文档库 最新最全的文档下载
当前位置:文档库 › 射线RT检测方案

射线RT检测方案

射线RT检测方案
射线RT检测方案

射线RT检测方案

1.1.1工作范围

本方案适用于锅炉、汽机中低压项目管道对接焊口、钢结构型材

对接焊缝、板材及板材对接焊缝和钢锻件的射线探伤检验。

1.1.2焊缝表面准备

焊缝表面应缓缓隆起到最高点,并平滑过度到母材表面。外观应

经施工方检查员检查合格,并在委托单上签字确认,焊缝内外两侧表

面的焊道波纹及影响底片评定的不规则外观缺陷应打磨消除,焊缝两侧50mm内的飞溅、焊疤均应打磨干净。

1.1.3检测时机

焊接工作完成24小时,并经外观检查全部合格后。

1.1.4检测仪器

1.1.4.1X 射线机

XXQ2005、XXQ2505定向机各1 台,作为RT拍片作业时使用。

1.1.4.2 其他设备

黑度计一台,应校准合格并在校验期内。观片灯1台,最大亮度不小于105cd/m2,保证能观察4.0黑度底片

1.1.5检测方法

采用X射线机进行拍片,小径管(D≤100mm)采取源在外倾斜透

照椭圆成像法或垂直透照重叠成像法;外直径D>100mm的管子焊缝透照采用双壁单影法分段透照。D:指管外径。

1.1.6检测材料

1.1.6.1暗袋

暗袋规格为120×80mm,150×80mm,300×80mm或360×80mm。

1.1.6.2

采用标记带预先把底片需要的标记插到标记带上,再将标记带固

定到焊缝或胶片上。标记固定到胶片上时,标记应先贴在铅皮上,再

将铅皮固定到胶片上。

1.1.6.3增感屏

采用铅箔增感前后屏均为0.1mm厚,规格为120×80mm,150×80mm或300×80mm,360×80mm

1.1.6.4胶片

采用TASMA型,工业射线透照专用胶片。

1.1.6.5显、定影药

采用与TASMA型相匹配的显、定形套药进行胶片的暗室处理。1.1.6.6磁钢采用拉环磁钢,用于固定防止背散

射的铅背衬。

1.1.6.7铅背衬

采用1mm的铅背衬,装在被透焊缝与障隘物或者地面较近的暗袋背后,以防止散射线的影响。

1.1.6.8像质计

A、像质计的材料与透照工件的材料一致,型号和规格均应符合

GB5618标准的规定。小径管可选用通用型像质计或JB/4730.2-2005 中附录F(规范性附录)规定的专用像质计。

B、像质计放置原则

1)单壁透照像质计放置在源侧。双壁单影透照像质计放置在胶片

侧。双壁双影透照像质计可放置在源侧,也可放置在胶片侧。

2)当像质计放置在胶片侧时,应在像质计适当位置放置铅字“F”作为标记,“F”标记的影像应与像质计的标记同时出现在底片上,其

应在检测报告中注明。

3)像质计金属丝应横跨焊缝放置,在被检区焊缝的1/4左右位置,细钢丝朝外。

1.1.6.9对比试块

1)线透照时需放置对比试块,用以测定内凹、咬边等缺陷。比试块放置在焊缝边缘至少5mm以外的部位,被检区焊缝的1/4左右位

置,浅槽朝外。

2)对比试块采用JB/4730.2-2005中附录H规定的I型和II 型对比试块。

1.1.7标记

A、透照部位的标记由识别标记和定位标记组成。

B、识别标记由管线号、焊缝编号、工件规格、焊工号和透照日期组成。返修后的透照其返修标记为R1、R2、R3,扩大检测比例的透照标记为K。

C、定位标记由0、1、2、,,N~0组成,按顺时针方向旋转。

D、标记放置在焊缝边缘至少5mm以外的部位;贴片时要注意底片

的搭接标记要和现场标出的位置一致。

1.1.9.2

对外径>100mm的管件环向焊接接头进行100%检测,所需的最少透照次数与透照方式和透照厚度比有关,这一数值从JB/T4730.2-2005

附录D(资料性附录)中图 D.1~D.6直接查出。

1.1.9.3像质计灵敏度值应符合JB/T4730.2表6和表7中AB 级的规定。

1.1.9.4 编号原则

1 )小径管在射源侧划出透照次数A、B、C。

2 )大管按顺时针方向分别划出分段的次数0、1、2、,, N。

1.1.9.5 布片

布片时应保证暗袋两个端边到搭接标记之间不小于20mm,并以0、1、2、3,n为每张片的搭接标记,以此可以定出缺陷位置,对缺陷

进行返修。贴片时要注意底片上的搭接标记要和现场标出的位置一

致。

1.1.9.6几何不清晰度

根据JB/4730.2-2005中图3-AB级射线检测技术确定焦点至

工件表面距离的诺模图,计算出拍片时的最小焦距,即能保证几何不

清晰度。

1.1.9.7曝光参数的选择

曝光参数的选择要根据设备、胶片、增感屏和其它具体条件制作或选用合适的曝光时间。原则上小径管采用高电压短时间,其它管件

满足15mA.min。也可通过实验绘制出每台射线机的曝光曲线,根据曝光曲线选

定合适的参数。

1.1.9.8射线机工作前必须训机,训机时间的长短根据未使用的时

间而定。

1.1.9.9射线机须可靠接地,工作前检查是否有漏电。

1.1.10暗室处理

1)暗室应进行安全度测定,用未曝光胶片置于暗室红光灯1米的距离保持30min,然后显定影测其黑度不大于0.3为合格,暗室的干室和湿室应分开。

2)胶片的切装在干室中进行,胶片应单张带纸切裁,操作者应

带纱手套,装片时应手拿胶片侧面,不可用手触摸到胶片药膜,注意

不可将胶片衬纸带入暗袋中。

3)干室工作台在操作之前应擦拭干净,暗袋在放进干室使用之前也应擦拭干净并有序放置,未装胶片之前暗袋开口一律打开,以防和装好胶片的暗袋混淆。

4)装片和曝光后从暗袋中取片都应将增感屏全部抽出暗袋,然后分开增感屏进行装片或取片,切不可使用直接把胶片插入或抽出的

方法进行装片和取片,装片时增感屏和胶片应当插到暗袋的底部。

5)取出胶片的暗袋应把增感屏放回到暗袋的2/3的位置,外露出1/3的增感屏,以避免和未取胶片的暗袋混淆。

6)当对胶片质量有怀疑时,应在曝光前进行显定影分析,发现

质量有问题时应停止使用该批胶片。

7)显影温度应控制在20±20C之间,显影时间5~8min,不

得以改变显影条件的方式来达到预定要求的黑度值。

8)显影前,药液应搅拌均匀,并作显影测试合格后才能进行显影。显影过程中应使胶片作垂直方向和水平方向的移动,移动速度应缓慢。

9)损失的显影液应及时补充,补充液不允许超过原显影液的2

倍。

10)显影后必须在停影液中经5~10秒的停影后才能放入定影

槽。

11)定影温度控制在20±20C,时间为15~20min,定影液通透时间超过30mins后要改换定影液。

12)在流动的清水中进行水洗,水洗时间为20~30min。水洗结束后应用海绵轻轻擦拭一遍胶片表面以去掉定影沉积物,然后放入加有活性剂的清水中浸润3~5秒,以避免干燥过程中形成水迹。

13)干燥采用强制通风干燥柜进行,干燥柜应有良好的通风、

加热设施,并能保证清洁没有灰尘,或自然晾干。

14)显、定影废液必须由专业公司回收,不得任意弃倒,湿室

操作人员应配备橡胶手套、口罩、橡胶围裙,以保证身体不受化学药

品侵害。

1.1.11底片的质量要求

1)底片的黑度应在 2.0~4.0范围内。

2)像质指数应达到标准要求,且摆放位置正确,像质指数应符

号JB/T4730.2-2005表6和表7中AB级规定的要求;在焊缝影像上能清晰地看到长度不小于10mm的像质计金属丝的影像,就认为是可识别的。

3)各种标记齐全,摆放位置正确,且不掩盖焊缝影像。

4)底片有效评定区内不得有妨碍底片评定的伪缺陷。

5)凡不符合上述要求之一的底片均应重新透照。

1.1.12底片观察

评片室内光线应柔和且暗淡为宜,室内照明用光不得在底片表面

产生反射,观片灯亮度应不小于100000cd/m2。当底片评定范围内的黑度D≤2.5时,透过底片评定范围内的亮度不低于30cd/m2;当底片评定范围内的黑度D>2.5时,透过底片评定范围内的亮度不低于10cd/m2;且能观察最高黑度达 4.0以上,亮度可调,黑度计应经核验,评片用具齐全。

1.1.13底片评定及验收标准

1)评片必须是持省级质监局颁发的锅炉压力容器RTII级人员担任。

2)依据JB/T4730.2-2005标准,对所检测的设备及管道的对接

焊缝根据图纸设计及规范要求进行焊缝评定验收。

①I级对接焊接接头内不允许存在裂纹、未熔合、未焊透、条形

缺陷、根部内凹、根部咬边。

②Ⅱ级和Ⅲ级对接焊接接头内不允许存在裂纹、未熔合、双面焊

以及加垫板单面焊中的未焊透。

③Ⅱ级焊缝的条状缺陷长度不得大于T/3,T为母材壁厚,且最

大单个条状缺陷的长度不得大于20mm,最小可为4mm。

④综合评级,在条形缺陷评定区内同时存在多种缺陷时,应进行综合评级。对各类各类缺陷分别评级,取最低级别为综合评定的级别;当各类缺陷的级别相同时,则降低一级作为综合评定的级别。

3)评片过程中应具有该管线的焊缝排布图,RT检测委托单,评片记录,及相关技术资料和文件。

4)在评片过程,发现异议应及时去现场了解工件的情况,并与

复评,审核人员汇评。

1.1.14检测报告与存档

1)产品经RT检测合格后,先发出检测结果通知单,然后填发检测报告,并将检测报告、布片图、评片记录、返修通知单、委托单等原始资料连同底片一起存档。

2)存档资料交与用户或者由检测公司保存7年。

DR数字射线管道检测上的应用及质量控制

DR数字射线管道检测上的应用及质量控制在管道建设工程中,射线检测是确保焊接质量的主要无损检测手段,直接关系到工程建设质量、健康环境、施工效率、建设成本以及管线的安全运行。长期以来,射线检测主要采用X射线或γ射线的胶片成像技术,检测劳动强度大,工作效率较低,常常影响施工进度。 近年来随着计算机数字图像处理技术及数字平板射线探测技术的发展,X射线数字成像检测正逐渐运用于容器制造和管道建设工程中。数字图像便于储存,检索、统计快速方便,易于实现远程图像传输、专家评审,结合GPS系统可对每道焊口进行精确定位,便于工程质量监督。同时,由于没有了底片暗室处理环节,消除了化学药剂对环境以及人员健康的影响。 1、DR技术简介 1.1.原理 数字平板直接成像,(Director Digital Panel Radiography)是近几年才发展起来的全新的数字化成像技术。数字平板技术与胶片或CR的处理过程不同,在两次照射期间,不必更换胶片和存储荧光板,仅仅需要几秒钟的数据采集,就可以观察到图像,检测速度和效率大大高于胶片和CR技术。除了不能进行分割和弯曲外,数字平板与胶片和CR具有几乎相同的适应性和应用范围。 数字平板技术有非晶硅(a-Si)和非晶硒(a-Se)和CMOS三种。 非晶硅和非晶硒两种数字平板成像原理有所不用,非晶硅平板成像可称为间接成像:X 射线首先撞击板上的闪烁层,该闪烁层以与所撞击的射线能量成正比的关系发出光电子,这些光电子被下面的硅光电二极管阵列采集到,并且将它们转化成电荷,X射线转换为光线需要的中间媒体—闪烁层。而非晶硒平板成像可称为直接成像:X射线撞击硒层,硒层直接将X射线转化成电荷,如下图: 硒或硅元件按吸收射线量的多少产生正比例的正负电荷对,储存于薄膜晶体管内的电容器中,所存的电荷与其后产生的影像黑度成正比。扫描控制器读取电路将光电信号转换为数字信号,数据经处理后获得的数字化图像在影像监视其上显示。图像采集和处理包括图像的选择、图像校正、噪声处理、动态范围,灰阶重建,输出匹配的过程,在计算机控制下完全自动化,上述过程完成后,扫描控制器自动对平板内的感应介质进行恢复。上述曝光和获取图像整个过程一般仅需几秒钟至十几秒。

射线数字成像技术的应用

射线数字成像技术的应用 在管道建设工程中,射线检测是确保焊接质量的主要无损检测手段,直接关系到工程建设质量、健康环境、施工效率、建设成本以及管线的安全运行。长期以来,射线检测主要采用X射线或γ射线的胶片成像技术,检测劳动强度大,工作效率较低,常常影响施工进度。 近年来随着计算机数字图像处理技术及数字平板射线探测技术的发展,X射线数字成像检测正逐渐运用于容器制造和管道建设工程中。数字图像便于储存,检索、统计快速方便,易于实现远程图像传输、专家评审,结合GPS系统可对每道焊口进行精确定位,便于工程质量监督。同时,由于没有了底片暗室处理环节,消除了化学药剂对环境以及人员健康的影响。 过大量的工程实践与应用,对管道焊缝射线数字化检测与评估系统进行了应用研究分析探索。 1 射线数字成像技术的应用背景 随着我国经济的快速发展,对能源的需求越来越大,输油输气管道建设工程也越来越多,众多的能源基础设施建设促进了金属材料焊接技术及检测技术的进步。 目前,在管道建设工程中,管道焊接基本实现了自动化和半自动化,而与之配套的射线检测主要采用胶片成像技

术,检测周期长、效率低下。“十二五”期间,将有更多的油气管道建设工程相继启动,如何将一种可靠的、快速的、“绿色”的射线数字检测技术应用于工程建设中,以替代传统射线胶片检测技术已成为目前管道焊缝射线检测领域亟需解决的问题。 2 国内外管道焊缝数字化检测的现状 2.1 几种主要的射线数字检测技术 1)CCD型射线成像(影像增强器) 2)光激励磷光体型射线成像(CR) 3)线阵探测器(LDA)成像系统 4)平板探测器(FPD)成像系统 几种技术各有特点,目前适用于管道工程检测的是CR 和FPD,但CR不能实时出具检测结果,且操作环节较繁琐、成本较高,因此平板探测器成像系统成为射线数字检测的主要发展方向。 2.2 国内研发情况 国内目前从事管道焊缝射线数字化检测系统研发的机构主要有几家射线仪器公司,但其产品主要用于钢管生产厂的螺旋焊缝检测。通过实践应用比较,研究应用电子学研究所研发的基于平板探测器的管道焊接射线数字化检测与评估系统已能够满足管道工程检测需要,并通过了科技成果鉴

焊缝射线探伤检验规范R

1.前言 本规范规定了在焊缝透照过程中,为获得合格透照底片所遵循的程序和要求. 2.目的 采用射线的照相技术要求及通过射线摄影的底片来检验缺陷,并对缺陷进行分类定级. 3.适用范围 本规范主要用于本公司及其外协厂碳素钢、低合金钢的对接焊缝及钢管的对接环焊缝的射线透照的检测. 4.参考标准 QA-I-101 焊工培训考核程序 GB3323-82 钢焊缝射线照相及底片等级分类法 JB4730-94 压力容器无损检测 5.射线透照的一般要求 5.1 射线对人体有不良影响,应尽量避免射线的直接照射和散射线的影响. 5.2 在现场进行射线检测时应设置安全线,安全线上应有明显的警告标志. 5.3 从事射线探伤的人员必须经过培训,按照《锅炉压力容器无损检测人员资格考核规则》执行. 6.射线透照的技术要求 6.1 焊缝表面的要求: 焊缝需经表面检验合格后才能进行射线照相.焊缝表面的不规则程度应不 妨碍底片上缺陷的辨认,如咬边,焊瘤等.否则应在射线照相前修整. 6.2 工件的表面应采用永久性的标记作为对每张射线底片重新定位的依据,产品上不适合打印标 记时,应采用透视部位草图或其他标记方法. 6.3 底片上必须有工件编号、底片编号、定位记号等标志,这些标志应离焊缝边缘至少5mm,并应 与工件上的标志相符. 7.射线透照 射线透照的具体步骤和内容应参照GB3323-82 《钢焊缝射线照相及底片等级分类法》或JB4730-94《压力容器无损检测》. 8.焊缝质量评级 8.1 焊缝质量根据缺陷数量的规定分成四级: 优等焊缝----- Ⅰ级焊缝,焊缝内部不准有裂纹、未熔合、未焊透、条状夹渣. 一级焊缝---- Ⅱ级焊缝,焊缝内部不准有裂纹、未熔合以及双面焊和加垫板的单面焊中的未焊透. 合格焊缝---- Ⅲ级焊缝,焊缝内部不准有裂纹、未熔合以及双面焊和加垫板的单面焊中的未焊透. 不合格焊缝--- Ⅳ级焊缝,焊缝内部的缺陷数量超过Ⅲ级者为Ⅳ级. 8.2 对于焊缝内部的不同尺寸的气孔(包括点状夹渣)按表1换算. 表1 气孔换算表

射线探伤检测

射线探伤检测 摘要:射线探伤是利用X射线或γ射线可以穿透物质和在物质中有衰减的特性,来发现物质内部缺陷的一种无损探伤方法。它可以检查金属和非金属材料及其制品的内部缺陷,如焊缝的气孔、夹渣、未焊透等体积性缺陷。由于可以探测材料内部的不连续性,射线探伤被广泛应用于焊缝检测。文章主要介绍射线探伤的原理、方法及底片评定。 关键词:无损检验、衰减、射线探伤的方法、射线底片的评定 引言:重要的焊接结构的产品验收和在役中的产品,必须采用不破坏其原有形状、不改变或不影响其使用性能的检验方法来保证产品的安全性和可靠性,因此无损检验技术得到了蓬勃发展,而射线探伤则是其主要方法。射线探伤既能对产品进行普检,也可对典型的抽样进行试验,具有灵敏度高、能保存永久性的缺陷记录,因而在大多数非破坏性检验中占有很大优势,现实运用广泛,未来发展可观。 正文: 一、射线探伤基本原理 射线探伤中应用的射线主要是X射线和γ射线,二者均是波长很短的电磁波,习惯上统称为光子。 X射线的波长为0.001~0.1nm,γ射线的波长为0.0003~0.1nm。 (一)、射线的性质 X射线是由高速行进的电子在真空管中撞击金属靶产生,该射线源目前主要是X射线机和加速器,其射线能量于强度均可调节;γ射线则由放射性物质内部原子核的衰变而来,其能量不能改变,衰变几率也不能控制,该射线源为γ射线机。

X射线和γ射线均具有以下性质: (1)不可见,以光速直线传播。 (2)不带电,不受电场和磁场的影响。 (3)具有可穿透物质和在物质中有衰减的特性。 (4)可使物质电离,能使胶片感光,亦能使某些物质产生荧光。 (5)能对生物细胞起作用(生物效应)。 (二)、射线与物质的相互作用 当射线穿透物质时,由于射线与物质的相互作用,将产生一系列极为复杂的物理过程,其中包括光电效应、汤姆逊散射、康普顿效应和电子对效应等,其结果使射线因吸收和散射而失去一部分能量,强度相应减弱,这种现象称之为射线的衰减,并可用衰减定律表达 -uδ(1-1) I δ=I O e 式中I δ——射线透过厚度δ的物质后的射线强度; I 射线的初始强度; O—— e—自然对数的底; δ—透过物质的厚度; u—线衰减系数,为上述各物理效应分别引起的衰减系数之和。 上式表明,射线强度的衰减是呈负指数规律的,并且随着透过物质厚度的增加,射线强度的衰减增大。随着线衰减系数的增大,射线强度的衰减也增大。线衰减系数u值与射线本身的能量(波长λ)及物质本身的性质(原子序数Z、密度ρ)有关。即对同样的物质,其射线的波长,u值也越大;对相同波长或能量的射线,物质的原子序数越大,密度越大,则u值也越大。 (三)、探伤的基本原理 射线探伤的实质是根据被检工件与其内部缺陷介质对射线能量衰减程度不同,而引起射线透过工件后的强度差异(图1),使缺陷能在射线底片或X光电视屏幕上显示出来。

在役高温管道的数字射线检测

在役高温管道的数字射线检测 顾军 (上海石化设备检验检测有限公司,上海金山200540) 摘要:针对在役高温管道,提出利用X射线数字成像的方法解决其缺陷在线检测的问题,通过试验及工程应用,数字射线检测结果直观,能够客观地根据缺陷图像特点判定缺陷,有助于管道安全运行的评价和隐患问题的及时发现。 关键词:在役高温管道;数字射线;在线检测;缺陷 在石油化工行业,部分管道长期高温运行,引起了组织性能的劣化,使用过程中会发生减薄以及产生裂纹等危害缺陷导致管道泄漏甚至引起爆炸,为了保证在检验周期内安、稳、长、满、优运行,迫切需要实现管道缺陷隐患的在线检测,常规检测方法受到保温层的影响以及拆除保温层后的表面温度影响无法实施检测。随着计算机及电子技术的快速发展[1],射线数字成像检测技术得到了飞速发展,其优势不仅表现在无胶片的图像存储和传输,丰富的图像处理技术拓展了射线数字成像的应用范围以及可以根据实际情况及时改变透照参数以取得最佳的检测图像。数字射线检测技术(Digital Radiographic Testing)是能够获得数字化图像的检测技术[2],检测结果直观。2015年国家能源局发布了NB/T47013.11-2015《承压设备无损检测》,这是X射线数字成像的行业标准,法规标准的实施为数字射线(DR)检测技术的应用提供了依据。 1.数字射线检测技术 1.1基本原理 DR检测原理见图1,由X射线源产生X射线,射线穿过被检测的工件后携带有工件内部的组成信息,并被成像板接收X射线光子转换为电信号再经模数转换为数字图像,最终在计算机上显示出来,由显示图像从而判断工件内部缺陷。 → → → 图 1 DR 检测原理示意 1.2DR检测系统 DR检测系统一般由射线机,非晶硅成像板,成像及显示控制单元、计算机

射线检测技术综述

《现代无损检测技术》 作业:射线检测技术综述 姓名:马丰年 学号:SY1207205 班级:SY12072 2013-1-3

射线检测技术综述 什么是射线检测技术 它是利用射线(X 射线、γ射线、中子射线等)穿过材料或工件时的强度衰减,检测其内部结构不连续性的技术。穿过材料或工件的射线由于强度不同,在x 射线胶片上的感光程度也不同,由此生成内部不连续的图像。 X 射线的产生 X-射线是在电场中被加速的高速电子,撞击到高原子序数材料的靶上,由于电子急速减速而辐射(靭致辐射)的电磁波。在真空管两阴极和阳极之间加高压,阳极选用不同的重金属材料制成,电子打在阳极上便可得到X 射线,其能量与加在两端的电压和通过的电流的乘积成正比,电流决定了射线的密度。 图1 射线管产生X 射线 X 射线的性质与构成 X 射线的特征是波长非常短,比紫外线波长更短,4110λ-=-nm ,因此具有 很高的能。X 射线在电场磁场中不偏转。这说明X 射线是不带电的粒子流。X 射线有很大的贯穿本领并能使照相底片感光,基于这个原理,由x 射线穿过物体,

便得到了物体内部的信息,通过在荧光屏上成像,就能反引出内部可能存在的缺陷。X射线本质上是一种电磁波,同此它具有反射、折射、衍射、偏振等性质。 图2 X射线的谱范围 X射线由两部分构成,一部分波长连续变化,称为连续谱;另一部分波长是分立的,与靶材料有关,成为某种材料的标识,所以称为标识谱,又叫特征谱--它迭加在连续谱上。连续谱是电子在靶上减速而产生的。可以想象到,被高压加速后的电子进入靶内,可以到达不同的深度,其速率从v骤减为0,有很大的加速度,而伴随着带电粒子的加速运动,必然有电磁辐射产生,这便是产生X射线连续谱的原因。当外界提供足够大的能量时,使原子内层电子电离,从而使原子内层出现空位,外层电子向内层补充,放出的能量便形成了X射线的标识谱 射线成像的系统构成与分类 X 射线无损检测系统的构成:射线源,控制物体运动的机械装置,X 射线接收器。 射线检测的分类 射线检测是一种重要的的无损检测方法,它主要由腔片射线照相技术、射线实时成像技术、计算机断层扫描成像技术、康普顿背散射成像技术等射线检测技术组成。 1、胶片射线照相技术 胶片射线照相无损检测技术是射线源发出的射线透过被检物体,利用被检物体与其内部缺陷介质对射线强度衰减的程度不同来携带被检物体内部信息,并用射线胶片记录下来,经显影、定影等处理,在胶片上形成透视投影影像,通过对影像的识别来评定被检物体内部是否存在不连续性的一种射线无损检测方法,是其它射线检测技术的基础,也是应用最广泛的射线检测技术。 但是胶片成像技术存在着效率低下,不能数字化,难于存储的缺点,尽管可以利用光胶片数字化扫描仪进行数字化,但是其地下的效率仍无法解决。

无损检测新技术-数字X射线检测技术简介

无损检测新技术-数字X射线检测技术简介 夏纪真 无损检测资讯网 https://www.wendangku.net/doc/a96196980.html, 广州市番禺区南村镇恒生花园14梯701 邮编:511442 摘要:本文简单介绍了数字X射线检测技术的种类、基本原理与应用 关键词:无损检测数字X射线检测 1 综述 数字X射线检测(Digital Radiography,简称DR)可以分为:以图像增强器为基础的X 射线实时成像(Real-time Radiography Testing Image,缩写RRTI)、采用成像板(IP板)的模拟数字照相成像(Computed Radiography,简称CR)、采用电子成像技术的直接数字化X射线成像(DirectDigit Radiography,简称DR)以及将X射线照相胶片经扫描转为数字图像(FDR)。 2 以图像增强器为基础的X射线实时成像(RRTI) 以图像增强器为基础的X射线实时成像系统采用图像增强器代替射线照相的胶片或者旧式工业电视的简单荧光屏来实现图像转换,可以实现实时检测。系统主要由用于产生X 射线的X射线机系统(包括高压发生器、微焦点或小焦点的恒电位X射线机、电动光栏、循环水冷却器等,以投影放大方式进行射线透照)、图像增强器系统(X射线接收转换装置,将隐含的透过金属材料的X射线检测信号转换为可见的模拟图像)、进行信号处理及重构数字化图像的图像处理工作站(包括计算机、图像采集板卡、图像处理软件及系统软件与控制软件等,同时集成了整机控制,包括射线控制面板在内的所有控制面板和操作面板,射线透视的结果在显示器屏幕上显示,检测图像可以按照一定的格式储存在计算机硬盘、移动硬盘、U盘内或刻录到光盘上而长期保存)、检测机械工装、PLC电气控制系统、现场监视系统等六大部分组成。 典型的工业X射线实时成像检测系统结构原理示意图 图像增强器是X射线实时成像检测系统中除X射线源 外最关键的元件。图象增强器由外壳、射线窗口、输入屏 (包括输入转换屏和光电层,目前常用碘化铯晶体或三硫 化二锑、碲化锌镉、硒化镉、氧化铅、硫化镉、硅等对X 射线敏感的光电材料制作)、聚焦电极和输出屏组成。输入 转换屏吸收入射的射线,将其能量转换为可见光发射,光 图像增强器结构示意图 电层将可见光发射能量转换为电子发射,通过加有 25~30KV高压的聚焦电极加速电子并将其聚集到输出屏, 再由输出屏将电子能量转换为光发射,大大提高了输出光强,得到大大增强的图像亮度、动态范围以及分辨力。亦即在图像增强器内实现的转换过程是:射线→可见光→电子→可见光。 图像增强器输出屏后面是光学聚焦镜头等组成的光路系统,再由CCD(Charge Coupled Device的缩写,电荷耦合器件)或CMOS(Complementary Metal Oxide Silicon的缩写,互

X射线数字成像检测系统

X射线数字成像检测系统

X射线数字成像检测系统 (XYG-3205/2型) 一、设备基本说明 X射线数字成像系统主要是由高频移动式(固定式)X射线探伤机、数字平板成像系统、计算机图像处理系统、机械电气系统、射线防护系统等几部分组成的高科技产品。它主要是依靠X射线可以穿透物体,并可以储存影像的特性,进而对物体部进行无损评价,是进行产品研究、失效分析、高可靠筛选、质量评价、改进工艺等工作的有效手段。 探伤机中高压部分采用高频高压发生器,主机频率40KHz为国际先进的技术指标。连续工作的高可靠性,透照清晰度高,穿透能力强,寿命长,故障率低等特点。X光机通过恒功率控制持续输出稳定的X射线,波动小,保证了优质的图像质量。高频技术缩短了开关机时间,有助于缩短检测期,提高工作效率。 数字平板成像采用美国VEREX公司生产的Paxscan2530 HE型平板探测器,成像效果清晰。该产品已经在我公司生产的多套实时成像产品中使用,性能稳定可靠。 计算机图像处理系统是我公司独立自主研制开发的、是迄今为止国同行业技术水平最高的同类产品。主要特点是可以根据不同行业用户的需求,编程不同的应用界面及图像处理程序,利用高性能的编程技术,使操作界面简单易懂,最大限度的减少操作步骤,最快速度的达到操作人员的最终需求。 机械传动采用电动控制、无极变速,电气控制采用国际上流行的钢琴式多功能操作台,将本系统中的X射线机控制、工业电视监视、机械操作等集中到一起,操作简单、便。 该系统的自动化程度高, 检测速度快,极大地提高了射线探伤的效率,降

低了检验成本,检测数据易于保存和查询等优点,其实时动态效果更是传统拍片法所无法实现的,多年来该系统已成功应用于航空航天、军事工业、兵器工业、油化工、压力容器、汽车工业、造船工业、锅炉制造、制管行业、耐火材料、低压铸造、瓷行业、环氧树脂材料等诸多行业的无损检测中。 本系统的技术、质量、性能都居于国领先水平。 2004年由于在成像应用技术面取得的成绩,被确定为X射线实时成像检测系统高技术产业化示工程基地。 二、系统适用围及主要技术参数 1.主要用途:本设备壳体焊接、金属铸造质量检测。 2.被检工件外形尺寸:直径φ300-φ2500mm,长度1000-8000mm,壁厚≤12mm 3.X射线探伤机容量:320KV,5.6mA(大焦点)/2.5mA(小焦点) 4.冷却式:油冷(循环制冷),具有流量、温度设定、显示、保护功能。5.PaxScan2530 HE型数字平板成像系统 6.系统灵敏度:静态灵敏度优于1.25%~1.6%(在图像处理上测试) 7.系统分辨率:≤36LP/cm 三、设备基本配置及构成明细 (一)高频X射线探伤机主要配置 1.金属瓷X射线管MXR-320HP/11 1支瑞士COMET 2.高压电缆225KV 7m 2根瑞士COMET 3.高频高压发生器H160 2台射线 4.控制器T7000型1台射线 5.油冷却器AL-YLB-4500型1台射线

射线数字成像检测技术

射线数字成像检测技术 韩焱 (华北工学院现代元损检测技术工程中心,太原030051) 摘要:介绍多种射线数字成像(DR)系统的组成及成像机理,分析其性能指标、优缺点及应用领域。光子放大的DR系统(如图像增强器DR系统)实时性好,但适应的射线能量低,检测灵敏度相对较低;其它系统的检测灵敏度较高但成像时间较长。DR系统成像方式的主要区别在于射线探测器,除射线转换方式外,影响系统检测灵敏度的主要因素是散射噪声和量子噪声;可采用加准直器和光量子积分降噪的方法提高检测灵敏度。 关键词:射线检验;数字成像系统;综述 中图分类号:TGll5.28 文献标识码:A 文章编号:1000-6656(2003109-0468-04 DIGITAL RADIOGRAPHIC TECHNOLOGY HAN Yan (Center of Modern NDT &E, North China Institute of Technology, Taiyuan 030051, China) Abstract: The structure and imaging principle of digital radiographic (DR) systems are introduced. And thecharacteristics, performances, advantages, disadvantages and applications of the systems are analyzed. The DR sys-tern with photon amplification such as the DR system with intensifier can get real-time imaging, but it fits for lowerenergy and its inspection sensitivity is lower. The systems working with high energy can obtain higher sensitivity,while is time-eonsurning. The imaging way of a DR system depends on the detector used, and the factors influencinginspection sensitivity are the quantum noise from ray source and scatter noise besides the transform way of rays.Quantum integration noise reducer and collimator can be used to improve the inspection sensitivity of the system. Keywords:Radiography; Digital imaging system; Survey 射线检测技术作为产品质量检测的重要手段,经过百年的历史,已由简单的胶片和荧屏射线照相发展到了数字成像检测。随着信息技术、计算机技术和光电技术等的发展,射线数字成像检测技术也得到了飞速的发展,新的射线数字成像方法不断涌现,给射线探伤赋予了更广泛的内涵,同时也使利用先进网络技术进行远程评片和诊断成为可能。 目前工业中使用的射线数字成像检测技术主要包括射线数字直接成像检测技术(Digital Radio—graphy,简称DR)和射线数字重建成像检测技术,如工业CT(Industry Computed Tomography,简称ICT)。以下将在介绍DR检测系统组成的基础上,重点分析系统的成像原理、特点、特性及应用场合。 1 DR检测系统简介 DR检测系统组成见图1。按照图像的成像方式分为线扫描成像和面扫描成像;根据成像过程可分为直接和间接式DR系统。以下重点介绍直接DR系统。 图1 DR检测系统组成框图 1.1 直接式DR系统 直接DR成像系统主要分为图像增强器成像系统、平板型成像系统和线阵扫描成像系统等。 图2为图像增强器式DR系统,主要通过射线视频系统与数字图像处理系统集成实现。系统采用射线--可见光--电子--电子放大--可见光的光放大技术,是将射线光子由转换效率较高的主射线转换屏转换为可见光图像,可见光光子经光电转换变为电子,而后对电子进行放大,放大后的电子聚集在小屏上再次

X射线数字成像检测系统

X射线数字成像检测系统X射线数字成像检测系统

(XYG-3205/2型) 一、设备基本说明 X射线数字成像系统主要是由高频移动式(固定式)X射线探伤机、数字平板成像系统、计算机图像处理系统、机械电气系统、射线防护系统等几部分组成的高科技产品。它主要是依靠X射线可以穿透物体,并可以储存影像的特性,进而对物体部进行无损评价,是进行产品研究、失效分析、高可靠筛选、质量评价、改进工艺等工作的有效手段。 探伤机中高压部分采用高频高压发生器,主机频率40KHz为国际先进的技术指标。连续工作的高可靠性,透照清晰度高,穿透能力强,寿命长,故障率低等特点。X光机通过恒功率控制持续输出稳定的X射线,波动小,保证了优质的图像质量。高频技术缩短了开关机时间,有助于缩短检测周期,提高工作效率。 数字平板成像采用美国VEREX公司生产的Paxscan2530 HE型平板探测器,成像效果清晰。该产品已经在我公司生产的多套实时成像产品中使用,性能稳定可靠。 计算机图像处理系统是我公司独立自主研制开发的、是迄今为止国同行业技术水平最高的同类产品。主要特点是可以根据不同行业用户的需求,编程不同的应用界面及图像处理程序,利用高性能的编程技术,使操作界面简单易懂,最大限度的减少操作步骤,最快速度的达到操作人员的最终需求。 机械传动采用电动控制、无极变速,电气控制采用国际上流行的钢琴式多功能操作台,将本系统中的X射线机控制、工业电视监视、机械操作等集中到一起,操作简单、方便。 该系统的自动化程度高, 检测速度快,极大地提高了射线探伤的效率,降低了检验成本,检测数据易于保存和查询等优点,其实时动态效果更是传统拍片

无损检测实验报告

无损检测实验报告 一、实验目的 1.通过实验了解六种无损检测(超声检测、射线检测、涡流检测、磁粉检测、 渗透检测、声发射检测)的基本原理。 2.掌握六种无损检测的方法,仪器及其功能和使用方法。 3.了解六种无损检测的使用范围,使用规范和注意事项。 二、实验原理 (一)超声检测(UT) 1. 基本原理 超声波与被检工件相互作用,根据超声波的反射、透射和散射的行为,对被检工件经行缺陷测量和力学性能变化进行检测和表征,进而进行安全评价的一种无损检测技术。 金属中有气孔、裂纹、分层等缺陷(缺陷中有气体)或夹杂,超声波传播到金属与缺陷的界面处时,就会全部或部分反射。超声波探伤仪的种类繁多,但在实际的探伤过程,脉冲反射式超声波探伤仪应用的最为广泛。一般在均匀的材料中,缺陷的存在将造成材料的不连续,这种不连续往往又造成声阻抗的不一致,由反射定理我们知道,超声波在两种不同声阻抗的介质的交界面上将会发生反射,反射回来的能量的大小与交界面两边介质声阻抗的差异和交界面的取向、大小有关。脉冲反射式超声波探伤仪就是根据这个原理设计的。目前便携式的脉冲反射式超声波探伤仪大部分是A 扫描方式的,所谓A 扫描显示方式即显示器的横坐标是超声波在被检测材料中的传播时间或者传播距离,纵坐标是超声波反射波的幅值。譬如,在一个钢工件中存在一个缺陷,由于这个缺陷的存在,造成了缺陷和钢材料之间形成了一个不同介质之间的交界面,交界面之间的声阻抗不同,当发射的超声波遇到这个界面之后,就会发生反射,反射回来的能量又被探头接受到,在显示屏幕中横坐标的一定的位置就会显示出来一个反射波的波形,横坐标的这个位置就是缺陷在被检测材料中的深度。这个反射波的高度和形状因不同的缺陷而不同,反映了缺陷的性质。 2. 仪器结构 a)仪器主要组成 探头、压电片和耦合剂。 其中,探头分为直探头、斜探头。压电片受到电信号激励便可产生振动发射超声波,当超声波作用在压电片上时,晶片受迫振动引起的形变可转换成相应的电信号,从而接受超声波。耦合剂是为了使超声波更有效的传入工件,在探头与工件表面之间施加的一层透生介质为耦合剂,作用在于排除探头与工件之间的空气。 b)主要旋钮 F1-F6 菜单键,不同状态下有不同功能。 0ABC\4MNO 调节键,调节参数值的大小。 设置及检测键。 快捷键。dB 增益,2GHI 闸门,范围,移位。 电源键。 射线的种类很多,其中易于穿透物质的有X射线、丫射线、中子射线三种。这三 种射线都被用于无损检测,其中X射线和丫射线广泛用于锅炉压力容器焊缝和其他工业

关于X射线探伤装置的辐射安全要求

关于X射线探伤装置的辐射安全要求 为了加强我省X射线探伤的辐射安全管理,规范X射线探伤作业,避免恶性辐射事故的发生,根据《放射性同位素与射线装置安全和防护条例》等国家相关规定制定本要求: 一、固定式工业X射线探伤辐射安全要求 (一)探伤室建筑屏蔽设计探伤室建筑(包括辐射防护墙、门、辐射防护迷道)的防护厚度应充分考虑X射线直射、散射效应。探伤室的设计应由有相应资质的单位承担。 (二)固定式工业X射线探伤室的辐射安全措施应具有冗余性、多重性和独立性,其基本要求如下: 1.安全联锁 1)门机联锁探伤室进出工件大门和人员通道门应与探伤机联锁。即X射线探伤机的高压控制器与门联锁,关门不到位,高压电源不能启动;高压电源未关闭,门不能被打开。 2)门灯联锁探伤室内墙、进出工件大门外侧和控制台上应各有工作状态警示灯,并与门联锁。 2.紧急止动装置在探伤室内墙上应安装多个串联并有明显标识的“紧急止动”开关,该开关应与控制台上的“紧急止动”按扭联

动。一旦按下按扭,X射线探伤机高压电源被切断,人员通道门可以从内侧打开。 3.钥匙控制探伤机的电源启动钥匙与人员通道门的钥匙以及控制台上的钥匙应牢固连接。该串钥匙应与便携式X辐射剂量仪(须具报警功能)连在一起,随操作员进出探伤室。 (三)警告标志探伤室工作人员入口门外和被探伤物件出入口门外应设置固定的电离辐射警告标志和工作状态指示灯箱,控制区边界应设置明显可见的警告标志。探伤作业时,应有声音警示,灯箱应醒目显示“禁止入内”。 (四)通风系统根据探伤室空间大小、x射线机的管电压和管电流、以及探伤作业时间,探伤室内应设置相应排风量的通风系统,使臭氧浓度低于国家标准要求。并采取相应的辐射屏蔽措施。 二、野外工业X射线探伤作业辐射安全要求 (一)制定野外探伤工作方案在野外探伤作业前,按项目应制定工作方案,该工作方案主要包括探伤工况、时间、地点、控制区范围、监测方案、清场方式等,明确探伤人员、防护人员、运输人员、保卫人员的职责和分工。工作期间做好相关记录,与方案一同存档备查。 (二)划定控制区和监督区野外探伤作业时,应设定控制区和监督区。控制区边界外X射线空气吸收剂量率应不大于20μGyh-1,

X射线数字成像检测系统郑金泉.doc

实用标准文档 X射线数字成像检测系统

目录 一、目的意义 (3) 二、系统介绍 (3) 2.1 CR 技术与 DR技术的共同点 (4) 2.2 CR 技术与 DR技术的不同点 (4) 2.3 对比分析 (5) 2.4 系统组成 (5) 2.5 X 射线数字平板探测器 (6) 2.6 X 射线源 (7) 2.7 图像处理系统 (8) 2.8 成像板扫描仪 (9) 2.9IP 成像板 (9) 三、 DR检测案例 (10) 3.1 广西 220kV 振林变 (10) 3.2 广西 220kV 水南变 (11) 3.3 温州 220kV 白沙变 (13) 3.4 广西 110kV 城东变 (15) 3.5 广西乐滩水电站 (16) 四、 CR检测案例 (18) 4.1 百色茗雅 220kV变电站 (18)

一、目的意义 气体绝缘全封闭组合电器(GIS)设备结构复杂,由断路器、隔离开关、接 地开关、互感器、避雷器、母线、连接件和出线终端等组成,内部充有SF6绝缘气体,给解体检修工作带来很大的困难,且检修工作技术含量高,耗时长,停电 所造成的损失大。通过对 GIS 设备事故的分析发现,大部分严重事故,未能通过现有的检测手段在缺陷发展初期被发现,导致击穿、烧损等严重事故的发生。 通过 GIS 设备局放监测,结合专家数据库和现场经验,可大致判断 GIS 设备局放类型,进行大致的定位,但无法明确GIS 设备内部的具体故障。结合X 射线数字成像检测系统,对 GIS 设备进行多方位透视成像,配合专用的图像处理与 判读技术,实现其内部结构的“可视化”与质量状态快速诊断,极大地提高 GIS 设备故障定位与判别的准确性,提高故障诊断效率,为整个设备的运行安全与质量监控提供一种全新的检测手段。对 GIS 设备局放可能造成的危害及其影响范围和程度,提出相应策略,采取相应的措施,对电网的安全、稳定、经济运行具有重要意义。 二、系统介绍 按照读出方式(即X 射线曝光到图像显示过程)不同,可分为: 数字射线成像( DR-Digital Radiography) 计算机射线成像( CR-Computed Radiography) 图 1-1 检测原理图

耐张线夹数字射线检测技术导则-河南

架空线路耐张线夹数字射线检测技术 导则 国网河南省电力公司电力科学研究院 2016年11月

前????言 本标准由国网河南电力公司电力科学研究院提出。 本标准由国网河南省电力公司运检部归口。 本标准起草部门(单位):国网河南省电力公司电力科学研究院材料所本标准主要起草人:王朝华庞凯 本标准2013年10月首次发布。

1.范围 本标准规定了国网河南省电力公司架空线路耐张线夹数字射线检测技术条件、检测方法和安全措施。 本标准适用于架空线路耐张线夹数字射线检测,包括交直流电压10kV-1100kV架空输电线路耐张线夹的液压质量检测。适用于架空线路耐张线夹安装过程中安全质量控制。 2.规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于标准。 GB/T 19943 《无损检测金属材料X和伽玛射线照相检测基本规则》 GB/T 19293-2003 《对接焊缝X射线实时成像检验法》 GB 16357 《工业X射线探伤放射卫生防护标准》 GB50233《100-500kV架空输电线路施工及验收规范》 GB50389《750kV架空输电线路施工及验收规范》 DL/T5168 《100-500kV架空输电线路施工质量及评定标准》 Q/GDW153-2006《1000kV架空输电线路施工及验收规范》 3.术语和定义 X 射线实时成像检测技术:一种由射线接受/转换装置(图像增强器或成像面板或者线性扫描器等射线敏感器件)和监视器来代替传统射线照相中的胶片得到射线图像的新型无损检测技术。使用射线接受/转换装置将不可见的X射线转换为数字或模拟信号,经过图像处理后显示在显示器上,显示的图像能提供有关材料内部缺陷性质、大小、位置等的信息,按照有关标准对检测结果进行缺陷等级评定,即可达到检测的目的。 图像处理image processing:利用图像处理技术,将图像的对比度和清晰度进行增强,以获得良好的图像质量和视觉效果。 影像对比度image contrast:检测图像中细节影响与背景影像的灰度差。

射线检测技术介绍

. 射线检测技术介绍 射线检测技术是目前在锅炉压力容器及管道施工检测中应用最广泛 的一种检测方法。在各个行业由于检测对象的特点及要求质量等级的不同,执行的检测标准主要是GB332-3-2005《钢熔化焊对接接头射线照相和质量分级》;JB/T4730-2005《承压设备无损检测》; SY/T4109-2005《石油天然气钢质管道无损检测》等标准,无论哪个标准都对射线检测提出的检测人员、检测设备、检测工艺、检测材料、检测环境等要求,现逐一分析:(以JB/T4730-2005《承压设备无损检测》为例) 一、射线检测技术等级 根据JB/T4730-2005《承压设备无损检测》规定,将射线检测技术等级分为3级,A级—低灵敏度技术;AB级—中灵敏度技术;B级—高灵敏度技术。明确承压设备对接焊接接头的制造、安装、在用时的射线检测,一般应采用AB级射线检测技术进行检测。对重要设备、结构、特殊材料和特殊焊接工艺制作的对接焊接接头,可采用B级技术进行检测。根据标准,对于石油石化管道焊接接头的射线检测应采用AB级。 二、对于不同管径拍片张数的确定 确定AB级射线检测技术等级后,就可以确定环焊缝检测的K值。K 值是反D o≤400mm映射线检测裂纹检测率要求,根据标准,对100mm

<的环向对接焊接接头K值等于1.2,拍片张数见表一: . . D o≤400mm<管道环焊缝双壁单影透照次数计算表表一 100mm 从表一可以看出,决定拍片张数的是底片的有效检测长度,而有效检测长度是由标准的K值所确定的。根据标准确定K值后,查阅JB4730附录中的莫诺图(图一为K=1.2时的透照次数图),确定透照次数。 以φ114×20管线拍片为例:管径Do=114mm,壁厚T=20mm,焦距 F=264mm,则参数Do/F=114/264=0.43,T/Do=20/114=0.175,查莫诺图求两条线的交点,即得到拍片数量6张。

无损射线检测报告

焊缝射线检测报告 产品编号器:XXXXXX产品名称: XXXXXX 工件材料牌号00cr17Ni14Mo2 检测条件及工艺参数源种类■X□Ir192□Co60设备型号XXZ-2505 焦点尺寸 2.0×2.0 mm 胶片牌号AGFA-C7 增感方式■Pb□Fe前屏0.03后屏0.03胶片规格300×80 mm 像质计型号Fe10/16 冲洗条件□自动■手工 显、定影液配方胶片厂配方显影条件时间:5min 温度:18-22℃照相质量等级■AB □B底片黑度 2.0-4.0 焊缝编号 板厚mm 透照方式 L1(焦距)mm 能量KV 管电流(mA) 曝光时间min 应识别象质计丝号 焊缝长度mm 一次透照长度mm 合格级别(级) 要求检测比例% 实际检测比例% 检测标准JB/T4730.2 -2005 合格片数A类焊缝 (张) B类焊缝 (张) 相交焊缝(张) 共计 (张) 最终评 定结果 Ⅰ级 (张) Ⅱ级(张) Ⅲ级 (张) Ⅳ级 (张)缺陷及返修情况说明检测结果 1.本台产品返修共计处,最高返修次数次。2.超标缺陷部位返修后经复验合格。 3.返修部位原缺陷情况见焊缝射线检测底片评定表。1.本台产品焊缝质量符合级的要求,结果合格。2.检测位置及底片情况详见焊缝射线底片评定表及射线检测位置示意图(另附)。 报告人(资格)RT-Ⅱ 年月日审核人(资格)RT-Ⅱ 年月日 无损检测专用章 年月日

焊缝射线检测底片评定表 产品编号:XXXX产品名称:XXXXXX 序号焊缝 编号 底片 编号 相交 焊缝 接头 底片 黑度 (Ⅰ) 识别 丝号 板厚 mm 缺陷性质 及数量 评定 级别 (级) 一次透 照长度 (mm) 备注 初评人(资格):RT-II 年月日复评人(资格):RT-II 年月日

射线数字成像技术发展

射线数字成像技术发展 摘要:射线数字成像是一种先进辐射成像技术,是辐射成像技术的重要发展方向,该技术利用射线观察物体内部的技术。这种技术可以在不破坏物体的情况下获得物体内部的结构和密度等信息,并且通过计算机进行图像处理和判定。目前已经广泛应用于医疗卫生、国民经济、科学究等领域。 关键词:辐射成像射线数字成像 1引言 自德国物理学家伦琴1895年发现X射线以来,射线无损探伤作为一种常规的无损检测方法在工业领域应用已有近百年的历史,人们一直使用胶片记录X(γ)射线穿过被检物件后的影像,其中60多年来,则一直使用增感屏配合胶片来获取高品质的影像,曝光过后的胶片经过化学处理,产生可视的影像后,在观片灯上显示出来以供读取、分析及判断。胶片-增感屏系统可使射线检测人员实现对影像的采集、显示和存储。这种方法操作简单,产生的图像质量优异,功能效用全面,因此该技术在包括核工业在内的工业、医疗领域一直被广泛使用。 胶片照相法的不足在于检测周期长,因为需要暗室处理,检测周期在3~20个小时不等;大量底片造成保存上的困难,查阅不便;胶片成本高;曝光时间长;在大量的检测工作面前,需要大量人力资源;底片难以共享,某些焊缝底片在需要专家共同研讨评定时,该弊端特别明显;不利于环境保护等。无法满足目前工业化生产和竞争日益激烈的需要。 随着科学技术和设备制造能力的进步,例如电子技术、光电子技术、数字图像处理技术的发展;高亮度高分辨率显示器的诞生;高性能计算机/工作站的广泛应用;计算机海量存储、宽带互联网的发展,使得数字成像技术挑战传统胶片成像方式在技术上形成可能。 以射线DR、CR和CT为代表的数字射线成像技术,结合远程评定技术将是无损检测技术领域的一次革命。数字射线照相技术具有检测速度快,图像保存方便,容易实现远程分析和判断,是未来射线检测发展的方向[1]。

数字射线检测焊接缺陷的模式识别算法

数字射线检测焊接缺陷的模式识别算法 摘要:为了准确提取与识别焊缝射线数字成像中焊接缺陷,本文提出了一种基于神经网络的模式识别算法。首先,分析了非线性模式分类的基本原理,通过人工神经网络实现对焊缝内存在的焊接缺陷进行分类;然后,采用缺陷的几何特征作为分类算法的输入数据,并应用神经网络关联标准理论评估鉴别能力,证明了特征提取的质量重要性优于数量;最后,将基于神经网络的主要非线性鉴别分量的识别算法应用于缺陷识别中,并通过大量实验分析与评价其分类性能。实验结果数据证明该算法在焊接缺陷模式识别方面具有较高的效率。 Abstract:In order to extract and recognize welding defects in digital X-ray images,this paper proposes a neural network based on pattern recognition algorithm. Firstly,the fundamental of the nonlinear pattern classification has been analyzed. By means of artificial neural network,the classification of welding defects in welding lines has been realized. Later on,the geometric feature of the welding defect has been adopted for input data. The identification ability was evaluated by neural network association standard theory. It

射线探伤检测技术工作总结

射线探伤检测技术工作总结 篇一:射线检测工作技术总结 射线检测技术工作总结 广州声华科技有限公司 徐业叶 XX.08.08 一、个人简介 徐业叶,男,1980年7月出生,XX年本科毕业于湘潭工学院金属材料与工程专业。XX年至XX年在广东省东莞市威尔锅炉厂从事无损检测工作,XX年至今在广州声华科技有限公司从事无损检测工作,先后取得国家质量监督检验检役总局发的射线、超声、磁粉、渗透Ⅱ级资格证书。 二、工作情况 在公司工作期间,本人主要从事现场检测、工程管理工作,包括根据现场情况编制检测工艺卡、制定检测方案并参与检测及出具检测报告。主要参与或负责的射线检测项目有广东云浮电厂、国华台电、石油储罐、火力发电厂脱硫项目的射线检测及各种特种设备制造安装射线检测等。 三、技术工作总结

《对小径管透照布置的探讨》 探讨小径管透照布置对裂纹检出的影响以及本人对标准的理解,由于本人知识有限,对不妥及不对之处请老师加以指正,谢谢! (一)实际工作暴露的问题及改进办法 检测对象:管焊接接头炉管材质:9Cr-1Mo-V-Nb 规格为:Φ89×8 mm及Φ60×6mm两种 检测执行标准:JB/T4730.2-XX 技术等级:AB级合格级别:Ⅱ级 一开始,因在预制阶段,条件较好,所以按JB/T4730.2-XX标准规定采用椭圆成像法,相隔90度透照2次,发现了少量的根部裂纹;后用垂直透照重叠成像法,相隔120度透照3次,对上述检测方法检测过的焊接接头进行重复检测时在根部发现了大量的根部裂纹。为了检出根部的裂纹,采用垂直透照重叠成像法,相隔120度透照3次更好,但这样做与JB/T4730.2-XX标准的4.1.4条有冲突,为此进行分析: (二)小径管经常采用倾斜透照椭圆成像的原因 小径管通常是指外直经DO小于或等于100mm的管子,在

相关文档
相关文档 最新文档