文档库 最新最全的文档下载
当前位置:文档库 › 基于STM32F103的恒温系统的设计.docx

基于STM32F103的恒温系统的设计.docx

基于STM32F103的恒温系统的设计.docx
基于STM32F103的恒温系统的设计.docx

.

中国矿业大学计算机学院2013级本科生课程报告

课程名称信科专业综合实践

报告时间2016.09.20

学生姓名张谊坤

学号08133367

专业电子信息科学与技术

任课教师王凯

任课教师评语

任课教师评语(①对课程基础理论的掌握;②对课程知识应用能力的评价;③对课程报告相关实验、作品、软件等成果的评价;④课程学习态度和上课纪律;⑤课程成果和报告工作量;⑥总体评价和成绩;⑦存在问题等):

成绩:任课教师签字:

年月日

摘要

针对目前温度控制在生产生活中被广泛应用,而传统的温度控制系统是由功能繁杂的大量分离器件构成,为了节约成本、提高系统的可靠性,本文设计了一种基于

STM32F103T6 的温度控制系统。本设计是基于 DS18B20 的温度控制系统,以STM32F103ZET6 为控制系统核心,通过嵌入式系统设计实现对温度的显示和控制功能。

在该系统中,为了减小干扰的影响,用均值滤波算法对采样数据进行处理之后再进行温度

判定等一系列操作的依据。设计中,基本上实现了该系统的功能,通过 DS18B20 采集温度数据,使用 LCD 屏幕来显示相关的信息,能够通过加热和降温将温度控制在恒定的范围内,并可以手动设置恒温范围,温度超出限制后会有声光报警。

关键词: STM32F103,均值滤波,恒温控制,DS18B20

.

目录

1 绪论.................................................................................................................................................................................

1.1 选题的背景及意义 (1)

1.2 设计思想.................................................................................................................................................................

1.3 实现的功能 (2)

2 硬件设计........................................................................................................................................................................

2.1 硬件平台.................................................................................................................................................................

2.2 硬件设计模块图 (3)

2.3 温度传感器DS18B20 (4)

2.4 LCD 屏幕 (8)

2.5 DC 5V 散热风扇 (10)

2.6 加热片 (10)

3 软件设计 (11)

3.1 软件平台 (11)

3.2 软件设计模块图 (12)

3.3 主程序流程图 (12)

3.4 子程序流程图 (14)

3.4.1 恒温控制子程序流程图 (14)

3.4.2 flag 标志设置子程序流程图 (15)

3.4.3 温度设置子程序流程图 (16)

3.4.4 温度读取函数流程图 (17)

3.4.5 均值滤波程序流程图 (18)

3.4.6 显示函数程序流程图 (19)

4 调试分析 (19)

4.1 硬件调试 (20)

4.2 软件测试 (20)

4.3 功能实现分析 (21)

5 实验总结 (21)

参考文献 (23)

.

1绪论

1.1 选题的背景及意义

21世纪是科学技术高速发展的信息时代,电子技术、嵌入式技术的应用已经是非常广泛,伴随着科学技术和生产的不断发展,在生产生活中需要对各种参数进行温度

测量。因此温度一词在生产生活之中出现的频率日益增多,与之相对应的,温度控制和测量也成为了生活生产中频繁使用技术,同时它们在各行各业中也发挥着非常重要的

作用。如在日趋发达的工业领域之中,利用测量与控制温度来保证生产的正常运行;

在农业生产中,用于保证蔬菜大棚的恒温保产等;在科学研究中,往往也需要一个恒温的环境作为实验的保障。

温度值是表征物体冷热程度的一个物理量,温度的测量则是工农和业生产过程中一个很重要也普遍的参数。温度的测量及控制对保证产品的质量、提高生产的效率、

节约能源、安全生产、促进经济的发展起到非常重要的作用。因为温度测量的普遍性,使得温度传感器的数量在各种传感器中居首。并且随着科学技术与生产的不断发展,

温度传感器的种类仍然在不断增加和丰富以来满足生产生活中的各种需要。

在嵌入式温度控制系统中的关键是温度的测量、温度的控制和温度的保持,温度是工业控制对象中主要的被控参数之一。因此,嵌入式要对温度的测量则是对温度进行

有效及准确的测量,并且能够在工业生产中得广泛的应用,尤其在机械制造、电力工程化工生产、冶金工业等重要工业领域中,担负着重要的测量任务。在日常工作和生活中,也被广泛应用于空调器、电加热器等各种室温测量及工业设备的温度测量。但温度是一个模拟量,需要采用适当的技术和元件,将模拟的温度量转化为数字量,才生使用计算机进行相应的处理。

1.2 设计思想

恒温系统应用于各种工业或者民用领域,如何精确地控制温度成为一个非常重要的研究

问题。本系统需要利用 STM32 来控制各器件的工作情况,使传感器维持在一个固定的温度

上。

本文所研究的课题是基于嵌入式的恒温控制系统设计,实现了温度的实时监测与控

制。温度控制部分,提出了用 DS18B20、STM32 F103ZET6和 LCD 的硬件电路完成对室温

的实时检测及显示,利用 DS18B20 与嵌入式系统连接由软件与硬件电路配合来实现对加热

片和散热风扇的实时控制。从 DS18B20 读出或写入 DS18S20 信息仅需要一根口线,

其读写及其温度变换功率来源于数据线,该总线本身也可以向所挂接的 DS18B20 提供电源,

不需要额外电源。同时 DS18S20 能提供九位温度精度,它无需任何外围硬件便可方便地构成

温度检测系统。加热片通过带有继电器的电路驱动,由嵌入式开发板的一根口线控制并供电,

仅需要一根口线,由开发板供电,不需要外加电源。而且本次的设计主要实现温度监测,

超温报警,温度控制,超过设定的门限值时自动启动加热和散热装置等功能。而且还要以STM32 开发板为主机,使温度传感器通过一根口线与嵌入式开发板相连接,再加上温度

控制部分和人机交互部分来共同实现温度的监测与控制。

1.3 实现的功能

(1)能够连续测量环境的温度值,用 LCD 屏幕来显示环境的实际温度。

(2)能够设定恒温的温度范围,初始范围是 30℃~ 33℃。

(3)能够实现温度自动控制,如果设定温度在 30℃~ 33℃,则能使温度保持恒定在30℃~ 33℃。

(4)使用嵌入式 STM32 F103ZET6控制,通过输入按键来控制恒温范围的设定值,

数值采用 LCD 屏幕显示。

(5)温度超出范围时能够实现声光报警: LED灯和数码管闪烁,蜂鸣器报警。

2硬件设计

2.1 硬件平台

本次设计的硬件平台选用的是STM32 系列的 F103ZET6 嵌入式开发板。 STM 芯片根据容量分为三大类: LD(小于 64K),MD(小于 256K),HD(大于 256K),STM32F103ZET6类属第三类。具有如下特点:

1.基于 ARM Cortex-M3 核心的 32 位微控制器 ,LQFP-144 封装 .

2.512K 片内 FLASH(相当于硬盘) ,64K 片内 RAM(相当于内存),片内 FLASH 支持在线编程 (IAP).

3.高达72M 的频率 ,数据 ,指令分别走不同的流水线,以确保CPU 运行速度达到最大化.

4.通过片内 BOOT 区,可实现串口下载程序 (ISP).

5.片内双 RC 晶振 ,提供 8M 和 32K 的频率 .

6.支持片外高速晶振(8M),和片外低速晶振 (32K).其中片外低速晶振可用于CPU 的实

时时钟 ,带后备电源引脚 ,用于掉电后的时钟行走 .

7.42 个 16 位的后备寄存器 (可以理解为电池保存的RAM),利用外置的纽扣电池 ,和实现掉电数据保存功能 .

8.支持 JTAG,SWD调试 .配合廉价的 J-LINK,实现高速低成本的开发调试方案.

9.多达 80 个 IO(大部分兼容 5V 逻辑 ),4 个通用定时器 ,2 个高级定时器 ,2 个基本定时器 ,3路SPI 接口 ,2 路 I2S 接口 ,2 路 I2C 接口 ,5 路 USART,一个 USB 从设备接口 ,一个 CAN 接口 ,SDIO 接口 ,可兼容 SRAM,NOR 和 NAND Flash 接口的 16 位总线 -FSMC.

10.3 路共 16 通道的 12 位 AD 输入 ,2 路共 2 通道的 12 位 DA 输出 .支持片外独立电压

基准 .

11.CPU 操作电压范围 :2.0-3.6V.

2.2 硬件设计模块图

设计整体模块如图 2-1所示:

风扇

DS18B20 温度制

传感器模块模温

块度

加热片

键盘模块

STM32CPU块警LED灯

LCD模块报

模蜂鸣器

图 2-1 设计模块图

如图所示,本次设计共有五大模块:DS18B20 温度传感器模块、键盘模块、LCD 显示模块、温度控制模块以及警报模块构成;其中温度控制模块又有小风扇和加热片

DS18B20 温度传感器模块: DS18B20 为温度传感器,主要作用是温度采集。

键盘模块:键盘模块共包含三个按键:K_LEFT、K_UP 和 K_DOWN,其中, K_LEFT 主要是实现Flag 标志的更新,实现程序中不同模块的转换,详见下面的程序流图,

K_UP和 K_DOWN 两按键主要是实现最低温度和最高温度的设置。

LCD 显示模块:实现温度的显示。

温度控制模块:实现恒温控制,允许温度在设定的一定范围内变化,温度过低时加热片启动升温,温度过高时小风扇启动降温。

警报模块:警报模块主要是在温度超出正常范围时发出警报信息,实现声光报警,主要为 LED和数码管闪烁和蜂鸣器发声。

2.3 温度传感器 DS18B20

DS18B20 是常用的温度传感器,具有体积小,硬件开销低,抗干扰能力强,精度高的特点。

工作原理:

DS18B20 的读写时序和测温原理与DS1820 相同,只是得到的温度值的位数因分辨率不同而不同,且温度转换时的延时时间由2s 减为 750ms。

DS18B20 测温原理如图 2-2 所示。

图中低温度系数晶振的振荡频率受温度影响很小,用于产生固定频率的脉冲信号送给计数器 1。高温度系数晶振随温度变化其振荡率明显改变,所产生的信号作为计

数器 2 的脉冲输入。计数器 1 和温度寄存器被预置在 -55 ℃所对应的一个基数值。计数器 1 对低温度系数晶振产生的脉冲信号进行减法计数,当计数器 1 的预置值减到 0时,温度寄存器的值将加1,计数器 1 的预置将重新被装入,计数器 1 重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到计数器 2 计数到 0 时,停止温

.

度寄存器值的累加,此时温度寄存器中的数值即为所测温度。斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正计数器 1 的预置值。

预置斜率累加器

比较

LSB

低温系数晶振计数器 1

置位 / 清除

预置

加 1

=0温度寄存器

高温系数晶振计数器 2

停止

=0

图 2-2 DS18B20 测温原理图

DS18B20 的主要特性:

(1)适应电压范围更宽,电压范围: 3.0~ 5.5V,在寄生电源方式下可由数据线供电(2)独特的单线接口方式,DS18B20 在与微处理器连接时仅需要一条口线即可实现

微处理器与 DS18B20 的双向通讯

(3) DS18B20 支持多点组网功能,多个DS18B20 可以并联在唯一的三线上,实现组网多点测温

(4)DS18B20 在使用中不需要任何外围元件,全部传感元件及转换电路集成在形如一只三极管的集成电路内

(5)温范围- 55℃~ +125 ℃,在 -10 ~+85 ℃时精度为±0.5℃

(6)可编程的分辨率为9~12 位,对应的可分辨温度分别为0.5℃、0.25℃、0.125℃和 0.0625℃,可实现高精度测温

(7)在 9 位分辨率时最多在93.75ms 内把温度转换为数字, 12 位分辨率时最多在750ms 内把温度值转换为数字,速度更快

.

(8)测量结果直接输出数字温度信号,以"一线总线 "串行传送给 CPU,同时可传送CRC校验码,具有极强的抗干扰纠错能力

(9)负压特性:电源极性接反时,芯片不会因发热而烧毁,但不能正常工作。

接线方法:面对着扁平的那一面,左负右正,一旦接反就会立刻发热,有可能烧毁!

同时,接反也是导致该传感器总是显示85℃的原因。实际操作中将正负反接,传感

器立即发热,液晶屏不能显示读数,正负接好后显示85℃。

特点

独特的一线接口,只需要一条口线通信多点能力,简化了分布式温度传感应用无需外部元件可用数据总线供电,电压范围为 3.0 V 至 5.5 V 无需备用电源测量温度范围为 -55 ℃至 +125 ℃。华氏相当于是 -67 华氏度到 257 华氏度-10 ℃至 +85 ℃范围内精度为±0.5℃

温度传感器可编程的分辨率为9~12 位,温度转换为 12 位数字格式最大值为750毫秒,用户可定义的非易失性温度报警设置,应用范围包括恒温控制、工业系统、消

费电子产品温度计、或任何热敏感系统

描述该 DS18B20 的数字温度计提供9 至 12 位(可编程设备温度读数)。由于DS18B20 是一条口线通信,所以中央微处理器与DS18B20 只有一个一条口线连接。

为读写以及温度转换可以从数据线本身获得能量,不需要外接电源。因为每一个DS18B20 的包含一个独特的序号,多个ds18b20s 可以同时存在于一条总线。这使得

温度传感器放置在许多不同的地方。它的用途很多,包括空调环境控制,感测建筑物

内温设备或机器,并进行过程监测和控制。

DS18B20 采用一线通信接口。因为一线通信接口,必须在先完成ROM 设定,否则记忆和控制功能将无法使用。主要首先提供以下功能命令之一: 1 )读 ROM, 2 )ROM 匹配, 3 )搜索 ROM, 4 )跳过 ROM, 5 )报警检查。这些指令操作作用

在没有一个器件的64 位光刻 ROM 序列号,可以在挂在一线上多个器件选定某一个

器件,同时,总线也可以知道总线上挂有有多少,什么样的设备。

若指令成功地使DS18B20 完成温度测量,数据存储在DS18B20 的存储器。一个控制功能指挥指示DS18B20 的演出测温。测量结果将被放置在DS18B20 内存中,并可以让阅读发出记忆功能的指挥,阅读内容的片上存储器。温度报警触发器TH 和 TL 都有一字节 EEPROM 的数据。如果 DS18B20 不使用报警检查指令,这些寄存器可作

为一般的用户记忆用途。在片上还载有配置字节以理想的解决温度数字转换。写TH,TL 指令以及配置字节利用一个记忆功能的指令完成。通过缓存器读寄存器。所有数据的读,写都是从最低位开始。

2.4 LCD 屏幕

图2-3 LCD 管脚图

TFT-LCD 又叫做薄膜晶体管液晶显示器,其管脚图如上,其管脚在STM32F103 中有相应的管脚对应。常用的液晶屏接口很多种, 8 位、 9 位、 16 位、 18 位都有。而常用的通信模式呢,主要有 6800 模式和 8080 模式两种,今天呢,我们来讲的是 8080 模式。如果大家接触过 LCD1602 或者 LCD12864 等,那么就会发现 8080 模式的时序呢,其实跟

LCD1602 或者 LCD12864 的读写时序是差不多的。 8080 接口有 5 条基本的控

制线和多条数据线,数据线的数量主要看液晶屏使用的是几位模式,有8 根、 9 根、 16根、 18 根四种类型。具体如下表:

.

表2-1 TFT-LCD 各位功能

可以知道, LCD 液晶屏的信号线主要有:1) CS:用于片选的选择。2) RS:用于选择命令或者数据。3) WR:写使能。4) RD:读使能。5) RESET:复位端。

其时序如下图:

图2-4 LCD 时序图

( 1)在 WR 跳变为低电平之后,液晶屏开始读取总线上面的数据。如果使用IO 口模拟写入的时候,可以先在总线上面写入数据,然后在跳变WR,以保证当读取的时候,

.

总线上面的数据是稳定的。

(2)在 RD 跳变为低电平之后,液晶屏放置数据到总线上面。液晶屏的读写时序了,大家操作的时候,可以使用单片机 IO 口模拟它的时序进行操作。

2.5 DC 5V 散热风扇

散热风扇的驱动电路如图2-5 所示:

I/O 口

图2-5 散热风扇驱动电路

风扇仅需要的一根口线驱动,当 I/O 输出为低电平时,三极管导通,风扇启动;

当I/O 输出为高电平时,风扇停止。

2.6 加热片

加热片驱动电路如图2-6 所示:

I/O 口

.

加热片也仅仅需要一根口线控制,I/O 口为高电平时,继电器L 与 N_O 端连通,加热片工作; I/O 口为低电平时,继电器L 与 N_O 端断开,加热片工作。

3软件设计

3.1 软件平台

本设计的软件平台为keil uvision4 ,目前使用 Keil uVision4 的产品有 Keil MDK-ARM ,Keil C51,Keil C166 和 Keil C251。

Keil uVision4 具有以下特点:

发展: 2009 年 2 月发布 Keil uVision4 ,Keil uVision4 引入灵活的窗口管理系统,使开

发人员能够使用多台监视器,并提供了视觉上的表面对窗口位置的完全控制的任何地方。

新的用户界面可以更好地利用屏幕空间和更有效地组织多个窗口,提供一个整洁,高效的环境来开发应用程序。新版本支持更多最新的ARM 芯片,还添加了一些其他新功能。 2011年 3 月 ARM 公司发布最新集成开发环境RealView MDK 开发工具中集成了最新版本的Keil uVision4 ,其编译器、调试工具实现与ARM 器件的最完美匹配。

新特征:

1.最新的 Keil uVision4 IDE,旨在提高开发人员的生产力,实现更快,更有效的程序开发。

2.uVision4 引入了灵活的窗口管理系统,能够拖放到视图内的任何地方,包括支持多

显示器窗口。

3.uVision4 在μVision3 IDE 的基础上,增加了更多大众化的功能。

4.多显示器和灵活的窗口管理系统

5.系统浏览器窗口的显示设备外设寄存器信息

6.调试还原视图创建并保存多个调试窗口布局

7.多项目工作区简化与众多的项目

3.2 软件设计模块图

恒温系统温

度显报键

检示警盘

测模模模

模块块块

图 3-1软件设计模块

.

温控控制制算模法块

软件设计中共分为六大部分,温度检测模块、显示模块、报警模块、键盘模块、恒温

控制模块和控制算法。

温度检测模块主要是温度传感器DS18B20 相关的程序,实现温度的采集和转换,最终为我们常用的摄氏温度值的形式;显示模块以LCD 屏幕相关程序为主,实现必要信息的显示;警报模块实现温度超限报警,恒温控制实现对温度的恒定控制,在程序里,这两部分在一个函数里;键盘模块主要是实现温度值得设定;控制算法是对采集温度所做的一个均值滤波,以排除采集的错误数据。

3.3 主程序流程图

主程序流程图 3-2 如下所示:

.

开始

Y实时温度显示与

Flag=0 ?恒温控制

N

Y最低温设置与恒

Flag=1 ?

温控制

N

Y最高温设置与恒

Flag=2 ?

温控制

N

根据按键状态更新flag值

结束

图 3-2 主程序流程框图

进行初始化之后,进入一个while( 1)的死循环里,不断的根据flag 的值来更新工作的状态。当 Flag=0 时,进入温度实时显示部分,在显示的同时还会进行恒温状态的控制;当Flag=1 时,进入恒温范围下限的设置的界面,利用按键设置目标值,并同时实现恒温

控制;当Flag=2 时,进入恒温范围上限的设置的界面,利用按键设置目标值,并同时实

现恒温控制。 Flag 标志通过按键更新, 0— 2 循环,到 3 自动变为 0。

.

3.4 子程序流程图

3.4.1 恒温控制子程序流程图

开始

Y执行温度正常时

温度是否正常?

相关动作

N

Y执行温度过高时

温度是否过高?

相关动作

N

Y执行温度过低时

温度是否过低?

相关动作

N

结束

图 3-3 恒温控制子程序流程框图

在恒温控制子程序中,通过对当前温度值的判断来决定要执行的动作:温度过高时,

执行高温时所对应的相关动作,即最左边 4 位数码管显示“H”字样,红色报警指示灯亮,同时风扇启动散热,加热片不工作;温度过低时,执行低温时所对应的相关动作,即最左

边4 位数码管显示“L”字样,蓝色报警指示灯亮,同时加热片启动加热,散热风扇不工作;在温度正常显示时,数码管左 4 位没有显示,绿色警报指示灯亮,加热片和风扇都不工作。

.

3.4.2 flag 标志设置子程序流程图

开始

N

K_LEFT按下?

Y

消抖延时10ms

N

K_LEFT仍按下?

Y

Flag++

N

Flag=3?

Y

Flag=0

结束

图 3-4 flag标志设置子程序流程框图

flag 标志作为温度显示和温度设置之间的转换标志,其设置的过程必须清晰且正确: flag 初始值为 0,即初始状态为温度显示与恒温控制状态;当 K_LEFT按键按下时,延时 10ms 以消除抖动,防止误触,然后 flag 标志自加 1;当 flag=1 时,进入恒温范围下限的设置的界面,并同时实现恒温控制;当 flag=2 时,进入恒温范围上限的设置的界面,并同时实现恒温控制; flag 自加到 3 时,会自动重置为 0。

3.4.3 温度设置子程序流程图

温度设置子程序流程图如下所示:

开始

K_UP按下?

Y

延时消抖动

K_UP 仍按下?

下?

Y

温度 +0.1 ℃

K_DOWN按下?

Y

延时消抖动

K_DOWN仍按下?

下?

Y

温度 -0.1 ℃

结束.

N

N

N

N

图 3-5 温度设置子程序流程框图

恒温范围的设置主要由K_UP、K_DOWN 两个按键完成: K_UP按下,延时 10ms 消除抖动,防止误触,然后相应的温度范围+0.1 ℃; K_DOWN 按下,延时10ms 消除抖动,

水箱恒温控制系统的设计

水箱恒温控制系统的设计 [摘要]恒温控制在工业生产过程中举足轻重,温度的控制直接影响着工业生产的产量和质量。本设计是基于STC89C521单片机的恒温箱控制系统,系统分为硬件和软件两部分,其中硬件包括:温度传感器、显示、控制和报警的设计;软件包括:键盘管理程序设计、显示程序设计、控制程序设计和温度报警程序设计。编写程序结合硬件进行调试,能够实现设置和调节初始温度值,进行数码管显示,当加热到设定值后立刻报警。另外,本系统通过软件实现对按键误差、加热过冲的调整,以提高系统的安全性、可靠性和稳定性。本设计从实际应用出发选取了体积小、精度相对高的数字式温度传感元件DS18B20作为温度采集器,单片机STC89C52作为主控芯片,数码管作为显示输出,实现了对温度的实时测量与恒定控制。 The Design of Refrigerator Door Shell Shaping Control System Abstract:The system makes use of the single chip STC89C52 as the temperature controlling center, uses numeral thermometer DS18B20 which transmits as 1-wire way as the temperature sensor, through the pressed key, the numerical code demonstrated composite of the man-machine interactive connection ,to realize set and adjust the initial temperature value. After the system works, the digital tube will demonstrate the temperature value, when temperature arriving to the setting value, the buzzer will be work immediately. In addition, the system through the software adjusting to the pressed key error, and the excessively hutting. All of these are in order to enhance the system’s security, reliability and stability.

基于PID的STM32恒温控制系统设计

成绩评定

基于PID的STM32恒温控制系统设计 摘要 研究基于STM32单片机和温湿度传感器的恒温智能控制系统。温度具有时变性、非线性和多变量耦合的特点。在温度控制过程中,温度的检测往往滞后于温度的调控,从而会引起温度控制系统的温度出现超调、温度振荡的现象。在设计中提出了基于增量式PID算法控制温度的模型,系统采用低功耗的STM32作为主控芯片、DHT11数字式温度传感器和半导体温度调节器。实验结果表明,该系统能够有效地维持系统地恒温状态。通过将数字PID算法和STM32单片机结合使用,整个控制系统的溫度控制精度也提高了,不仅仅满足了对温度控制的要求,而且还可以应用到对其他变量的控制过程中。所以,在该温度控制系统的设计中,运用单片机STM32进行数字PID运算能充分发挥软件系统的灵活性,具有控制方便、简单和灵活性大等优点。 关键词:STM32,PID算法,恒温控制,DHT11

1绪论 温度控制系统具有滞后性,时变性和非线性的特点。无法建立精准的数学模型,因此使用常规的线性控制理论无法达到满意的控制效果。在嵌入式温度控制系统中的关键是温度的测量、温度的控制和温度的保持,温度是工业控制对象中主要的被控参数之一。因此,嵌入式要对温度的测量则是对温度进行有效及准确的测量,并且能够在工业生产中得广泛的应用,尤其在机械制造、电力工程化工生产、冶金工业等重要工业领域中,担负着重要的测量任务。在日常工作和生活中,也被广泛应用于空调器、电加热器等各种室温测量及工业设备的温度测量。但温度是一个模拟量,需要采用适当的技术和元件,将模拟的温度量转化为数字量,才生使用计算机进行相应的处理。 2 设计方案 为了对于交流负载做到温度精确,升温采用控制双向可控硅导通角度进行升温控制。降温采用PWM电压控制,因为当前降温采用制冷片,风扇等降温手段,采用直流电压供电方式,选用PWM控制使降温更加精确。温度采集选用温度传感器DHT11,好处为可做到高精度,整体框图如图1所示。 图1 系统框图 3硬件设计 3.1 DHT11温度传感器 DHT11数字温湿度传感器是一款含有已校准数字信号输出的温湿度复合传感器。它应用专用的数字模块采集技术和温湿度传感技术,确保产品具有枀高的可靠性与卓越的长期稳定性。传感器包括一个电阻式感湿元件和一个NTC测温元件,并与一个高性能8位单片机相连接。DHT11电路图如图2所示。

恒温水箱

目录 一、设计题目 (2) 二、设计要求 (2) 三、设计作用与目的 (2) 四、所用设备及软件 (3) 五、系统设计方案 (3) 5.1 硬件总体设计 (3) 5.1.1硬件系统子模块 (4) 5.2 软件总体设计 (4) 六、系统硬件设计 (5) 6.1单片机最小系统电路 (5) 6.2 键盘电路 (6) 6.3 数码管及指示灯显示电路 (7) 6.4 温度采集电路 (8) 6.5 电源电路 (10) 6.6报警电路设计 (11) 6.7加热管控制电路设计 (11) 七、系统软件设计 (12) 7.1主程序流程图 (12) 7.2读取温度DS18B20模块的流程 (14) 7.3 键盘扫描处理流程 (16) 7.4 报警处理流程 (17) 八、实验调试结果 (17) 8.1 硬件电路调试 (17) 8.2 软件调试 (18) 8.3 数据测试 (18) 8.3.1静态数据测试 (18) 8.3.2动态数据测试 (19) 九、设计中的问题及解决方法 (19) 十、设计心得 (20) 十一、参考文献 (20) 附录2:程序清单 (22)

恒温水箱控制系统的设计 一、设计题目 恒温水箱控制系统的设计 二、设计要求 温度控制系统可以说是无所不在,热水器系统、空调系统、冰箱、电饭煲、电风扇等家电产品以至手持式高速高效的计算机和电子设备,均需要提供温度控制功能。本系统的设计可以用于热水器温度控制系统和饮水机等各种电器电路中。它以单片机AT80C51为核心,通过3个数码管显示温度和4个按键实现人机对话,使用单总线温度转换芯片DS18B20实时采集温度并通过数码管显示,并提供各种运行指示灯用来指示系统现在所处状态,如:温度设置、加热、停止加热等,整个系统通过四个按键来设置加热温度和控制运行模式。 三、设计作用与目的 及时准确地得到温度信息并对其进行适时的控制,在许多工业场合中都是重要的环节.水温的变化影响各种系统的自动运作,例如冶金、机械、食品、化工各类工业中,广泛使用的各种加热炉、热处理炉、反应炉等,对工件的水处理温度要求严格控制。对于不同控制系统,其适宜的水质温度总是在一个范围。超过这个范围,系统或许会停止运行或遭受破坏,所以我们必须能实时获取水温变化。对于,超过适宜范围的温度能够报警。同时,我们也希望在适宜温度范围内可以由检测人员根据实际情况加以改变。 单片机对温度的控制是工业生产中经常使用的控制方法.自从1976年Intel 公司推出第一批单片机以来,80年代单片机技术进入快速发展时期,近年来,随着大规模集成电路的发展,单片机继续朝快速、高性能方向发展。单片机主要用于控制,它的应用领域遍及各行各业,大到航天飞机,小至日常生活中的冰箱、彩电,单片机都可以

恒温箱自动控制系统设计报告

恒温箱自动控制系统设计 【摘要】 本组设计的恒温箱自动控制系统主要由中央处理器、温度传感器、半导体制冷器、键盘、显示、声光报警等部分组成。处理器采用AVR Mega128单片机,温度传感器采用DS18B20,利用半导体制冷片一面制冷一面发热的工作特性进行升降温,用LCD12864作为显示输出。温度传感器检测到温度数据传送给单片机,单片机再将温度数据与给定值进行比较,从而发出对半导体制冷器的控制信号,使温度维系在给定值附近(偏差小于±2℃),同时单片机将数据送与显示器。【关键字】 单片机温度传感器半导体制冷器控制 一、设计方案比较 1.1总体设计方案 这里利用DS18B20芯片作为恒温箱的温度检测元件。DS18B20芯片可以直接把测量的温度值变换成单片机可以读取的标准电压信号。单片机从外部的两位十进制拨码键盘进行给定值设定,读入的数据与给定值进行比较,根据偏差的大小,采用闭环控制的方法使控制量更加精准。控制结果通过液晶显示器LCD12864予以显示。 系统整体框图如图一所示: 图一、系统整体框图 1)温度检测元件的选择: 方案一:这里所设计的是测温电路,因此可以采用热敏电阻之类的器件利用其

感温效应,检测并采集出随温度变化而产生的电压或电流,进行A/D转换后送给单片机进行数据处理,从而发出控制信号。此方案需要另外设计A/D转换电路,使得温测电路比较麻烦。 方案二:上网查得温度传感器DS18B20能直接读出被测温度,并可根据实际要求通过简单的编程实现9~12位的数字值读取方式,它内部有一个结构为8字节的高速暂存RAM存储器。DS18B20芯片可以直接把测量的温度值变换成单片机可以读取的标准电压信号。与方案一比较更加简单实用,因此我们选择方案二。 2)显示方案选择: 方案一:温度的显示可以用数码管,但数码管只能显示简单的数字,它有电路复杂,占用资源较多,显示信息少等缺点。 方案二:LCD12864汉字图形点阵液晶显示模块,可显示汉字及图形,内置 8192个中文汉字,128个字符及64×256点阵显示RAM。可显示内容:128列×64行,多种软件功能:光标显示、画面移位、自定义字符、睡眠模式等。我们设计的系统需要显示更多的信息,所以考虑显示功能更好的液晶显示,要求能显示更多的数据,增强显示信息的可读性,看起来更方便。所以选择方案二。 LCD12864接线方法如图二所示: 图二、LCD12864接线图 3)声光报警系统 采用蜂鸣器及三色LED组成声光报警系统。制冷时LED为红色,温度达到控制要求且上下浮动在1℃以内时为绿色,升温时为黄色。温度到达给定值的同时,蜂鸣器发出报警提示音。 二、理论分析与计算 实现温度的实时显示是由计算温度子程序将 RAM 中读取值进行 BCD 码的转换运算,并进行温度值正负的判定,从DS18B20读取出的二进制值必须先转换成十进制值,才能用于字符显示。因为 DS18B20 的转换精度为 9-12 位可选的,为了提高

烤箱温度控制系统设计.doc

苏州市职业大学2014─2015学年第1学期试卷 《MATLAB 工程应用》 (分散 A 卷 开卷 设计) 出卷人 宋秦中 出卷人所在学院 电子信息工程学院 使用班级 12电子1,12电子2 班级 12 应用电子技术1 学号 127303110 姓名 施晓蓉 第1页,共21页 一、设计题(满分100分) 请在以下题目中任选一项完成设计 1. 汽车运动控制系统设计; 2. 电烤箱温度控制系统设计 3. 汽车减震系统建模仿真; 4. 汽车自动巡航控制系统的PID 控制; 5. 汽车怠速系统的模糊PID 控制; 6. 双闭环直流调速系统的设计与仿真 7. 自选测控项目(给出你自选的题目) 8. 本份试题选取项目为: 电烤箱温度控制系统设计 附评分细则:

《MATLAB工程应用》期末考试设计报告 第一章概述 本次课题的主要内容是通过对理论知识的学习和理解的基础上,自行设计一个基于MA TLAB 技术的PID控制器设计,并能最终将其应用于一项具体的控制过程中。以下为此次课题的主要内容: (1) 完成PID控制系统及PID调节部分的设计 其中包含系统辨识、系统特性图、系统辨识方法的设计和选择。 (2) PID最佳调整法与系统仿真 其中包含PID参数整过程,需要用到的相关方法有: b.针对有转移函数的PID调整方法 主要有系统辨识法以及波德图法及根轨迹法。 (3) 将此次设计过程中完成的PID控制器应用的相关的实例中,体现其控制功能(初步计划为温度控制器) 第2页,共21页

第二章调试测试 2.1进度安排和采取的主要措施: 前期:1、对于MA TLAB的使用方法进行系统的学习和并熟练运用MA TLAB的运行环境,争取能够熟练运用MA TLAB。 2、查找关于PID控制器的相关资料,了解其感念及组成结构,深入进行理论分析,并同步学习有关PID控制器设计的相关论文,对其使用的设计方法进行学习和研究。 3、查找相关PID控制器的应用实例,尤其是温度控制器的实例,以便完成最终的实际应用环节。 中期:1、开始对PID控制器进行实际的设计和开发,实现在MATLAB的环境下设计PID控制器的任务。 2、通过仿真实验后,在剩余的时间内完成其与实际工程应用问题的结合,将其应用到实际应用中(初步计划为温度控制器)。 后期:1、完成设计定稿。 2、打印以及答辩工作地准备。 2.2被控对象及控制策略 2.2.1被控对象 本文的被控对象为某公司生产的型号为CK-8的电烤箱,其工作频率为50HZ,总功率为600W,工作范围为室温20℃-250℃。设计目的是要对它的温度进行控制,达到调节时间短、超调量为零且稳态误差在±1℃内的技术要求。 在工业生产过程中,控制对象各种各样。理论分析和实验结果表明:电加热装置是一个具有自平衡能力的对象,可用二阶系统纯滞后环节来描述。然而,对于二阶不振荡系统,通过参数辨识可以降为一阶模型。因而一般可用一阶惯性滞后环节来描述温控对象的数学模型。 所以,电烤箱模型的传递函数为: 第3页,共21页

水箱加热系统的PLC位式温度控制课程设计

目录 一、前言 (1) 1. 可编程序控制器的概述 (1) 2.FX2N系列PLC简介 (2) 3.特殊功能模块 (2) 4. 调功器 (3) 5. 温度变送器 (3) 二、系统设计 (4) 1.系统设计要求 (4) 2.系统硬件设计 (4) 2.1.水箱温度自动调节系统: (4) 2.2.输入输出点数的分配表 (5) 2.3.相关元器件的选型 (5) 2.4. PLC的外部接线原理图 (6) 3.系统软件设计 (7) 3.1.模拟量与数字量的对应关系 (7) 3.2.系统流程图的设计 (7) 3.3.系统梯形图 (8) 3.4.系统指令表 (9) 3.5.系统实时监控图 (10) 三、总结 (12) 四、参考文献 (13) 五、附录 (13) 5.1.课题介绍 (13) 5.2.控制要求 (13)

第一章前言 1.1 可编程序控制器的概述 随着微处理器、计算机和数字通信技术的飞速发展,计算机控制已经广泛应用在所有的工业领域。现代社会要求制造业对市场这一需求迅速做出反应,生产出小批量、多品种、多规格、低成本和高质量的产品。可编程控制器就是顺应这一需要出现的,它是以微处理器为基础的通用工业控制装置。编程控制器不仅可以按事先编好的程序进行各种逻辑控制,还具有随意编程、自动诊断、通用性好、体积小、可靠性高的特点。因此,可编程控制器正逐步取代着继电器-接触器控制系统。 国际电工委员会(IEC)于 1982年11月和 1985年1月对可编程序控制器作了如下的定义:“可编程序控制器(PLC)是一种数字运算操作的电子系统,专为在工业环境下应用而设计。它采用可编程序的存储器,用来在其内部存储执行逻辑运算、顺序控制、定时、计数和算术运算等操作的命令,并通过数字式模拟式的输入和输出,控制各种类型的机械或生产过程。可编程序控制器及其有关设备,都应按易于与工业控制系统联成一个整体,易于扩充功能的原则而设计”。可编程序控制器(PLC)主要由CPU 模块、输出模块和编程器组成。PLC的特殊功能模块能完成某些特殊的任务。从使用方式PLC分为: 1)整体式PLC(又称单元式或箱体式)整体式PLC是将电源、CPU、I/0部件都集中装在一个机箱内。一般小型PLC采用这种结构;2)模块式PLC,将PLC各部分分成若干个单独的模块,模块式PLC由框架和各种模块组成。模块插在插座上。一般大、中型PLC采用模块式结构3)PLC将整体式和模块式结合起来,称为叠装式PLC。

智能温度控制系统设计

目录 一、系统设计方案的研究 (2) (一)系统的控制特点与性能要求 (2) 1.系统控制结构组成 (2) 2.系统的性能特点 (3) 3.系统的设计原理 (3) 二、系统的结构设计 (4) (一)电源电路的设计 (4) (二)相对湿度电路的设计 (6) 1.相对湿度检测电路的原理及结构图 (6) 3.对数放大器及相对湿度校正电路 (7) 3.断点放大器 (8) 4.温度补偿电路 (8) 5.相对湿度检测电路的调试 (9) (三)转换模块的设计 (9) 1.模数转换器接受 (9) 2.A/D转换器ICL7135 (9) (四)处理器模块的设计 (11) 1.单片机AT89C51简介及应用 (11) 2.单片机与ICL7135接口 (14) 3.处理器的功能 (15) 4.CPU 监控电路 (15) (五)湿度的调节模块设计 (15) 1.湿度调节的原理 (15) 2.湿度调节的结构框图 (16) 3.湿度调节硬件结构图 (16) 4.湿度调节原理实现 (16) (六)显示模块设计 (17) 1.LED显示器的介绍 (17) 2.单片机与LED接口 (17) (七)按键模块的设计 (18) 1.键盘接口工作原理 (18) 2.单片机与键盘接口 (19) 3.按键产生抖动原因及解决方案 (19) 4.窜键的处理 (19) 三、软件的设计及实现 (19) (一)程序设计及其流程图 (20) (二)程序流程图说明 (21) 四、致谢 (22) 参考文献: (22)

智能温度控制系统设计 摘要: 此系统采用了精密的检测电路(包刮精密对称方波发生器、对数放大及半波整流、温度补偿及温度自动校正及滤波电路等几部分电路组成),能够自动、准确检测环境空气的相对湿度,并将检测数据通过A/D转换后,送到处理器(AT89C51)中,然后通过软件的编程,将当前环境的相对湿度值转换为十进制数字后,再通过数码管来显示;而且,通过软件编程,再加上相应的控制电路(光电耦合及继电器等部分电路组成),设计出可以自动的调节当前环境的相对湿度:当室内空气湿度过高时,控制系统自动启动抽风机,减少室内空气中的水蒸气,以达到降低空气湿度的目的;当室内空气湿度过低时,控制系统自动启动蒸汽机,增加空气的水蒸气,以达到增加湿度的目的,使空气湿度保持在理想的状态;键盘设置及调整湿度的初始值,另外在设计个过程当中,考虑了处理器抗干扰,加入了单片机监视电路。 关键词: 湿度检测; 对数放大; 湿度调节; 温度补偿 一、系统设计方案的研究 (一)系统的控制特点与性能要求 1.系统控制结构组成 (1)湿度检测电路。用于检测空气的湿度[9]。 (2)微控制器。采用ATMEL公司的89C51单片机,作为主控制器。 (3)电源温压电路。用于对输入的200V交流电压进行变压、整流。 (4)键盘输入电路。用于设定初始值等。 (5)LED显示电路。用于显示湿度[10]。 (6)功率驱动电路(湿度调节电路)

恒温箱的控制设计毕业设计论文

摘要 温度与生物的生活环境密切相关,不同的生物或物体对温度的要求都不同。随着智能控制技术不断的发展,在现代工业生产以及科学实验的许多场合,为了获取生物或物体所需求的温度,需要及时准确的获取温度信息,同时完成对温度的预期控制,这时候温度检测与控制系统就显得尤其的重要。因此,温度检测系统的设计与研究一直备受广大科研者重视。 本次课题设计了一个低成本,高精度的恒温箱。该设计主要从硬件和软件两个方面出发: 1)在硬件上,选择AT89C52单片机为核心,采用了TL431组成2.5V的恒流源,并以Pt100温度传感器作为温度检测仪器,通过ICL7135模数转换器采集数据,用LED数码管作为显示器,构成了一个恒温箱; 2)在软件上,设计了温度检测算法,并在C语言编程环境下,编写了相应的程序来实现所设计的算法。最后通过Proteus ISIS与Keil的联合仿真,保证了算法的可行性。 通过仿真实验可以发现所设计的系统可以较好的检测、控制并且保持温度。但是由于温度调节的迟滞性以及设计上的不足,该系统具有一定的局限性。 关键词:温度检测;AT89C52单片机;恒温箱;C语言编程

ABSTRACT Temperature is closely related to life and environment. Different creature or object have different requirements to temperature. With the development of the intelligent-control- technology, and in order to arrive to the creature's or object's temperature-demand, we should take the information of temperature timely and accuratly, and control the temperature to the expected degree, in the modern industrial production and scientific experiment many occasions . I n this situation, the testing and controlling system for temperature is especially important. Therefore, the designs for temperature detection system attract researchers' attentions. In this dissertation, we designed a box with constant temperature which has low cost as well as high accuracy. We designed the system mainly from two aspects: hardware and software 1)Hardware's design: At first, we chosed AT89C52 SCM as the core of the system. And then we selected TL431 to compose the 2.5 V constant and Pt100 temperature sensor for testing temperature. At last, we collecte data througn the ICL7135 ADC and display data them on the LED. All of this consists of a the constant-temperature-box; 2)Software's design: In this papar, we designed a algorithm detecte temperature and implemented it based on the C programming language's environment. Finally we did a series of simulation experiment through the Proteus ISIS and Keil to ensure that the algorithm is feasible. Simulation results show that the system designed had a very good effect on temperature's detection, controlling and keeping . Because of the adjustmentand of the temperature and the insufficiency of the design, this system has some limitations. Keywords:Temperature detection;AT89C52 SCM; Box of constant temperature ; C language programming

恒温恒湿控制系统设计

生化处理的恒温恒湿控制系统设计 2007年第11期(总第108期) 宋奇光,伍宗富,梅彬运(湖南文理学院,湖南常德415000 ) 【摘要】以PLC为控制器,结合温度传感变送器、LED显示器等,组成 一个生化处理的恒温恒湿控制系统。使用温度传感变送器获得温度的感应电压, 经处理后送给PLC。PLC将给定的温度与测量温度的相比较,得出偏差量,然后 根据模糊控制算法得出控制量。执行器由开关频率较高的固态继电器开关担任, 采用PWM控制方法,改变同一个周期中电子开关的闭合时间。从而调节高温电 磁阀开关的导通时间,达到蒸汽控制目的。 【关键词】生化处理;PLC;恒温恒湿 引言 生化处理系统是食品工艺的关键设备。在此以米粉生产工艺中的生化处理系统的蒸汽温湿度控制进行实用设计,其温度控制在0~100℃,误差为±0.5℃,可用键盘输入设置温度及LED实时显示系统温度,采用模糊算法进行恒温控制,将数字处理控制方法运用到温度控制系统中,可以克服温度控制系统中存在的严重的滞后现象,可以很大程度的提高控制效果和控制精度[1]。 1米粉生化处理的恒温恒湿系统现状与分析 1.1 现状 由于国内米粉生产设备厂家尚未掌握米粉的关键技术,使其制造的设备无法满足米粉生产的工艺要求。我们经过现场堪察,发现原有的连续式米粉生化处理恒温恒湿控制系统具有如下现状。 一是连续式米粉生化处理恒温恒湿箱的控制基本上是手动调节; 二是箱内各部位温度分布不均匀,实际温度波动太大(40-70℃),远远达不到生产要求(62.5℃±2.5℃),影响米粉的抗老化效果; 三是实际湿度也达不到生产要求,容易出现湿度偏高(米粉发泡)或者偏低(米粉起壳)的现象,严重影响米粉生产质量; 四是上层辅助加热管道分布不合理,容易使散落米粉焦化,影响产品质量。

模电课设—温度控制系统的设计

目录 1.原理电路的设计 (1) 1.1总体方案设计 (1) 1.1.1简单原理叙述 (1) 1.1.2设计方案选择 (1) 1.2单元电路的设计 (3) 1.2.1温度信号的采集与转化单元——温度传感器 (3) 1.2.2电压信号的处理单元——运算放大器 (4) 1.2.3电压表征温度单元 (5) 1.2.4电压控制单元——迟滞比较器 (6) 1.2.5驱动单元——继电器 (7) 1.2.6 制冷部分——Tec半导体制冷片 (8) 1.3完整电路图 (10) 2.仿真结果分析 (11) 3 实物展示 (13) 3.1 实物焊接效果图 (13) 3.2 实物性能测试数据 (14) 3.2.1制冷测试 (14) 3.2.2制热测试 (18) 3.3.3性能测试数据分析 (20) 4总结、收获与体会 (21) 附录一元件清单 (22) 附录二参考文献. (23)

摘要 本课程设计以温度传感器LM35、运算放大器UA741、NE5532P及电压比较器LM339N 为电路系统的主要组成元件,扩展适当的接口电路,制作一个温度控制系统,通过室温的变化和改变设定的温度,来改变电压传感器上两个输入端电压的大小,通过三极管开关电路控制继电器的通断,来控制Tec制冷片的工作。这样循环往复执行这样一个周期性的动作,从而把温度控制在一定范围内。学会查询文献资料,撰写论文的方法,并提交课程设计报告和实验成品。 关键词:温度;测量;控制。

Abstract This course is designed to a temperature sensor LM35, an operational amplifier UA741, NE5532P and a voltage comparator LM339N circuit system of the main components. Extending the appropriate interface circuit, make a temperature control system. By changing the temperature changes and set the temperature to change the size of the two input ends of the voltage on the voltage sensor, an audion tube switch circuit to control the on-off relay to control Tec cooling piece work. This cycle of performing such a periodic motion, thus controlling the temperature in a certain range. Learn to query the literature, writing papers, and submitted to the curriculum design report and experimental products. Key words: temperature ; measure ;control

恒温水箱控制系统调研报告

本科生毕业论文(设计) 调研报告 题目:恒温水箱控制系统 学生姓名:冯明勇 学号: 06210133 专业班级:自动化0601 指导教师:梅英老师 完成时间: 2010.1.31

一、课题任务 设计一个用单片机控制水温的恒温控制系统,以单片机为主控器,利用PID 控制原理及PWM技术实现对水箱内水温的控制,使水箱中的水温保持在设定温度的±1℃范围内。设计包括系统软硬件设计。 1、目的 1、培养综合运用所学的知识独立分析问题和解决问题的能力; 2、培养学生的创新意识和创新能力; 3、增强学生理论分析、实验研究、文献查阅、计算机运用和文字表达等方 面的能力; 4、开启心智,培养专业思维,为以后工作打下良好的基础。 2、要求 完成3秒温度传感器读一次温度并显示;完成在10分钟之内达到设定的温度值;完成一直保持设定的温度(在误差范围之内);完成改变设定温度时,控制的水温能达到设定的温度。 二、方案选择 本系统若根据课题要求可有多种实现方案 (1)方案一此方案是传统的一位式模拟控制方案,选用模拟电路,用电位器设定给定值,反馈的温度值和设定值比较后,决定加热或不回热。系统受环境影响大,不能实现复杂的控制算法,不能用数码显示,不能用键盘设定。 (2)方案二此方案是传统的二位式模拟控制方案,其基本思想与方案一相同,但由于采用上下限比较电路,所以控制精提高。这种方法还是模拟控制方式,因此也不能实现复杂的控制算法使控制精度做得较高,而且仍不能用数码显示和键盘设定 (3)方案三此方案采用89S51单片机系统来实现。单片机软件编程灵活、自由度大,可用软件编程实现各种控制看法和逻辑控制。可实现数码显示和键盘设定等多种功能,系统电路框图如下:

恒温水箱毕业设计

一、绪论 (一)课题研究的背景 温度是工业上常见的被控参数之一,特别是在冶金、化工、建材、食品加工、机械制造等领域,恒温控制系统被广泛应用于加热炉、热处理炉、反应炉等。在一些温控系统电路中,广泛采用的是通过热电偶、热电阻或PN结测温电路经过相应的信号调理电路,转换成A/D转换器能接收的模拟量,再经过采样/保持电路进行A/D转换,最终送入单片机及其相应的外围电路,完成监控。但是由于传统的信号调理电路实现复杂、易受干扰、不易控制且精度不高。本文介绍单片机通过数字温度传感器检测外部温度对水箱进行恒温控制的设计,通过控制继电器的通断,进而控制电炉的加热来实现恒温控制。因此,本系统采用一种新型的可编程温度传感器(DS18B20),不需复杂的信号处理电路和A/D转换电路就能直接与单片机完成数据采集和处理,实现方便、精度高,可根据不同需要用于各种场合。在日常生活中,也经常用到电烤箱、微波炉、电热水器、烘干箱等需要进行温度检测与控制的家用电器。采用单片机实现温度控制不仅具有控制方便、简单、灵活等优点,而且可以大幅度地提高被控温度的技术指标,从而大大提高产品的质量,现以恒温水箱控制系统的设计进行介绍。 (二)国内外恒温控制技术发展现状及趋势 随着计算机控制技术的发展,恒温控制己在工业生产领域中得到了广泛应用,并取得了巨大的经济和社会效益。在不同的领域内,由于控制环境、目标、成本等因素,需要针对具体情况来设计系统结构和功能,以取得最佳的控制效果。其中,恒温环境的自动化控制技术在工业生产、商业运营中是一个重要研究。 1、国外恒温控制的发展现状及趋势 自70年代以来,由于工业过程控制的需要,特别是在微电子技术和计算机技术的迅猛发展,以及自动控制理论和设计方法发展的推动下,国外恒温控制系统发展迅速,并在智能化,自适应参数的自整定等方面取得了很大的科技成果。在这方面以日本、美国、德国、瑞典等国技术领先,并且都生产出了一批商品化的性能优异的温度控制器及仪器仪表。 目前,国外温度控制系统及仪表正朝着高精度智能化、小型化等方面快速发展。虽然温度控制系统在国内各行各业的应用已经十分广泛,但从国内生产的温度控制器及技术来讲,其总体发展水平仍然不高,同国外的日本、美国、德国等先进国家相比,仍然有着较大的差距。 2、国内恒温控制的发展现状及趋势 我国目前在恒温控制技术这方面总体技术水平处于20世纪80年代中后期水平,成熟产品主要以“点位”控制及常规的PID控制器为主,它只能适应一般温度系统控制,难于

单片机恒温箱温度控制系统的设计说明

课程设计题目:单片机恒温箱温度控制系统的设计 本课程设计要求:本温度控制系统为以单片机为核心,实现了对温度实时监测和控制,实现了控制的智能化。设计恒温箱温度控制系统,配有温度传感器,采用DS18B20数字温度传感器,无需数模拟∕数字转换,可直接与单片机进行数字传输,采用了PID控制技术,可以使温度保持在要求的一个恒定围,配有键盘,用于输入设定温度;配有数码管LED用来显示温度。 技术参数和设计任务: 1、利用单片机AT89C2051实现对温度的控制,实现保持恒温箱在最高温度为110℃。 2、可预置恒温箱温度,烘干过程恒温控制,温度控制误差小于±2℃。 3、预置时显示设定温度,恒温时显示实时温度,采用PID控制算法显示精确到0.1℃。 4、温度超出预置温度±5℃时发出声音报警。 5、对升、降温过程没有线性要求。 6、温度检测部分采用DS18B20数字温度传感器,无需数模拟∕数字转换,可直接与单片机进行数字传输 7、人机对话部分由键盘、显示和报警三部分组成,实现对温度的显示、报警。

一、本课程设计系统概述 1、系统原理 选用AT89C2051单片机为中央处理器,通过温度传感器DS18B20对恒温箱进行温度采集,将采集到的信号传送给单片机,在由单片机对数据进行处理控制显示器,并比较采集温度与设定温度是否一致,然后驱动恒温箱的加热或制冷。2、系统总结构图 总体设计应该是全面考虑系统的总体目标,进行硬件初步选型,然后确定一个系统的草案,同时考虑软硬件实现的可行性。总体方案经过反复推敲,确定了以美国Atmel公司推出的51系列单片机为温度智能控制系统的核心,并选择低功耗和低成本的存储器、数码显示器等元件,总体方案如下图: 图1系统总体框图 二、硬件各单元设计 1、单片机最小系统电路 单片机选用Atmel公司的单片机芯片AT89C2051 ,完全可以满足本系统中要求的采集、控制和数据处理的需要。单片机的选择在整个系统设计中至关重要,该单片机与MCS-51系列单片机高度兼容、低功耗、可以在接近零频率下工作等诸多优点,而广泛应用于各类计算机系统、工业控制、消费类产品中。 AT89C2051是AT89系列单片机中的一种精简产品。它是将AT89C51的P0口、P2口、EA/Vpp、ALE/PROG、PSEN口线省去后,形成的一种仅20引脚的单片机,相当于早期Intel8031的最小应用系统。这对于一些不太复杂的控制场合,仅有一片AT89C2051就足够了,是真正意义上的“单片机”。AT89C2051为很多规模不太大的嵌入式控制系统提供了一种极佳的选择方案,使传统的51系列单片机

温度控制系统设计

温度控制系统设计 目录 第一章系统方案论证错误!未指定书签。 总体方案设计错误!未指定书签。 温度传感系统错误!未指定书签。 温度控制系统及系统电源错误!未指定书签。 单片机处理系统(包括数字部分)及温控箱设计错误!未指定书签。 算法原理错误!未指定书签。 第二章重要电路设计错误!未指定书签。 温度采集错误!未指定书签。 温度控制错误!未指定书签。 第三章软件流程错误!未指定书签。 基本控制错误!未指定书签。 控制错误!未指定书签。 时间最优的控制流程图错误!未指定书签。 第四章系统功能及使用方法错误!未指定书签。 温度控制系统的功能错误!未指定书签。 温度控制系统的使用方法错误!未指定书签。 第五章系统测试及结果分析错误!未指定书签。 硬件测试错误!未指定书签。 软件调试错误!未指定书签。 第六章进一步讨论错误!未指定书签。 参考文献错误!未指定书签。 致谢错误!未指定书签。 摘要:本文介绍了以单片机为核心的温度控制器的设计,文章结合课题《温度控制系统》,从硬件和软件设计两方面做了较为详尽的阐述。 关键词:温度控制系统控制单片机 : . : 引言: 温度控制是工业生产过程中经常遇到的过程控制,有些工艺过程对其温度的控制效果直接影响着产品的质量,因而设计一种较为理想的温度控制系统是非常有价值的。本文设计了以单片机为检测控制中心的温度控制系统。温度控制采用改进的数字控制算法,显示采用静态显示。该系统设计结构简单,按要求有以下功能: ()温度控制范围为°; ()有加热和制冷两种功能 ()指标要求: 超调量小于°;过渡时间小于;静差小于℃;温控精度℃ ()实时显示当前温度值,设定温度值,二者差值和控制量的值。 第一章系统方案论证 总体方案设计 薄膜铂电阻将温度转换成电压,经温度采集电路放大、滤波后,送转换器采样、量化,量化后的数据送单片机做进一步处理;

基于PLC的热水箱恒温控制系统

基于PLC的热水箱恒温控制系统 温度是工业生产中常见的工艺参数之一,任何物理变化和化学反应过程都与温度密切相关。在科学研究和生产实践的诸多领域中, 温度控制占有着极为重要的地位, 特别是在冶金、化工、建材、食品、机械、石油等工业中,具有举足轻重的作用。对于不同生产情况和工艺要求下的温度控制,所采用的加热方式,燃料,控制方案也有所不同。例如冶金、机械、食品、化工等各类工业生产中广泛使用的各种加热炉、热处理炉、反应炉等;燃料有煤气、天然气、油、电等。温度控制系统的工艺过程复杂多变,具有不确定性,因此对系统要求更为先进的控制技术和控制理论。 可编程控制器(PLC)可编程控制器是一种工业控制计算机,是继承计算机、自动控制技术和通信技术为一体的新型自动装置。它具有抗干扰能力强,价格便宜,可靠性强,编程简单,易学易用等特点,在工业领域中深受工程操作人员的喜欢,因此PLC已在工业控制的各个领域中被广泛地使用。 第一章绪论 1.1 引言 可编程序控制器(Programmable Controller,简称PLC)是以微处理器为基础,综合了计算机技术、控制技术、通讯技术等高新技术的工业装置。现代PLC不仅具有传统继电器控制系统的控制功能,而且能扩展输入输出模块,特别是可以扩展一些智能控制模块,构成不同的控制系统,将模拟量输入输出控制和现代控制方法融为一体,实现智能控制、闭环控制、多控制功能一体的综合控制系统。在工农业生产中,常用闭环控制方式控制温度、压力、流量等连续变化的模拟量,PID控制是常见的一种控制方式。由于其不需要求出控制系统的数学模型,算法简单、鲁棒性好、可靠性高,在使用模拟量控制器的模拟控制系统和使用计算机(包括PLC)的数字控制系统中得到了广泛的应用。本文针对恒温水箱温控系统的要求,以PLC为温度控制系统的核心,利用PID控制算法实现水箱的恒温控制。

基于PLC的水箱温度控制系统

【摘要】 本文研究的是可编程控制器在水箱恒温控制系统中的应用,水箱恒温控制装置主要用来完成对水箱中液体的液位和温度检测,并对温度参数进行调节。系统中温度控制是一个非常重要的部分。通过铂热电阻对温度进行测量,将测量到的温度传到PLC中。PLC 对采集到的温度值与给定值进行比较,经过PID运算后,调节双向晶闸管在设定周期内通断时间的比例,改变加热丝中电流大小及加热时间,以完成对温度的控制要求。 本系统硬件部分主要由CPU224、EM235、双向晶闸管等组成;软件部分主要由PID 控制来完成。 关键词:PLC CPU224 EM235 双向晶闸管 PID控制 Abstract: In this paper, is the programmable controller in the water tank temperature control system application, water tank temperature control system is mainly used to complete the tank liquid level and temperature detection, and adjust the temperature parameters. System, temperature control is a very important part. By platinum RTD temperature measurement will be measured in the temperature reached the PLC. PLC on the collected temperature values compared with a given value, after a PID operation, the regulator Triac off the set period of time the ratio of change in heating wire in the current size and heating time to complete the right temperature control requirements. The system hardware mainly by the CPU224, EM235, bi-directional thyristor etc.; software, some of the major by the PID control to complete. Key words:PLC CPU224 EM235 Triac PID Contro l

相关文档