两者的费用不同”,美国国际电信公司驻欧洲空对地导弹控制工程负责人约翰尼斯·格雷得说。北美ITT公司“汽车制动和底盘工程”主管汤姆·麦兹指出,在未来十年美国国际电信公司的系统要首先出现在车辆上。很多工程师正在六辆特殊制造的精密车辆模型上调试这种系统。

一个比较简单和较低效率的博世的稳定调节系统也在1995年出现在慕尼黑宝马公司的AG系列750iL和850Ci V-12两款车上。宝马公司的稳定调节系统(DSC)运用的车轮速度传感器同牵引控制系统和标准ABS防抱死系统一样能够识别外部情况,使车辆更容易实现曲线行驶和转弯。为了检测出车辆转弯时潜在的危险,DSC系统检测的是两前轮在转弯时的速度差,DSC系统添加了一个更高级的角度传感器利用现有的一个车辆速度,并且引入了它自身带有的关于完全抱死系统,牵引控制系统,稳定调节系统软件控制原理。

新的博世和ITT自动稳定调节系统得益于航空工业高级技术的发展,就像超音速发动机,汽车的稳定调节单元运用一个基于计算机系统的传感器来调和人与系统之间的,还有轮胎与地面之间差异。另外,系统采用了用于导弹制导系统的回旋传感器。

优于ABS防抱死系统和牵引控制系统之处

根据范·桑特和博世公司的瑞娜·伊哈德,杰瑞·帕夫在《汽车工程师》杂志所提到的,稳定调节系统是ABS防抱死系统和牵引控制系统的合理扩展。但是ABS系统的作用发生在制动时车轮转向将被锁死时,牵引控制是预防加速时的车轮滑动,稳定系统是当汽车

自由转向时能独立于驾驶员作出操作。依靠不同的驾驶状况系统可以使每个车轮制动或者迅速使四个轮转速适合于发动机的扭矩,从而使车辆稳定和减少由于制动失控带来的危险。新系统不仅仅控制完全制动还可以作用与部分制动,行车路线,加速度,车轮与发动机动作的滞后等,这些是ABS防抱死系统和牵引控制系统所远远不能达到的。

三种主动的安全系统的作用时刻是一致的,那就是一个车轮被锁死或者车轮渐渐失去方向稳定性或者车轮使得行驶更加困难。如果一辆车必须在较低摩擦系数的路面制动,必须避免车轮抱死以保持行驶稳定性和可驾驶性。

ABS防抱死系统和牵引控制系统能够预防侧滑,而稳定性系统采取减少侧面受力的稳定措施。如果行驶车辆的侧力不再适当的分配在一个或者更多轮上,车辆就会失稳,尤其是车辆沿曲线行驶时。驾驶员感觉到的“摇摆”起初是转弯或者与车的轴线形成一个纺锤形时。一个独立的传感器必须能够识别这个“纺锤”,而 ABS防抱死系统和牵引控制系统通过车轮的转速不能检测车辆的横向运动。

转向操作

新系统通过对微小的汽车不足转向(当车辆对于方向盘操作反应迟缓)和方向盘的“过敏”反应(后轮发生来回摆动)。当车辆在转向时如果发生不足转向和过度转向运动时,稳定调节系统能够通过后轮进行内部制动(针对曲线)纠正错误。这种情况是驾驶员不能感觉类似于ABS防抱死系统接近于抱死极限,而使车辆不失去控制。稳定调节系统能够通过发动机降速或者单轮制动来减小推动力。

博世公司的研究员解释说:“侧面偏离角度表明此时车辆的偏航灵敏性,并反映为转向角度,转向角度随着车辆偏离角度的增大而减小。一旦偏离角度超过某一限度,驾驶员就很难重新进行操作。在干燥的路面偏离角度不能够超过10度,而在积雪路面上极限偏离角度为4度。

多数司机没有从制动中恢复的经验。他们不知道轮胎和地面之间的摩擦系数,更不知道他们的车的侧缘稳定边界。当极限被冲破时,驾驶员通常会很紧张以至于做出错误的反应。ITT的格雷柏解释说:“过度转向引起车辆摆尾,使汽车更快的失控。ASMS传感器能够快速的检测到制动开始时各个车轮的活动,从而使车辆恢复到稳定行驶轨道。

对于稳定调节系统界面的可操作性是很重要的,这样可以预示带有稳定系统的驾驶和普通驾驶给人的感觉没有什么区别。

稳定系统最大的优点在于速度,它不仅可以对制动作出快速反应,还可以对车辆状况(例如车重变化,轮胎磨损),路面质量作出快速反应统就能够通过改变侧面受力平横处理,达到最好的驾驶稳定性。

稳定系统识别驾驶员想达到的(理想路线)和车辆实际行驶路线(实际路线)的不同,目前的汽车需要一套高效的传感器和一台高效处理信息的处理器。

博世公司的VDC/ESP电子控制单元是一个由两个48兆的ROM组成的传统实验电路板。范桑特说:“48KB的内存容量是大量用以完成设计任务的‘智能’的代表”。他在SAE中指出。ABS防抱死系统是独立的,只提供四分之一的这样的容量,而ABS和牵引控制系统组合在一起的容量只有这个软件容量的一半。

除了ABS防抱死系统和牵引控制系统所具有的关系传感器外,VDC/ESP运用了偏航比率传感器,横向加速度传感器,转向角传感器,制动压力传感器来获取汽车的加速,摇摆或者刹车的信息。系统通过管理员获得所需的通常的路面信息。方向盘上的传感器由一组安装在方向盘上的发光二极管和光敏二极管上组成。一只硅压力传感器通过控制前轮刹车内压力油的压力控制制动压力(因为制车压力来源于驾驶员)。

确定车辆实际的行驶路线是一项非常复杂的工作。通过必须的纵向滑动车轮速度传感器提供给反向制动或者牵引控制系统的车轮转速信号,以对可能发生的动作作出精确的分析,无论如何侧向难预料的运动分析是必须的,所以系统必须再拓展两个额外的传感器---偏航比率传感器和侧向加速度传感器。

横向加速度表检测沿曲线行驶时所带来的受力状况。这种类似的传感器通过一台直线霍尔发电机把弹簧的直线运动转变成电信号来实现对弹簧机构的控制。这种传感器必须很灵敏,它的控制角为±1.4g。

偏航比率回转仪

最新的稳定调节系统的核心在于类似于陀螺仪的偏航比率回转仪。传感器测量车辆对竖直轴的旋转。这个测量原理来源于航空工业,并且被博施公司大规模的应用于汽车工业。现有的回转仪市场提供两种选择,一种是应用与航空航天业的价值6000美元(由位于英国罗彻斯特的美国通用电器公司航空股份有限公司提供),另一种是用于照相机的价值160美元。由SAE报得知博施公司采取一种圆柱形设计方案以实现低成本下的高性能。这种传感器需要一项更大的投资以应对汽车所处的极端环境状态。同时偏航比率回转仪的价格必须降低,这样才能充分应用与汽车。

偏航比率回转仪有一个复杂的内部结构,其内部是有一个很小的圆柱形钢管伺服测量元件。圆柱的薄壁上有压电元件能够在15千赫兹的频率下震动。四对这样的感应器安放在圆柱体的周围,一对元件的位置与另一对的位置相对。其中的一对通过应用正弦电压引起柱体在其固有频率下产生共振,并将振动传送给变频器。在每一对传感器之间,振颤节点绕着汽车的垂直轴作细微的运动。这时如果没有偏航输入,震动曲线就是一条稳定的曲线。如果有信号输入,节点的位置和曲线的波谷就会在相对的防线绕着圆筒壁做旋转运动(科里奥利加速度)。这个轻微的位移就会成为汽车偏航比率的度量标准。

许多司机都相互宣传他们的车辆在光滑转弯处,车尾部将要被甩出去的时候,新系统会把车辆“推”回到正确的轨迹上方面的经验。

许多观察员指出,稳定调节系统可能会使司机在较低摩擦力的路面上过分自信,尽管他们占少数。或许需要指导司机怎样来恰当的使用车辆稳定调节系统。就像当初让司机学习不能向防抱死制动系统里泵油一样。

虽然只介绍了很少的关于为未来汽车研制的新一代主动安全系统(远远超过了雷达扫描仪类似的系统),但避免交通事故仍然是汽车安全工程的主题。美国国际电信公司负责人指出“当稳定调节技术伴随着汽车结构全面性能稳步提高的时候,多数可避免的事故将不再发生了”。新一代的安全系统也会起到同样的效果。

附件:Spin control for cars

Stability control systems are the latest in a string of technologies focusing on improved diriving safety. Such systems detect the initial phases of a skid and restore directional control in 40 milliseconds, seven times faster than the reaction time of the average human. They correct vehicle paths by adjusting engine torque or applying the left- or-right-side brakes, or both, as needed. The technology has already been applied to the Mercedes-Benz S600 coupe.

Automatic stability systems can detect the onset of a skid and bring a fishtailing vehicle back on course even before its driver can react.

Safety glass, seat belts, crumple zones, air bags, antilock brakes, traction control, and now stability control. The continuing progression of safety systems for cars has yielded yet another device designed to keep occupants from injury. Stability control systems help drivers recover from uncontrolled skids in curves, thus avoiding spinouts and accidents.

Using computers and an array of sensors, a stability control system detects the onset of a skid and restores directional control more quickly than a human driver can. Every microsecond, the system takes a "snapshot," calculating whether a car is going exactly in the direction it is being steered. If there is the slightest difference between where the driver is steering and where the vehicle is going, the system corrects its path in a split-second by adjusting engine torque and/or applying the cat's left- or right-side brakes as needed. Typical reaction time is 40 milliseconds - seven times faster than that of the average human.

A stability control system senses the driver's desired motion from the steering angle, the accelerator pedal position, and the brake pressure while determining the vehicle's actual motion from the yaw rate (vehicle rotation about its vertical axis) and lateral acceleration, explained Anton van Zanten, project leader of the Robert Bosch engineering team. Van Zanten's group and a team of engineers from Mercedes-Benz, led by project manager Armin Muller, developed the first fully effective stability control system, which regulates engine torque and wheel brake pressures using

traction control components to minimize the difference between the desired and actual motion.

Automotive safety experts believe that stability control systems will reduce the number of accidents, or at least the severity of damage. Safety statistics say that most of the deadly accidents in which a single car spins out (accounting for four percent of all deadly collisions) could be avoided using the new technology. The additional cost of the new systems are on the order of the increasingly popular antilock brake/traction control units now available for cars.

The debut of stability control technology took place in Europe on the Mercedes-Benz S600 coupe this spring. Developed jointly during the past few years by Robert Bosch GmbH and Mercedes-Benz AG, both of Stuttgart, Germany, Vehicle Dynamics Control (VDC). in Bosch terminology, or the Electronic Stability Program (ESP), as Mercedes calls it, maintains vehicle stability in most driving situations. Bosch developed the system, and Mercedes-Benz integrated it into the vehicle. Mercedes engineers used the state-of-the-art Daimler-Benz virtual-reality driving simulator in Berlin to evaluate the system under extreme conditions, such as strong crosswinds. They then put the system through its paces on the slick ice of Lake Hornavan near Arjeplog, Sweden. Work is currently under way to adapt the technology to buses and large trucks, to avoid jack-knifing, for example.

Stability control systems will first appear in mid-1995 on some European S-Class models and will reach the U.S. market during the 1996 model year (November 1995 introduction). It will be available as a $750 option on Mercedes models with V8 engines, and the following year it will be a $2400 option on six-cylinder 鉣 俕 嶏 ?? ? $1650 of the latter price is for the traction control system, a prerequisite for stability control.

Bosch is not alone in developing such a safety system. ITT Automotive of Auburn Hills, Mich., introduced its Automotive Stability Management System (ASMS) in January at the 1995 North American International Auto Show in Detroit. "ASMS is a quantum leap in the evolution of antilock brake systems, combining the best attributes of ABS and traction control into a total vehicle dynamics management

system," said Timothy D. Leuliette, ITT Automotive's president and chief executive officer.

"ASMS monitors what the vehicle controls indicate should be happening, compares that to what is actually happening, then works to compensate for the difference," said Johannes Graber, ASMS program manager at ITT Automotive Europe. ITT's system should begin appearing on vehicles worldwide near the end of the decade, according to Tom Mathues, director of engineering of Brake & Chassis Systems at ITT Automotive North America. Company engineers are now adapting the system to specific car models from six original equipment manufacturers.

A less-sophisticated and less-effective Bosch stability control system already appears on the 1995 750iL and 850Ci V-12 models from Munich-based BMW AG. The BMW Dynamic Stability Control (DSC) system uses the same wheel-speed sensors as traction control and standard anti-lock brake (ABS) systems to recognize conditions that can destabilize a vehicle in curves and corners. To detect such potentially dangerous cornering situations, DSC measures differences in rotational speed between the two front wheels. The DSC system also adds a sensor for steering angle, Utilizes an existing one for vehicle velocity, and introduces its own software control elements in the over allantilock-brake/traction-control/stability-control system.

The new Bosch and ITT Automotive stability control systems benefit from advanced technology developed for the aerospace industry. Just as in a supersonic fighter, the automotive stability control units use a sensor-based computer system to mediate between the human controller and the environment - in this case, the interface between tire and road. In addition, the system is built around a gyroscopelike sensor design used for missile guidance.

BEYOND ABS AND TRACTION CONTROL

Stability control is the logical extension of ABS and traction control, according to a Society of Automotive Engineers paper written by van Zanten and Bosch colleagues Rainer Erhardt and Georg Pfaff. Whereas ABS intervenes when wheel

lock is imminent during braking, and traction control prevents wheel slippage when accelerating, stability control operates independently of the driver's actions even when the car is free-rolling. Depending on the particular driving situation, the system may activate an individual wheel brake or any combination of the four and adjust engine torque, stabilizing the car and severely reducing the danger of an uncontrolled skid. The new systems control the motion not only during full braking but also during partial braking, coasting, acceleration, and engine drag on the driven wheels, circumstances well beyond what ABS and traction control can handle.

The idea behind the three active safety systems is the same: One wheel locking or slipping significantly decreases directional stability or makes steering a vehicle more difficult. If a car must brake on a low-friction surface, locking its wheels should be avoided to maintain stability and steerability.

Whereas ABS and traction control prevent undesired longitudinal slip, stability control reduces loss of lateral stability. If the lateral forces of a moving vehicle are no longer adequate at one or more wheels, the vehicle may lose stability, particularly in curves. What the drive?逾 半 ??? ?? "fishtailing" is primarily a turning or spinning around the vehicle's axis. A separate sensor must recognize this spinning, because unlike ABS and traction control, a car's lateral movement cannot be calculated from its wheel speeds.

SPIN HANDLERS

The new systems measure any tendency toward understeer (when a car responds slowly to steering changes), or over-steer (when the rear wheels try to swing around). If a car understeers and swerves off course when driven in a curve, the stability control system will correct the error by braking the inner (with respect to the curve) rear wheel. This enables the driver, as in the case of ABS, to approach the locking limit of the road-tire interface without losing control of the vehicle. The stability control system may reduce the vehicle's drive momentum by throttling back the engine and/or by braking on individual wheels. Conversely, if the hteral stabilizing force on the rear axle is insufficient, the danger of oversteering may result in rear-end

breakaway or spin-out. Here, the system acts as a stabilizer by applying the outer-front wheel brake.

The influence of side slip angle on maneuverability, the Bosch researchers explained, shows that the sensitivity of the yaw moment on the vehicle, with respect to changes in the steering angle, decreases rapidly as the slip angle of the vehicle increases. Once the slip angle grows beyond a certain limit, the driver has a much harder time recovering by steering. On dry surfaces, maneuverability is lost at slip-angle values larger than approximately 10 degrees, and on packed snow at approximately 4 degrees.

Most drivers have little experience recovering from skids. They aren't aware of the coefficient of friction between the tires and the road and have no idea of their vehicle's lateral stability margin. When the limit of adhesion is reached, the driver is usually caught by surprise and very often reacts in the wrong way, steering too much. Oversteering, ITT's Graber explained, causes the car to fishtail, throwing the vehicle even further out of control. ASMS sensors, he said, can quickly detect the beginning of a skid and momentarily activate the brakes at individual wheels to help return the vehicle to a stable line.

It is important that stability control systems be user-friendly at the limit of adhesion - that is, to act predictably in a way similar to normal driving.

The biggest advantage of stability control is its speed - it can respond immediately not only to skids but also to shifting vehicle conditions (such as changes in weight or tire wear) and road quality. Thus, the systems achieve optimum driving stability by changing the lateral stabilizing forces.

For a stability control system to recognize the difference between what the driver wants (desired course) and the actual movement of the vehicle (actual course), current cars require an efficient set of sensors and a greater computer capacity for processing information.

The Bosch VDC/ESP electronic control unit contains a conventional circuit board with two partly redundant microcontrollers using 48 kilobytes of ROM each. The 48-kB memory capacity is representative of the large amount of "intelligence"

required to perform the design task, van Zanten said. ABS alone, he wrote in the SAE paper, would require one-quarter of this capacity, while ABS and traction control together require only one half of this software capacity.

In addition to ABS and traction control systems and related sensors, VDC/ESP uses sensors for yaw rate, lateral acceleration, steering angle, and braking pressure as well as information on whether the car is accelerating, freely rolling, or braking. It obtains the necessary information on the current load condition of the engine from the engine controller. The steering-wheel angle sensor is based on a set of LED and photodiodes mounted in the steering wheel. A silicon-micromachine pressure sensor indicates the master cylinder's braking pressure by measuring the brake fluid pressure in the brake circuit of the front wheels (and, therefore, the brake pressure induced by the driver).

Determining the actual course of the vehicle is a more complicated task. Wheel speed signals, which are provided for antilock brakes/traction control by inductive wheel speed sensors, are required to derive longitudinal slip. For an exact analysis of possible movement, however, variables describing lateral motion are needed, so the system must be expanded with two additional sensors - yaw rate sensors and lateral acceleration sensors.

A lateral accelerometer monitors the forces occurring in curves. This analog sensor operates according to a damped spring-mass mechanism, by which a linear Hall generator transforms the spring displacement into an electrical signal. The sensor must be very sensitive, with an operating range of plus or minus 1.4 g.

YAW RATE GYRO

At the heart of the latest stability control system type is the yaw rate sensor, which is similar in function to a gyroscope. The sensor measures the speed at which the car rotates about its vertical axis. This measuring principle originated in the aviation industry and was further developed by Bosch for large-scale vehicle production. The existing gyro market offers two widely different categories of devices: $6000 units for aerospace and navigation systems (supplied by firms such as GEC

Marconi Avionics Ltd., of Rochester, Kent, U.K.) and $160 units for videocameras. Bosch chose a vibrating cylinder design that provides the highest performance at the lowest cost, according to the SAE paper. A large investment was necessary to develop this sensor so that it could withstand the extreme environmental conditions of automotive use. At the same time, the cost for the yaw rate sensor had to be reduced so that it would be sufficiently affordable for vehicle use.

The yaw rate sensor has a complex internal structure centered around a small hollow steel cylinder that serves as the measuring element. The thin wall of the cylinder is excited with piezoelectric elements that vibrate at a frequency of 15 kilohertz. Four pairs of these piezo elements are arranged on the circumference of the cylinder, with paired elements positioned opposite each other. One of these pairs brings the open cylinder into resonance vibration by applying a sinusoidal voltage at its natural frequency to the transducers; another pair, which is displaced by 90 degrees, stabilizes the vibration. At both element pairs in between, so-called vibration nodes shift slightly depending on the rotation of the car about its vertical axis. If there is no yaw input, the vibration forms a standing wave. With a rate input, the positions of the nodes and antinodes move around the cylinder wall in the opposite direction to the direction of rotation (Coriolis acceleration). This slight shift serves as a measure for the yaw rate (angular velocity) of the car.

Several drivers who have had hands-on experience with the new systems in slippery cornering conditions speak of their cars being suddenly nudged back onto the right track just before it seems that their back ends might break away.

Some observers warn that stability controls might lure some drivers into overconfidence in low-friction driving situations, though they are in the minority. It may, however, be necessary to instruct drivers as to how to use the new capability properly. Recall that drivers had to learn not to "pump" antilock brake systems.

Although little detail has been reported regarding next-generation active safety systems for future cars (beyond various types of costly radar proximity scanners and other similar systems), it is clear that accident-avoidance is the theme for automotive safety engineers. "The most survivable accident is the one that never happens," said

ITT's Graber. "Stability control technology dovetails nicely with the tremendous strides that have been made to the physical structure and overall capabilities of the automobile." The next such safety system is expected to do the same.

毕业设计外文翻译资料

外文出处: 《Exploiting Software How to Break Code》By Greg Hoglund, Gary McGraw Publisher : Addison Wesley Pub Date : February 17, 2004 ISBN : 0-201-78695-8 译文标题: JDBC接口技术 译文: JDBC是一种可用于执行SQL语句的JavaAPI(ApplicationProgrammingInterface应用程序设计接口)。它由一些Java语言编写的类和界面组成。JDBC为数据库应用开发人员、数据库前台工具开发人员提供了一种标准的应用程序设计接口,使开发人员可以用纯Java语言编写完整的数据库应用程序。 一、ODBC到JDBC的发展历程 说到JDBC,很容易让人联想到另一个十分熟悉的字眼“ODBC”。它们之间有没有联系呢?如果有,那么它们之间又是怎样的关系呢? ODBC是OpenDatabaseConnectivity的英文简写。它是一种用来在相关或不相关的数据库管理系统(DBMS)中存取数据的,用C语言实现的,标准应用程序数据接口。通过ODBCAPI,应用程序可以存取保存在多种不同数据库管理系统(DBMS)中的数据,而不论每个DBMS使用了何种数据存储格式和编程接口。 1.ODBC的结构模型 ODBC的结构包括四个主要部分:应用程序接口、驱动器管理器、数据库驱动器和数据源。应用程序接口:屏蔽不同的ODBC数据库驱动器之间函数调用的差别,为用户提供统一的SQL编程接口。 驱动器管理器:为应用程序装载数据库驱动器。 数据库驱动器:实现ODBC的函数调用,提供对特定数据源的SQL请求。如果需要,数据库驱动器将修改应用程序的请求,使得请求符合相关的DBMS所支持的文法。 数据源:由用户想要存取的数据以及与它相关的操作系统、DBMS和用于访问DBMS的网络平台组成。 虽然ODBC驱动器管理器的主要目的是加载数据库驱动器,以便ODBC函数调用,但是数据库驱动器本身也执行ODBC函数调用,并与数据库相互配合。因此当应用系统发出调用与数据源进行连接时,数据库驱动器能管理通信协议。当建立起与数据源的连接时,数据库驱动器便能处理应用系统向DBMS发出的请求,对分析或发自数据源的设计进行必要的翻译,并将结果返回给应用系统。 2.JDBC的诞生 自从Java语言于1995年5月正式公布以来,Java风靡全球。出现大量的用java语言编写的程序,其中也包括数据库应用程序。由于没有一个Java语言的API,编程人员不得不在Java程序中加入C语言的ODBC函数调用。这就使很多Java的优秀特性无法充分发挥,比如平台无关性、面向对象特性等。随着越来越多的编程人员对Java语言的日益喜爱,越来越多的公司在Java程序开发上投入的精力日益增加,对java语言接口的访问数据库的API 的要求越来越强烈。也由于ODBC的有其不足之处,比如它并不容易使用,没有面向对象的特性等等,SUN公司决定开发一Java语言为接口的数据库应用程序开发接口。在JDK1.x 版本中,JDBC只是一个可选部件,到了JDK1.1公布时,SQL类包(也就是JDBCAPI)

毕业论文设计转向系统设计

目录摘要2 第一章绪论3 1.1汽车转向系统概述3 1.2齿轮齿条式转向器概述9 1.3液压助力转向器概述10 1.4国内外发展情况12 1.5本课题研究的目的和意义12 1.6本文主要研究内容13 第二章汽车主要参数的选择14 2.1汽车主要尺寸的确定14 2.2汽车质量参数的确定16 2.3轮胎的选择17 第三章转向系设计概述18 3.1对转向系的要求18 3.2转向操纵机构18 3.3转向传动机构19 3.4转向器20 3.5转角及最小转弯半径20 第四章.转向系的主要性能参数22 4.1转向系的效率22 4.2传动比变化特性23 4.3转向器传动副的传动间隙△T25 4.4转向盘的总转动圈数26 第五章机械式转向器方案分析及设计26 5.1齿轮齿条式转向器26 5.2其他转向器28 5.3齿轮齿条式转向器布置和结构形式的选择29 5.4数据的确定29 5.5设计计算过程31 5.6齿轮轴的结构设计35 5.7轴承的选择35 5.8转向器的润滑方式和密封类型的选择35 5.动力转向机构设计36 5.1对动力转向机构的要求36 5.2动力转向机构布置方案36 5.3液压式动力转向机构的计算38 5.4动力转向的评价指标43

6. 转向传动机构设计45 6.1转向传动机构原理45 6.2转向传送机构的臂、杆与球销47 6.3转向横拉杆及其端部47 6.4杆件设计结果48 7.结论49 致谢49 摘要 本课题的题目是转向系的设计。以齿轮齿条转向器的设计为中心,一是汽车总体构架参数对汽车转向的影响;二是机械转向器的选择;三是齿轮和齿条的合理匹配,以满足转向器的正确传动比和强度要求;四是动力转向机构设计;五是梯形结构设计。因此本课题在考虑上述要求和因素的基础上研究利用转向盘的旋转带动传动机构的齿轮齿条转向轴转向,通过万向节带动转向齿轮轴旋转,转向齿轮轴与转向齿条啮合,从而促使转向齿条直线运动,实现转向。实现了转向器结构简单紧凑,轴向尺寸短,且零件数目少的优点又能增加助力,从而实现了汽车转向的稳定性和灵敏性。在本文中主要进行了转向器齿轮齿条的设计和对转向齿轮轴的校核,主要方法和理论采用汽车设计的经验参数和大学所学机械设计的课程内容进行设计,其结果满足强度要求,安全可靠。 关键词:转向系;机械型转向器;齿轮齿条;液压式助力转向器 Abstract The title of this topic is the design of steering system. Rack and pinion steering gear to the design as the center, one vehicle parameters on the overall framework of the impact of vehicle steering; Second, the choice of mechanical steering; third rack gear and a reasonable match to meet the correct steering gear ratio and strength requirements; Fourth, power steering mechanism design; Fifth, the structural design of trapezoidal. Therefore, taking into account the above issues and factors that require study, based on the steering wheel rotary drive transmission shaft of the steering rack and pinion steering, through the universal joint drive shaft rotation gear shift, steering rack and steering gear shaft meshing, thereby encouraging steering rack linear motion to achieve steering. Simple structure to achieve the steering tight, short axial dimension, and the number of parts can increase the advantages of less power in order to achieve the vehicle steering stability and sensitivity. In this article a major design steering rack and pinion steering gear shaft and the check, the main methods and theoretical experience in the use of automotive design parameters and the University of mechanical design school curriculum design and the results meet the strength

汽车专业毕业设计外文翻译

On the vehicle sideslip angle estimation through neural networks: Numerical and experimental results. S. Melzi,E. Sabbioni Mechanical Systems and Signal Processing 25 (2011):14~28 电脑估计车辆侧滑角的数值和实验结果 S.梅尔兹,E.赛博毕宁 机械系统和信号处理2011年第25期:14~28

摘要 将稳定控制系统应用于差动制动内/外轮胎是现在对客车车辆的标准(电子稳定系统ESP、直接偏航力矩控制DYC)。这些系统假设将两个偏航率(通常是衡量板)和侧滑角作为控制变量。不幸的是后者的具体数值只有通过非常昂贵却不适合用于普通车辆的设备才可以实现直接被测量,因此只能估计其数值。几个州的观察家最终将适应参数的参考车辆模型作为开发的目的。然而侧滑角的估计还是一个悬而未决的问题。为了避免有关参考模型参数识别/适应的问题,本文提出了分层神经网络方法估算侧滑角。横向加速度、偏航角速率、速度和引导角,都可以作为普通传感器的输入值。人脑中的神经网络的设计和定义的策略构成训练集通过数值模拟与七分布式光纤传感器的车辆模型都已经获得了。在各种路面上神经网络性能和稳定已经通过处理实验数据获得和相应的车辆和提到几个处理演习(一步引导、电源、双车道变化等)得以证实。结果通常显示估计和测量的侧滑角之间有良好的一致性。 1 介绍 稳定控制系统可以防止车辆的旋转和漂移。实际上,在轮胎和道路之间的物理极限的附着力下驾驶汽车是一个极其困难的任务。通常大部分司机不能处理这种情况和失去控制的车辆。最近,为了提高车辆安全,稳定控制系统(ESP[1,2]; DYC[3,4])介绍了通过将差动制动/驱动扭矩应用到内/外轮胎来试图控制偏航力矩的方法。 横摆力矩控制系统(DYC)是基于偏航角速率反馈进行控制的。在这种情况下,控制系统使车辆处于由司机转向输入和车辆速度控制的期望的偏航率[3,4]。然而为了确保稳定,防止特别是在低摩擦路面上的车辆侧滑角变得太大是必要的[1,2]。事实上由于非线性回旋力和轮胎滑移角之间的关系,转向角的变化几乎不改变偏航力矩。因此两个偏航率和侧滑角的实现需要一个有效的稳定控制系统[1,2]。不幸的是,能直接测量的侧滑角只能用特殊设备(光学传感器或GPS惯性传感器的组合),现在这种设备非常昂贵,不适合在普通汽车上实现。因此, 必须在实时测量的基础上进行侧滑角估计,具体是测量横向/纵向加速度、角速度、引导角度和车轮角速度来估计车辆速度。 在主要是基于状态观测器/卡尔曼滤波器(5、6)的文学资料里, 提出了几个侧滑角估计策略。因为国家观察员都基于一个参考车辆模型,他们只有准确已知模型参数的情况下,才可以提供一个令人满意的估计。根据这种观点,轮胎特性尤其关键取决于附着条件、温度、磨损等特点。 轮胎转弯刚度的提出就是为了克服这些困难,适应观察员能够提供一个同步估计的侧滑角和附着条件[7,8]。这种方法的弊端是一个更复杂的布局的估计量导致需要很高的计算工作量。 另一种方法可由代表神经网络由于其承受能力模型非线性系统,这样不需要一个参

汽车前轮转向机构课程设计

机械原理课程设计说明书题目:汽车前轮转向机构学院:车辆工程学院 姓名: 班级: 学号: 指导老师:

目录 1、背景...................................................................................................... .1 2、题目:汽车前轮转向机构 (3) 2.1设计题目 (3) 2.1.1转向机构简介 (3) 2.1.2 转向梯形 (4) 2.1.3计算机构自由度 (5) 2.1.4机构设计 (6) 2.1.5 数据设计..............................................................。. (8) 2.2设计要求 (8) 3、设计内容 (9) 3.1 求转角 (9) 3.2 解析法设计机构 (9) 3.3 解析法检验 (11) 4. 设计结构分析 (12) 4.1 四种类型梯形结构的选择 (12) 5、转向梯形机构优化 (14) 5.1 计算机构自由度 (15) 5.2 运动分析 (15) 5.3机构设计方法 (16) 6、课程设计总结 (17)

1、背景 在汽车行业迅速发展的今天,汽车前轮定位参数的确定仍然是困扰汽车企业设计的难题,。汽车前轮定位参数是汽车的重要性能参数,前轮定位参数的设计是否合理,将直接影响到车辆的很多重要性能,从而影响到整车的优劣。例如注销后倾角和内倾角将直接影响到车辆的回正性、直线行驶稳定性和高速制动时方向稳定性、转向轻便性;前轮的外倾角和前束值的合理匹配将直接影响到前轮的策划和异常磨耗,同时也间接地影响车辆的动力性和燃油的经济性。后倾角和前束值设计的是否合理还将影响这届影响到前轮的摆振,导致车辆操纵稳定性变坏,增加了有关零件载荷,从而降低行驶安全性和可靠性,摆振严重时会影响到车辆的行驶平顺性和安全性。因此,如果前轮定位参数不合理,就会大大降低汽车使用性能,但由于前轮定位参数的确定必须考虑多种因素的影响,而且前轮定位各参数对汽车使用性能的影响不是完全独立的,这给前轮定位参数的确定增加了困难。 汽车的转向传递机构的主要作用就是使用汽车在转向时期内、外轮具有正确的转角关系,它对汽车轮胎的磨损、转向半径和转向力都有重要的影响。汽车在转向时,由于主销后倾角、主销内倾角的存在,导致转向系统的运动并不是在一个平面内,这增加了转向的难度。而一般货车和拖拉机的转向机构是使用整体式的专项梯形机构进行传递。传统的整体式转向机构分析采用近似的平面运动分析方法,而实际上转向梯形的运动并不是在一个平面内。这样就必然存在着误差。

软件开发概念和设计方法大学毕业论文外文文献翻译及原文

毕业设计(论文)外文文献翻译 文献、资料中文题目:软件开发概念和设计方法文献、资料英文题目: 文献、资料来源: 文献、资料发表(出版)日期: 院(部): 专业: 班级: 姓名: 学号: 指导教师: 翻译日期: 2017.02.14

外文资料原文 Software Development Concepts and Design Methodologies During the 1960s, ma inframes and higher level programming languages were applied to man y problems including human resource s yste ms,reservation s yste ms, and manufacturing s yste ms. Computers and software were seen as the cure all for man y bu siness issues were some times applied blindly. S yste ms sometimes failed to solve the problem for which the y were designed for man y reasons including: ?Inability to sufficiently understand complex problems ?Not sufficiently taking into account end-u ser needs, the organizational environ ment, and performance tradeoffs ?Inability to accurately estimate development time and operational costs ?Lack of framework for consistent and regular customer communications At this time, the concept of structured programming, top-down design, stepwise refinement,and modularity e merged. Structured programming is still the most dominant approach to software engineering and is still evo lving. These failures led to the concept of "software engineering" based upon the idea that an engineering-like discipl ine could be applied to software design and develop ment. Software design is a process where the software designer applies techniques and principles to produce a conceptual model that de scribes and defines a solution to a problem. In the beginning, this des ign process has not been well structured and the model does not alwa ys accurately represent the problem of software development. However,design methodologies have been evolving to accommo date changes in technolog y coupled with our increased understanding of development processes. Whereas early desig n methods addressed specific aspects of the

毕业设计外文翻译附原文

外文翻译 专业机械设计制造及其自动化学生姓名刘链柱 班级机制111 学号1110101102 指导教师葛友华

外文资料名称: Design and performance evaluation of vacuum cleaners using cyclone technology 外文资料出处:Korean J. Chem. Eng., 23(6), (用外文写) 925-930 (2006) 附件: 1.外文资料翻译译文 2.外文原文

应用旋风技术真空吸尘器的设计和性能介绍 吉尔泰金,洪城铱昌,宰瑾李, 刘链柱译 摘要:旋风型分离器技术用于真空吸尘器 - 轴向进流旋风和切向进气道流旋风有效地收集粉尘和降低压力降已被实验研究。优化设计等因素作为集尘效率,压降,并切成尺寸被粒度对应于分级收集的50%的效率进行了研究。颗粒切成大小降低入口面积,体直径,减小涡取景器直径的旋风。切向入口的双流量气旋具有良好的性能考虑的350毫米汞柱的低压降和为1.5μm的质量中位直径在1米3的流量的截止尺寸。一使用切向入口的双流量旋风吸尘器示出了势是一种有效的方法,用于收集在家庭中产生的粉尘。 摘要及关键词:吸尘器; 粉尘; 旋风分离器 引言 我们这个时代的很大一部分都花在了房子,工作场所,或其他建筑,因此,室内空间应该是既舒适情绪和卫生。但室内空气中含有超过室外空气因气密性的二次污染物,毒物,食品气味。这是通过使用产生在建筑中的新材料和设备。真空吸尘器为代表的家电去除有害物质从地板到地毯所用的商用真空吸尘器房子由纸过滤,预过滤器和排气过滤器通过洁净的空气排放到大气中。虽然真空吸尘器是方便在使用中,吸入压力下降说唱空转成比例地清洗的时间,以及纸过滤器也应定期更换,由于压力下降,气味和细菌通过纸过滤器内的残留粉尘。 图1示出了大气气溶胶的粒度分布通常是双峰形,在粗颗粒(>2.0微米)模式为主要的外部来源,如风吹尘,海盐喷雾,火山,从工厂直接排放和车辆废气排放,以及那些在细颗粒模式包括燃烧或光化学反应。表1显示模式,典型的大气航空的直径和质量浓度溶胶被许多研究者测量。精细模式在0.18?0.36 在5.7到25微米尺寸范围微米尺寸范围。质量浓度为2?205微克,可直接在大气气溶胶和 3.85至36.3μg/m3柴油气溶胶。

公路毕业设计文献综述

本科生毕业论文(设计)题目文献综述文献综述随着改革开放的深入,交通运输在生活中的作用越来越明显,高速公路的建设成为了国民建设中的一个重大问题。由于高速公路具有汽车专用,分隔行驶,全部立交,控制出入以及高标准,高要求,设备功能完善等功能,与一般公路相比具有很多优点,所以具有很强的实用性。目前,我国高等级公路建设正处在“质”与“量”并重的重要发展阶段。从大陆第一条高速公路——沪嘉高速开始,中国大陆高速公路建设进入了一个崭新的时期。高速公路在二十多年间展现出了巨大的优越性,在以建成的高速公路沿线及腹地迅速兴起了工业企业建设的热【1】潮,地价增值,地方税收增加,投资环境发生巨大变化。目前我国的高速公路主要分布在东南沿海,我国的沿海地带,大部分是淤泥质海岸。因此,沿海特别是大江大河河口附近多为河相、海相或泻湖相沉积层,在地质上属于第四纪全新纪Q4 土层,多属于【2】东南海岸土的类别多为淤泥,淤泥质亚黏饱和的正常压密黏土。土。这类地基的主要特点是:具有高含水量、大孔隙、低密度、低强度、高压缩性、低透水性、中等灵敏度等特点;具有一定的结构性。由于这类地基存在这些特点,在软粘土地基上建造建筑物普遍存在稳定及变形的问题。以高速为例,由于高速的路堤高度不大,所以稳定问题并不突出,但是变形问题很明显。目前高速桥头跳车以及高填方段、填挖结合部等位置因地基差异沉降对路面结构造成的不良影响已引起公路建设、设计、监理、施工等部门的日益重视。如何解决高等级公路桥头跳车问题已成为刻不容缓的大事。造成桥头跳车的原因【3】有很多:1、土质不良引起的地基沉陷:土质不良,由此产生沉陷是桥头跳车的主要原因。桥涵通常位于沟壑地方,地下水位较高,此类土天然含水量大于液限,天然孔隙比大,常含有机质,压缩性高,抗剪强度低,一旦受到扰动,天然结构易受破坏,强度便显著降低,桥头路基填筑高度较大,产生基底应力相对较大,在车辆荷载作用下,更容易引起地基沉陷,且变形稳定历时往往持续数年乃至更长的时间。既便是在一些稳定地基,在外荷作用下,也无可避免出现这个问题。2、台后填料的压缩沉降:台后填料一

汽车电动助力转向机构的设计

汽车电动助力转向机构的设计 引言 在汽车的发展历程中,转向系统经历了四个发展阶段:从最初的机械式转向系统(Manual Steering,简称MS)发展为液压助力转向系统(Hydraulic Power Steering,简称HPS),然后又出现了电控液压助力转向系统(Electro Hydraulic Power Steering,简称EHPS)和电动助力转向系统(Electric Power Steering,简称EPS)。 装配机械式转向系统的汽车,在泊车和低速行驶时驾驶员操纵负担过于沉重,为了解决这个问题,美国GM公司在20世纪50年代率先在轿车上采用了液压助力转向系统[1]。但是,液压助力转向系统无法兼顾车辆低速时的转向轻便性和高速时的转向稳定性,因此在1983年日本koyo公司推出了具备车速感应功能的电控液压助力转向系统。这种新型的转向系统可以随着车速的升高提供逐渐减小的转向助力,但是结构复杂、造价较高,而且无法克服液压系统自身所具有的许多缺点,是一种介于液压助力转向和电动助力转向之间的过渡产品。到了1988年,日本Suzuki公司首先在小型轿车Cervo上配备了Koyo公司研发的转向柱助力式电动助力转向系统;1990年,日本Honda公司也在运动型轿车NSX上采用了自主研发的齿条助力式电动助力转向系统,从此揭开了电动助力转向在汽车上应用的历史。

第1章概述 1.1电动助力转向的优点 与传统的转向系统相比,电动助力转向系统最大的特点就是极高的可控制性,即通过适当的控制逻辑,调整电机的助力特性,以达到改善操纵稳定性和驾驶舒适性的目的。作为今后汽车转向系统的发展方向,必将取代现有的机械转向系统、液压助力转向系统和电控制液压助力转向系统[2]。 相比传统液压动力转向系统,电动助力转向系统具有以下优点: (1)只在转向时电机才提供助力,可以显著降低燃油消耗 传统的液压助力转向系统有发动机带动转向油泵,不管转向或者不转向都要消耗发动机部分动力。而电动助力转向系统只是在转向时才由电机提供助力,不转向时不消耗能量。因此,电动助力转向系统可以降低车辆的燃油消耗。 与液压助力转向系统对比试验表明:在不转向时,电动助力转向可以降低燃油消耗2.5%;在转向时,可以降低5.5%。 (2)转向助力大小可以通过软件调整,能够兼顾低速时的转向轻便性和高速时的操纵稳定性,回正性能好。传统的液压助力转向系统所提供的转向助力大小不能随车速的提高而改变。这样就使得车辆虽然在低速时具有良好的转向轻便性,但是在高速行驶时转向盘太轻,产生转向“发飘”的现象,驾驶员缺少显著的“路感”,降低了高速行驶时的车辆稳定性和驾驶员的安全感。 电动助力转向系统提供的助力大小可以通过软件方便的调整。在低速时,电动助力转向系统可以提供较大的转向助力,提供车辆的转向轻便性;随着车速的提高,电动助力转向系统提供的转向助力可以逐渐减小,转向时驾驶员所需提供的转向力将逐渐增大,这样驾驶员就感受到明显的“路感”,提高了车辆稳定性。

本科毕业设计方案外文翻译范本

I / 11 本科毕业设计外文翻译 <2018届) 论文题目基于WEB 的J2EE 的信息系统的方法研究 作者姓名[单击此处输入姓名] 指导教师[单击此处输入姓名] 学科(专业 > 所在学院计算机科学与技术学院 提交日期[时间 ]

基于WEB的J2EE的信息系统的方法研究 摘要:本文介绍基于工程的Java开发框架背后的概念,并介绍它如何用于IT 工程开发。因为有许多相同设计和开发工作在不同的方式下重复,而且并不总是符合最佳实践,所以许多开发框架建立了。我们已经定义了共同关注的问题和应用模式,代表有效解决办法的工具。开发框架提供:<1)从用户界面到数据集成的应用程序开发堆栈;<2)一个架构,基本环境及他们的相关技术,这些技术用来使用其他一些框架。架构定义了一个开发方法,其目的是协助客户开发工程。 关键词:J2EE 框架WEB开发 一、引言 软件工具包用来进行复杂的空间动态系统的非线性分析越来越多地使用基于Web的网络平台,以实现他们的用户界面,科学分析,分布仿真结果和科学家之间的信息交流。对于许多应用系统基于Web访问的非线性分析模拟软件成为一个重要组成部分。网络硬件和软件方面的密集技术变革[1]提供了比过去更多的自由选择机会[2]。因此,WEB平台的合理选择和发展对整个地区的非线性分析及其众多的应用程序具有越来越重要的意义。现阶段的WEB发展的特点是出现了大量的开源框架。框架将Web开发提到一个更高的水平,使基本功能的重复使用成为可能和从而提高了开发的生产力。 在某些情况下,开源框架没有提供常见问题的一个解决方案。出于这个原因,开发在开源框架的基础上建立自己的工程发展框架。本文旨在描述是一个基于Java的框架,该框架利用了开源框架并有助于开发基于Web的应用。通过分析现有的开源框架,本文提出了新的架构,基本环境及他们用来提高和利用其他一些框架的相关技术。架构定义了自己开发方法,其目的是协助客户开发和事例工程。 应用程序设计应该关注在工程中的重复利用。即使有独特的功能要求,也

汽车转向器毕业设计

汽车转向器毕业设计 【篇一:毕业设计汽车转向系统】 摘要 本设计课题为汽车前轮转向系统的设计,课题以机械式转向系统的齿轮齿条式转向器设计及校核、整体式转向梯形机构的设计及验算 为中心。首先对汽车转向系进行概述,二是作设计前期数据准备, 三是转向器形式的选择以及初定各个参数,四是对齿轮齿条式转向 器的主要部件进行受力分析与数据校核,五是对整体式转向梯形机 构的设计以及验算,并根据梯形数据对转向传动机构作尺寸设计。在转向梯形机构设计方面。运用了优化计算工具matlab进行设计 及验算。matlab强大的计算功能以及简单的程序语法,使设计在参数变更时得到快捷而可靠的数据分析和直观的二维曲线图。最后设 计中运用autocad和catia作出齿轮齿条式转向器的零件图以及装配图。 关键词:转向机构,齿轮齿条,整体式转向梯形,matlab梯形abstract the title of this topic is the design of steering system. rack and pinion steering of mechanical steering system and integrated steering trapezoid mechanism gear to the design as the center. firstly make an overview of the steering system. secondly take a preparation of the data of the design. thirdly, make a choice of the steering form and determine the primary parameters and design the structure of rack and pinion steering. fourthly, stress analysis and data checking of the rack and pinion steering. fifthly, design of steering trapezoid mechanism, according to the trapezoidal data make an analysis and design of steering linkage. in the design of integrated steering trapezoid mechanism the computational tools matlab had been used to design and checking of the data. the powerful computing and intuitive charts of the matlab can give us accurate and quickly data. in the end autocad and catia were used to make a rack and pinion steering parts diagrams and assembly drawings keywords: steering system,mechanical type steering gear and gear rack, integrated steering trapezoid,matlab trapezoid

毕业设计外文翻译

毕业设计(论文) 外文翻译 题目西安市水源工程中的 水电站设计 专业水利水电工程 班级 学生 指导教师 2016年

研究钢弧形闸门的动态稳定性 牛志国 河海大学水利水电工程学院,中国南京,邮编210098 nzg_197901@https://www.wendangku.net/doc/a515901455.html,,niuzhiguo@https://www.wendangku.net/doc/a515901455.html, 李同春 河海大学水利水电工程学院,中国南京,邮编210098 ltchhu@https://www.wendangku.net/doc/a515901455.html, 摘要 由于钢弧形闸门的结构特征和弹力,调查对参数共振的弧形闸门的臂一直是研究领域的热点话题弧形弧形闸门的动力稳定性。在这个论文中,简化空间框架作为分析模型,根据弹性体薄壁结构的扰动方程和梁单元模型和薄壁结构的梁单元模型,动态不稳定区域的弧形闸门可以通过有限元的方法,应用有限元的方法计算动态不稳定性的主要区域的弧形弧形闸门工作。此外,结合物理和数值模型,对识别新方法的参数共振钢弧形闸门提出了调查,本文不仅是重要的改进弧形闸门的参数振动的计算方法,但也为进一步研究弧形弧形闸门结构的动态稳定性打下了坚实的基础。 简介 低举升力,没有门槽,好流型,和操作方便等优点,使钢弧形闸门已经广泛应用于水工建筑物。弧形闸门的结构特点是液压完全作用于弧形闸门,通过门叶和主大梁,所以弧形闸门臂是主要的组件确保弧形闸门安全操作。如果周期性轴向载荷作用于手臂,手臂的不稳定是在一定条件下可能发生。调查指出:在弧形闸门的20次事故中,除了极特殊的破坏情况下,弧形闸门的破坏的原因是弧形闸门臂的不稳定;此外,明显的动态作用下发生破坏。例如:张山闸,位于中国的江苏省,包括36个弧形闸门。当一个弧形闸门打开放水时,门被破坏了,而其他弧形闸门则关闭,受到静态静水压力仍然是一样的,很明显,一个动态的加载是造成的弧形闸门破坏一个主要因素。因此弧形闸门臂的动态不稳定是造成弧形闸门(特别是低水头的弧形闸门)破坏的主要原是毫无疑问。

现代汽车的全液压式转向机构设计参考文本

现代汽车的全液压式转向机构设计参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

现代汽车的全液压式转向机构设计参考 文本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 控制汽车行驶方向的转向系统与汽车的操纵稳定性最 为密切,而车的转向系是用来改变或保持汽车行驶方向的 装置,由转向控制机构、转向传动装置、转向轮和专用机 构组成。为了提高转向性能,当前现代汽车的全液压式转 向机构应用比较多。本文首先概述了现代汽车转向机构的 设计要求,分析了全液压式转向机构的结构与工作特性, 验证了现代汽车的全液压式转向机构的助力特性,通过稳 态回转试验探讨了现代汽车的全液压式转向机构的价值。 汽车的操纵稳定性不仅影响到汽车驾驶的操纵方便程 度,而且也是决定高速汽车安全行驶的一个主要性能。而 其中的汽车转向性能是汽车的主要性能之一,它直接影响

到汽车的操纵稳定性,对于确保车辆的安全行驶起着重要的作用。动力转向机是利用外部动力协助司机轻便操作转向盘的装置,随着最近汽车发动机马力的增大和扁平轮胎的普遍使用,使车重和转向阻力都加大了,需要涉及合理的转向机构。液压助力转向系统是最早采用的助力转向系统的形式,电子技术、电气技术及新的控制策略的应用使得转向系统发生了革命性的变化,助力转向系统由传统的液压助力转向系统向电控液压助力转向系统、电动液压助力转向系统、电动助力转向系统发展,但是液压系统也仍然具有很好的应用价值。本文具体探讨了现代汽车的全液压式转向机构设计,现报告如下。 现代汽车转向机构的设计要求 汽车转向系统可以分为无助力转向系统和有助力转向系统。随着科技发展和新技术的采用,有助力转向系统逐渐由传统的液压助力转向系统(HPS)向电动液压助力转向系

本科毕业设计外文翻译

Section 3 Design philosophy, design method and earth pressures 3.1 Design philosophy 3.1.1 General The design of earth retaining structures requires consideration of the interaction between the ground and the structure. It requires the performance of two sets of calculations: 1)a set of equilibrium calculations to determine the overall proportions and the geometry of the structure necessary to achieve equilibrium under the relevant earth pressures and forces; 2)structural design calculations to determine the size and properties of thestructural sections necessary to resist the bending moments and shear forces determined from the equilibrium calculations. Both sets of calculations are carried out for specific design situations (see 3.2.2) in accordance with the principles of limit state design. The selected design situations should be sufficiently Severe and varied so as to encompass all reasonable conditions which can be foreseen during the period of construction and the life of the retaining wall. 3.1.2 Limit state design This code of practice adopts the philosophy of limit state design. This philosophy does not impose upon the designer any special requirements as to the manner in which the safety and stability of the retaining wall may be achieved, whether by overall factors of safety, or partial factors of safety, or by other measures. Limit states (see 1.3.13) are classified into: a) ultimate limit states (see 3.1.3); b) serviceability limit states (see 3.1.4). Typical ultimate limit states are depicted in figure 3. Rupture states which are reached before collapse occurs are, for simplicity, also classified and

车辆工程毕业设计81轿车前轮主动转向系统机械结构设计

第1章绪论 主动转向系统保留了传统转向系统中的机械构件,包括转向盘、转向柱、齿轮齿条转向机以及转向横拉杆等。其最大特点就是在转向盘和齿轮齿条转向机之间的转向柱上集成了一套双行星齿轮机构,用于向转向轮提供叠加转向角。主动转向系统通过一组双行星齿轮机构实现了独立于驾驶员的转向叠加功能,完美地解决了低速时转向灵活轻便与高速时保持方向稳定性的矛盾,并在此基础上通过转向干预来防止极限工况下车辆转向过多的趋势,进一步提高了车辆的稳定性。同时,该系统能方便地与其他动力学控制系统进行集成控制,为今后汽车底盘一体化控制奠定了良好的基础。 与常规转向系统的显著差别在于,主动转向系统不仅能够对转向力矩进行调节,而且还可以对转向角度进行调整,使其与当前的车速达到完美匹配。其中的总转角等于驾驶员转向盘转角和伺服电机转角之和。低速时,伺服电机驱动的行星架转动方向与转向盘转动相同,叠加后增加了实际的转向角度,可以减少转向力的需求。高速时,伺服电机驱动的行星架转动方向与转向盘转动相反,叠加后减少了实际的转向角度,转向过程会变得更为间接,提高了汽车的稳定性和安全性。 1.1转向系统综述 1、蜗杆曲柄销式转向器 它是以蜗杆为主动件,曲柄销为从动件的转向器。蜗杆具有梯形螺纹,手指状的锥形指销用轴承支承在曲柄上,曲柄与转向摇臂轴制成一体。转向时,通过转向盘转动蜗杆、嵌于蜗杆螺旋槽中的锥形指销一边自转,一边绕转向摇臂轴做圆弧运动,从而带动曲柄和转向垂臂摆动,再通过转向传动机构使转向轮偏转。这种转向器通常用于转向力较大的载货汽车上。 2、循环球式转向器 循环球式:这种转向装置是由齿轮机构将来自转向盘的旋转力进行减速,使转向盘的旋转运动变为涡轮蜗杆的旋转运动,滚珠螺杆和螺母夹着钢球啮合,因而滚珠螺杆的旋转运动变为直线运动,螺母再与扇形齿轮啮合,直线运动再次变为旋转运动,使连杆臂摇动,连杆臂再使连动拉杆和横拉杆做直线运动,改变车轮的方向。这是一种古典的机构,现代轿车已大多不再使用,但又被最新方式的助力转向装置所应用。它的原理相当于利用了螺母与螺栓在旋转过程中产生的相对移动,而在螺纹与螺纹之间夹入了钢球以减小阻力,所有钢球在一个首尾相连的封闭的螺旋曲线

毕业设计外文翻译

毕业设计(论文) 外文文献翻译 题目:A new constructing auxiliary function method for global optimization 学院: 专业名称: 学号: 学生姓名: 指导教师: 2014年2月14日

一个新的辅助函数的构造方法的全局优化 Jiang-She Zhang,Yong-Jun Wang https://www.wendangku.net/doc/a515901455.html,/10.1016/j.mcm.2007.08.007 非线性函数优化问题中具有许多局部极小,在他们的搜索空间中的应用,如工程设计,分子生物学是广泛的,和神经网络训练.虽然现有的传统的方法,如最速下降方法,牛顿法,拟牛顿方法,信赖域方法,共轭梯度法,收敛迅速,可以找到解决方案,为高精度的连续可微函数,这在很大程度上依赖于初始点和最终的全局解的质量很难保证.在全局优化中存在的困难阻碍了许多学科的进一步发展.因此,全局优化通常成为一个具有挑战性的计算任务的研究. 一般来说,设计一个全局优化算法是由两个原因造成的困难:一是如何确定所得到的最小是全球性的(当时全球最小的是事先不知道),和其他的是,如何从中获得一个更好的最小跳.对第一个问题,一个停止规则称为贝叶斯终止条件已被报道.许多最近提出的算法的目标是在处理第二个问题.一般来说,这些方法可以被类?主要分两大类,即:(一)确定的方法,及(ii)的随机方法.随机的方法是基于生物或统计物理学,它跳到当地的最低使用基于概率的方法.这些方法包括遗传算法(GA),模拟退火法(SA)和粒子群优化算法(PSO).虽然这些方法有其用途,它们往往收敛速度慢和寻找更高精度的解决方案是耗费时间.他们更容易实现和解决组合优化问题.然而,确定性方法如填充函数法,盾构法,等,收敛迅速,具有较高的精度,通常可以找到一个解决方案.这些方法往往依赖于修改目标函数的函数“少”或“低”局部极小,比原来的目标函数,并设计算法来减少该?ED功能逃离局部极小更好的发现. 引用确定性算法中,扩散方程法,有效能量的方法,和积分变换方法近似的原始目标函数的粗结构由一组平滑函数的极小的“少”.这些方法通过修改目标函数的原始目标函数的积分.这样的集成是实现太贵,和辅助功能的最终解决必须追溯到

相关文档
相关文档 最新文档