文档库 最新最全的文档下载
当前位置:文档库 › 高等数学7.1多元函数的概念

高等数学7.1多元函数的概念

高等数学习题详解-第7章 多元函数微分学

1. 指出下列各点所在的坐标轴、坐标面或卦限: A (2,1,-6), B (0,2,0), C (-3,0,5), D (1,-1,-7). 解:A 在V 卦限,B 在y 轴上,C 在xOz 平面上,D 在VIII 卦限。 2. 已知点M (-1,2,3),求点M 关于坐标原点、各坐标轴及各坐标面的对称点的坐标. 解:设所求对称点的坐标为(x ,y ,z ),则 (1) 由x -1=0,y +2=0,z +3=0,得到点M 关于坐标原点的对称点的坐标为:(1,-2,-3). (2) 由x =-1,y +2=0,z +3=0,得到点M 关于x 轴的对称点的坐标为:(-1,-2,-3). 同理可得:点M 关于y 轴的对称点的坐标为:(1, 2,-3);关于z 轴的对称点的坐标为:(1,-2,3). (3)由x =-1,y =2,z +3=0,得到点M 关于xOy 面的对称点的坐标为:(-1, 2,-3). 同理,M 关于yOz 面的对称点的坐标为:(1, 2,3);M 关于zOx 面的对称点的坐标为:(-1,-2,3). 3. 在z 轴上求与两点A (-4,1,7)和B (3,5,-2)等距离的点. 解: 设所求的点为M (0,0,z ),依题意有|MA |2=|MB |2,即 (-4-0)2+(1-0)2+(7-z)2=(3-0)2+(5-0)2+(-2-z)2. 解之得z =11,故所求的点为M (0,0, 149 ). 4. 证明以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 解:由两点距离公式可得2 12 14M M =,2 2 13236,6M M M M == 所以以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 5. 设平面在坐标轴上的截距分别为a =2,b =-3,c =5,求这个平面的方程. 解:所求平面方程为1y x z ++=。 6. 求通过x 轴和点(4,-3,-1)的平面方程. 解:因所求平面经过x 轴,故可设其方程为 Ay +Bz =0. 又点(4,-3,-1)在平面上,所以-3A -B =0.即B=-3 A 代入并化简可得 y -3z =0. 7. 求平行于y 轴且过M 1(1,0,0),M 2(0,0,1)两点的平面方程. 解:因所求平面平行于y 轴,故可设其方程为 Ax +Cz +D =0. 又点M 1和M 2都在平面上,于是 0A D C D +=?? +=? 可得关系式:A =C =-D ,代入方程得:-Dx -Dz +D =0. 显然D ≠0,消去D 并整理可得所求的平面方程为x +z -1=0. 8. 方程x 2+y 2+z 2-2x +4y =0表示怎样的曲面? 解:表示以点(1,-2,0 9. 指出下列方程在平面解析几何与空间解析几何中分别表示什么几何图形? (1) x -2y =1; (2) x 2+y 2=1; (3) 2x 2+3y 2=1; (4) y =x 2. 解:(1)表示直线、平面。(2)表示圆、圆柱面。(3)表示椭圆、椭圆柱面。 (4)表示抛物线、抛物柱面。

高等数学函数

高等数学函数 文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

§1 函数 本节内容: 一、邻域 二、函数的概念 三、基本初等函数 四、复合函数 五、初等函数 一、邻域 1. 定义1: 设 ,a R R δ+ ∈∈, 则 —点 a 的δ邻域 a —(,)U a δ的中心, δ—(,)U a δ的半径. 2. 定义2: —点 a 的去心δ邻域 二、函数的概念 f ——定义在D 上的函数; D ——定义域; x ——自变量; y ——因变量; ()f x 0——x 0处的函数值; {}(),W y y f x x D ==∈——值域. 注意: 函数的两个要素——定义域和对应法则. 补例1 求下列函数的定义域. (1) y = 1; (2) ln y x =+12 . 三、基本初等函数 基本初等函数指下列5类:

幂函数 是常数()y x μμ= 指数函数 是常数(,,)x y a a a a =>≠01 对数函数 是常数log (,,)a y x a a a =>≠01 三角函数 sin ,cos ,tan ,cot ,sec ,csc y x y x y x y x y x y x ====== 反三角函数 arcsin ,arccos ,arctan ,arccot y x y x y x y x ==== (一) 幂函数 1. 幂函数的定义: 2. 幂函数的图形与性质:

(a) μ 取不同值, 幂函数的定义域与值域均可能不同; (b) 对任意 μ, 函数图形都过点(1,1); 当0μ>时, 图形过点 (0,0)和 (1,1); (c) 当 0μ>时, 幂函数在(0,)+∞为单调递增函数; 而0μ<时, 幂函数在(0,)+∞为单调递减函数; (d) 幂函数为无界函数. 3. 幂函数的运算性质: (a) a a a αβαβ+?=; 2 x -1 图 1-1 2

高等数学基本知识点大全

高等数学基本知识点

一、函数与极限 1、集合的概念 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。 ⑶、全体整数组成的集合叫做整数集。记作Z。 ⑷、全体有理数组成的集合叫做有理数集。记作Q。 ⑸、全体实数组成的集合叫做实数集。记作R。 ⑶、邻域:设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。 2、函数 ⑴、函数的定义:如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则f总有确定的数值与它对应,则称y是x的函数。变量x的变化范围叫做这个函数的定义域。通常x叫做自变量,y 叫做函数值(或因变量),变量y的变化范围叫做这个函数的值域。注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示。这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的。如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。这里我们只讨论单值函数。 ⑵、函数相等 由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域。由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,我们就称两个函数相等。 ⑶、域函数的表示方法 a):解析法:用数学式子表示自变量和因变量之间的对应关系的方法即是解析法。例:直角坐标系中,半径为r、圆心在原点的圆的方程是:x2+y2=r2 b):表格法:将一系列的自变量值与对应的函数值列成表来表示函数关系的方法即是表格法。例:在实际应用中,我们经常会用到的平方表,三角函数表等都是用表格法表示的函数。 c):图示法:用坐标平面上曲线来表示函数的方法即是图示法。一般用横坐标表示自变量,纵坐标表示因变量。例:直角坐标系中,半径为r、圆心在原点的圆用图示法表示为: 3、函数的简单性态 ⑴、函数的有界性:如果对属于某一区间I的所有x值总有│f(x)│≤M成立,其中M是一个与x无关的常数,那么我们就称f(x)在区间I有界,否则便称无界。 注:一个函数,如果在其整个定义域内有界,则称为有界函数 例题:函数cosx在(-∞,+∞)内是有界的. ⑵、函数的单调性:如果函数在区间(a,b)内随着x增大而增大,即:对于(a,b)内任意两点x1

高等数学基本知识

一、函数与极限 1、集合的概念 一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。 我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。 ⑶、全体整数组成的集合叫做整数集。记作Z。 ⑷、全体有理数组成的集合叫做有理数集。记作Q。 ⑸、全体实数组成的集合叫做实数集。记作R。 集合的表示方法 ⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合。 集合间的基本关系 ⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。。 ⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。 ⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。 ⑷、空集:我们把不含任何元素的集合叫做空集。记作,并规定,空集是任何集合的子集。 ⑸、由上述集合之间的基本关系,可以得到下面的结论: ①、任何一个集合是它本身的子集。即A A ②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。 ③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。 集合的基本运算 ⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。记作A ∪B。(在求并集时,它们的公共元素在并集中只能出现一次。) 即A∪B={x|x∈A,或x∈B}。 ⑵、交集:一般地,由所有属于集合A且属于集合B的元素组成的集合称为A与B的交集。记作A ∩B。 即A∩B={x|x∈A,且x∈B}。 ⑶、补集: ①全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。通常记作U。

高等数学多元函数微分法

第 八 章 多元函数微分法及其应用 第 一 节 多元函数的基本概念 教学目的:学习并掌握关于多元函数的区域、极限以及多元函数 概念,掌握多元函数的连续性定理,能够判断多元函数的连续性,能够求出连续函数在连续点的极限。 教学重点:多元函数概念和极限,多元函数的连续性定理。 教学难点:计算多元函数的极限。 教学内容: 一、 区域 1. 邻域 设),(000y x p 是xoy 平面上的一个点,δ是某一正数。与点),(000y x p 距离小于δ的点(,)p x y 的全体,称为点0P 的δ邻域,记为),(0δP U ,即 ),(0δP U =}{0δδ为半径的圆内部的点),(y x P 的全体。 2. 区域 设E 是平面上的一个点集,P 是平面上的一个点。如果存在点P 的某一邻域E P U ?)(,则称P 为E 的内点。显然,E 的内点属于E 。 如果E 的点都是内点,则称E 为开集。例如,集合 }41),{(221<+<=y x y x E 中每个点都是E 1的内点,因此E 1为开集。

如果点P 的任一邻域内既有属于E 的点,也有不属于E 的点(点P 本身可以属于E ,也可以不属于E ),则称P 为E 的边界点。E 的边界点的全体称为E 的边界。例如上例中,E 1的边界是圆周12 2 =+y x 和 22y x +=4。 设D 是点集。如果对于D 内任何两点,都可用折线连结起来,且该折线上的点都属于D ,则称点集D 是连通的。 连通的开集称为区域或开区域。例如,}0),{(>+y x y x 及 }41),{(22<+0}是无界开区域。 二、多元函数概念 在很多自然现象以及实际问题中,经常遇到多个变量之间的依赖关系,举例如下: 例1 圆柱体的体积V 和它的底半径r 、高h 之间具有关系 h r V 2 π=。 这里,当r 、h 在集合}0,0),{(>>h r h r 内取定一对值),(h r 时,V 的对应值就随之确定。

(整理)高等数学基本公式概念和方法

高等数学基本公式、概念和方法 一.函数 1.函数定义域由以下几点确定 (1)0)(;) (1 ≠= x f x f y (2)0)(;)(2≥=x f x f y n (其中n 为正整数) (3)0)(:)(log >=x f x f y a 。 (4)1 )(1);(arccos 1)(1);(arcsin ≤≤-=≤≤-=x f x f y x f x f y (5)函数代数和的定义域,取其定义域的交集. (6)对具有实际意义的函数,定义域由问题特点而定. 2.判断函数的奇偶性,依据以下两点确定,否则函数为非奇非偶的. (1) 若)(),()(x f x f x f =-是偶函数,若)(),()(x f x f x f -=-是奇函数. (2) 若)(x f y =的图象关于y 轴对称,则函数是偶函数.如x y x y cos ..2 ==等。 若)(x f y =的图象关于坐标原点对称,则函数是奇函数.如x y x y x y sin (3) === 3. 将函数分解成几个简单函数的合成. 由六类基本初等函数的形式,对要分解的函数,由外层到内层,分别设出关系.函数与常数的四则运算,不必另设一层关系. 二.极限与连续 1.主要概念和计算方法: (1).A x f x f A x f x x x x x x ==?=+-→→→)(lim )(lim )(lim 0 (2).若0)(lim 0 =→x f x x (极限过程不限),则当0x x →时)(x f 为无穷小量。 (3).若)()(lim 00 x f x f x x =→,则函数在0x 处是连续的。 即(1)函数值存在、(2)极限存在、(3)极限值和函数值相等。 若上述三条至少一条不满足,则0x 是函数的间段点。 (4).间断点的分类:设0x 是函数的间断点 若左、右极限均存在,则0x 称为第一类间断点。 若左、右极限至少有一个是无穷大,则0x 称为第二类间断点。 (5).重要公式:条件0)(lim =x ?(极限过程不限)

高等数学(复旦大学版)第十章-多元函数积分学(一)

第十章 多元函数积分学(Ⅰ) 一元函数积分学中,曾经用和式的极限来定义一元函数()f x 在区间[a,b]上的定积分,并且已经建立了定积分理论,本章我们将推广到多元函数,建立多元函数积分学理论。 第一节 二重积分 教学目的: 1、熟悉二重积分的概念; 2、了解二重积分的性质和几何意义,知道二重积分的中值定理; 3、掌握二重积分的(直角坐标、极坐标)计算方法; 4、能根据积分区域和被积函数正确选择积分顺序 教学重点: 1、二重积分的性质和几何意义; 2、二重积分在直角坐标系下的计算 教学难点: 1、二重积分的计算; 2、二重积分计算中的定限问题 教学内容: 一、二重积分的概念 1. 曲顶柱体的体积 设有一立体, 它的底是xOy 面上的闭区域D , 它的侧面是以D 的边界曲线为准线而母线平行于z 轴的柱面, 它的顶是曲面z =f (x , y ), 这里f (x , y )≥0且在D 上连续. 这种立体叫做曲顶柱体. 现在我们来讨论如何计算曲顶柱体的体积. 首先, 用一组曲线网把D 分成n 个小区域?σ 1, ?σ 2, ? ? ? , ?σ n .分别以这些小闭区域的边界曲线为准线, 作母线平行于z 轴的柱面, 这些柱面把原来的曲顶柱体分为n 个细曲顶柱体. 在每个?σ i 中任取一点(ξ i , η i ), 以f (ξ i , η i )为高而底为?σ i 的平顶柱体的体积为 f (ξ i , η i ) ?σi (i =1, 2, ? ? ? , n ). 这个平顶柱体体积之和 i i i n i f V σηξ?≈=∑),(1 . 可以认为是整个曲顶柱体体积的近似值. 为求得曲顶柱体体积的精确值, 将分割加密, 只需取极限, 即 i i i n i f V σηξλ?==→∑),(lim 1 0. 其中λ是个小区域的直径中的最大值.

高数多元函数微分学教案 第一讲 多元函数的基本概念

第八章 多元函数微分法及其应用 第一讲 多元函数的基本概念 授课题目: §8.1多元函数的基本概念 教学目的与要求: 1、理解多元函数的概念. 2、了解二元函数的极限与连续性的概念,以及有界闭区域上连续函数的性质. 教学重点与难点: 重点:多元函数的概念、二元函数的极限和连续的概念. 讲授内容: 一、平面点集 n 维空间 1、平面点集 平面上一切点的集合称为二维空间, 记为R 2 即 R 2=R ?R={(x , y ):x , y ∈R } 坐标平面上具有某种性质P 的点的集合, 称为平面点集,记作 E ={(x , y ):(x , y )具有性质P }. 例如,平面上以原点为中心、r 为半径的圆内所有点的集合是 C ={(x , y ):x 2+y 2

如果不需要强调邻域的半径δ, 则用U (P 0)表示点P 0的某个邻域, 点P 0的去心邻域记作)(0P U .. 点与点集之间的关系: 任意一点P ∈R 2与任意一个点集E ?R 2之间必有以下三种关系中的一种: (1)内点:如果存在点P 的某一邻域U (P ), 使得U (P )?E , 则称P 为E 的内点. (2)外点:如果存在点P 的某个邻域U (P ), 使得U (P )?E =?, 则称P 为E 的外点. (3)边界点:如果点P 的任一邻域内既有属于E 的点, 也有不属于E 的点, 则称P 点为E 的边点. E 的边界点的全体, 称为E 的边界, 记作?E . E 的内点必属于E ; E 的外点必定不属于E ; 而E 的边界点可能属于E , 也可能不属于E . (4)聚点:如果对于任意给定的δ>0, 点P 的去心邻域),(δP U 内总有E 中的点, 则称P 是E 的聚点. 由聚点的定义可知, 点集E 的聚点P 本身, 可以属于E , 也可能不属于E . 例如, 设平面点集E ={(x , y )|1

多元函数微分学总结

多元函数微分学总结内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

`第八章多元函数微分学 基本知识点要求 1.理解多元函数的概念,理解二元函数的几何意义. 2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质。 3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性。 4.理解方向导数与梯度的概念,并掌握其计算方法. 5.熟练掌握多元复合函数一阶、二阶偏导数的求法. 6.了解隐函数存在定理,熟练掌握多元隐函数偏导数的求法. 7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,熟练掌握它们的方程的求法。 8.了解二元函数的二阶泰勒公式. 9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,掌握二元函数极值存在的充分条件,并会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。 基本题型及解题思路分析 题型1 与多元函数极限、连续、偏导数和可微的概念及其之间的关系有关的题 1.二元函数的极限与连续的概念及二元函数极限的计算。 (1)基本概念

①二元函数极限的定义:设()(,)f P f x y =的定义域为D ,000(,)P x y 是D 的聚点.若?常数A ,对于?0ε>,总?0δ>,使得当0(,)(,)P x y D U P δ∈时,都有 ()(,)f P A f x y A ε-=-<成立,则称A 为函数(,)f x y 当00(,)(,)x y x y →时的极限,记 作 000 (,)(,) lim (,)lim ()x y x y P P f x y A f P A →→==或。 ②二元函数的连续:设()(,)f P f x y =的定义域为D ,000(,)P x y 为D 的聚点,且 0P D ∈.若 0000(,)(,) lim (,)(,)x y x y f x y f x y →=,则称(,)f x y 在点000(,)P x y 连续。 (2)关于二元函数极限的解题思路 注意:在二元函数0 lim ()P P f P A →=存在的定义中,0P P →方式任意,正是由于这 一点致使二元函数有与一元函数不一样的性态,在学习过程中注意比较、总结和体会二者之间的不同。 ① 证明二元函数的极限不存在:若0P P 以两种不同的方式趋于时,()f P 的极 限不同,则0 lim ()P P f P →一定不存在(见例1)。 ②求二元函数的极限:可以应用一元函数求极限方法中的适用部分求二元 函数的极限,比如:极限的局部有界性、局部保号性、四则运算法则、夹逼准则、两个重要的极限、变量代换法则、等价无穷小代换、分子分母有理化、无穷小量与有界变量的乘积仍为无穷小量、连续性等(见例2) 例1证明:2 24(,)xy f x y x y =+在原点0,0()的极限不存在。 【分析】观察分子、分母中变量,x y 的各次幂的特点,可考虑选择路径 2x ky =。 证明: 22 24242442000lim (,)lim lim 1y y y x ky x ky xy ky k f x y x y k y y k →→→=====+++, k ∴不同,极限值就不同,故 (,)(0,0) lim (,)x y f x y →不存在。

多元函数微分法及其应用

第八章多元函数微分法及其应用 (讲授法18学时) 上册研究了一元函数微分法,利用这些知识,我们可以求直线上质点运动的速度和加速度,也可以求曲线的切线的斜率,可以判断函数的单调性和极值、最值等,但这远远不够,因为一元函数只是研究了由一个因素确定的事物。一般地说,研究自然现象总离不开时间和空间,确定空间的点需要三个坐标,所以一般的物理量常常依赖于四个变量,在有些问题中还需要考虑更多的变量,这样就有必要研究多元函数的微分学。 多元函数微分学是一元函数的微分学的推广,所以多元函数微分学与一元函数微分学有许多相似的地方,但也有许多不同的地方,学生在学习这部分内容时,应特别注意它们的不同之处。 一、教学目标与基本要求 1、理解多元函数的概念,理解二元函数的几何意义。 2、了解二元函数的极限与连续性的概念,以及有界闭区域上连续函数的性质。 3、理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性,了解全微分在近似计算中的应用。 4、理解方向导数与梯度的概念并掌握其计算方法。 5、掌握多元复合函数偏导数的求法。 6、会求隐函数(包括由方程组确定的隐函数)的偏导数。 7、了解曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程。 8、了解二元函数的二阶泰勒公式。 9、理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。 二、教学内容及学时分配: 第一节多元函数的基本概念2课时 第二节偏导数2学时 第三节全微分2学时 第四节多元复合函数的求导法则2学时 第五节隐函数的求导公式2学时 第六节多元函数微分学的几何应用2学时 第七节方向导数与梯度2学时 第八节多元函数的极值及其求法2学时 三、教学内容的重点及难点: 重点: 1.多元函数的极限与连续; 2.偏导数的定义;全微分的定义 3.多元复合函数的求导法则;隐函数的求导法则 4.方向导数与梯度的定义 5.多元函数的极值与最值的求法 难点: 1.多元函数微分学的几个概念,即多元函数极限的存在性、多元函数的连续性、偏导数的存在性、全微分的存在性、偏导数的连续性之间的关系; 2.多元复合函数的求导法则中,抽象函数的高阶导数; 3.由方程组确定的隐函数的求导法则; 4.梯度的模及方向的意义; 5.条件极值的求法

高等数学思想方法

高等数学思想方法 第一章函数与极限 主要的思想方法: (1)函数的思想 高等数学的核心内容是微积分,而函数是微积分的主要研究对象。我们在运用微积分解决实际问题时,首先就要从实际问题中抽象出变量与变量之间的函数关系,这是一个通过现象抽象出本质特征的思维过程,体现的是科学的抽象是数学的一个思维方法和主要特征。 (2)极限的思想 极限的思想方法是微积分的基础。极限是变量在无限变化过程中的变化趋势,是一个确定的数值。把一些实际问题的确定结果视为一系列的无限近似数值的变化趋势,即函数或者数列的极限,这是一种重要的数学思想方法。 第二章导数与微分 主要的思想方法: (1)微分的思想 微分表示自变量有微小变化时函数的近似变化,一般地,求导的过程就称为微分;导数则反映函数相对于自变量的瞬时变化率。从导数与微分的概念中可看出,在局部的“以直代曲”的微分思想得到了充分的体现,而这也是微积分的一个基本思想。 (2)数形结合的思想 书本中在引入导数与微分概念时,也讨论了它们的几何意义,这显然更好地帮助我们理解这两个概念。通过几何图形来直观地理解概念以及定理的证明等等内容是高等数学中常用的方法,这是抽象思维与现象思维有机结合的典型体现。 (3)极限的思想 不难发现导数概念的引入与定义深刻地体现了极限的思想。 (4)逻辑思维方法 在本章中,归纳法(从特殊到一般),分类(整合)法等逻辑思维方法都得到了充分的体现,理解与掌握此类思维方法有助于良好的理性思维的形成。 第三章中值定理与导数的应用 主要的思想方法: 导数本质上是一种刻画函数在某一点处变化率的数学模型,它实质上反映了函数在该点处的局部变化性态;而中值定理则是联系函数局部性质与整体性质的“桥梁”,利用中值定理我们就能够从函数的局部性质推断函数的整体性质,具体表现为在理论和实际问题中可利用中值定理把握函数在某区间内一点处的导数与函数在该区间整体性质的关系。

18.2多元函数的基本概念教案

18. 2多元函数的基本概念 一、. 多元函数概念 例1 圆柱体的体积V 和它的底半径r 、高h 之间具有关系 V =πr 2h . 这里, 当r 、h 在集合{(r , h ) | r >0, h >0}内取定一对值(r , h )时, V 对应的值就随之确定. 例2 一定量的理想气体的压强p 、体积V 和绝对温度T 之间具有关系 RT P V =, 其中R 为常数. 这里, 当V 、T 在集合{(V ,T ) | V >0, T >0}内取定一对值(V , T )时, p 的对应值就随之确定. 例3 设R 是电阻R 1、R 2并联后的总电阻, 由电学知道, 它们之间具有关系 2 121R R R R R +=. 这里, 当R 1、R 2在集合{( R 1, R 2) | R 1>0, R 2>0}内取定一对值( R 1 , R 2)时, R 的对应值就随之确定. 定义1 设D 是R 2的一个非空子集, 称映射f : D →R 为定义在D 上的二元函数, 通常记为 z =f (x , y ), (x , y )∈D (或z =f (P ), P ∈D ) 其中点集D 称为该函数的定义域, x , y 称为自变量, z 称为因变量. 上述定义中, 与自变量x 、y 的一对值(x , y )相对应的因变量z 的值, 也称为f 在点(x , y )处的函数值, 记作f (x , y ), 即z =f (x , y ). 值域: f (D )={z | z =f (x , y ), (x , y )∈D }. 函数的其它符号: z =z (x , y ), z =g (x , y )等. 类似地可定义三元函数u =f (x , y , z ), (x , y , z )∈D 以及三元以上的函数. 一般地, 把定义1中的平面点集D 换成n 维空间R n 内的点集D , 映射f : D →R 就称为定义在D 上的n 元函数, 通常记为 u =f (x 1, x 2, ? ? ? , x n ), (x 1, x 2, ? ? ? , x n )∈D , 或简记为 u =f (x ), x =(x 1, x 2, ? ? ? , x n )∈D , 也可记为 u =f (P ), P (x 1, x 2, ? ? ? , x n )∈D . 关于函数定义域的约定: 在一般地讨论用算式表达的多元函数u =f (x )时, 就以使这个算式有意义的变元x 的值所组成的点集为这个多元函数的自然定义域. 因而

高等数学常用概念及公式

高等数学常用概念及公式 ● 极限的概念 当x 无限增大(x →∞)或x 无限的趋近于x 0(x →x 0)时,函数f(x)无限的趋近于常数A ,则称函数f(x)当x →∞或x →x 0时,以常数A 为极限,记作: lim ∞ →x f(x)=A 或 lim 0 x x →f(x)=A ● 导数的概念 设函数y=f(x)在点x 0某邻域内有定义,对自变量的增量Δx =x- x 0,函数有增量Δy=f(x)-f(x 0),如果增量比 x y ??当Δx →0时有极限,则称函数f(x)在点x 0可导,并把该极限值叫函数y=f(x)在点x 0的导数,记为f ’(x 0),即 f ’(x0)=lim →?x x y ??=lim 0x x →0 0)()(x x x f x f -- 也可以记为y ’=|x=x0,dx dy |x=x0或dx x df ) (|x=x0 ● 函数的微分概念 设函数y=f (x )在某区间内有定义,x 及x+Δx 都在此区间内,如果函数的增量 Δy=f (x+Δx )-f(x)可表示成 Δy=A Δx+αΔx 其中A 是常数或只是x 的函数,而与Δx 无关,α当Δx →0时是无穷小量( 即αΔx 这一项是个比Δx 更高阶的无穷小),那么称函数y=f (x )在点x 可微,而A Δx 叫函数y=f (x )在点x 的微分。记作dy ,即: dy=A Δx=f ’(x)dx

● 不定积分的概念 原函数:设f(x)是定义在某个区间上的已知函数,如果存在一个函数F(x),对于该区间上每一点都满足 F ’(x)= f(x) 或 d F(x)= f(x)dx 则称函数F(x)是已知函数f(x)在该区间上的一个原函数。 不定积分:设F(x)是函数f(x)的任意一个原函数,则所有原函数F(x)+c (c 为任意常数)叫做函数f(x)的不定积分,记作 ?dx x f )( 求已知函数的原函数的方法,叫不定积分法,简称积分法。 其中“?”是不定积分的记号;f(x)称为被积函数;f(x)dx 称为被积表达式;x 称为积分变量;c 为任意实数,称为积分常数。 ● 定积分的概念 设函数f(x)在闭区间[a ,b]上连续,用分点 a=x 0

高等数学(同济第五版)第八章-多元函数微分学-练习题册

. 第八章 多元函数微分法及其应用 第 一 节 作 业 一、填空题: . sin lim .4. )](),([,sin )(,cos )(,),(.3arccos ),,(.21)1ln(.102 2 2 2 322= ===-=+=+++-+-=→→x xy x x f x x x x y x y x f y x z z y x f y x x y x z a y x ψ?ψ?则设的定义域为 函数的定义域为函数 二、选择题(单选): 1. 函数 y x sin sin 1 的所有间断点是: (A) x=y=2n π(n=1,2,3,…); (B) x=y=n π(n=1,2,3,…); (C) x=y=m π(m=0,±1,±2,…); (D) x=n π,y=m π(n=0,±1,±2,…,m=0,±1,±2,…)。 答:( ) 2. 函数?? ???=+≠+++=0,20,(2sin ),(22222 22 2y x y x y x y x y x f 在点(0,0)处: (A )无定义; (B )无极限; (C )有极限但不连续; (D )连续。 答:( )

. 三、求.4 2lim 0xy xy a y x +-→→ 四、证明极限2222 20 0)(lim y x y x y x y x -+→→不存在。

第 二 节 作 业 一、填空题: . )1,(,arcsin )1(),(.2. )1,0(,0,0 ),sin(1),(.122 =-+== ?????=≠=x f y x y x y x f f xy x xy y x xy y x f x x 则设则设 二、选择题(单选): . 4 2)(;)(2)(;4ln 2)()(;4ln 2 )(:,22 2 2 2 2 2y x y x y x y y x y D e y x y C y y x B y A z z ++++?+?+??=等于则设 答:( ) 三、试解下列各题: .,arctan .2. ,,tan ln .12y x z x y z y z x z y x z ???=????=求设求设 四、验证.2 2222222 2 2 r z r y r x r z y x r =??+??+??++=满足 第 三 节 作 业 一、填空题:

最新高等数学知识点(重点)

高等数学知识点总结 空间解析几何与向量代数 一、重点与难点 1、重点 ①向量的基本概念、向量的线性运算、向量的模、方向角; ②数量积(是个数)、向量积(是个向量);(填空选择题中考察) ③几种常见的旋转曲面、柱面、二次曲面;(重积分求体积时画图需要) ④平面的几种方程的表示方法(点法式、一般式方程、三点式方程、截距式方程),两平面的夹角;(一般必考) ⑤空间直线的几种表示方法(参数方程、对称式方程、一般方程、两点式方程), 两直线的夹角、直线与平面的夹角;(一般必考) 空间解析几何和向量代数: 。 代表平行六面体的体积为锐角时, 向量的混合积:例:线速度:两向量之间的夹角:是一个数量轴的夹角。 与是向量在轴上的投影:点的距离:空间ααθθθ??,cos )(][..sin ,cos ,,cos Pr Pr )(Pr ,cos Pr )()()(22 2 2 2 2 2 212121*********c b a c c c b b b a a a c b a c b a r w v b a c b b b a a a k j i b a c b b b a a a b a b a b a b a b a b a b a b a a j a j a a j u AB j z z y y x x M M d z y x z y x z y x z y x z y x z y x z y x z z y y x x z z y y x x u u ??==??=?=?==?=++?++++=++=?=?+=+=-+-+-==

(马鞍面)双叶双曲面:单叶双曲面:、双曲面: 同号) (、抛物面:、椭球面:二次曲面: 参数方程:其中空间直线的方程:面的距离:平面外任意一点到该平、截距世方程:、一般方程:,其中、点法式:平面的方程: 1 1 3,,2221 1};,,{,1 302),,(},,,{0)()()(122 222222 22222 222 22220000002 220000000000=+-=-+=+=++??? ??+=+=+===-=-=-+++++= =++=+++==-+-+-c z b y a x c z b y a x q p z q y p x c z b y a x pt z z nt y y mt x x p n m s t p z z n y y m x x C B A D Cz By Ax d c z b y a x D Cz By Ax z y x M C B A n z z C y y B x x A 多元函数微分法及应用 z y z x y x y x y x y x F F y z F F x z z y x F dx dy F F y F F x dx y d F F dx dy y x F dy y v dx x v dv dy y u dx x u du y x v v y x u u x v v z x u u z x z y x v y x u f z t v v z t u u z dt dz t v t u f z y y x f x y x f dz z dz z u dy y u dx x u du dy y z dx x z dz - =??-=??=? -?? -??=-==??+??=??+??===??? ??+?????=??=?????+?????==?+?=≈???+??+??=??+??= , , 隐函数+, , 隐函数隐函数的求导公式:   时, ,当 : 多元复合函数的求导法全微分的近似计算: 全微分:0),,()()(0),(),(),()],(),,([)](),([),(),(22

高等数学基本知识大全

高等数学

一、函数与极限 1、集合的概念 一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。 我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。 ⑶、全体整数组成的集合叫做整数集。记作Z。 ⑷、全体有理数组成的集合叫做有理数集。记作Q。 ⑸、全体实数组成的集合叫做实数集。记作R。 集合的表示方法 ⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合。 集合间的基本关系 ⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。。 ⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。 ⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。 ⑷、空集:我们把不含任何元素的集合叫做空集。记作,并规定,空集是任何集合的子集。 ⑸、由上述集合之间的基本关系,可以得到下面的结论: ①、任何一个集合是它本身的子集。即A A ②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。 ③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。 集合的基本运算 ⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。记作A ∪B。(在求并集时,它们的公共元素在并集中只能出现一次。) 即A∪B={x|x∈A,或x∈B}。 ⑵、交集:一般地,由所有属于集合A且属于集合B的元素组成的集合称为A与B的交集。记作A ∩B。 即A∩B={x|x∈A,且x∈B}。 ⑶、补集: ①全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。通常记作U。

第二节多元函数的基本概念

第二节 多元函数的基本概念 内容分布图示 ★ 领域 ★ 平面区域的概念 ★ 多元函数的概念 ★ 例1 ★ 例2 ★ 二元函数的图形 ★ 二元函数的极限 ★ 例3 ★ 例4 ★ 例5 ★ 例6 ★ 例7 ★ 例8 ★ 例9 ★ 二元函数的连续性 ★ 例 10 ★ 二元初等函数 ★ 例 11-12 ★ 闭区域上连续函数的性质 ★ 内容小结 ★ 课堂练习 ★ 习题6-2 ★ 返回 内容提要: 一、平面区域的概念:内点、外点、边界点、开集、连通集、区域、闭区域 二、多元函数的概念 定义1 设D 是平面上的一个非空点集,如果对于D 内的任一点),(y x ,按照某种法则f ,都有唯一确定的实数z 与之对应,则称f 是D 上的二元函数,它在),(y x 处的函数值记为),(y x f ,即),(y x f z =,其中x ,y 称为自变量, z 称为因变量. 点集D 称为该函数的定义域,数集}),(),,(|{D y x y x f z z ∈=称为该函数的值域. 类似地,可定义三元及三元以上函数. 当2≥n 时, n 元函数统称为多元函数. 二元函数的几何意义 三、二元函数的极限 定义2 设函数),(y x f z =在点),(000y x P 的某一去心邻域内有定义,如果当点),(y x P 无限趋于点),(000y x P 时,函数),(y x f 无限趋于一个常数A ,则称A 为函数),(y x f z =当),(y x ),(00y x →时的极限. 记为 A y x f y y x x =→→),(lim 00. 或 A y x f →),( (),(),(00y x y x →) 也记作 A P f P P =→)(lim 0 或 A P f →)( )(0P P → 二元函数的极限与一元函数的极限具有相同的性质和运算法则,在此不再详述. 为了区别于一元函数的极限,我们称二元函数的极限为二重极限. 四、二元函数的连续性 定义3 设二元函数),(y x f z =在点),(00y x 的某一邻域内有定义,如果

相关文档
相关文档 最新文档