文档库 最新最全的文档下载
当前位置:文档库 › (2017-2019)高考物理真题分类汇编专题20力学计算题(教师版)

(2017-2019)高考物理真题分类汇编专题20力学计算题(教师版)

(2017-2019)高考物理真题分类汇编专题20力学计算题(教师版)
(2017-2019)高考物理真题分类汇编专题20力学计算题(教师版)

专题20 力学计算题

1.(2019·新课标全国Ⅰ卷)竖直面内一倾斜轨道与一足够长的水平轨道通过一小段光滑圆弧平滑连接,小物块B 静止于水平轨道的最左端,如图(a )所示。t =0时刻,小物块A 在倾斜轨道上从静止开始下滑,一段时间后与B 发生弹性碰撞(碰撞时间极短);当A 返回到倾斜轨道上的P 点(图中未标出)时,速度减为0,此时对其施加一外力,使其在倾斜轨道上保持静止。物块A 运动的v –t 图像如图(b )所示,图中的v

1和t 1均为未知量。已知A 的质量为m ,初始时A 与B 的高度差为H ,重力加速度大小为g ,不计空气阻力。

(1)求物块B 的质量;

(2)在图(b )所描述的整个运动过程中,求物块A 克服摩擦力所做的功;

(3)已知两物块与轨道间的动摩擦因数均相等,在物块B 停止运动后,改变物块与轨道间的动摩擦因

数,然后将A 从P 点释放,一段时间后A 刚好能与B 再次碰上。求改变前后动摩擦因数的比值。 【答案】(1)3m (2)

2

15

mgH (3)11=9μμ'

【解析】(1)根据图(b ),v 1为物块A 在碰撞前瞬间速度的大小,

1

2

v 为其碰撞后瞬间速度的大小。设物块B 的质量为m ',碰撞后瞬间的速度大小为v ',由动量守恒定律和机械能守恒定律有

11()2v

mv m m v ''=-+①

22211111

()2222

v mv m m v ''=-+② 联立①②式得

3m m '=③

(2)在图(b )所描述的运动中,设物块A 与轨道间的滑动摩擦力大小为f ,下滑过程中所走过的路程为s 1,返回过程中所走过的路程为s 2,P 点的高度为h ,整个过程中克服摩擦力所做的功为W ,由动能定理有

2

11102

mgH fs mv -=

-④ 2121()0()22

v

fs mgh m -+=--⑤

从图(b )所给的v –t 图线可知

1111

2

s v t =⑥ 1

2111(1.4)22

v s t t =

??-⑦ 由几何关系

21s h s H

=⑧ 物块A 在整个过程中克服摩擦力所做的功为

12W fs fs =+⑨

联立④⑤⑥⑦⑧⑨式可得

2

15

W mgH =

⑩ (3)设倾斜轨道倾角为θ,物块与轨道间的动摩擦因数在改变前为μ,有

cos sin H h

W mg μθ

θ

+=○11 设物块B 在水平轨道上能够滑行的距离为s ',由动能定理有

21

02

m gs m v μ''''-=-○

12 设改变后的动摩擦因数为μ',由动能定理有

cos 0sin h

mgh mg mgs μθμθ

'''-?

-=○13 联立①③④⑤⑥⑦⑧⑩○11

○12○13式可得 11

=9

μμ'○14 2.(2019·新课标全国Ⅱ卷)一质量为m =2000 g 的汽车以某一速度在平直公路上匀速行驶。行驶过程中,司机突然发现前方100 m 处有一警示牌。立即刹车。刹车过程中,汽车所受阻力大小随时间变化可简化为图(a )中的图线。图(a )中,0~t 1时间段为从司机发现警示牌到采取措施的反应时间(这段时间内汽车所受阻力已忽略,汽车仍保持匀速行驶),t 1=0.8 s ;t 1~t 2时间段为刹车系统的启动时间,t 2=1.3 s ;从t 2时刻开始汽车的刹车系统稳定工作,直至汽车停止,已知从t 2时刻开始,汽车第1 s 内的位移为24 m ,第4 s 内的位移为1 m 。

(1)在图(b )中定性画出从司机发现警示牌到刹车系统稳定工作后汽车运动的v -t 图线; (2)求t 2时刻汽车的速度大小及此后的加速度大小;

(3)求刹车前汽车匀速行驶时的速度大小及t 1~t 2时间内汽车克服阻力做的功;从司机发现警示牌到汽

车停止,汽车行驶的距离约为多少(以t 1~t 2时间段始末速度的算术平均值替代这段时间内汽车的

平均速度)?

【答案】(1)见解析 (2)2

8m/s a =,v 2=28 m/s ⑦ (3)87.5 m

【解析】(1)v -t 图像如图所示。

(2)设刹车前汽车匀速行驶时的速度大小为v 1,则t 1时刻的速度也为v 1,t 2时刻的速度为v 2,在t 2时刻后汽车做匀减速运动,设其加速度大小为a ,取Δt =1 s ,设汽车在t 2+(n -1)Δt ~t 2+n Δt 内的位移为s n ,n =1,2,3,…。

若汽车在t 2+3Δt~t 2+4Δt 时间内未停止,设它在t 2+3Δt 时刻的速度为v 3,在t 2+4Δt 时刻的速度为v 4,由运动学公式有

2143(Δ)s s a t -=① 2121

Δ(Δ)2

s v t a t =-②

424Δv v a t =-③

联立①②③式,代入已知数据解得

417

m/s 6

v =-

④ 这说明在t 2+4Δt 时刻前,汽车已经停止。因此,①式不成立。

由于在t 2+3Δt~t 2+4Δt 内汽车停止,由运动学公式

323Δv v a t =-⑤

2

432as v =⑥

联立②⑤⑥,代入已知数据解得

28m/s a =,v 2=28 m/s ⑦

或者2288

m/s 25

a =

,v 2=29.76 m/s ⑧ 但⑧式情形下,v 3<0,不合题意,舍去

(3)设汽车的刹车系统稳定工作时,汽车所受阻力的大小为f 1,由牛顿定律有 f 1=ma ⑨

在t 1~t 2时间内,阻力对汽车冲量的大小为

1211

=

()2

I f t t -⑩ 由动量定理有

12I mv m '=-?

由动量定理,在t 1~t 2时间内,汽车克服阻力做的功为

22

121122

W mv mv =

-? 联立⑦⑨⑩??式,代入已知数据解得 v 1=30 m/s ?

51.1610J W =??

从司机发现警示牌到汽车停止,汽车行驶的距离s 约为

2

2

1112211()()22v s v t v v t t a

=++-+?

联立⑦??,代入已知数据解得 s =87.5 m ?

3.(2019·新课标全国Ⅲ卷)静止在水平地面上的两小物块A 、B ,质量分别为m A =l.0 g ,m B =4.0 g ;两者之间有一被压缩的微型弹簧,A 与其右侧的竖直墙壁距离l =1.0 m ,如图所示。某时刻,将压缩的微型弹簧释放,使A 、B 瞬间分离,两物块获得的动能之和为E =10.0 J 。释放后,A 沿着与墙壁垂直的方向向右运动。A 、B 与地面之间的动摩擦因数均为u =0.20。重力加速度取g =10 m/s2。A 、B 运动过程中所涉及的碰撞均为弹性碰撞且碰撞时间极短。

(1)求弹簧释放后瞬间A 、B 速度的大小;

(2)物块A 、B 中的哪一个先停止?该物块刚停止时A 与B 之间的距离是多少? (3)A 和B 都停止后,A 与B 之间的距离是多少?

【答案】(1)v A =4.0 m/s ,v B =1.0 m/s (2)B 0.50 m (3)0.91 m

【解析】(1)设弹簧释放瞬间A 和B 的速度大小分别为v A 、v B ,以向右为正,由动量守恒定律和题给条件有 0=m A v A –m B v B ①

22k 11

22

A A

B B E m v m v =+②

联立①②式并代入题给数据得 v A =4.0 m/s ,v B =1.0 m/s ③

(2)A 、B 两物块与地面间的动摩擦因数相等,因而两者滑动时加速度大小相等,设为a 。假设A 和B 发生碰撞前,已经有一个物块停止,此物块应为弹簧释放后速度较小的B 。设从弹簧释放到B 停止所需时间为t ,B 向左运动的路程为s B 。,则有

B B m a m g μ=④ 21

2

B B s v t at =-⑤

0B v at -=⑥

在时间t 内,A 可能与墙发生弹性碰撞,碰撞后A 将向左运动,碰撞并不改变A 的速度大小,所以无论此碰撞是否发生,A 在时间t 内的路程s A 都可表示为 s A =v A t –212

at ⑦

联立③④⑤⑥⑦式并代入题给数据得 s A =1.75 m ,s B =0.25 m ⑧

这表明在时间t 内A 已与墙壁发生碰撞,但没有与B 发生碰撞,此时A 位于出发点右边0.25 m 处。B 位于出发点左边0.25 m 处,两物块之间的距离s 为 s =0.25 m+0.25 m=0.50 m ⑨

(3)t 时刻后A 将继续向左运动,假设它能与静止的B 碰撞,碰撞时速度的大小为v A ′,由动能定理有

()2211222

A A A A A

B m v m v m g l s μ'-=-+⑩ 联立③⑧⑩式并代入题给数据得 7m /s A v '=?

故A 与B 将发生碰撞。设碰撞后A 、B 的速度分别为v A ′′和v B ′′,由动量守恒定律与机械能守恒定律有

()

A A A A

B B m v m v m v '''''-=+?

222111222

A A A A

B B m v m v m v '''''=+? 联立???式并代入题给数据得 3727m /s,m /s A B v v ''''

=

=-? 这表明碰撞后A 将向右运动,B 继续向左运动。设碰撞后A 向右运动距离为s A ′时停止,B 向左运动距离为s B ′时停止,由运动学公式

22

2,2A A B B as v as v ''''''==?

由④??式及题给数据得

0.63m,0.28m A B s s ''==?

s A ′小于碰撞处到墙壁的距离。由上式可得两物块停止后的距离

0.91m A B s s s '''=+=?

4.(2019·北京卷)雨滴落到地面的速度通常仅为几米每秒,这与雨滴下落过程中受到空气阻力有关。雨滴间无相互作用且雨滴质量不变,重力加速度为g 。

(1)质量为m 的雨滴由静止开始,下落高度h 时速度为u ,求这一过程中克服空气阻力所做的功W 。 (2)将雨滴看作半径为r 的球体,设其竖直落向地面的过程中所受空气阻力f =r 2v 2,其中v 是雨滴的速度,是比例系数。

a .设雨滴的密度为ρ,推导雨滴下落趋近的最大速度v m 与半径r 的关系式;

b .示意图中画出了半径为r 1、r 2(r 1>r 2)的雨滴在空气中无初速下落的v –t 图线,其中_________对应

半径为r 1的雨滴(选填①、②);若不计空气阻力,请在图中画出雨滴无初速下落的v –t 图线。 (3)由于大量气体分子在各方向运动的几率相等,其对静止雨滴的作用力为零。将雨滴简化为垂直于运动方向面积为S 的圆盘,证明:圆盘以速度v 下落时受到的空气阻力f ∝v 2(提示:设单位体积内空气分子数为n ,空气分子质量为m 0)。

【答案】(1)212mgh mu - (2)a .m 4π3g

v r k ρ=

b .见解析 (3)见解析 【解析】(1)根据动能定理2

12mgh W mu -=

可得2

12

W mgh mu =-

(2)a .根据牛顿第二定律mg f ma -= 得22

kr v a g m

=- 当加速度为零时,雨滴趋近于最大速度v m 雨滴质量34π3

m r ρ=

由a =0,可得,雨滴最大速度m 4π3g

v r k

ρ= b .① 如答图2

(3)根据题设条件:大量气体分子在各方向运动的几率相等,其对静止雨滴的作用力为零。以下只考虑雨滴下落的定向运动。

简化的圆盘模型如答图3。设空气分子与圆盘碰撞前后相对速度大小不变。在?t 时间内,与圆盘碰撞的空气分子质量为0m Sv tnm ?=?

以F 表示圆盘对气体分子的作用力,根据动量定理, 有F t m v ?∝?? 得20F nm Sv ∝

由牛顿第三定律,可知圆盘所受空气阻力 2f v ∝

采用不同的碰撞模型,也可得到相同结论。

5.(2019·天津卷)完全由我国自行设计、建造的国产新型航空母舰已完成多次海试,并取得成功。航母上的舰载机采用滑跃式起飞,故甲板是由水平甲板和上翘甲板两部分构成,如图1所示。为了便于研究舰载机的起飞过程,假设上翘甲板BC 是与水平甲板AB 相切的一段圆弧,示意如图2,AB 长1150m L =,

BC 水平投影263m L =,图中C 点切线方向与水平方向的夹角12θ=?(sin120.21?≈)。若舰载机

从A 点由静止开始做匀加速直线运动,经6s t =到达B 点进入BC 。已知飞行员的质量60kg m =,

210m/s g =,求

(1)舰载机水平运动的过程中,飞行员受到的水平力所做功W ; (2)舰载机刚进入BC 时,飞行员受到竖直向上的压力N F 多大。

【答案】(1)4

7.510J W =? (2)3N 1.110N F =?

【解析】(1)舰载机由静止开始做匀加速直线运动,设其刚进入上翘甲板时的速度为v ,则有

1

2L v t

=① 根据动能定理,有

2

102

W mv =

-② 联立①②式,代入数据,得

47.510J W =?③

(2)设上翘甲板所对应的圆弧半径为R ,根据几何关系,有

2sin L R θ=④

由牛顿第二定律,有

2

N F mg m R

v -=⑤

联立①④⑤式,代入数据,得

3N 1.110N F =?⑥

6.(2019·江苏卷)如图所示,质量相等的物块A 和B 叠放在水平地面上,左边缘对齐.A 与B 、B 与地面间的动摩擦因数均为μ。先敲击A ,A 立即获得水平向右的初速度,在B 上滑动距离L 后停下。接着敲击B ,B 立即获得水平向右的初速度,A 、B 都向右运动,左边缘再次对齐时恰好相对静止,此后两者一起运动至停下.最大静摩擦力等于滑动摩擦力,重力加速度为g .求: (1)A 被敲击后获得的初速度大小v A ;

(2)在左边缘再次对齐的前、后,B 运动加速度的大小a B 、a B '; (3)B 被敲击后获得的初速度大小v B .

【答案】(1)2A v gL μ= (2)a B =3μg a B ′=μg (3)22B v gL μ=【解析】(1)由牛顿运动定律知,A 加速度的大小a A =μg 匀变速直线运动 2a A L =v A 2 解得2A v gL μ=

(2)设A 、B 的质量均为m 对齐前,B 所受合外力大小F =3μmg 由牛顿运动定律F =ma B ,得 a B =3μg 对齐后,A 、B 所受合外力大小F ′=2μmg 由牛顿运动定律F ′=2ma B ′,得a B ′=μg

(3)经过时间t ,A 、B 达到共同速度v ,位移分别为A 、B ,A 加速度的大小等于a A 则v =a A t ,v =v B –a B t

2211

22

A A

B B B x a t x v t a t ==-,

且B –A =L

解得22B v gL μ=

7.(2019·浙江选考)在竖直平面内,某一游戏轨道由直轨道AB 和弯曲的细管道BCD 平滑连接组成,如图所示。小滑块以某一初速度从A 点滑上倾角为θ=37°的直轨道AB ,到达B 点的速度大小为2m/s ,然后进入细管道BCD ,从细管道出口D 点水平飞出,落到水平面上的G 点。已知B 点的高度h 1=1.2m ,D 点的高度h 2=0.8m ,D 点与G 点间的水平距离L =0.4m ,滑块与轨道AB 间的动摩擦因数μ=0.25,sin37°= 0.6,cos37°= 0.8。

(1)求小滑块在轨道AB 上的加速度和在A 点的初速度; (2)求小滑块从D 点飞出的速度; (3)判断细管道BCD 的内壁是否光滑。

【答案】(1)2

8m/s 6m/s ,

(2)1 m/s (3)小滑块动能减小,重力势能也减小,所以细管道BCD 内壁不光滑。

【解析】(1)上滑过程中,由牛顿第二定律:mgsin mgcos ma θμθ+=, 解得28/a m s =; 由运动学公式2

2

1

02B h v v a sin θ

-=-, 解得06/v m s =

(2)滑块在D 处水平飞出,由平抛运动规律D L v t =,2212

h gt = 解得1m/s D v =

(3)小滑块动能减小,重力势能也减小,所以细管道BCD 内壁不光滑

8.(2019·浙江选考)如图所示,在地面上竖直固定了刻度尺和轻质弹簧,弹簧原长时上端与刻度尺上的A 点等高。质量m =0.5 g 的篮球静止在弹簧正上方,其底端距A 点高度h 1=1.10 m 。篮球静止释放,测得第

一次撞击弹簧时,弹簧的最大形变量1=0.15 m ,第一次反弹至最高点,篮球底端距A 点的高度h 2=0.873 m ,篮球多次反弹后静止在弹簧的上端,此时弹簧的形变量2=0.01 m ,弹性势能为E p =0.025 J 。若篮球运动时受到的空气阻力大小恒定,忽略篮球与弹簧碰撞时的能量损失和篮球的形变,弹簧形变在弹性限度范围内。求:

(1)弹簧的劲度系数;

(2)篮球在运动过程中受到的空气阻力; (3)篮球在整个运动过程中通过的路程; (4)篮球在整个运动过程中速度最大的位置。

【答案】(1)500 N/m (2)0.5 N (3)11.05 m (4)0.009 m 【解析】(1)球静止在弹簧上,根据共点力平衡条件可得20mg kx -=

(2)球从开始运动到第一次上升到最高点,动能定理()()1212120mg h h f h h x --++=, 解得0.5N f =

(3)球在整个运动过程中总路程s :()12p mg h x fs E +=+ 解得11.05m s =

(4)球在首次下落过程中,合力为零处速度最大,速度最大时弹簧形变量为3x ; 则30mg f kx --=;

在A 点下方,离A 点30.009m x =

9.(2018·江苏卷)如图所示,钉子A 、B 相距5l ,处于同一高度.细线的一端系有质量为M 的小物块,另一端绕过A 固定于B 。质量为m 的小球固定在细线上C 点,B 、C 间的线长为3l 。用手竖直向下拉住小球,使小球和物块都静止,此时BC 与水平方向的夹角为53°。松手后,小球运动到与A 、B 相同高度时的速度恰好为零,然后向下运动。忽略一切摩擦,重力加速度为g ,取sin 53°

=0.8,cos 53°=0.6。求:

(1)小球受到手的拉力大小F;

(2)物块和小球的质量之比Mm;

(3)小球向下运动到最低点时,物块M所受的拉力大小T。

【答案】(1)

5

3

F Mg mg

=-(2)

6

5

M

m

=(3)

8

5

mMg

T

m M

=

+

()

488

5511

T mg T Mg

==

或)

【解析】(1)设小球受AC、BC的拉力分别为F1、F2 F1sin 53°=F2cos 53°

F+mg=F1cos 53°+F2sin 53°且F1=Mg

解得

5

3

F Mg mg =-

(2)小球运动到与A、B相同高度过程中

小球上升高度h1=3l sin 53°,物块下降高度h2=2l 机械能守恒定律mgh1=Mgh2

解得

6

5 M

m

=

(3)根据机械能守恒定律,小球回到起始点.设此时AC方向的加速度大小为a,重物受到的拉力为T 牛顿运动定律Mg–T=Ma

小球受AC的拉力T′=T

牛顿运动定律T′–mg cos 53°=ma

解得

8

5

mMg

T

m M

=

+

()

488

5511

T mg T Mg

==

或)

【名师点睛】本题考查力的平衡、机械能守恒定律和牛顿第二定律。解答第(1)时,要先受力分析,建立竖直方向和水平方向的直角坐标系,再根据力的平衡条件列式求解;解答第(2)时,根据初、末状态的特点和运动过程,应用机械能守恒定律求解,要注意利用几何关系求出小球上升的高度与物块下降的高度;解答第(3)时,要注意运动过程分析,弄清小球加速度和物块加速度之间的关系,因小球下落过程做的是圆周运动,当小球运动到最低点时速度刚好为零,所以小球沿AC方向的加速度(切向加速度)与物块竖直向下加速度大小相等。

10.(2018·江苏卷)如图所示,悬挂于竖直弹簧下端的小球质量为m,运动速度的大小为v,方向向下。

经过时间t,小球的速度大小为v,方向变为向上。忽略空气阻力,重力加速度为g,求该运动过程中,

小球所受弹簧弹力冲量的大小。

【答案】2F I mv mgt =+

【解析】取向上为正方向,动量定理mv –(–mv )=I 且–I F mg t =() 解得2F I Ft mv mgt ==+

11.(2018·北京卷)2022年将在我国举办第二十四届冬奥会,跳台滑雪是其中最具观赏性的项目之一。某

滑道示意图如下,长直助滑道AB 与弯曲滑道BC 平滑衔接,滑道BC 高h =10 m ,C 是半径R =20 m 圆弧的最低点,质量m =60 g 的运动员从A 处由静止开始匀加速下滑,加速度a =4.5 m/s 2,到达B 点时速度v B =30 m/s 。取重力加速度g =10 m/s 2。 (1)求长直助滑道AB 的长度L ;

(2)求运动员在AB 段所受合外力的冲量的I 大小;

(3)若不计BC 段的阻力,画出运动员经过C 点时的受力图,并求其所受支持力F N 的大小。

【答案】(1)

(2)1800N s ? (3)3 900 N

【解析】(1)已知AB 段的初末速度,则利用运动学公式可以求解斜面的长度,即

2202v v aL -=

可解得:22

100m 2v v L a

-==

(2)根据动量定理可知合外力的冲量等于动量的该变量所以

01800N s B I mv =-=?

(3)小球在最低点的受力如图所示

由牛顿第二定律可得:2C

v N mg m R

-= 从B 运动到C 由动能定理可知:

221122

C B mgh mv mv =

- 解得:3900N N =

12.(2018·新课标全国II 卷)汽车A 在水平冰雪路面上行驶,驾驶员发现其正前方停有汽车B ,立即采取

制动措施,但仍然撞上了汽车B 。两车碰撞时和两车都完全停止后的位置如图所示,碰撞后B 车向前滑动了4.5 m ,A 车向前滑动了2.0 m ,已知A 和B 的质量分别为32.010? g 和31.510? g ,两车与该冰雪路面间的动摩擦因数均为0.10,两车碰撞时间极短,在碰撞后车轮均没有滚动,重力加速度大小

210m /s g =。求

(1)碰撞后的瞬间B 车速度的大小; (2)碰撞前的瞬间A 车速度的大小。

【答案】(1) 3.0m/s B v '= (2) 4.3m/s A v =

【解析】两车碰撞过程动量守恒,碰后两车在摩擦力的作用下做匀减速运动,利用运动学公式可以求得碰后的速度,然后在计算碰前A 车的速度。

(1)设B 车质量为m B ,碰后加速度大小为a B ,根据牛顿第二定律有

B B B m g m a μ=①

式中μ是汽车与路面间的动摩擦因数。

设碰撞后瞬间B 车速度的大小为B v ',碰撞后滑行的距离为B s 。由运动学公式有

2=2B B B v a s '②

联立①②式并利用题给数据得

3.0m/s B v '=③

(2)设A 车的质量为m A ,碰后加速度大小为a A 。根据牛顿第二定律有

A A A m g m a μ=④

设碰撞后瞬间A 车速度的大小为A v ',碰撞后滑行的距离为A s 。由运动学公式有

2=2A A A v a s '⑤

设碰撞后瞬间A 车速度的大小为A v ,两车在碰撞过程中动量守恒,有

A A A A

B B m v m v m v =+''⑥

联立③④⑤⑥式并利用题给数据得

4.3m/s A v =

13.(2018·天津卷)我国自行研制、具有完全自主知识产权的新一代大型喷气式客机C919首飞成功后,

拉开了全面试验试飞的新征程,假设飞机在水平跑道上的滑跑是初速度为零的匀加速直线运动,当位移=1.6×103 m 时才能达到起飞所要求的速度v =80 m/s ,已知飞机质量m =7.0×104 g ,滑跑时受到的阻力

为自身重力的0.1倍,重力加速度取2

10m/s g =,求飞机滑跑过程中

(1)加速度a 的大小; (2)牵引力的平均功率P 。

【答案】(1)a =2 m/s 2(2)P =8.4×

106 W 【解析】飞机滑跑过程中做初速度为零的匀加速直线运动,结合速度位移公式求解加速度;对飞机受力分析,结合牛顿第二定律,以及P Fv =求解牵引力的平均功率;

(1)飞机滑跑过程中做初速度为零的匀加速直线运动,有v 2=2a ①,解得a =2 m/s 2② (2)设飞机滑跑受到的阻力为F 阻,根据题意可得F 阻=0.1mg ③ 设发动机的牵引力为F ,根据牛顿第二定律有F F ma -=阻④;

设飞机滑跑过程中的平均速度为v ,有2

v v =

⑤ 在滑跑阶段,牵引力的平均功率P Fv =⑥,联立②③④⑤⑥得P =8.4×

106 W 【名师点睛】考查牛顿第二定律,匀变速直线运动,功率的求解,加速度是连接力和运动的桥梁,本题较易,注意在使用公式P Fv =求解功率时,如果v 对应的是瞬时速度,则求解出的为瞬时功率,如果v 为平均速度,则求解出的为平均功率。

14.(2018·新课标全国III 卷)如图,在竖直平面内,一半径为R 的光滑圆弧轨道ABC 和水平轨道PA 在A

点相切。BC 为圆弧轨道的直径。O 为圆心,OA 和OB 之间的夹角为α,sin α=

3

5

,一质量为m 的小球沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用,已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零。重力加速度大小为g 。求:

(1)水平恒力的大小和小球到达C 点时速度的大小; (2)小球到达A 点时动量的大小;

(3)小球从C 点落至水平轨道所用的时间。 【答案】(15gR (223m gR

(3355R g 【解析】(1)设水平恒力的大小为F 0,小球到达C 点时所受合力的大小为F 。由力的合成法则有

tan F mg

α=① ()2

220F mg F =+②

设小球到达C 点时的速度大小为v ,由牛顿第二定律得

2

v F m R

=③

由①②③式和题给数据得

03

4

F mg =

52

gR

v =

⑤ (2)设小球到达A 点的速度大小为1v ,作CD PA ⊥,交PA 于D 点,由几何关系得

sin DA R α=⑥ (1cos CD R α=+)⑦

由动能定理有

22

011122

mg CD F DA mv mv -?-?=

-⑧ 由④⑤⑥⑦⑧式和题给数据得,小球在A 点的动量大小为

1232

m gR p mv ==

⑨ (3)小球离开C 点后在竖直方向上做初速度不为零的匀加速运动,加速度大小为g 。设小球在竖直方向的初速度为

,从C 点落至水平轨道上所用时间为t 。由运动学公式有

2

12

v t gt CD ⊥+

=⑩ sin v v α

⊥=

由⑤⑦⑩

式和题给数据得

355R

t g

=

15.(2018·新课标全国I 卷)一质量为m 的烟花弹获得动能E 后,从地面竖直升空,当烟花弹上升的速度

为零时,弹中火药爆炸将烟花弹炸为质量相等的两部分,两部分获得的动能之和也为E ,且均沿竖直方向运动。爆炸时间极短,重力加速度大小为g ,不计空气阻力和火药的质量,求 (1)烟花弹从地面开始上升到弹中火药爆炸所经过的时间; (2)爆炸后烟花弹向上运动的部分距地面的最大高度。

【答案】(1)1

2E t g

m

=

(2)2E h mg = 【解析】本题主要考查机械能、匀变速直线运动规律、动量守恒定律、能量守恒定律及其相关的知识点,意在考查考生灵活运用相关知识解决实际问题的的能力。 (1)设烟花弹上升的初速度为0v ,由题给条件有

2

012

E mv =

① 设烟花弹从地面开始上升到火药爆炸所用的时间为t ,由运动学公式有

00v gt -=-②

联立①②式得

t =

(2)设爆炸时烟花弹距地面的高度为1h ,由机械能守恒定律有

1E mgh =④

火药爆炸后,烟花弹上、下两部分均沿竖直方向运动,设炸后瞬间其速度分别为1v 和2v 。由题给条件和动量守恒定律有

22

121144mv mv E +=⑤ 1211

022

mv mv +=⑥ 由⑥式知,烟花弹两部分的速度方向相反,向上运动部分做竖直上抛运动。设爆炸后烟花弹上部分继续上升的高度为2h ,由机械能守恒定律有

21211

42

mv mgh =⑦ 联立④⑤⑥⑦式得,烟花弹上部分距地面的最大高度为

122E

h h h mg

=+=

⑧ 16.(2017·江苏卷)甲、乙两运动员在做花样滑冰表演,沿同一直线相向运动,速度大小都是1 m/s ,甲、

乙相遇时用力推对方,此后都沿各自原方向的反方向运动,速度大小分别为1 m/s 和2 m/s .求甲、乙两运动员的质量之比. 【答案】32

【解析】由动量守恒定律得112222

11m v m v m v m v ''-=-,解得122

211m v v m v v '+=

'

+

代入数据得

1232

m m = 【名师点睛】考查动量守恒,注意动量的矢量性,比较简单.

17.(2017·天津卷)如图所示,物块A 和B 通过一根轻质不可伸长的细绳连接,跨放在质量不计的光滑定

滑轮两侧,质量分别为m A =2 g 、m B =1 g 。初始时A 静止于水平地面上,B 悬于空中。先将B 竖直向上再举高h =1.8 m (未触及滑轮)然后由静止释放。一段时间后细绳绷直,A 、B 以大小相等的速度一起运动,之后B 恰好可以和地面接触。取g =10 m/s 2。空气阻力不计。求: (1)B 从释放到细绳刚绷直时的运动时间t ;

(2)A 的最大速度v 的大小; (3)初始时B 离地面的高度H 。

【答案】(1)0.6s t = (2)2m/s v = (3)0.6m H = 【解析】(1)B 从释放到细绳刚绷直前做自由落体运动,有:2

2

1gt h =解得:0.6s t = (2)设细绳绷直前瞬间B 速度大小为v B ,有06m/s v gt ==

细绳绷直瞬间,细绳张力远大于A 、B 的重力,A 、B 相互作用,总动量守恒:v m m v m B A B )(0+= 绳子绷直瞬间,A 、B 系统获得的速度:2m/s v =

之后A 做匀减速运动,所以细绳绷直瞬间的速度v 即为最大速度,A 的最大速度为2 m/s

(3)细绳绷直后,A 、B 一起运动,B 恰好可以和地面接触,说明此时A 、B 的速度为零,这一过程中A 、B 组成的系统机械能守恒,有:

gH m gH m v m m A B B A =++2)(2

1

解得,初始时B 离地面的高度0.6m H =

【名师点睛】本题的难点是绳子绷紧瞬间的物理规律——是两物体的动量守恒,而不是机械能守恒。 18.(2017·江苏卷)如图所示,两个半圆柱A 、B 紧靠着静置于水平地面上,其上有一光滑圆柱C ,三者

半径均为R .C 的质量为m ,A 、B 的质量都为

2

m

,与地面的动摩擦因数均为μ.现用水平向右的力拉A ,使A 缓慢移动,直至C 恰好降到地面.整个过程中B 保持静止.设最大静摩擦力等于滑动摩擦力,重力加速度为g .求:

(1)未拉A 时,C 受到B 作用力的大小F ; (2)动摩擦因数的最小值μmin ;

(3)A 移动的整个过程中,拉力做的功W .

【答案】(1)33F mg =

(2) min 32

μ= (3) (231)W mgR μ=- 【解析】(1)C 受力平衡

2cos 30F mg ?= 解得33

F mg = (2)C 恰好降落到地面时,B 受C 压力的水平分力最大max

32

x F mg =

B 受地面的摩擦力f mg μ= 根据题意 min max x f F =,解得min 32

μ= (3)C 下降的高度

31)h R = A 的位移2(31)x R =

摩擦力做功的大小2(31)f W fx mgR μ==

根据动能定理 00f W W mgh -+=-

解得(21)(31)W

mgR μ=-

【名师点睛】本题的重点的C 恰好降落到地面时,B 物体受力的临界状态的分析,此为解决第二问的关键,也是本题分析的难点.

19.(2017·新课标全国Ⅰ卷)一质量为8.00×104 g 的太空飞船从其飞行轨道返回地面。飞船在离地面高

度1.60×105 m 处以7.50×103 m/s 的速度进入大气层,逐渐减慢至速度为100 m/s 时下落到地面。取地面为重力势能零点,在飞船下落过程中,重力加速度可视为常量,大小取为9.8 m/s 2。(结果保留2位有效数字)

(1)分别求出该飞船着地前瞬间的机械能和它进入大气层时的机械能;

(2)求飞船从离地面高度600 m 处至着地前瞬间的过程中克服阻力所做的功,已知飞船在该处的速度

大小是其进入大气层时速度大小的2.0%。

【答案】(1)(1)4.0×

108 J 2.4×1012 J (2)9.7×108 J 【解析】(1)飞船着地前瞬间的机械能为2

00102

E mv =

+① 式中,m 和v 0分别是飞船的质量和着地前瞬间的速率。由①式和题给数据得8

0 4.010J E =?②

高中高考物理试卷试题分类汇编.doc

2019年高考物理试题分类汇编(热学部分) 全国卷 I 33. [物理—选修 3–3]( 15 分) (1)( 5 分)某容器中的空气被光滑活塞封住,容器和活塞绝热性能良好,空气可视 为理想气体。初始时容器中空气的温度与外界相同,压强大于外界。现使活塞缓慢移动,直 至容器中的空气压强与外界相同。此时,容器中空气的温度__________ (填“高于”“低于”或“等于”)外界温度,容器中空气的密度__________ (填“大于”“小于”或“等于”)外界空气 的密度。 (2)( 10分)热等静压设备广泛用于材料加工中。该设备工作时,先在室温下把惰性 气体用压缩机压入到一个预抽真空的炉腔中,然后炉腔升温,利用高温高气压环境对放入炉腔 中的材料加工处理,改善其性能。一台热等静压设备的炉腔中某次放入固体材料后剩余的 容积为 m3,炉腔抽真空后,在室温下用压缩机将10瓶氩气压入到炉腔中。已知每瓶氩气的 容积为×10-2 m3,使用前瓶中气体压强为×107Pa,使用后瓶中剩余气体压强为×106Pa;室温温度为 27 ℃。氩气可视为理想气体。 (i)求压入氩气后炉腔中气体在室温下的压强; (i i )将压入氩气后的炉腔加热到 1 227 ℃,求此时炉腔中气体的压强。 全国卷 II 33. [ 物理—选修 3-3] ( 15 分) (1)( 5分)如 p-V 图所示, 1、2、 3三个点代表某容器中一定量理想气体的三个不同 状态,对应的温度分别是 T1、T2、 T3。用 N1、N2、N3分别表示这三个状态下气体分子在单位 时间内撞击容器壁上单位面积的次数,则N1______N2, T1______T3, N2 ______N3。(填“大于”“小于”或“等于”)

备战2020年高考物理计算题专题复习《向心力的计算》(解析版)

《向心力的计算》 一、计算题 1.如图所示,长为L的细绳一端与一质量为m的小球可看成质点 相连,可绕过O点的水平转轴在竖直面内无摩擦地转动.在最 低点a处给一个初速度,使小球恰好能通过最高点完成完整的圆 周运动,求: 小球过b点时的速度大小; 初速度的大小; 最低点处绳中的拉力大小. 2.如图所示,一条带有圆轨道的长轨道水平固定,圆轨道竖直,底端分别与两侧的直 轨道相切,半径,物块A以的速度滑入圆轨道,滑过最高点Q,再沿圆轨道滑出后,与直轨上P处静止的物块B碰撞,碰后粘在一起运动。P点左侧轨道光滑,右侧轨道呈粗糙段,光滑段交替排列,每段长度都为。物块与各粗糙段间的动摩擦因数都为,A、B的质量均为重力加速度g 取;A、B视为质点,碰撞时间极短。 求A滑过Q点时的速度大小V和受到的弹力大小F; 若碰后AB最终停止在第k个粗糙段上,求k的数值; 求碰后AB滑至第n个光滑段上的速度与n的关系式。

3.如图所示,一个固定在竖直平面上的光滑半圆形管道,管道里有一个直径略小于管 道内径的小球,小球在管道内做圆周运动,从B点脱离后做平抛运动,经过秒后又恰好垂直与倾角为的斜面相碰到。已知圆轨道半径为,小球的质量为,g取求 小球在斜面上的相碰点C与B点的水平距离 小球经过圆弧轨道的B点时,受到轨道的作用力的大小和方向? 小球经过圆弧轨道的A点时的速率。 4.如图所示,倾角为的粗糙平直导轨与半径为R的光 滑圆环轨道相切,切点为B,整个轨道处在竖直平面内。一 质量为m的小滑块从轨道上离地面高为的D处无初速 下滑进入圆环轨道,接着小滑块从圆环最高点C水平飞出, 恰好击中导轨上与圆心O等高的P点,不计空气阻力。求: 小滑块在C点飞出的速率; 在圆环最低点时滑块对圆环轨道压力的大小; 滑块与斜轨之间的动摩擦因数。

2020年高考物理试题分类汇编 3--4

2020年高考物理试题分类汇编:3--4 1.(2020福建卷).一列简谐波沿x轴传播,t=0时刻的波形如图甲所示,此时质点P正沿y轴负方向运动,其振动图像如图乙所示,则该波的传播方向和波速分别是 A.沿x轴负方向,60m/s B.沿x轴正方向,60m/s C.沿x轴负方向,30 m/s D.沿x轴正方向,30m/s 答案:A 2.(1)(2020福建卷)(6分)在“用双缝干涉测光的波长” 实验中(实验装置如图): ①下列说法哪一个是错误 ......的_______。(填选项前的字母) A.调节光源高度使光束沿遮光筒轴线照在屏中心时,应放 上单缝和双缝 B.测量某条干涉亮纹位置时,应使测微目镜分划中心刻线 与该亮纹的中心对齐 C.为了减少测量误差,可用测微目镜测出n条亮纹间的距离a,求出相邻两条亮纹间距x/(1) V =- a n ②测量某亮纹位置时,手轮上的示数如右图,其示数为___mm。 答案:①A ②1.970 3.(2020上海卷).在光电效应实验中,用单色光照射某种金属表 面,有光电子逸出,则光电子的最大初动能取决于入射光的( )

(A )频率 (B )强度 (C )照射时间 (D )光子数目 答案: A 4.(2020上海卷).下图为红光或紫光通过双缝或单缝所呈现的图样,则( ) (A )甲为紫光的干涉图样 (B )乙为紫光的干涉图样 (C )丙为红光的干涉图样 (D )丁为红光的干涉图样 答案: B 5.(2020上海卷).如图,简单谐横波在t 时刻的波形如实线所示,经过?t =3s ,其波形如虚线所示。已知图中x 1与x 2相距1m ,波的周期为T ,且2T <?t <4T 。则可能的最小波速为__________m/s ,最小周期为__________s 。 答案:5,7/9, 6.(2020天津卷).半圆形玻璃砖横截面如图,AB 为直径,O 点为圆心,在该截面内有a 、b 两束单色可见光从空气垂直于AB 射入玻璃砖,两入射点到O 的距离相等,两束光在半圆边界上反射和折射的情况如图所示,则a 、b 两束光 A .在同种均匀介质中传播,a 光的传播速度较大 B .以相同的入射角从空气斜射入水中,b 光的折射角大 C .若a 光照射某金属表面能发生光电效应,b 光也一定能 D .分别通过同一双缝干涉装置,a 光的相邻亮条纹间距大 解析:当光由光密介质—玻璃进入光疏介质—空气时发生折射或全反射,b 发生全反射说明b 的入射角大于或等于临界角,a 发生折射说明a 的入射角小于临界角,比较可知在玻璃中a 的临界角大于b 的临界角;根据临界角定义有n C 1 sin = 玻璃对 (A ) (B ) (C ) (D )

物理高考题分类汇编

2019高考物理题分类汇编 一、直线运动 18.(卷一)如图,篮球架下的运动员原地垂直起跳扣篮,离地后重心上升的最大高 度为H 。上升第一个4H 所用的时间为t 1,第四个4H 所用的时间为t 2。不计空气阻力,则21 t t 满足() A .1<21t t <2 B .2<21 t t <3 C .3<21t t <4 D .4<21t t <5 25. (卷二)(2)汽车以某一速度在平直公路上匀速行驶司机忽然发现前方有一警示牌立即刹车。从刹车系统稳定工作开始计时,已知汽车第1s 内的位移为24m ,第4s 内的位移为1m 。求汽车刹车系统稳定工开始计时的速度大小及此后的加速度大小。 二、力与平衡 16.(卷二)物块在轻绳的拉动下沿倾角为30°的固定斜面向上匀速运动,轻绳与斜面平行。已知物块与斜面之间的动摩擦因数为3,重力加速度取10m/s 2。若轻绳能承受的最大张力为1500N ,则物块的质量最大为() A .150kg B .1003kg C .200kg D .2003kg 16.(卷三)用卡车运输质量为m 的匀质圆筒状工件,为使工件保持固定,将其置于 两光滑斜面之间,如图所示。两斜面I 、Ⅱ固定在车上,倾角分别为30°和60°。重力加速度为g 。当卡车沿平直公路匀速行驶时,圆筒对斜面I 、Ⅱ压力的大小分别为F 1、F 2,则() A .1233= =F mg F mg , B .1233==F mg F mg , C .121 3== 2F mg F mg , D .1231==2 F mg F mg ,

19.(卷一)如图,一粗糙斜面固定在地面上,斜面顶端装有一光滑定滑轮。一细绳跨过滑轮,其一端悬挂物块N。另一端与斜面上的物 块M相连,系统处于静止状态。现用水平向左的拉力 缓慢拉动N,直至悬挂N的细绳与竖直方向成45°。已 知M始终保持静止,则在此过程中() A.水平拉力的大小可能保持不变 B.M所受细绳的拉力大小一定一直增加 C.M所受斜面的摩擦力大小一定一直增加 D.M所受斜面的摩擦力大小可能先减小后增加 三、牛顿运动定律 20.(卷三)如图(a),物块和木板叠放在实验台上,木板与实验台之间的摩擦可以忽略。物块用一不可伸长的细绳与固定在实验台上的力传感器相连,细绳水平。t=0时,木板开始受到水平外力F的作用,在t=4s时 撤去外力。细绳对物块的拉力f随时间t变化的关 系如图(b)所示,木板的速度v与时间t的关系如 图(c)所示。重力加速度取g=10m/s2。由题给数 据可以得出() A.木板的质量为1kgB.2s~4s内,力F的大小为 C.0~2s内,力F的大小保持不变D.物块与木板之间的动摩擦因数为 四、曲线与天体 19.(卷二)如图(a),在跳台滑雪比赛中,运动员在空中滑翔时身体的姿态会影响其下落的速度和滑翔的距离。某运动员先后两次从同一跳台 起跳,每次都从离开跳台开始计时,用v表示他在竖直方向 的速度,其v-t图像如图(b)所示,t1和t2是他落在倾斜雪 道上的时刻。() A.第二次滑翔过程中在竖直方向上的位移比第一次的小 B.第二次滑翔过程中在水平方向上的位移比第一次的大 C.第一次滑翔过程中在竖直方向上的平均加速度比第一次 的大 D.竖直方向速度大小为v1时,第二次滑翔在竖直方向上所受阻力比第一次的大

2019高考物理真题汇编——计算题

目录 牛顿第二定律 (2) 功能 (3) 动量 (3) 力学综合 (3) 动量能量综合 (4) 带电粒子在电场中的运动 (6) 带电粒子在磁场中的运动 (7) 电磁感应 (8) 法拉第电磁感应定律(动生与感生电动势) (8) 杆切割 (8) 线框切割 (9) 感生电动势 (9) 电磁感应中的功能问题 (10) 电磁科技应用 (11) 热学 (12) 光学 (14) 近代物理 (15) 思想方法原理类 (16)

牛顿第二定律 1.【2019天津卷】完全由我国自行设计、建造的国产新型航空母舰已完成多次海试,并 取得成功。航母上的舰载机采用滑跃式起飞,故甲板是由水平甲板和上翘甲板两部分构成,如图1所示。为了便于研究舰载机的起飞过程,假设上翘甲板BC是与水平甲板AB相切的一段圆弧,示意如图2,AB长L1=150m,BC水平投影L2=63m,图中C点切线方向与水平方向的夹角θ=12°(sin12°≈0.21)。若舰载机从A点由静止开始做匀加速直线运动,经t=6s到达B点进入BC.已知飞行员的质量m=60kg,g=10m/s2,求 (1)舰载机水平运动的过程中,飞行员受到的水平力所做功W; (2)舰载机刚进入BC时,飞行员受到竖直向上的压力F N多大。 2.【2019江苏卷】如图所示,质量相等的物块A和B叠放在水平地面上,左边缘对齐。 A与B、B与地面间的动摩擦因数均为μ.先敲击A,A立即获得水平向右的初速度,在B上滑动距离L后停下。接着敲击B,B立即获得水平向右的初速度,A、B都向右运动,左边缘再次对齐时恰好相对静止,此后两者一起运动至停下。最大静摩擦力等于滑动摩擦力,重力加速度为g。求: (1)A被敲击后获得的初速度大小v A; (2)在左边缘再次对齐的前、后,B运动加速度的大小a B、a B′; (3)B被敲击后获得的初速度大小v B。

2020年高考物理试题分类汇编 普通高校招生考试 精品

θ F 2020普通高校招生考试试题汇编-相互作用 1(2020安徽第1题).一质量为m 的物块恰好静止在倾角为θ的斜面上。现对物块施加一个竖直向下的恒力F ,如图所示。则物块 A .仍处于静止状态 B .沿斜面加速下滑 C .受到的摩擦力不便 D .受到的合外力增大 答案:A 解析:由于质量为m 的物块恰好静止在倾角为θ的斜面上,说明斜面对物块的作用力与物块的重力平衡,斜面与物块的动摩擦因数μ=tan θ。对物块施加一个竖直向下的恒力F ,使得合力仍然为零,故物块仍处于静止状态,A 正确,B 、D 错误。摩擦力由mg sin θ增大到(F +mg )sin θ,C 错误。 2(2020海南第4题).如图,墙上有两个钉子a 和b,它们的连 线与水平方向的夹角为45°,两者的高度差为l 。一条不可伸长 的轻质细绳一端固定于a 点,另一端跨过光滑钉子b 悬挂一质量 为m1的重物。在绳子距a 端2 l 得c 点有一固定绳圈。若绳圈上悬挂质量为m2的钩码,平衡后绳的ac 段正好水平,则重物和钩 码的质量比12 m m 为 A.5 B. 2 C. 52 D.2 解析:平衡后设绳的BC 段与水平方向成α角,则:tan 2,sin 5 αα== 对节点C 分析三力平衡,在竖直方向上有:21sin m g m g α=得:1215sin 2 m m α==,选C 3 (广东第16题).如图5所示的水平面上,橡皮绳一端固定,另一端连 接两根弹簧,连接点P 在F 1、F 2和F 3三力作用下保持静止。下列判断正 确的是 A. F 1 > F 2> F 3 B. F 3 > F 1> F 2 C. F 2> F 3 > F 1 D. F 3> F 2 > F 1 4(北京理综第18题).“蹦极”就是跳跃者把一 端固定的长弹性绳绑在踝关节等处,从几十米高 处跳下的一种极限运动。某人做蹦极运动,所受 绳子拉力F 的大小随时间t 变化的情况如图所示。 将蹦极过程近似为在竖直方向的运动,重力加速 度为g 。据图可知,此人在蹦极过程中最大加速

历年高考物理试题分类汇编

历年高考物理试题分类汇编 牛顿运动定律选择题 08年高考全国I理综 15.如图,一辆有动力驱动的小车上有一水平放置的弹簧,其左端固定在小车上,右端与一小球相连,设在某一段时间内小球与小车相对静 止且弹簧处于压缩状态,若忽略小球与小车间的 摩擦力,则在此段时间内小车可能是AD A.向右做加速运动 B.向右做减速运动 C.向左做加速运动 D.向左做减速运动 08年高考全国II理综 16.如图,一固定斜面上两个质量相同的小物块A和B紧 挨着匀速下滑,A与B的接触面光滑。已知A与斜面之间 的动摩擦因数是B与斜面之间动摩擦因数的2倍,斜面倾 角为α。B与斜面之间的动摩擦因数是A A. 2 tan 3 α B. 2 cot .3 α C. tanαD.cotα 08年高考全国II理综 18.如图,一很长的、不可伸长的柔软轻绳跨过光滑定滑轮,绳 两端各系一小球a和b。a球质量为m,静置于地面;b球质量为 3m,用手托往,高度为h,此时轻绳刚好拉紧。从静止开始释放 b后,a可能达到的最大高度为B A.h B.1.5h C.2h D.2.5h 08年高考北京卷理综 20.有一些问题你可能不会求解,但是你仍有可能对这些问题的解是否合理进行分析和判断。例如从解的物理量单位,解随某些已知量变化的趋势,解在一跸特殊条件下的结果等方面进

行分析,并与预期结果、实验结论等进行比较,从而判断解的合理性或正确性。 举例如下:如图所示。质量为M 、倾角为θ的滑块A 放于水平地面上。把质量为m 的滑块 B 放在A 的斜面上。忽略一切摩擦,有人求得B 相对地面的加 速度a=2 sin sin M m g M m θθ++,式中g 为重力加速度。 对于上述解,某同学首先分析了等号右侧量的单位,没发现问题。他进一步利用特殊条件对该解做了如下四项分析和判断,所得结论都是“解可能是对的”。但是,其中有一项是错误的。请你指出该项。D A. 当θ?时,该解给出a=0,这符合常识,说明该解可能是对的 B. 当θ=90?时,该解给出a=g,这符合实验结论,说明该解可能是对的 C. 当M ≥m 时,该解给出a=gsin θ,这符合预期的结果,说明该解可能是对的 D. 当m ≥M 时,该解给出a=sin B θ,这符合预期的结果,说明该解可能是对的 08年高考山东卷理综 19.直升机悬停在空中向地面投放装有救灾物资的箱子,如图所 示。设投放初速度为零.箱子所受的空气阻力与箱子下落速度的平方成正比,且运动过程中箱子始终保持图示姿态。在箱子下落过程中.下列说法正确的是C A.箱内物体对箱子底部始终没有压力 B.箱子刚从飞机上投下时,箱内物体受到的支持力最大 C.箱子接近地面时,箱内物体受到的支持力比刚投下时大 D.若下落距离足够长,箱内物体有可能不受底部支持力而“飘起来” 08年高考宁夏卷理综 20.一有固定斜面的小车在水平面上做直线运动,小球通 过细绳与车顶相连。小球某时刻正处于图示状态。设斜面对小球的支持力为N ,细绳对小球的拉力为T ,关于此时刻小球的受力情况,下列说法正确的是AB

十年高考真题分类汇编(2010-2019) 物理 专题20 综合计算题 Word版含解斩

十年高考真题分类汇编(2010-2019) 物理 专题 20综合计算题 1.(2019?海南卷?T13)如图,用不可伸长轻绳将物块a 悬挂在O 点:初始时,轻绳处于水平拉直状态。现将a 由静止释放,当物块a 下摆至最低点时,恰好与静止在水平面上的物块b 发生弹性碰撞(碰撞时间极短),碰撞后b 滑行的最大距离为s 。已知b 的质量是a 的3倍。b 与水平面间的动摩擦因数为μ,重力加速度大小为g 。求 (1)碰撞后瞬间物块b 速度的大小; (2)轻绳的长度。 【答案】2gs μ (2) 4μs 【解析】 (1)设a 的质量为m ,则b 的质量为3m 。 碰撞后b 滑行过程,根据动能定理得213032b mgs mv μ-?=- ? 。 解得,碰撞后瞬间物块b 速度的大小2b v gs μ=(2)对于a 、b 碰撞过程,取水平向左为正方向,根据动量守恒定律得mv 0=mv a +3mv b 。 根据机械能守恒得22201113222 a b mv mv mv =+?。 设轻绳的长度为L ,对于a 下摆的过程,根据机械能守恒得2012mgL mv = ?。 联立解得L=4μs 。 2.(2019?全国Ⅲ卷?T12)静止在水平地面上的两小物块A 、B ,质量分别为m A =l.0kg , m B =4.0kg ;两者之间有一被压缩的微型弹簧,A 与其右侧的竖直墙壁距离l =1.0m ,如图所示。某时刻,将压缩的微型弹簧释放,使A 、B 瞬间分离,两物块获得的动能之和为E k =10.0J 。释放后,A 沿着与墙壁垂直的方向向右运动。A 、B 与地面之间的动摩擦因数均为u =0.20。重力加速度取g =10m/s2。A 、B 运动过程中所涉及的碰撞均为弹性碰撞且碰撞时间极短。

高考物理真题分类汇编(详解)

高中物理学习材料 (马鸣风萧萧**整理制作) 2011年高考物理真题分类汇编(详解) 功和能 1.(2011年高考·江苏理综卷)如图所示,演员正在进行杂技表演。由图可估算出他将一只鸡蛋抛出的过程中对鸡蛋所做的功最接近于 A .0.3J B .3J C .30J D .300J 1.A 解析:生活经验告诉我们:10个鸡蛋大约1斤即0.5kg ,则一个鸡蛋的质量约为 0.5 0.0510 m kg = =,鸡蛋大约能抛高度h =0.6m ,则做功约为W=mgh =0.05×10×0.6J=0.3J ,A 正确。 2.(2011年高考·海南理综卷)一物体自t =0时开始做直线运动,其速度图线如图所示。下列选项正确的是( ) A .在0~6s 内,物体离出发点最远为30m B .在0~6s 内,物体经过的路程为40m C .在0~4s 内,物体的平均速率为7.5m/s D .在5~6s 内,物体所受的合外力做负功 v/m ·s -1 10

2.BC 解析:在0~5s,物体向正向运动,5~6s向负向运动,故5s末离出发点最远,A错;由面积法求出0~5s的位移s1=35m, 5~6s的位移s2=-5m,总路程为:40m,B对;由面积法求出0~4s的位移s=30m,平度速度为:v=s/t=7.5m/s C对;由图像知5~6s过程物体加速,合力和位移同向,合力做正功,D错 3.(2011年高考·四川理综卷)如图是“神舟”系列航天飞船返回舱返回地面的示意图,假定其过程可简化为:打开降落伞一段时间后,整个装置匀速下降,为确保安全着陆,需点燃返回舱的缓冲火箭,在火箭喷气过程中返回舱做减速直线运动,则 A.火箭开始喷气瞬间伞绳对返回舱的拉力变小B.返回舱在喷气过程中减速的主要原因是空气阻力 C.返回舱在喷气过程中所受合外力可能做正功D.返回舱在喷气过程中处于失重状态 3.A 解析:在火箭喷气过程中返回舱做减速直线运动,加速度方向向上,返回舱处于超重状态,动能减小,返回舱所受合外力做负功,返回舱在喷气过程中减速的主要原因是缓冲火箭向下喷气而获得向上的反冲力。火箭开始喷气前匀速下降拉力等于重力减去返回舱受到的空气阻力,火箭开始喷气瞬间反冲力直接对返回舱作用因而伞绳对返回舱的拉力变小。 4.(2011年高考·全国卷新课标版)一质点开始时做匀速直线运动,从某时刻起受到一恒力作用。此后,该质点的动能可能 A.一直增大 B.先逐渐减小至零,再逐渐增大 C.先逐渐增大至某一最大值,再逐渐减小 D.先逐渐减小至某一非零的最小值,再逐渐增大 4.ABD 解析:当恒力方向与速度在一条直线上,质点的动能可能一直增大,也可能先逐渐减小至零,再逐渐增大。当恒力方向与速度不在一条直线上,质点的动能可能一直增大,也可能先逐渐减小至某一非零的最小值,再逐渐增大。所以正确答案是ABD。

高考物理计算题

考前题 1.(18分)如图所示,O 点为固定转轴,把一个长度为l 的细绳上端固定在O 点,细绳下端系一个质量为m 的小摆球,当小摆球处于静止状态时恰好与平台的右端点B 点接触,但无压力。一个质量为M 的小钢球沿着光滑的平台自左向右运动到B 点时与静止的小摆球m 发生正碰,碰撞后摆球在绳的约束下作圆周运动,且恰好能够经过最高点A ,而小钢球M 做平抛运动落在水平地面上的C 点。测得B 、C 两点间的水平距离DC=x ,平台的高度为h ,不计空气阻力,本地的重力加速度为g ,请计算: (1)碰撞后小钢球M 做平抛运动的初速度大小; (2)小把球m 经过最高点A 时的动能; (3)碰撞前小钢球M 在平台上向右运动的速度大小。 1.解析 (1)设M 做平抛运动的初速度是v , 2 21,gt h vt x = = h g x v 2= (2)摆球m 经最高点A 时只受重力作用, l v m mg A 2 = 摆球经最高点A 时的动能为A E ; mgl mv E A A 2 1212= = (3)碰后小摆球m 作圆周运动时机械能守恒, mgl mv mv A B 22 12 1 22+= gl v B 5= 设碰前M 的运动速度是 v ,M 与m 碰撞时系统的动量守恒 B mv Mv Mv +=0 gl M m h g x v 52+ = 2.如图,光滑轨道固定在竖直平面内,水平段紧贴地面,弯曲段的顶部切线水平、离地高为h ;滑块A 静止在水平轨道上, v 0=40m/s 的子弹水平射入滑块A 后一起沿轨道向右运动,并从轨道顶部水平抛出.已知滑块A 的质量是子弹的3倍,取g=10m/s 2,不计空气阻力.求: (1)子弹射入滑块后一起运动的速度; (2)水平距离x 与h 关系的表达式; (3)当h 多高时,x 最大,并求出这个最大值.

2019年高考物理试题分类汇编:选修3-4专题

2019年高考物理试题分类汇编:3--4 1.(2018福建卷).一列简谐波沿x 轴传播,t=0时刻的波形如图甲所示,此时质点P 正沿y 轴负方向运动,其振动图像如图乙所示,则该波的传播方向和波速分别是 A .沿x 轴负方向,60m/s B .沿x 轴正方向,60m/s C .沿x 轴负方向,30 m/s D .沿x 轴正方向,30m/s 答案:A 2.(1)(2018福建卷)(6分)在“用双缝干涉测光的波长”实验中(实验装置如图): ①下列说法哪一个是错误......的_______。(填选项前的字母) A .调节光源高度使光束沿遮光筒轴线照在屏中心时,应放上单缝和双缝 B .测量某条干涉亮纹位置时,应使测微目镜分划中心刻线与该亮纹的中心对齐 C .为了减少测量误差,可用测微目镜测出n 条亮纹间的距离a ,求出相邻两条亮纹间距x /(1)a n =-V ②测量某亮纹位置时,手轮上的示数如右图,其示数为___mm 。 答案:①A ②1.970 3.(2018上海卷).在光电效应实验中,用单色光照射某种金属表面,有光电子逸出,则光电子的最大初动能取决于入射光的( ) (A )频率 (B )强度 (C )照射时间 (D )光子数目 答案: A 4.(2018上海卷).下图为红光或紫光通过双缝或单缝所呈现的图样,则( ) (A )甲为紫光的干涉图样 (B )乙为紫光的干涉图样 (C )丙为红光的干涉图样 (D )丁为红光的干涉图样 答案: B 5.(2018上海卷).如图,简单谐横波在t 时刻的波形如实线所示,经过?t =3s ,其波形如虚线所示。已知图中x 1与x 2相距1m ,波的周期为T ,且2T <?t <4T 。则可能的最小波速为__________m/s ,最小周期为__________s 。 (A ) (B ) ( C ) (D )

2020年高考物理计算题强化专练-热学解析版

计算题强化专练-热学 一、计算题(本大题共5小题,共50.0分) 1.如图所示,质量为m=6kg的绝热气缸(厚度不计),横截面积为S=10cm2,倒扣在 水平桌面上(与桌面有缝隙),气缸内有一绝热的“T”型活塞固定在桌面上,活塞与气缸封闭一定质量的理想气体,活塞在气缸内可无摩擦滑动且不漏气.开始时,封闭气体的温度为t0=27℃,压强P=0.5×105P a,g取10m/s2,大气压强为 P0=1.0×105P a.求: ①此时桌面对气缸的作用力大小; ②通过电热丝给封闭气体缓慢加热到t2,使气缸刚好对水平桌面无压力,求t2的值 . 2.如图所示,用质量为m=1kg、横截面积为S=10cm2的活塞在气 缸内封闭一定质量的理想气体,活塞与气缸壁之间的摩擦忽 略不计。开始时活塞距气缸底的高度为h=10cm且气缸足够 高,气体温度为t=27℃,外界大气压强为p0=1.0×105Pa,取 g=10m/s2,绝对零度取-273℃.求: (i)此时封闭气体的压强; (ii)给气缸缓慢加热,当缸内气体吸收4.5J的热量时,内能 的增加量为2.3J,求此时缸内气体的温度。

3.如图所示,竖直放置的U形管左端封闭,右端开口,左管横截面积为右管横截面 积的2倍,在左管内用水银封闭一段长为l,温度为T的空气柱,左右两管水银面高度差为hcm,外界大气压为h0cmHg . (1)若向右管中缓慢注入水银,直至两管水银面相平(原右管中水银没全部进入水平 部分),求在右管中注入水银柱的长度h1(以cm为单位); (2)在两管水银面相平后,缓慢升高气体的温度至空气柱的长度变为开始时的长度l ,求此时空气柱的温度T′. 4.一内壁光滑、粗细均匀的U形玻璃管竖直放置,左端开口,右端封闭,左端上部 有一轻活塞.初始时,管内水银柱及空气柱长度如图所示.已知大气压强p0=75cmHg ,环境温度不变. (1)求右侧封闭气体的压强p右; (2)现用力向下缓慢推活塞,直至管内两边水银柱高度相等并达到稳定.求此时右侧封闭气体的压强p右; (3)求第(2)问中活塞下移的距离x.

高考物理计算题(共29题)

高考物理计算题(共29 题) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

学生错题之计算题(共29题) 计算题力学部分:(共12题) (2) 计算题电磁学部分:(共13题) (15) 计算题气体热学部分:(共3题) (35) 计算题原子物理部分:(共1题) (38) 计算题力学部分:(共12题) 1.长木板A静止在水平地面上,长木板的左端竖直固定着弹性挡板P,长木板A的上表面分为三个区域,其中PO段光滑,长度为1 m;OC段粗糙,长度为1.5 m;CD段粗糙,长度为1.19 m。可视为质点的滑块B静止在长木板上的O点。已知滑块、长木板的质量均为1 kg,滑块B与OC段动摩擦因数为0.4,长木板与地面间的动摩擦因数为0.15。现用水平向右、大小为11 N的恒力拉动长木板,当弹性挡板P将要与滑块B相碰时撤去外力,挡板P与滑块B发生弹性碰撞,碰后滑块B最后停在了CD段。已知质量相等的两个物体发生弹性碰撞时速度互换,g=10 m/s2,求: (1)撤去外力时,长木板A的速度大小; (2)滑块B与木板CD段动摩擦因数的最小值; (3)在(2)的条件下,滑块B运动的总时间。 答案:(1)4m/s (2)0.1(3)2.45s 【解析】(1)对长木板A由牛顿第二定律可得,解得; 由可得v=4m/s; (2)挡板P与滑块B发生弹性碰撞,速度交换,滑块B以4m/s的速度向右滑行,长木板A静止,当滑上OC段时,对滑块B有,解得 滑块B的位移; 对长木板A有; 长木板A的位移,所以有,可得或(舍去) (3)滑块B匀速运动时间;

滑块B在CD段减速时间; 滑块B从开始运动到静止的时间 2.如图所示,足够宽的水平传送带以v0=2m/s的速度沿顺时针方向运行,质量m=0.4kg的小滑块被光滑固定挡板拦住静止于传送带上的A点,t=0时,在小滑块上施加沿挡板方向的拉力F,使之沿挡 板做a=1m/s2的匀加速直线运动,已知小滑块与传送带间的动摩擦因数,重力加速度g=10m /s2,求: (1)t=0时,拉力F的大小及t=2s时小滑块所受摩擦力的功率; (2)请分析推导出拉力F与t满足的关系式。 答案: (1)0.4N;(2) 【解析】(1)由挡板挡住使小滑块静止的A点,知挡板方向必垂直于传送带的运行方向; t=0时对滑块:F=ma 解得F=0.4N;t=2s时, 小滑块的速度v=at=2m/s摩擦力方向与挡板夹角,则θ=450 此时摩擦力的功率P=μmgcos450v, 解得 (2)t时刻,小滑块的速度v=at=t, 小滑块所受的摩擦力与挡板的夹角为 由牛顿第二定律 解得(N)

各地高考物理卷计算题汇总 含答案

各地高考计算题汇总(含答案) 1.(2018江苏,14,16分)如图所示,钉子A、B相距5l,处于同一高度.细线的一端系有质量为M的小物块,另一端绕过A固定于B.质量为m的小球固定在细线上C点,B、C间的线长为3l.用手竖直向下拉住小球,使小球和物块都静止,此时BC与水平方向的夹角为53°.松手后,小球运动到与A、B相同高度时的速度恰好为零,然后向下运动.忽略一切摩擦,重力加速度为g,取sin53°=,cos53°=.求: (1)小球受到手的拉力大小F; (2)物块和小球的质量之比M:m; (3)小球向下运动到最低点时,物块M所受的拉力大小T. 【答案】(1)(2)(3)()【解析】(1)设小球受AC、BC的拉力分别为F1、F2 F1sin53°=F2cos53°F+mg=F1cos53°+ F2sin53°且F1=Mg 解得 (2)小球运动到与A、B相同高度过程中 小球上升高度h1=3l sin53°,物块下降高度h2=2l 机械能守恒定律mgh1=Mgh2 解得 (3)根据机械能守恒定律,小球回到起始点.设此时AC方向的加速度大小为a,重物 受到的拉力为T 牛顿运动定律Mg–T=Ma小球受AC的拉力T′=T 牛顿运动定律T′–mg cos53°=ma 解得() 2.(2018天津,10,16分)我国自行研制、具有完全自主知识产权的新一代大型喷气式客机

C919首飞成功后,拉开了全面试验试飞的新征程.假设飞机在水平跑道上的滑跑是初速度为 零的匀加速直线运动,当位移x =×103 m 时才能达到起飞所要求的速度v=80 m/s.已知飞机 质量m =×104 kg ,滑跑时受到的阻力为自身重力的倍,重力加速度取g =10 m/s 2 .求飞机滑跑过程中 (1)加速度a 的大小; (2)牵引力的平均功率P . 【解析】(1)飞机滑跑过程中做初速度为零的匀加速直线运动,有 v 2=2ax ①(3分) 代入数据解得 a =2 m/s 2 ②(1分) (2)设飞机滑跑受到的阻力为F 阻,依题意有 F 阻= ③(2分) 设发动机的牵引力为F ,根据牛顿第二定律有 F-F 阻=ma ④(3分) 设飞机滑跑过程中的平均速度为v 平均,有 v 平均=v/2 ⑤(3分) 在滑跑阶段,牵引力的平均功率 P =Fv 平均 ⑥(2分) 联立②③④⑤⑥式得 P =×106 W ⑦(2分) 3.(2018全国1,24,12分)一质量为m 的烟花弹获得动能E 后,从地面竖直升空,当烟花弹上升的速度为零时,弹中火药爆炸将烟花弹炸为质量相等的两部分,两部分获得的动能之和也为E ,且均沿竖直方向运动.爆炸时间极短,重力加速度大小为g ,不计空气阻力和火药的质量,求 (1)烟花弹从地面开始上升到弹中火药爆炸所经过的时间; (2)爆炸后烟花弹向上运动的部分距地面的最大高度 【答案】(1)1/g m E 2 ;(2)2E/mg 【解析】(1)设烟花弹上升的初速度为v 0,由题给条件有 E =1/2mv 20 ①(1分) 设烟花弹从地面开始上升到火药爆炸所用的时间为t ,由运动学公式有 0-v 0=-gt ②(1分) 联立①②式得

近五年全国卷高考物理试题分类整理

第一章 直线运动 (2011)24.(13分)甲乙两辆汽车都从静止出发做加速直线运动,加速度方向一直不变。在第一段时间间隔内,两辆汽车的加速度大小不变,汽车乙的加速度大小是甲的两倍;在接下来的相同时间间隔内,汽车甲的加速度大小增加为原来的两倍,汽车乙的加速度大小减小为原来的一半。求甲乙两车各自在这两段时间间隔内走过的总路程之比。 (2013)24.(13分)水平桌面上有两个玩具车A 和B ,两者用一轻质细橡皮筋相连,在橡皮筋上有一红色标记R 。在初始时橡皮筋处于拉直状态,A 、B 和R 分别位于直角坐标系中的(0,2l )、(0,-l )和(0,0)点。已知A 从静止开始沿y 轴正向做加速度大小为a 的匀加速运动;B 平行于x 轴朝x 轴正向匀速运动。在两车此后运动的过程中,标记R 在某时刻通过点(l ,l )。假定橡皮筋的伸长是均匀的,求B 运动速度的大小。 (2014)24.(12分)公路上行驶的两汽车之间应保持一定的安全距离。当前车突然停止后,后车司机可以采取刹车措施,使汽车在安全距离内停下来而不会与前车相碰。同通常情况下,人的反应时间和汽车系统的反应时间之和为1s 。当汽车在晴天干燥的沥青路面上以180km/h 的速度匀速行驶时,安全距离为120m 。设雨天时汽车轮胎与沥青路面间的动摩擦因数为晴天时的25,若要求安全距离仍未120m ,求汽车在雨天安全行驶的最大速度。 (2013)19.如图,直线a 和曲线b 分别是在平直公路上行驶的汽车a 和b 的位置-时间(x-t )图线。由图可知 A .在时刻t 1,a 车追上b 车 B .在时刻t 2,a 、b 两车运动方向相反 C .在t 1到t 2这段时间内,b 车的速率先减少后增加 D .在t 1到t 2这段时间内,b 车的速率一直比a 车的大 第二章 力与物体的平衡 (2012)24.拖把是由拖杆和拖把头构成的擦地工具(如图)。设拖把头的质量为m ,拖杆质量可以忽略;拖把头与地板之间的动摩擦因数为常数μ,重力加速度为g ,某同学用该拖把在水平地板上拖地时,沿拖杆方向推拖把,拖杆与竖直方向的夹角为θ。 (1)若拖把头在地板上匀速移动,求推拖把的力的大小。 (2)设能使该拖把在地板上从静止刚好开始运动的水平推力与此时地板对拖把的正压力的比值为λ。已知存在一临界角θ0,若θ≤θ0,则不管沿拖杆方向的推力多大,都不可能使拖把从静止开始运动。求这一临界角的正切tan θ0。 (2012)16.如图,一小球放置在木板与竖直墙面之间。设墙面对球的压力大小为1N ,球对木板的压力大小为2N 。以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始缓慢地转到水平位置。不计摩擦,在此过程中 ( ) A. 1N 始终减小,2N 始终增大 B. 1N 始终减小,2N 始终减小 C. 1N 先增大后减小,2N 始终减小 D. 1N 先增大后减小,2N 先减小后增大 O x t t 1 t 2 a b

【高考快递】2019高考物理总复习计算题增分练五含答案

计算题增分练(五) (满分32分 20分钟) 1.如图所示,半径为l 的金属圆环水平放置,圆心处及圆环边缘通过导线分别与两条平行的倾斜金属轨道相连.圆环区域内分布着磁感应强度为B ,方向竖直向下的匀强磁场,圆环上放置一金属棒a ,一端在圆心处,另一端恰好搭在圆环上,可绕圆心转动.倾斜轨道部分处于垂直轨道平面向下的匀强磁场中,磁感应强度大小也为B ,金属棒b 放置在倾斜平行导轨上,其长度与导轨间距均为2l .当棒a 绕圆心以角速度ω顺时针(俯视)匀速旋转时,棒b 保持静止.已知棒b 与轨道间的动摩擦因数为μ=0.5,可认为最大静摩擦力等于滑动摩擦力;棒b 的质量为m ,棒a 、b 的电阻分别为R 、2R ,其余电阻不计;斜面倾角为θ=37°,sin 37°=0.6,cos 37°=0.8,重力加速度为g ,求 (1)金属棒b 两端的电压; (2)为保持b 棒始终静止,棒a 旋转的角速度大小的范围. 解析:(1)E =Bl v ① v =0+l ω2 ② U =2R R +2R ·E ③ ①②③式联立,解得:U =13Bl 2ω ④ (2)I =E R +2R ⑤ F 安=BI ·2l ⑥ 由①②⑤⑥式联立,解得:F 安=B 2l 3ω3R ⑦ 为保持b 棒始终静止,棒a 旋转的角速度最小设为ω1,最大为ω2: mg sin θ=μmg cos θ+B 2l 3ω13R ⑧ mg sin θ+μmg cos θ=B 2l 3ω23R ⑨

3mgR 5B 2l 3≤ω≤3mgR B 2l 3 ⑩ 答案:(1)13Bl 2ω (2)3mgR 5B 2l 3≤ω≤3mgR B 2l 3 2.如图甲所示,光滑斜面OA 与倾斜传送带AB 在A 点相接,且OAB 在一条直线上,与水平面夹角α=37°,轻质弹簧下端固定在O 点,上端可自由伸长到A 点.在A 点放一个物体,在力F 的作用下向下缓慢压缩弹簧到C 点,该过程中力F 随压缩距离x 的变化如图乙所示.已知物体与传送带间动摩擦因数μ=0.5,传送带AB 部分长为5 m ,顺时针转动,速度v =4 m/s ,重力加速度g 取10 m/s 2 .(sin 37°=0.6,cos 37°=0.8)求: (1)物体的质量m ; (2)弹簧从A 点被压缩到C 点过程中力F 所做的功W ; (3)若在C 点撤去力F ,物体被弹回并滑上传送带,问物体在传送带上最远能到何处? 解析:(1)由图象可知:mg sin 37°=30 N ① 解得m =5 kg (2)图乙中图线与横轴所围成的面积表示力F 所做的功: W =390×? ????0.5-1282 J -30×1282 J =90 J ② (3)撤去力F ,设物体返回至A 点的速度大小为v 0, 从A 出发到第二次返回A 处的过程应用动能定理: W =12mv 2 ③ 解得:v 0=6 m/s 由于v 0>v ,物体所受摩擦力沿传送带向下,设此阶段加速度大小为a 1,由牛顿第二定律:mg sin 37°+μmg cos 37°=ma 1 ④ 解得:a 1=10 m/s 2 速度减为v 时,设沿斜面向上发生的位移大小为x 1,由运动学规律: x 1=v 2 0-v 22a 1 ⑤ 解得:x 1=1 m 此后摩擦力改变方向,由于mg sin 37°>μmg cos 37°,所以物块所受合外力仍沿传送带向下,设此后

2019高考物理真题汇编——计算题

2019高考物理真题汇 编——计算题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

目录 牛顿第二定律 (3) 功能 (4) 动量 (4) 力学综合 (4) 动量能量综合 (5) 带电粒子在电场中的运动 (7) 带电粒子在磁场中的运动 (8) 电磁感应 (9) 法拉第电磁感应定律(动生与感生电动势) (9) 杆切割 (9) 线框切割 (10) 感生电动势 (10) 电磁感应中的功能问题 (11) 电磁科技应用 (12) 热学 (13) 光学 (15) 近代物理 (16) 思想方法原理类 (17)

牛顿第二定律 1.【2019天津卷】完全由我国自行设计、建造的国产新型航空母舰已完成多次海试,并 取得成功。航母上的舰载机采用滑跃式起飞,故甲板是由水平甲板和上翘甲板两部分构成,如图1所示。为了便于研究舰载机的起飞过程,假设上翘甲板BC是与水平甲板AB相切的一段圆弧,示意如图2,AB长L1=150m,BC水平投影L2=63m,图中C点切线方向与水平方向的夹角θ=12°(sin12°≈0.21)。若舰载机从A点由静止开始做匀加速直线运动,经t=6s到达B点进入BC.已知飞行员的质量m=60kg,g =10m/s2,求 (1)舰载机水平运动的过程中,飞行员受到的水平力所做功W; (2)舰载机刚进入BC时,飞行员受到竖直向上的压力F N多大。 2.【2019江苏卷】如图所示,质量相等的物块A和B叠放在水平地面上,左边缘对齐。 A与B、B与地面间的动摩擦因数均为μ.先敲击A,A立即获得水平向右的初速度,在B上滑动距离L后停下。接着敲击B,B立即获得水平向右的初速度,A、B都向右运动,左边缘再次对齐时恰好相对静止,此后两者一起运动至停下。最大静摩擦力等于滑动摩擦力,重力加速度为g。求: (1)A被敲击后获得的初速度大小v A; (2)在左边缘再次对齐的前、后,B运动加速度的大小a B、a B′; (3)B被敲击后获得的初速度大小v B。

11-19年高考物理真题分类汇编之(十)(10个专题)

11-19年高考物理真题分类汇编之(十)(10个专题) 第91节 气体的等温变化、玻马定律 1.2013年上海卷 15.已知湖水深度为20m ,湖底水温为4℃,水面温度为17℃,大气压强为1.0×105Pa 。当一气泡从湖底缓慢升到水面时,其体积约为原来的(取g =10m/s 2,ρ=1.0×103kg/m 3) A .12.8倍 B . 8.5倍 C .3.1倍 D .2.1倍 答案:C 解析:湖底压强大约为3个大气压,由气体状态方程,当一气泡从湖底缓慢升到水面时,其体积约为原来的3.1倍,选项C 正确。 2. 2014年物理上海卷 10.如图,竖直放置、开口向下的试管内用水银封闭一段气体,若试管自由下落,管内气体( ) A .压强增大,体积增大 B .压强增大,体积减小 C .压强减小,体积增大 D .压强减小,体积减小 【答案】B 【解析】初始时,水银处于静止状态,受到重力和封闭气体的压力之和与外界大气压力等大反向;当试管自由下落时,管中水银也处于完全失重状态,加速度为g 竖直向下,所以封闭气体的压强与外界大气压等大;由此可知封闭气体的压强增大,根据玻马定律可知,气体的体积减小,B 项正确。 3.2012年物理上海卷 31.(13分)如图,长L =100cm ,粗细均匀的玻璃管一端封闭。水平放置时,长L 0=50cm 的空气柱被水银封住,水银柱长h =30cm 。将玻璃管缓慢地转到开口向下的竖直位置,然后竖直插入水银槽,插入后有Δh =15cm 的水银柱进入玻璃管。设整个过程中温度始终保持不变,大气压强p 0=75cmHg 。求: (1)插入水银槽后管内气体的压强p ; (2)管口距水银槽液面的距离H 。 解析: (1)设当转到竖直位置时,水银恰好未流出,管截面积为S ,此时气柱长l =70cm

相关文档
相关文档 最新文档