文档库 最新最全的文档下载
当前位置:文档库 › 植物对氮素的吸收

植物对氮素的吸收

植物对氮素的吸收
植物对氮素的吸收

植物对氮素吸收分子机理研究进展

生物科学系2012级生物技术本科班张亚辉

指导老师吴子龙讲师

【摘要】:

多年来学科的交叉发展,人们开始将分子生物学技术应用于植物营养的研究中,对N 素吸收的分子机理的研究就是其中一项重要的内容。NH4+ 和NO3- 是高等植物吸收的两种主随着近要形态的N素,本文对近年来国内外关于NH4+ 吸收以及NO3- 吸收的研究进行了概述。

【关键词】:氮素;吸收;分子机理

氮(N)素是作物从土壤中吸收量最多的元素, 是作物必需的营养元素之一,其对作物的生命活动和产量形成具有重要意义。但是近年来,由于不合理施肥导致的环境污染问题越发严重,改善施肥措施、改良品种、提高N素利用效率、减轻施肥对环境造成的压力是目前迫切需要解决的问题。因此植物吸N机制一直是植物营养界高度重视的研究内容。NH4+ 和NO3-是N素吸收的主要形态,随着近年来多学科交叉发展,分子生物学技术在植物营养领域中的应用也越来越多,对N素吸收的分子机理研究就是其中一项重要的内容,同时明确这一机理也有助于从分子生物学途径改良品种,提高N素利用率,减轻环境污染

1.高等植物NH4+ 吸收的分子机理研究

早期NH4+ 吸收动力学表明NH4+的吸收有两个明显的动力学吸收特性:低亲和的非饱和吸收和高亲和的饱和吸收[1],高亲和力系统在低浓度下(μmol/L)起作用,低亲和力系统在高浓度(mmol/L)下起作用[2]。研究表明高等植物NH4+ 的吸收是一个由NH4+ 转运蛋白基因(AMT)参与的过程,并且在植物、酵母、细菌和哺乳动物中都发现AMT基因的存在[3]很多证据说明AMT1因基家族编码的蛋白在植物中具有NH4+转运蛋白的功能[2]。首先,AMT1基因属于真核和原核NH4+ 转运蛋白基因家族MEP/AMT1中的成员,番茄和拟南芥的高亲和NH4+ 转运蛋白基因AMT1.1已经通过酵母突变体得到功能鉴定[4];其次,在酵母中AMT 转运蛋白的生化特性如能量来源、最佳pH值以及受K+ 抑制的程度[4]都反应了完整植株根系中的NH4+ 吸收特性;最后,番茄中的AMT1.1首先在根毛中表达,这一点足以说明AMT基因在植物从生长介质中吸收NH4+ 这一过程中所起的作用。

2 高等植物NO3- 吸收的分子机理研究

硝酸盐是植物生长所必须的,既是作为N吸收的基本营养,同时也是植物发育的重要信号。高等植物的硝酸盐吸收中有高亲和吸收系统(HATS)与低亲和吸收系统(LATS)2种。通常,LATS比HATS容量大。拟南芥在10 mmol/L NO3- 中LATS吸收速率比HAT s的Vmax高24倍,因此,虽然HATS在外源硝酸根浓度很低时对N的获得有重要作用,但LATS对于大量硝酸盐的获得还是必要的,而且后者可能对于植物的生长更重要,因为NO3- 很难残留,且在耕地土壤中变化明显。根据对NO3- 诱导的反应,HATS可以进一步分为两部分,一个是

诱导型(iHATS ),另一个为组成型(cHATS),cHATS可以解释无NO3- 存在的高亲和NO3- 吸收行为;然而,当暴露在NO3- 环境中时,iHATS仅在几小时就可以诱导出来。早期的研究已经明确NRT1是低亲和(mmol/L)而NRT2是高亲和(μmol/L)转运蛋白。

3 问题与展望

N素在植物生长发育以及农业生产中都是不可替代的元素,对于其吸收机理的研究虽然取得了一定的成就,但仍处于起步阶段,对水稻中的10个OsAMT基因,还有6个是未知的,而拟南芥的6个AtAMT基因中也只有AtAMT1系列的3个基因研究得较多[2],对NRT的研究也不深入。对N素吸收分子机理的深入研究还需要对这些基因的表达调控及功能做更深一步的研究。现代植物营养学的发展充分体现出多学科的交叉发展趋势,分子生物学技术与传统植物生理技术的结合使植物营养学的发展进入新的更深入的阶段,而正是由于这些学科间的交叉,使得我们可以进一步明确N素吸收的分子机理,并在此基础上依赖于生物技术改良作物品种、提高N素利用效率。

[1] Ullrich WR, Larsson M, Larsson CM, Lesch S, Novacky A. Ammonium uptake in Lemna gibba G1, related membrane potential changes, and inhibition of anion uptake. Plant Physiol., 1984, 61:369-376

[2]Gazzarrini S, Lejay L, Gojon A, Ninnemann O, Frommer WB, Wiren NV. Three functional transporters for constitutive, diurnally regulated, and starvation-induced uptake of ammonium into Arabidopsis roots. The Plant Cell, 1999, 11:937-947

[3] Kaiser BN, Rawat SR, Siddiqi MY,Masle J, Glass ADM.Functional analysis of an Arabidopsis T-DNA“knockout”of the high-affinity NH4+transporter AtAMT1:1. Plant Physiol., 2002, 130:1263-1275

[4] Ninnemann O, Jauniaux JC, Frommer WB. Identification of a high-affinity ammonium transporter from plants. The EMBO Journal, 1994, 13: 3464-3471

植物全磷、全氮、全钾的测定方法

一、植物全氮测定 (一)H2SO4-H2O2消煮法 1、适用范围 本方法不包括硝态氮的植物全氮测定,适合于含硝态氮低的植物样品的测定。 2、方法提要 植物中的氮、磷大多数以有机态存在,钾以离子态存在。样品经浓H2SO4和氧化剂H2O2消煮,有机物被氧化分解,有机氮和磷转化成铵盐和磷酸盐,钾也全部释出。消煮液经定容后,可用于氮、磷、钾的定量。采用H2O2为加速消煮的氧化剂,不仅操作手续简单快速,对氮、磷、钾的定量没有干扰,而且具有能满足一般生产和科研工作所要求的准确度。但要注意遵照操作规程的要求操作,防止有机氮被氧化成N2气或氮的氧化物而损失。 3、试剂 (1)硫酸(化学纯,比重1.84); (2)30% H2O2(分析纯)。 4、主要仪器设备。消煮炉,定氮蒸馏器。 5、操作步骤 称取植物样品(0.5mm)0.3~0.5g(称准至0.0002g)装入100ml开氏瓶或消煮管的底部,加浓H2SO45ml,摇匀(最好放置过夜),在电炉或消煮炉上先小火加热,待H2SO4发白烟后再升高温度,当溶液呈均匀的棕黑色时取下。稍冷后加班10滴H2O2(3),再加热至微沸,消煮约7~10min,稍冷后重复加H2O2,,再消煮。如此重复数次,每次添加的H2O2应逐次减少, 消煮至溶液呈无色或清亮后,再加热10min,除去剩余的H2O2。取下冷却后,用水将消煮液无损地转移入100ml容量瓶中,冷却至室温后定容(V1)。用无磷钾的干滤纸过滤,或放置澄清后吸取清液测定氮、磷、钾。每批消煮的同时,进行空白试验,以校正试剂和方法的误差。 6、注释 (1)所用的H2O2应不含氮和磷。H2O2在保存中可能自动分解,加热和光照能促使其分解,故应保存于阴凉处。在H2O2中加入少量 H2SO4酸化,可防止H2O2分解。 (2)称样量决定于NPK含量,健状茎叶称0.5g,种子0.3g,老熟茎叶可称1g,若新鲜茎叶样,可按干样的5倍称样。称样量大时,可适当增加浓H2SO4用量。 (3)加H2O2时应直接滴入瓶底液中,如滴在瓶劲内壁上,将不起氧化作用,若遗留下来还会影响磷的显色。 (二)水杨酸-锌粉还原- H2SO4-加速剂消煮法 1、适用范围 包括销态氮的植物全氮测定,适合于硝态氮含量较高的植物样品的测定。 2、方法原理 样品中的硝态氮在室温下与硫酸介质中的水杨酸作用,生成硝基水杨酸,再用硫代硫酸钠及锌粉使硝基水杨酸还原为氨基水杨酸.然后按 H2SO4-加速剂消煮法进行消煮法进行消煮样品,使样品中全部氮转化为铵盐。 3、试剂 (1)固体Na2S2O3; (2)还原锌粉(AR); (3)水杨酸-硫酸:30g水杨酸溶于1L浓硫酸中。也可以该用含苯酚的浓硫酸:40g苯酚溶于1L浓硫酸中。 4、仪器设备。同上。 5、操作步骤 称取磨细烘干样品(过0.25mm筛)0.1000~0.2000g或新鲜茎叶样品1.000~2.000g,置于100ml开氏瓶或消煮管中,先用水湿润内样品(烘干样),然后加水杨酸-硫酸10ml,摇匀后室温放置30min,加入Na2S2O3约1.5g,锌粉0.4g和水10ml,放置10 min,待还原反应完成后,加入混合加速剂2g,按土壤全氮测定方法进行消煮, 消煮完毕,取下冷却后,用水将消煮液无损地转移入100ml容量瓶中,冷却至室温后定容(V1)。用于滤纸过滤,或放置澄清后吸取清液测定氮。每批消煮的同时,进行空白试验,以校正试剂和方法的误差。 (三)消煮液中铵的定量(凯氏法) 1、适用范围。适合于各种植物样品消煮液中氮的定量。 2、方法原理

氮磷钾对植物作用

目录 1. 1 氮 2. 2 磷 3. 3 钾 氮磷钾氮 编辑 是植物生长的必需养分,它是每个活细胞的组成部分。植物需要大量氮。 氮素是植物体内蛋白质、核酸和叶绿素的组成成分[1],叶绿素a和叶绿素b;都是含氮化合物。绿色植物进行光合作用,使光能转变为化学能,把无机物(二氧化碳和水)转变为有机物(葡萄糖)和氧气,是借助于叶绿素的作用。葡萄糖是植物体内合成各种有机物的原料,而叶绿素则是植物叶子制造“粮食”的工厂。氮也是植物体内维生素和能量系统的组成部分。 氮素对植物生长发育的影响是十分明显的。当氮素充足时,植物可合成较多的蛋白质,促进细胞的分裂和增长,因此植物叶面积增长快,能有更多的叶面积用来进行光合作用。 此外,氮素的丰缺与叶子中叶绿素含量有密切的关系。这就使得我们能从叶面积的大小和叶色深浅上来判断氮素营养的供应状况。在苗期,一般植物缺氮往往表现为生长缓慢,植株矮小,叶片薄而小,叶色缺绿发黄。禾本科作物则表现为分孽少。生长后期严重缺氮时,则表现为穗短小,籽粒不饱满。在增施氮肥以后,对促进植物生长健壮有明显的作用。往往施用后,叶色很快转绿,生长量增加。但是氮肥用量不宜过多,过量施用氮素时,叶绿素数量增多,能使叶子更长久地保持绿色,以致有延长生育期、贪青晚熟的趋势。对一些块根、块茎作物,如糖用甜菜,氮素过多时,有时表现为叶子的生长量显著增加,但具有经济价值的块根产量却少得使人失望。 我国土壤全氮含量的分布 植物养分的主要来源是土壤。我国土壤全氮含量的基本分布特点是:东北平原较高,黄淮海平原、西北高原、蒙新地区较低,华东、华南、中南、西南地区中等。大体呈现南北较高,中部略低的分布。但南方略高主要指水稻土,旱地含氮量很低。 一般认为土壤全氮含量<0.2%即有可能缺氮,我国大部分耕地的土壤全氮含量都在 0.2%以下,这就是为什么我国几乎所有农田都需要施用化学氮肥的原因。 我国农田相对严重缺氮的土壤主要分布在我国的西北和华北地区。如果把土壤全氮含量等于0.075% 作为严重缺氮的界限,严重缺氮耕地超过面积一半的有山东、河北、河南、陕西、新疆等五个省区。 氮磷钾磷 编辑

土壤中氮素转化过程及植物吸收方式(土壤部分初稿)说课材料

土壤中氮素转化过程及植物吸收方式(土壤 部分初稿)

土壤中氮素转化过程及植物吸收方式 我国耕地土壤全氮含量为0.04~0.35%之间,且土壤有机质含量呈正相关。其氮素来源包括:生物固氮、降水、农业灌溉和施肥等,而目前肥料是农田土壤氮肥的主要来源。下面就从土壤中氮素的主要表现形态和转化过程等进行详细的介绍: (一)土壤中氮素的主要形态 水溶性速效氮源 < 全氮的5% 包括游离氨基酸、胺盐及酰胺类化合物等有机氮水解性缓效氮源占50~70% 包括蛋白质及肽类、核蛋白类、氨基糖类(>98%) 非水解性难利用占30~50% 包括杂环态氮、缩胺类 离子态土壤溶液中 无机氮吸附态土壤胶体吸附 (1~2%) 固定态 2:1型粘土矿物固定 注明:其中无机氮包括:铵态氮(NH4+ — N)、硝态氮(NO3-— N)、亚硝态氮(NO2- — N)三种主要形态。 一般情况下,土壤中存在的主要是有机态氮,占土壤总氮的90~98%。

(二)土壤中氮素的转化过程 1.有机态氮的转化 土壤中的有机态氮是较复杂的有机化合物,必须要经过各种矿化过程,变为易溶的形态,才能发挥作物营养的功能。它的矿化量和矿化速率就成为决定土壤供氮能力的极其重要的因素。土壤有机氮的矿化过程是包括许多过程在内的复杂过程。 ①水解过程蛋白质在微生物分泌的蛋白质水解酶的作用下,逐步分解为各种氨基酸。 ②氨化过程氨基酸在多种微生物作用下分解成氨的过程称为氨化过程。如: RCH2OH+NH3+CO2+能量—水解—→ RCHNH2COOH+H2O RCHOHCOOH+NH3+能量—氧化—→ RCHNH2COOH+O2 RCOOH+NH3+CO2+能量——还原—→RCHNH2COOH+H2 由此可见,氨化作用可在多种多样条件下进行。无论水田、旱田,只要微生物活动旺盛,氨化作用都可以进行。

植物缺少氮磷钾等营养元素的症状 (2)

植物缺少氮磷钾等营养元素的症状 (一)氮 根系吸收的氮主要就是无机态氮,即铵态氮与硝态氮,也可吸收一部分有机态氮,如尿素。 氮就是蛋白质、核酸、磷脂的主要成分,而这三者又就是原生质、细胞核与生物膜的重要组成部分,它们在生命活动中占有特殊作用。因此,氮被称为生命的元素。酶以及许多辅酶与辅基如NAD+、NADP+、FAD等的构成也都有氮参与。氮还就是某些植物激素如生长素与细胞分裂素、维生素如B1、B2、B6、PP等的成分,它们对生命活动起重要的调节作用。此外,氮就是叶绿素的成分,与光合作用有密切关系。由于氮具有上述功能,所以氮的多寡会直接影响细胞的分裂与生长。 当氮肥供应充足时,植株枝叶繁茂,躯体高大,分蘖(分枝)能力强,籽粒中含蛋白质高。植物必需元素中,除碳、氢、氧外,氮的需要量最大,因此,在农业生产中特别注意氮肥的供应。常用的人粪尿、尿素、硝酸铵、硫酸铵、碳酸氢铵等肥料,主要就是供给氮素营养。 缺氮时,蛋白质、核酸、磷脂等物质的合成受阻,植物生长矮小,分枝、分蘖很少,叶片小而薄,花果少且易脱落;缺氮还会影响叶绿素的合成,使枝叶变黄,叶片早衰甚至干枯,从而导致产量降低。因为植物体内氮的移动性大,老叶中的氮化物分解后可运到幼嫩组织中去重复利用,所以缺氮时叶片发黄,由下部叶片开始逐渐向上,这就是缺氮症状的显著特点。 氮过多时,叶片大而深绿,柔软披散,植株徒长。另外,氮素过多时,植株体内含糖量相对不足,茎秆中的机械组织不发达,易造成倒伏与被病虫害侵害。 (二)磷 磷主要以H2PO4-或HPO42-的形式被植物吸收。吸收这两种形式的多少取决于土壤pH。pH<7时,H2P O4-居多;pH>7时,HPO42-较多。当磷进入根系或经木质部运到枝叶后,大部分转变为有机物质如糖磷脂、核苷酸、核酸、磷脂等,有一部分仍以无机磷形式存在。植物体中磷的分布不均匀,根、茎的生长点较多,嫩叶比老叶多,果实、种子中也较丰富。 磷就是核酸、核蛋白与磷脂的主要成分,它与蛋白质合成、细胞分裂、细胞生长有密切关系;磷就是许多辅酶如NAD+、NADP+等的成分,它们参与了光合、呼吸过程;磷就是AMP、ADP与ATP的成分;磷还参与碳水化合物的代谢与运输,如在光合作用与呼吸作用过程中,糖的合成、转化、降解大多就是在磷酸化后才起反应的;磷对氮代谢也有重要作用,如硝酸还原有NAD+与FAD的参与,而磷酸吡哆醛与磷酸吡哆胺则参与氨基酸的转化;磷与脂肪转化也有关系,脂肪代谢需要NADPH、ATP、CoA与NAD+的参与。 由于磷参与多种代谢过程, 而且在生命活动最旺盛的分生组织中含量很高,因此施磷对分蘖、分枝以及根系生长都有良好作用。由于磷促进碳水化合物的合成、转化与运输,对种子、块根、块茎的生长有利,故马铃薯、甘薯与禾谷类作物施磷后有明显的增产效果。由于磷与氮有密切关系,所以缺氮时,磷肥的效果就不能充分发挥。只有氮磷配合施用,才能充分发挥磷肥效果。总之,磷对植物生长发育有很大的作用,就是仅次于氮的第二个重要元素。 缺磷会影响细胞分裂,使分蘖分枝减少,幼芽、幼叶生长停滞,茎、根纤细,植株矮小,花果脱落,成熟延迟;缺磷时,蛋白质合成下降,糖的运输受阻,从而使营养器官中糖的含量相对提高,这有利于花青素的形成,故缺磷时叶子呈现不正常的暗绿色或紫红色,这就是缺磷的病症。

植物对铵态氮和硝态氮的吸收能力

植物对铵、硝态氮的相对吸收能力 氮素对植物生长发育、产量形成与品质好坏有极为重要的作用。从营养意义来讲,作物在生长发育过程中主要吸收两种矿质氮源,即铵态氮和硝态氮。一般认为NO3-的吸收是逆电化学势梯度进行的主动过程,而NH4+是与H+进行交换吸收的。NH4+与NO3-吸收到作物体后,除硝态氮需先还原成NH4+ (NH3)以外,其余同化过程完全相同。据研究,作物对NH4+、NO3-的吸收量因作物特性、种类和环境条件而变化。 铵、硝态氮的营养生理性质 铵、硝态氮都是植物和微生物的良好氮源,可以被它们直接吸收和利用。这两种形态的氮素约占植物吸收阴阳离子的80%。 植物在吸收和代谢两种形态的氮素上存在不同。首先,铵态氮进入植物细胞后必须尽快与有机酸结合,形成氨基酸或酰胺,铵态氮以NH3的形态通过快速扩散穿过细胞膜,氨系统内的NH4+的去质子化形成的NH3对植物毒害作用较大。硝态氮在进入植物体后一部分还原成铵态氮,并在细胞质中进行代谢,其余部分可“贮备”在细胞的液泡中,有时达到较高的浓度也不会对植物产生不良影响,硝态氮在植物体内的积累都发生在植物的营养生长阶段,随着植物的不断生长,体内的硝态氮含量会消耗净尽,至少会大幅下降。这是一切植物的共性。因此单纯施用硝态氮肥一般不会产生不良效果,而单纯施用铵态氮则会发生铵盐毒害,在水培条件下更易发生。 植物吸收铵、硝态氮的能力 植物对铵、硝态氮吸收情况除与植物种类有关外,外界环境条件有着重要的影响。其中溶液中的浓度直接影响吸收的多少,温度影响着代谢过程的强弱,而土壤pH影响着两者进入的比例:在其他条件一致时,pH低,有利于硝态氮的吸收;pH高,有利于铵态氮的吸收。 一般情况下,同时施用铵态氮和硝态氮肥,往往能获得作物较高的生长速率和产量。同时施用两种形态氮,植物更易调节细胞内pH值和通过消耗少量能量来贮存一部分氮。两者合适的比例取决于施用的总浓度:浓度低时,不同比例对植物生长影响不大,浓度高时,硝态氮作为主要氮源显示出优越性。 影响两种氮素形态效果的主要因子是作物种类,同一作物的不同品种、气候条件、土壤和氮肥用量。现以小麦对这两种形态氮肥的反应为例:施氮量为120kg/hm2,均作播前种肥一次施入。在大田试验条件下,单独供给硝态氮和供给硝态氮加铵态氮(硝态氮∶铵态氮=2∶1)时,小麦生长发育良好;而单独供给铵态氮时,小麦生物产量与籽粒产量均有所下降;供给铵态氮加硝态氮(铵态氮∶硝态氮=2∶1)时,小麦生物产量与籽粒产量介于单独供给铵态氮与单独供给硝态氮之间。 植物吸收铵、硝态氮的偏好 虽然铵、硝态氮都是植物根系吸收的主要无机氮,但不同作物对其有不同偏好性。适应酸性土壤生长的嫌钙植物和适应低氧化还原势土壤条件下生长的植物(如水稻)嗜好铵态氮,有些植物如马铃薯,适于低pH,供应铵态氮,可使介质pH降低,对植株,特别对根系生长有明显优点。某些植物施用铵态氮肥能否获得较高的生长速率和产量,主要取决于根部温度以及影响根部碳水化合物供应的因素,如光照强度等。pH低时,施用铵态氮肥不利,但pH 大于7时,施用铵态氮会使介质中游离氨浓度增加,也有不利影响。在高等植物中,营养生长尤其是生殖生长速率较高,与铵态氮对体内激素平衡的关系密切。相反,喜钙植物和适于高pH石灰性土壤生长的植物,优先利用硝态氮,大多数旱地作物,如玉米,对硝态氮偏好;在等氮量供应情况下,硝态氮的增产效果更突出。蔬菜是一类很容易累积硝酸盐的作物,又是对硝酸盐非常偏爱的作物。在田间,由于尿素态氮或铵态氮会很快转化为硝态氮,施用这两类形态的氮素,对蔬菜并没有什么不良后果,但水培试验中,只要营养液中加入硝态氮,

第三章植物的矿质与氮素营养

第三章植物的矿质与氮素营养 (单元自测题) 一、填空 1.矿质元素中植物必需的大量元素包括。(N,P,K,Ca,Mg,S) 2.植物必需的微量元素有。(Fe,Cl,Cu,Zn,Mn,B,Mo,Ni) 3.除了碳、氢、氧三种元素以外,植物体内含量最高的元素是。(氮) 4.必需元素在植物体内的生理作用可以概括为三方面:(1)物质的组成成分,(2)活动的调节者,(3)起作用。(细胞结构,植物生命,电化学) 5.N、P、K的缺素症从叶开始,因为这些元素在体内可以。(老叶,移动)。 6.氮肥施用过多时,抗逆能力,成熟期。(减弱,延迟) 7.植物叶片缺铁黄化和缺氮黄化的区别是,前者症状首先表现在叶而后者则出现在叶。(新,老) 8.白菜的“干心病”、西红柿“脐腐病”是由于缺引起。(钙) 9.缺时,花药和花丝萎缩,绒毡层组织破坏,花粉发育不良,会出现“花而不实”的现象。(B) 10.研究植物对矿质元素的吸收,不能只用含一种盐分的营养液培养植物,因为当溶液中只有一种盐类时即使浓度较低,植物也会发生。(单盐毒害) 11.矿质元素主动吸收过程中有载体参与,可以从现象和现象两现象得到证实。(离子竞争抑制,饱和) 12.植物吸收(NH4)2SO4后会使根际pH值,而吸收NaNO3后却使根际pH值。(降低,升高)13.植物体内硝酸盐还原速度白天比夜间。(快) 14.果树“小叶病”是由于缺的缘故。(锌) 15.植物体内与光合放氧有关的微量元素有、和。(Mn,Cl,Ca)。 二、选择题 1.植物体中磷的分布不均匀,下列哪种器官中的含磷量相对较少:。D.A.茎的生长点 B.果实、种子 C.嫩叶 D.老叶 2.构成细胞渗透势的重要成分的元素是。C. A.氮 B.磷 C.钾 D.钙 3.元素在禾本科植物中含量很高,特别是集中在茎叶的表皮细胞内,可增强对病虫害的抵抗力和抗倒伏的能力。D. A.硼 B.锌 C.钴 D.硅 4.植物缺锌时,下列的合成能力下降,进而引起吲哚乙酸合成减少。D.A.丙氨酸 B.谷氨酸 C.赖氨酸 D.色氨酸 5.植物白天吸水是夜间的2倍,那么白天吸收溶解在水中的矿质离子是夜间的。D.A.2倍 B.小于2倍 C.大于2倍 D.不一定 6.植物吸收下列盐分中的不会引起根际pH值变化。A. A.NH4N03 B.NaN03 C.Ca(N03)2 D.(NH4)2S04

氮磷钾对植物分别有什么作用.pdf

氮磷钾对植物分别有什么作用 氮肥:能使植物叶子大而鲜绿,使叶片减缓衰老,营养健壮,花多,产量高。生产上常使用氮肥是植物快速生长。所以我们对于叶菜(吃叶子的菜)要多施氮肥。主要磷肥品种有过磷酸钙(普钙)、重过磷酸钙(重钙,也称双料、三料过磷酸钙)、钙镁磷肥,此外,磷矿粉、钢渣磷肥、脱氟磷肥、骨粉也是磷肥,但目前用量很少,市场也少见 磷肥:能使作物代谢正常,植株发育良好,同时提高作物的抗旱性以及抗寒性,提早成熟。我们要使作物提前收获,一般多施用磷肥。 钾肥:能使植物的光合作用加强,茎秆坚韧,抗伏倒,使种子饱满 主要钾肥品种有硫酸钾、氯化钾、盐湖钾肥、窑灰钾肥和草木灰。其中硫酸钾和氯化钾成分较纯,主要成分是化钾,窑灰钾肥和草木灰成分很复杂,市场上流通量较前三种钾肥少。 资料来源《植物生理学》 (1)氮肥:即以氮素营养元素为主要成分的化肥,包括碳酸氢铵、尿素、销铵、氨水、氯化铵、硫酸铵等。 (2)磷肥:即以磷素营养元素为主要成分的化肥,包括普通过磷酸钙、钙镁磷肥等。 (3)钾肥:即以钾素营养元素为主要成分的化肥,目前施用不多,主要品种有氯化钾、硫酸钾、硝酸钾等。 (4)复、混肥料:即肥料中含有两种肥料三要素(氮、磷、钾)的二元复、混肥料和含有氮、磷、钾三种元素的三元复、混肥料。其中混肥在全国各地推广很快。 (5)微量元素肥料和某些中量元素肥料:前者如含有硼、锌、铁、钼、锰、铜等微量元素的肥料,后者如钙、镁、硫等肥料。 (6)对某些作物有利的肥料:如水稻上施用的钢渣硅肥,豆科作物上施用的钴肥,以及甘蔗、水果上施用的农用稀土等。作物必需的营养元素有16种,除碳氢氧是从空气中吸收,其余均不同程度地需要施肥来满足作物正常生长的需要。按照作物对养分需求量的多少分为大量元素肥料,包括氮肥、磷肥和钾肥;中量元素肥料,包括钙、镁、硫肥;微量元素肥料,包括锌、硼、锰、钼、铁、铜肥;此外,还有一些有益元素肥料如含硅肥料、稀土肥料等。 1、氮素化肥氮是蛋白质构成的主要元素,蛋白质是细胞原生质组成中的基本物质。氮肥增施能促进蛋白质和叶绿素的形成,使叶色深绿,叶面积增大,促进碳的同化,有利于产量增加,品质改善。在生产上经常使用的氮素化肥有:①硫酸铵(硫铵):白色或淡褐色结晶体。含氮20%一21%,易溶于水,吸湿性小,便于贮存和使用。硫铵是一种酸性肥料,长期使用会增加土壤的酸性。最好做追肥使用,一般每667平方米施用量为15—20千克。②碳酸氢铵(碳铵):白色细小结晶,含氮17%,有强烈的刺激性臭味,易溶于水,易被作物吸收,易分解挥发。可作基肥或追肥使用,追肥时要埋施,及时覆土,以免氨气挥发烧伤秧苗。 ③尿素:白色圆粒状,含氮量为46%。尿素不如硫铵肥效发挥迅速,追肥时要

氮素是植物的重要营养元素之一

氮素是植物的重要营养元素之一,植物生长的主要限制因子,但多以植物难以利用的有机态存在土壤中。土壤微生物是氮素转化(如氨化过程、硝化过程)的主要驱动力。水热条件和土壤性质是影响土壤微生物数量和活性的重要因素。 在脱氨的同时,产生有机酸、醇或碳氢化合物以及二氧化碳等。具体途径和产物随作用的底物、微生物种类以及环境条件而异。 氨作为微生物的代谢产物释放出来,一部分被植物吸收,一部分被土壤颗粒吸附,另一部分被其他微生物吸收利用。如果土壤中的碳氮比(C:N)大于25:1,碳源和能源充足,微生物将迅速生长,充分利用氨合成细胞物质,把氨固定起来。在这种情况下,微生物常与植物争夺无机氮。如果土壤中的碳氮比小于25:1,微生物的生长和细胞物质的合成,因受可利用碳源的限制,使氨能有剩余,可供植物利用。微生物死亡后,其所吸收固定的氮,经细胞的分解再被释放出来。 土壤中氨化作用的强弱除与有机含氮化合物的数量有关外,还受土壤环境条件的影响。在水分适宜、通气良好的中性土壤中,氨化作用能正常进行,作用的速度随温度的升高而加强。另外,土壤中的通气状况不同,参与氨化作用的微生物种类就不同,最终产物也不一样。通气良好时,主要由好气微生物作用,最终产物为氨;在通气不良的条件下,由厌气微生物作用,最终产物为氨和胺。 一般数量比根际外多几倍至几十倍。它们和植物间是互生关系,与植物根系相互作用、相互促进。微生物大量聚集在根系周围,将有机物转变为无机物,为植物提供有效的养料;同时,微生物还能分泌维生素,生长刺激素等,促进植物生长。在植物生长过程中,死亡的根系和根的脱落物(根毛、表皮细胞、根冠等),以及根系向根外分泌的无机物和有机物是微生物重要的营养来源和能量来源;由于根系的穿插,使根际的通气 根际微生物 条件和水分状况优于根际外,从而形成利于微生物的生态环境。根际微生物在同一植物的不同品种可表现出其特异性,如雀稗根际内的雀稗固氮菌(Azotobacter paspali)只在雀稗品种的根际内受到刺激,而在另一品种的根际内则发育不好。固氮螺菌(Azospirillas sp.)在玉米品种UR-1根际内固氮活性不强,而在UR-1的杂种S1根际内则固氮酶活性很高。 2特征 植物根表及近根土壤中的微生物。根际一词是希尔特纳于1904年提出的,指植物的根表以及受根系直接影响的土壤区域。根际微生物在数量和质量上都与根际以外的微生物不同。根际微生物数量常比根际以外的微生物数量高几倍至几十倍,个别的细菌群可高达上千倍(平板计数)。这两者的数量比称为根土比(R∶S),表示植物根系对微生物的影响程度,所以又称根际效应。 3种类 根际微生物以细菌为主,并且是革兰氏阴性菌占优势。 常见的有假单胞菌、黄杆菌、产碱杆菌、土壤杆菌和色杆菌等。

土壤中氮素转化过程及植物吸收方式土壤部分初稿

土壤中氮素转化过程及植物吸收方式 我国耕地土壤全氮含量为 0.04?0.35 %之间,且土壤有机质含量呈正相关。其 氮素来源包括: 生物固氮、降水、农业灌溉和施肥等,而目前肥料是农田土壤氮 肥的主要来源。 绍: 下面就从土壤中氮素的主要表现形态和转化过程等进行详细的介 (一) 土壤中氮素的主要形态 水溶性速效氮源 <全氮的5%包括游离氨基酸、胺盐及酰胺类化合物等 有机氮水解性缓效氮源占50?70%包括 蛋白质及肽类、核蛋白类、氨基糖类 (>98%)非水解性难利用占30?50%包括杂环态氮、缩胺类 注明:其中无机氮包括: 铵态氮(NH 4+ — N )、硝态氮(N6 — N )、亚硝态氮(NQ - — N )三种主要形 态。 般情况下,土壤中存在的主要是有机态氮,占土壤总氮的 90~98% 土壤中氮的形态 「水溶件 速效氮源 < 全氮的5% 右机氮{水解 性缓效氮源占40%-60% (>98%) I 非水斛性 难利用占40%-50% 土壤溶液中 土壤胶体吸附 2: 1型粘上矿物固定有机氮 矿化作用 1川尢什川 上无机氮 离子态 无机氮 吸 附 (1?2%)固定态 土壤溶液中 吸附态 土壤胶体吸附 :1型粘土矿物固定 「离子态 无机氮寸 吸附态 固建态

(二)土壤中氮素的转化过程 1. 有机态氮的转化 土壤中的有机态氮是较复杂的有机化合物,必须要经过各种矿化过 程,变为易溶的形态,才能发挥作物营养的功能。它的矿化量和矿化速 率就成为决定土壤供氮能力的极其重要的因素。土壤有机氮的矿化过程 是包括许多过程在内的复杂过程。 ① 水解过程 蛋白质在微生物分泌的蛋白质水解酶的作用下,逐步 分解为各种氨基酸。 ② 氨化过程 氨基酸在多种微生物作用下分解成氨的过程称为氨 化过程。如: RCHOI+ NH 3 + CQ + 能量 一水解一-> RCHNH 2COOH- H 2O RCHOHCOOHN" + 能量 一氧化一-> RCHNHCOO + Q RCOO + NH3 + CQ + 能量—— 还原一-> RCHN 2COO + H 2 由此可见,氨化作用可在多种多样条件下进行。无论水田、旱田,只要 微生物活动旺盛,氨化作用都可以进行。 氨化 作用 产生 的铵 态氮能 被植 物和 微生 物 吸收 利用 ,是 农作 物的 优良 氮素 营 养 。未 被作物 吸收 利用 的铵 ,可被 土壤 胶体 吸收 保 存。但在 旱地 通气 良好 的条 件下,铵态 氮可 进一 步为微 生物 转化 。 r 钱态氮 风素在土塢中变化的示意图 ” NO, N :0 硝态氮上 吸附杰镀或 水体中的 固定态皴 硝态氮 有 机 态 氮

氮磷钾对植物作用

氮磷钾对植物作用标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

目录 1. 1 2. 2 3. 3 氮磷钾氮 是植物生长的必需养分,它是每个活细胞的组成部分。植物需要大量氮。 氮素是植物体内蛋白质、核酸和叶绿素的组成成分[1],叶绿素a和叶绿素b;都是含氮化合物。绿色植物进行光合作用,使光能转变为化学能,把(二氧化碳和)转变为有机物(葡萄糖)和,是借助于叶绿素的作用。葡萄糖是植物体内合成各种有机物的原料,而叶绿素则是植物叶子制造“粮食”的工厂。氮也是植物体内维生素和能量系统的组成部分。 氮素对植物生长发育的影响是十分明显的。当氮素充足时,植物可合成较多的蛋白质,促进细胞的分裂和增长,因此植物叶面积增长快,能有更多的叶面积用来进行光合作用。 此外,氮素的丰缺与叶子中叶绿素含量有密切的关系。这就使得我们能从叶面积的大小和叶色深浅上来判断氮素营养的供应状况。在苗期,一般植物缺氮往往表现为生长缓慢,植株矮小,叶片薄而小,叶色缺绿发黄。禾本科则表现为分孽少。生长后期严重缺氮时,则表现为穗短小,籽粒不饱满。在增施氮肥以后,对促进植物生长健壮有明显的作用。往往施用后,叶色很快转绿,生长量增加。但是氮肥用量不宜过多,过量施用氮素时,叶绿素数量增多,能使叶子更长久地保持绿色,以致有延长生育期、贪青晚熟的趋势。对一些块根、块茎作物,如糖用,氮素过多时,有时表现为叶子的生长量显着增加,但具有经济价值的块根产量却少得使人失望。 我国土壤全氮含量的分布

植物养分的主要来源是土壤。我国土壤全氮含量的基本分布特点是:较高,、西北高原、蒙新地区较低,华东、华南、中南、西南地区中等。大体呈现南北较高,中部略低的分布。但南方略高主要指水稻土,旱地含氮量很低。 一般认为土壤全氮含量<%即有可能缺氮,我国大部分耕地的土壤全氮含量都在%以下,这就是为什么我国几乎所有农田都需要施用化学氮肥的原因。 我国农田相对严重缺氮的土壤主要分布在我国的西北和华北地区。如果把土壤全氮含量等于 % 作为严重缺氮的界限,严重缺氮耕地超过面积一半的有山东、河北、河南、陕西、新疆等五个省区。 氮磷钾磷 磷在植物体中的含量仅次于氮和钾,一般在种子中含量较高。磷对植物营养有重要的作用。植物体内几乎许多重要的有机化合物都含有磷。 磷是植物体内核酸、蛋白质和酶。等多种重要化合物的组成元素。[1] 磷在植物体内参与光合作用、呼吸作用、能量储存和传递、细胞分裂、细胞增大和其他一些过程。 磷能促进早期根系的形成和生长,提高植物适应外界环境条件的能力,有助于植物耐过冬天的严寒。 磷能提高许多水果、蔬菜和粮食作物的品质。 磷有助于增强一些植物的抗病性,抗旱和抗寒能力。 磷有促熟作用,对收获和作物品质是重要的。 但是用磷过量会使植物晚熟结实率下降。 我国缺磷土壤的分布

土壤中氮素转化过程及植物吸收方式(土壤部分)

土壤中氮素转化过程及植物吸收方式 我国耕地土壤全氮含量为 0.04~0.35%之间,且土壤有机质含量呈正相关。其氮 素来源包括:生物固氮、降水、农业灌溉和施肥等,而目前肥料是农田土壤氮肥 的主要来源。下面就从土壤中氮素的主要表现形态和转化过程等进行详细的介绍: 一) 土壤中氮素的主要形态 注明:其中无机氮包括:铵态氮(NH 4+ — N)、硝态氮(NO 3- — N)、亚硝态氮(NO 2- — N)三种主要形态。 一般情况下,土壤中存在的主要是有机态氮,占土壤总氮的 90~98%。 水溶性 速效氮源 < 全氮的 5% 包括游离氨基酸、胺盐及酰胺类化合物等 有机氮 水解性 缓效氮源 占 50~70% 包括蛋白质及肽类、核蛋白类、氨基糖类 (>98%) 非水解性 难利用 占 30~ 50% 包括杂环态氮、缩胺类 土壤溶液中 土壤胶体吸附 (1~2%) 固定态 2:1 型粘土矿物固定 离子态 无机氮 吸附态

二)土壤中氮素的转化过程 1.有机态氮的转化 土壤中的有机态氮是较复杂的有机化合物,必须要经过各种矿化过程,变为易溶的形态,才能发挥作物营养的功能。它的矿化量和矿化速率就成为决定土壤供氮能力的极其重要的因素。土壤有机氮的矿化过程是包括许多过程在内的复杂过程。 ①水解过程蛋白质在微生物分泌的蛋白质水解酶的作用下,逐步分解为各种氨基酸。 ②氨化过程氨基酸在多种微生物作用下分解成氨的过程称为氨化过程。如:

RCH2OH+ NH3+ CO2+能量—水解—→ RCHNH2COOH+ H2O RCHOHCOOH+NH3+能量—氧化—→ RCHNH2COOH+ O2 RCOOH+ NH3 + CO2+能量——还原—→RCHNH2COOH+H2 由此可见,氨化作用可在多种多样条件下进行。无论水田、旱田,只要微生物活动旺盛,氨化作用都可以进行。 氨化作用产生的铵态氮能被植物和微生物吸收利用,是农作物的优良氮素营养。未被作物吸收利用的铵,可被土壤胶体吸收保存。但在旱地通气良好的条件下,铵态氮可进一步为微生物转化。 ③硝化过程指氨或铵盐在微生物作用下转化成硝酸态氮化合物的过程。它是由两组微生物分两步完成的。第一步铵先转化成亚硝酸盐,紧接着亚硝酸盐又转化成硝酸盐,消化过程是一个氧化需氧过程,只有在通气良好的情况下才能进行。所以水稻田在淹水期间主要为铵态氮,硝态氮很少,旱地土壤一般硝化作用速率快于氨化作用,土壤中主要为硝态氮。硝态氮也是为植物吸收利用的优良氮源,所以可以利用土壤硝化作用强度来了解旱地土壤的供氮性能。 ④反硝化作用指土壤中硝态氮被还原为氧化氮和氮气,扩散至空气中损失的过程。反硝化作用主要由反硝化细菌引起。在通气不良的条件下,反硝化细菌可夺取硝态氮及其某些还原产物中的化合氧,使硝态氮变为氮气损失。 2.无机态氮的转化过程 无机态氮包括硫酸铵、硝酸铵、碳酸铵、碳酸氢铵、氢氧化铵等。由于这些都属于不稳定的化合物,易氨化释放出氨,同时也遵循硝化过程和反硝化作用;但应指出,施用时需在保护地的密闭环境中施用,除应注意土壤适当湿度和通透性外,还应掌握少施、勤施和深施。如施用不当,极易熏坏叶片,甚至造成全株死亡。 尿素虽属有机氮肥,但因结构简单,其转化过程与无机氮肥基本相同,以尿素为例

氮磷钾对植物的作用

氮磷钾对植物的作用 (1)氮肥:即以氮素营养元素为主要成分的化肥,包括碳酸氢铵、尿素、硝铵、氨水、氯化铵、硫酸铵等。 (2)磷肥:即以磷素营养元素为主要成分的化肥,包括普通过磷酸钙、钙镁磷肥等。 (3)钾肥:即以钾素营养元素为主要成分的化肥,目前施用不多,主要品种有氯化钾、硫酸钾、硝酸钾等。 (4)复混肥料:即肥料中含有两种肥料三要素(氮、磷、钾)的二元复混肥料和含有氮、磷、钾三种元素的三元复混肥料。 (5)微量元素肥料和某些中量元素肥料:前者如含有硼、锌、铁、钼、锰、铜等微量元素的肥料,后者如钙、镁、硫等肥料。 (6)对某些作物有利的肥料:如水稻上施用的钢渣硅肥,豆科作物上施用的钴肥,以及甘蔗、水果上施用的农用稀土等。作物必需的营养元素有16种,除碳氢氧是从空气中吸收,其余均不同程度地需要施肥来满足作物正常生长的需要。按照作物对养分需求量的多少分为大量元素肥料,包括氮肥、磷肥和钾肥;中量元素肥料,包括钙、镁、硫肥;微量元素肥料,包括锌、硼、锰、钼、铁、铜肥;此外,还有一些有益元素肥料如含硅肥料、稀土肥料等。目前,市场经销的肥料以氮磷钾肥为主,并且每种肥料也有许多品种。主要氮肥品种有:尿素、碳酸氢铵(碳铵)、氯化铵、硫酸铵、硝酸铵、硝酸钙;还有氨水、石灰氮等也属于氮肥,但目前已较少使用。硝酸钙既是氮肥,也可作钙肥用。主要磷肥品种有:过磷酸钙(普钙)、重过磷酸钙(重钙,也称双料、三料过磷酸钙)、钙镁磷肥;此外,磷矿粉、钢渣磷肥、脱氟磷肥、骨粉也是磷肥,但目前用量很少,市场也少见。主要钾肥品种有:硫酸钾、氯化钾、盐湖钾肥、窑灰钾肥和草木灰。其中硫酸钾和氯化钾成分较纯,我国市场上流通的大多为进口钾肥,盐湖钾肥产自我国青海省,主要成分是化钾,窑灰钾肥和草木灰成分很复杂,市场上流通量较前三种钾肥少。微量元素肥料品种也较多,最常用的硼肥为硼砂,锌肥为硫酸锌,锰肥为硫酸锰,钼肥为钼酸铵,铜肥为硫酸铜,铁肥为硫酸亚铁及一些有机态铁络合物。随着农化研究的深入,复混肥料应用越来越广泛。复混肥是同时含有氮、磷、钾中两种或两种以上成分的肥料;按照制造方法分为两类,复合肥料和混合肥料。最常见的复合肥是磷酸氢二铵(磷铵),此外还有尿素磷铵、硝酸磷铵、硫磷酸铵、硝酸磷肥、磷酸二铵、硝酸钾等。复合肥使用时需调整养分比例以适应不同作物和土壤的要求。混合肥料,它是将几种单质肥料按作物和土壤等条件灵活地配制成不同规格,用机械混合的方法制取的,目前市场上出售的专用肥多属这类肥料。另外,目前市场上推广的各种液体肥料和喷施肥料,也是各种营养元素肥料混合以及添加氨基酸等

氮磷钾三种肥对植物的作用是什么

氮磷钾三种肥对植物的作用是什么?如何使用? (_为愛壊①點发表于2009年08月27日 08:20 阅读(3) 评论(0) 分类:农业知识 举报 1)氮肥:即以氮素营养元素为主要成分的化肥,包括碳酸氢铵、尿素、销铵、氨水、氯化铵、硫酸铵等。 (2)磷肥:即以磷素营养元素为主要成分的化肥,包括普通过磷酸钙、钙镁磷肥等。 (3)钾肥:即以钾素营养元素为主要成分的化肥,目前施用不多,主要品种有氯化钾、硫酸钾、硝酸钾等。 (4)复、混肥料:即肥料中含有两种肥料三要素(氮、磷、钾)的二元复、混肥料和含有氮、磷、钾三种元素的三元复、混肥料。其中混肥在全国各地推广很快。 (5)微量元素肥料和某些中量元素肥料:前者如含有硼、锌、铁、钼、锰、铜等微量元素的肥料,后者如钙、镁、硫等肥料。 (6)对某些作物有利的肥料:如水稻上施用的钢渣硅肥,豆科作物上施用的钴肥,以及甘蔗、水果上施用的农用稀土等。 作物必需的营养元素有16种,除碳氢氧是从空气中吸收,其余均不同程度地需要施肥来满足作物正常生长的需要。按照作物对养分需求量的多少分为大量元素肥料,包括氮肥、磷肥和钾肥;中量元素肥料,包括钙、镁、硫肥;微量元素肥料,包括锌、硼、锰、钼、铁、铜肥;此外,还有一些有益元素肥料如含硅肥料、稀土肥料等。 目前,市场经销的肥料以氮磷钾肥为主,并且每种肥料也有许多品种。主要氮肥品种有;尿素、碳酸氢铵(碳铵)、氯化铵、硫酸铵、硝酸铵、硝酸钙,还有氨水、石灰氮等也属于氮肥,但目前已较少使用。硝酸钙既是氮肥,也可作钙肥用。主要磷肥品种有过磷酸钙(普钙)、重过磷酸钙(重钙,也称双料、三料过磷酸钙)、钙镁磷肥,此外,磷矿粉、钢渣磷肥、脱氟磷肥、骨粉也是磷肥,但目前用量很少,市场也少见。主要钾肥品种有硫酸钾、氯化钾、盐湖钾肥、窑灰钾肥和草木灰。其中硫酸钾和氯化钾成分较纯,我国市场上流通的大多为进口肥料,盐湖钾肥产自我国青海省,主要成分是化钾,窑灰钾肥和草木灰成分很复杂,市场上流通量较前三种钾肥少。微量元素肥料品种也较多,最常用的硼肥为硼砂,

植物全氮全磷全钾含量的测定

实验报告 课程名称: 土壤学实验 指导老师: 倪吾钟 成绩:__________________ 实验名称: 植物全氮、全磷、全钾含量的测定 同组学生姓名: 余慧珍 一、实验目的和要求 二、实验内容和原理 三、实验材料与试剂 四、实验器材与仪器 五、操作方法和实验步骤 六、实验数据记录和处理 七、实验结果与分析 八、讨论、心得 一、 实验目的和要求 1. 掌握植物样品消煮液制备方法; 2. 掌握植物全氮、磷、钾的测定与结果分析。 二、 实验内容和原理 1. 植物样品消煮——H 2SO 4-H 2O 2消煮法 在浓H 2SO 4溶液中,植物样品经过脱水、碳化、氧化等作用后,易分解的有机物则分解。再加入H 2O 2 ,H 2O 2在热浓H 2SO 4溶液中会分解出新生态氧,具有强烈的氧化 专业: 农资1202 姓名: 平帆 装订

作用,可继续分解没被H 2SO 4 破坏的有机物,使有机态氮全部转化为无机铵盐。同时, 样品中的有机磷也转化为无机磷酸盐,植株中K以离子态存在。故可用同一消煮液分别测定N、P、K。 2.植株全氮的测定——靛酚蓝比色法 经消煮待测液中氮主要以铵态氮存在,被测物浸提剂中的NH4+,在强碱性介质中与次氯酸盐和苯酚反应,生成水溶性染料靛酚蓝,其深浅与溶液中的NH4+-N含量呈正比,线性范围为之间。 3.植株全磷的测定——钒钼黄比色法 经消煮待测液中磷主要以磷酸盐存在,在酸性条件下,正磷酸能与偏钒酸和钼酸发生反应,形成黄色的三元杂多酸—钒钼磷酸[1]。溶液黄色稳定,黄色的深浅与磷的含量成正相关。 4.植株全钾的测定——火焰光度计法 消煮待测液中难容硅酸盐分解,从而使矿物态钾转化为可溶性钾。待测液中钾主要以钾离子形式存在,用酸溶解稀释后即可用火焰光度计测定。 三、实验器材与仪器 样品:三叶草,取于东七教学楼南侧,研磨过18目筛备用; 试剂:浓硫酸、300g/l H 2O 2 、6mol/l NaOH溶液、%二硝基酚指示剂、酚溶液、次氯 酸钠溶液、铵标准溶液(准确称量经105℃干燥2h的氯化铵(NH 4 Cl),用少量水溶

氮磷钾对植物分别有什么作用

氮磷钾对植物分别有什么作用 氮肥:能使植物叶子大而鲜绿,使叶片减缓衰老,营养健壮,花多,产量高。生产上常使用氮肥就是植物快速生长。所以我们对于叶菜(吃叶子的菜)要多施氮肥。 主要磷肥品种有过磷酸钙(普钙)、重过磷酸钙(重钙,也称双料、三料过磷酸钙)、钙镁磷肥,此外,磷矿粉、钢渣磷肥、脱氟磷肥、骨粉也就是磷肥,但目前用量很少,市场也少见 磷肥:能使作物代谢正常,植株发育良好,同时提高作物的抗旱性以及抗寒性,提早成熟。我们要使作物提前收获,一般多施用磷肥。 钾肥:能使植物的光合作用加强,茎秆坚韧,抗伏倒,使种子饱满 主要钾肥品种有硫酸钾、氯化钾、盐湖钾肥、窑灰钾肥与草木灰。其中硫酸钾与氯化钾成分较纯,主要成分就是化钾,窑灰钾肥与草木灰成分很复杂,市场上流通 量较前三种钾肥少。 资料来源《植物生理学》 (1) 氮肥:即以氮素营养元素为主要成分的化肥,包括碳酸氢铵、尿素、销铵、氨水、氯化铵、硫酸铵等。 (2) 磷肥:即以磷素营养元素为主要成分的化肥,包括普通过磷酸钙、钙镁磷肥等。 (3) 钾肥:即以钾素营养元素为主要成分的化肥,目前施用不多,主要品种有氯化钾、硫酸钾、硝酸钾等。 (4) 复、混肥料:即肥料中含有两种肥料三要素(氮、磷、钾)的二元复、混肥料与含有氮、磷、钾三种元素的三元复、混肥料。其中混肥在全国各地推广很快。(5) 微量元素肥料与某些中量元素肥料:前者如含有硼、锌、铁、钼、锰、铜等微量元素的肥料,后者如钙、镁、硫等肥料。 (6) 对某些作物有利的肥料:如水稻上施用的钢渣硅肥,豆科作物上施用的钴肥,以及甘蔗、水果上施用的农用稀土等。作物必需的营养元素有16种,除碳氢氧就是从空气中吸收,其余均不同程度地需要施肥来满足作物正常生长的需要。按照作物对养分需求量的多少分为大量元素肥料,包括氮肥、磷肥与钾肥;中量元素肥料,包括钙、镁、硫肥;微量元素肥料,包括锌、硼、锰、钼、铁、铜肥;此外,还有一些有益元素肥料如含硅肥料、稀土肥料等。 1、氮素化肥氮就是蛋白质构成的主要元素,蛋白质就是细胞原生质组成中的基本物质。氮肥增施能促进蛋白质与叶绿素的形成,使叶色深绿,叶面积增大,促进碳的同化,有利于产量增加,品质改善。在生产上经常使用的氮素化肥有: ①硫酸铵(硫铵):白色或淡褐色结晶体。含氮20%一21%,易溶于水,吸湿性小,便于贮存与使用。硫铵就是一种酸性肥料,长期使用会增加土壤的酸性。最好做追肥使用,一般每667平方米施用量为15—20千克。②碳酸氢铵(碳铵):白色细小结晶,含氮17%,有强烈的刺激性臭味,易溶于水,易被作物吸收,易分解挥发。可作基肥或追肥使用,追肥时要埋施,及时覆土,以免氨气挥发烧伤秧苗。③尿素:白色圆粒状, 含氮量为46%。尿素不如硫铵肥效发挥迅速,追肥时要比硫铵提前几天施用。尿素就是固体氮肥中含氮量最高的一种,尿素为中性肥料,不含副成分, 连年施用也不致破坏土壤结构。

植物对氮素的吸收

植物对氮素吸收分子机理研究进展 生物科学系2012级生物技术本科班张亚辉 指导老师吴子龙讲师 【摘要】: 多年来学科的交叉发展,人们开始将分子生物学技术应用于植物营养的研究中,对N 素吸收的分子机理的研究就是其中一项重要的内容。NH4+ 和NO3- 是高等植物吸收的两种主随着近要形态的N素,本文对近年来国内外关于NH4+ 吸收以及NO3- 吸收的研究进行了概述。 【关键词】:氮素;吸收;分子机理 氮(N)素是作物从土壤中吸收量最多的元素, 是作物必需的营养元素之一,其对作物的生命活动和产量形成具有重要意义。但是近年来,由于不合理施肥导致的环境污染问题越发严重,改善施肥措施、改良品种、提高N素利用效率、减轻施肥对环境造成的压力是目前迫切需要解决的问题。因此植物吸N机制一直是植物营养界高度重视的研究内容。NH4+ 和NO3-是N素吸收的主要形态,随着近年来多学科交叉发展,分子生物学技术在植物营养领域中的应用也越来越多,对N素吸收的分子机理研究就是其中一项重要的内容,同时明确这一机理也有助于从分子生物学途径改良品种,提高N素利用率,减轻环境污染 1.高等植物NH4+ 吸收的分子机理研究 早期NH4+ 吸收动力学表明NH4+的吸收有两个明显的动力学吸收特性:低亲和的非饱和吸收和高亲和的饱和吸收[1],高亲和力系统在低浓度下(μmol/L)起作用,低亲和力系统在高浓度(mmol/L)下起作用[2]。研究表明高等植物NH4+ 的吸收是一个由NH4+ 转运蛋白基因(AMT)参与的过程,并且在植物、酵母、细菌和哺乳动物中都发现AMT基因的存在[3]很多证据说明AMT1因基家族编码的蛋白在植物中具有NH4+转运蛋白的功能[2]。首先,AMT1基因属于真核和原核NH4+ 转运蛋白基因家族MEP/AMT1中的成员,番茄和拟南芥的高亲和NH4+ 转运蛋白基因AMT1.1已经通过酵母突变体得到功能鉴定[4];其次,在酵母中AMT 转运蛋白的生化特性如能量来源、最佳pH值以及受K+ 抑制的程度[4]都反应了完整植株根系中的NH4+ 吸收特性;最后,番茄中的AMT1.1首先在根毛中表达,这一点足以说明AMT基因在植物从生长介质中吸收NH4+ 这一过程中所起的作用。 2 高等植物NO3- 吸收的分子机理研究 硝酸盐是植物生长所必须的,既是作为N吸收的基本营养,同时也是植物发育的重要信号。高等植物的硝酸盐吸收中有高亲和吸收系统(HATS)与低亲和吸收系统(LATS)2种。通常,LATS比HATS容量大。拟南芥在10 mmol/L NO3- 中LATS吸收速率比HAT s的Vmax高24倍,因此,虽然HATS在外源硝酸根浓度很低时对N的获得有重要作用,但LATS对于大量硝酸盐的获得还是必要的,而且后者可能对于植物的生长更重要,因为NO3- 很难残留,且在耕地土壤中变化明显。根据对NO3- 诱导的反应,HATS可以进一步分为两部分,一个是

相关文档
相关文档 最新文档