文档库 最新最全的文档下载
当前位置:文档库 › 电化学

电化学

电化学
电化学

第一章

不同的导电回路

电子导电回路:第一类导体:回路中形成电流的载流子是自由电子

电解池回路---第二类导体:由外电源提供电能,使电流通过电极,在电极上发生电极反应的装置。载流子:离子+电子

原电池回路:将化学能转化为电能的装置。

电解池中的氧化还原反应是由电源供给电流(电能)而引发的;原电池中的氧化还原反应则是自发产生的。

原电池中化学反应的结果是在外线路中产生电流供负载使用。

溶液中不可能有独立存在自由电子

几个重要概念

第一类导体:凡是依靠物体内部自由电子的定向运动而导电的物体,即载流子为自由电子(空穴)的导体,叫做电子导体,也称第一类导体。

第二类导体:凡是依靠物体内的离子运动而导电的导体叫做离子导体,也称第二类导体。

两种导电体系:

电子导电回路

电子-离子导体串联回路

两种导电体系的区别:

电子导电回路中只有单纯的电子(空穴)流动;

电子—离子导体串联回路中两种载流子是通过电极/溶液(或电极/固体电解质)界面的氧化还原反应传递电荷的,并且导电过程中必然伴随着化学反应。

电化学体系中相关的定义

电化学体系:两类导体串联组成的,在电荷转移过程中不可避免地伴随有物质变化的体系。

电化学反应:在电化学体系中发生的氧化还原反应。

电极反应:电极/溶液界面(两类导体界面)发生的电化学反应。

离子独立移动定律:当溶液无限稀时,离子间的距离很大,可以完全忽略离子间的相互作用,即每个离子的运动都不受其他离子的影响。这种情况下,离子的运动都是独立的。电解质溶液的当量电导就等于电解质全部电离后所产生的离子当量电导之和。

溶液中正、负离子在电场力作用下的运动称为电迁移。

活度和活度系数是电解质溶液最重要的静态性质之一。

理想稀溶液中的各组元(分子或离子)之间没有相互作用力。

第二章

一、相间电位

相间:两相界面上不同于基体性质的过渡层。

相间电位:两相接触时,在两相界面层中存在的电位差。

二、当两相接触时,在两相界面层中存在的电位差主要由带电粒子或偶极子在界面层中非均匀分布造成。

三、粒子在相间转移的原因与稳态分布的条件

1.不带电粒子:两相接触时,i粒子自发从能态高的相(A)向能态低的相(B)转移。

2.对带电离子,在两相间转移时,除了引起化学能的变化外,还有随电荷转移引起的电能变化。建立

相间平衡的能量就必须考虑带电粒子的电能。

3.带电粒子在两相中的平衡条件就是电化学位相等。

二、金属接触电位:相互接触的两金属相之间的外电位差称为金属接触电位

三、电子逸出功:金属电子离开金属逸出真空中所需要的最低能量来衡量电子逸出金属的难易程度,这一能量叫电子逸出功。

三.电极电位

电极体系:电子导电相和离子导电相形成界面并在界面有电荷转移时,此体系就称为电极体系,有时也称电极。两相界面存在物质变化。

电极:在电化学中有时把单独电子导体的金属称为电极。

电极电位:两类导体所形成的相间电位,既电极材料和离子导体(溶液)的内电位差称电极电位。电极电位的产生:界面层中离子双电层的形成

四、绝对电位与相对电位

绝对电位:电极电位是两类导体所形成的相间电位,既电极材料和离子导体(溶液)的内电位差称电极电位。其数值称为电极的绝对电位。

参比电极:可作为基准的、其电极电位保持恒定的电极称参比电极

标准电极电位:在298.15 K 时,以水为溶剂,当氧化态和还原态的活度等于1 时的电极电位

将标准氢电极与待测电极组成原电池,电位差即该电极的相对电极电位,比标准氢电极的电极电位高的为正(研究电极在原电池中发生还原反应),反之为负(研究电极在原电池中发生氧化反应)

液体接界电位与盐桥液体接界电位:在两种不同离子的溶液或两种不同浓度的溶液接触界面上存在着微小的电位差,称之为液体接界电位。

液体接界电位产生的原因:正、负离子不同的扩散速度使界面处形成双电层,产生一定电位差, 液界电位也可叫做扩散电位。

可逆电极(reversible electrode):氧化还原反应速度相等,物质交换和电荷交换平衡。(平衡电极电位)i净= 0

?不可逆电极(irreversible electrode):

?电荷交换平衡,物质交换不平衡i净= 0

?电荷交换不平衡,物质交换不平衡i净≠ 0

可逆电极

第三类可逆电极- 氧化还原可逆电极

用铂等惰性元素插入同一元素的两种不同价态的离子溶液中所组成的电极。惰性金属本身不参与反应,只起导电作用,电极反应由溶液中同一元素的两种价态的离子之间进行氧化还原反应完成,故又称氧化还原电极。

如Pt|Fe2+(aFe2+), Fe3+(aFe3+ ),

电极反应为 Fe3++e Fe2+

电极电位方程式为

故电位大小主要取决于溶液中两种价态离子的活度比。

第四类可逆电极:气体电极

气体吸附在惰性金属表面,与溶液中相应的离子进行氧化还原反应并达到平衡状态。即在固液界面上,气态物质发生氧化还原反应的电极。

典型氢电极

电极反应

电极电位

典型氧电极

电极反应

电极电位

一、不可逆电极及其电位

不能满足可逆电极条件的电极叫做不可逆电极,如金属在溶液中,电镀过程中形成的电极。

不可逆电极电位:不可逆电极建立的电极电位称不可逆电极电位。其数值不能按能斯特方程计算。只能由实验确定。不可逆电极电位可以是稳定的,也可是不稳定的、当电荷在界面上交换速度相等时,虽然物质交换不平衡,也可建立稳定的双电层,使电极电位达稳定状态。

稳定电位:稳定的不可逆电极电位叫稳定电位,受环境影响很大。

3.第三类不可逆电极即金属浸入含有某种氧化剂的溶液所形成的电极。

Fe | HNO3 , Fe | K2Cr2O7

此类电极所建立的电极电位主要依赖于溶液中氧化态物质和还原态物质之间的氧化还原反应,类似于第三类不可逆电极,称不可逆氧化还原电极。

4.不可逆气体电极

具有较低氢过电位的金属在水溶液中,特别是酸中,会建立不可逆的氢电极电位。电极反应主要是但仍有

后者反应速度很小,电极电位值主要取决于氢的氧化还原过程,表现出气体电极特征,所以称不可逆气体电极。如Fe |HCl, Ni |HCl等。

三、可逆电极与不可逆电极电位的判别

首先根据电极组成进行初步判断,如铜液浸在含Cu2+溶液中,符合第一类可逆电极Cu ≒Cu2+ + 2e,而铜浸在NaCl溶液中,电极组成为Cu |NaCl,为第二类不可逆电极氧化反应Cu →Cu+ + e

Cu+ +Cl- →CuCl

Cu +Cl- →CuCl + e

产生的CuCl溶度积很小还原反应O+H2O+2e →2OHO为溶解在溶液中的氧,且吸附在金属/溶液界面上。

四、影响电极电位的因素取决于金属/溶液界面的双电层,故则包含了构成双电层的金属和溶液的性质。

金属:种类、物理化学状态和结构、表面状态、金属表面成相膜或吸附物存在与否、机械变形、内压力等。

溶液:各离子性质、浓度、溶剂、溶解气体、温度、压力、辐射等。

1.电极本性此处指电极组成,不同物质得失电子能力不同,故形成电极电位不同。

2.金属表面状态金属表面性质变化可使电极电位变化的范围达1V左右。表面吸附气体也会产生很大影响。

3.金属的机械变形和内应力

4.溶液pH:影响明显,可使电极电位变化达数百mv。

5. 溶液中氧化剂的存在:影响大,它多半使电位变正,氧化剂常是溶解在溶液中的氧,另一原因是还可能生成氧化膜使原来的保护膜更加致密而使电位变正。

6. 溶液中络合剂的存在:使电极电位更负,实质使溶液中呈氧化态离子浓度降低

7.溶剂的影响:电极电位既与物质得失电子有关,又与离子的溶剂化有关,故溶剂不同,离子溶剂化程度亦不同,导致电极电位也不同,无

明显规律性。

第三章电化学腐蚀动力学

极化作用使电池两电极之间电位差减小、电流密度降低,从而减缓了腐蚀速率。

极化是决定腐蚀速率的主要因素

电极/溶液界面:是两相间的界面层,指与任何一相基体性质均不同的相间过渡区。界面结构:主要指在这一过渡区域中剩余电荷和电位的分布以及它们与电极电位的关系。

界面性质:主要指界面层的物理化学性质,主要是电性质

定义:表面电荷密度q等于零时的电极电位,也就是与界面张力最大值相对应的电极电位称为零电荷电位。常用

表示

Stern模型当电极表面电荷密度q和溶液浓度c都比较大时,双电层中静电作用远大于离子热运动能,当电极电位绝对值或溶液总浓度增大时,分散层电位差在双电层中所占比例逐渐减小,直至可忽略Ψ1,双电层结构的分散性减小了。即其有效厚度降低,故界面电容值增大。

除静电力外的其它力(物理和化学)使离子吸附在电极表面称特性吸附

紧密层分为荷负电荷电极的外紧密层和荷正电荷电极的内紧密层两种。外紧密层的电容与阳离子无关;同一电极系统,外紧密层的电容内紧密层的电容小。

吸附的分类

?静电吸附:静电作用下,异号离子相互吸引产生吸附。

特点:与电荷符号、数量直接相关,

特性吸附:该类吸附由短程力所致。分为两种物理吸附:短程力为镜像力、色散力、金属表面偶极层与极性分子作用、近程排斥力(范德华力)等;

化学吸附:本质是金属与吸附粒子间的不完全电子转移,形成吸附键,进而可形成表面化合物。

特点:有选择性

?非特性吸附:这类吸附是有机物的共性,有机分子的憎水部分(非极性)逸出溶液吸附在电极表面,亲水部分(极性)留在溶液中。

特点:与界面无关(即无选择性),只

第四章电极过程概述

通常把发生在电极/溶液界面上的电极反应、化学转化和电极附近液层中的传质作用等一系列的变化总和统称为电极过程。而有关电极过程的历程、速度及影响因素的研究内容就称为电极过程动力学。

电极极化的原因

有电流通过时,出现电子流动使表面积累电荷,使电极电位偏离平衡状态(极化作用)。而电极反应吸收电子运动传输的电荷,使电极电位(?)恢复平衡状态(去极化作用)。阳极:电子流出电极速度大,正电荷积累

阴极:电子流入电极速度大,负电荷积累

偏离平衡电极电位

电极极化现象的内在原因电子运动速度/电极反应速度矛盾

电极电位的变化就取决于极化作用和去极化作用的对立统一

一、电极过程的基本历程

电极过程是一系列性质不同的单元步骤串联组成的复杂过程,大致由下列几步串联而成。

?液相传质步骤

?前置的表面转化步骤简称前置转化(吸附等)

?电子转移步骤或称电化学反应步骤

?随后的表面转化步骤简称随后转化(脱附等)

?新相生成步骤或反应后的液相传质步骤

第五章液相传质步骤动力学

液相传质的三种方式

?电迁移(migration):电解质溶液中的带电粒子(离子)在电场作用下沿着一定的方向移动,这种现象叫做电迁移。

电迁移电解质具有导电性且使溶液中物质进行了传输,但其传输的离子并非均参与电极反应,有些仅起传导电流作用。

?对流(convection):指一部分溶液与另一部分溶液之间的相对流动,也是重要液相传质过程。可分为自然对流和强制对流。

自然对流由于溶液内各部存在温度差或密度差引起的对流

强制对流由外力搅拌溶液引起,可采用多种形式,空气、机械、超声等

扩散(diffusion):由于溶液中不同区域浓度不同引起该组分自发从高浓度的区域向低浓度区域移动,这种液相传质运动叫做扩散。可分为非稳态扩散和稳态扩散。

三种传质方式的比较

电迁移对流扩散

动力电场力重力差、外力化学位梯度

传输的物质带电粒子任何微粒任何微粒

电迁移对稳态扩散过程的影响规律

凡是正离子在阴极上还原或负离子在阳极上氧化,电迁移总是使稳态电流密度增大;而负离子在阴极上还原或正离子在阳极上氧化,电迁移总是使稳态电流密度减小。? i扩与电极真实表面积无关,与S表观有关

第六章电子转移步骤动力学

位能图:表示金属离子处在金属/溶液界面不同位置时,位能高低的一种示意图。

活化能:活化态与离子平均能量之差

交换电流密度的物理意义:平衡电位下氧化反应和还原反应的绝对速度。

影响0i大小的因素

与反应速度常数有关(反应性质)、电极材料有关、反应物质浓度有关、温度有关

电化学反应动力学特性与0i的关系

1.描述平衡状态下的动力学特征

热力学性质:平 表征

动力学性质:0i表征

热力学性质相近的反应,动力学性质可以相差很大,甚至数亿倍。

2. 用0i表示电化学反应速度(非平衡态)

用0i描述电化学过程进行的难易程度0i在一定的过电位Δ?下:

定义:电极过程恢复平衡态的能力或去极化作用的能力为电极反应过程的可逆性。(反映电极反应是否容易进行及电极是否容易极化;注意与可逆电极区分)

0i大----净i大电极反应易进行

0i小----净i小电极反应难进行

电极反应速度常数K的物理意义:标准电极电位和反应物浓度为单位浓度时的电极反应绝对速度。

稳态极化的动力学规律:特点:电极表面附近液层浓度梯度不可忽略。

第七章气体电极过程

析氢过电位定义:在某一电流密度下,氢实际析出的电位与氢的平衡电位的差值。

金属腐蚀第一章绪论

金属材料腐蚀主要是金属与周围环境之间发生化学或电化学作用而引

起的破坏或变质。

非金属材料腐蚀是非金属材料由于在环境介质的化学、机械和物理作

用下,出现老化、龟裂、腐烂和破坏的现象

腐蚀性指环境介质腐蚀材料的强弱程度

耐蚀性指材料抵抗环境介质腐蚀的能力

腐蚀防护的基本途径

( 1) 提高金属本身的耐蚀性:如不锈钢、镍基合金从材料的热力学稳定性和控制腐蚀动力学两个角度出发提高材料的抗蚀性;

( 2) 改变环境(介质处理) :降低环境的腐蚀性,如除去大气中的SO2,在水溶液中除O

2,改变溶液的pH 值,在环境中加入缓蚀剂等;

( 3) 采用覆盖层:采用金属和非金属涂层、改变材料的表面结构,使材料表面具有耐蚀的特性;采用衬里、防锈油、防锈纸等,将材料与腐蚀介质隔开,

( 4) 采用电化学保护(电保护) :对于金属的电化学腐蚀可通过阴极极化降低氧化反应速度,或通过实现阳极钝化来以达到防腐目的;

( 5) 正确选材和合理设计:为了防止腐蚀发生,必须重视正确选材和合理设计:根据使用环境,正确选用金属材料和非金属材料;设计时做到材料匹配和结构合理、结构间连接应尽可能防止缝隙产生等;

(6) 腐蚀与防护的管理与教育:主观上重视。加强对腐蚀与防护的管理,提高各类人员对腐蚀与防护的重视,需要建立相应的教育体制,广泛开展腐蚀与防护的教育工作,提高腐蚀与防护的自觉性。

第二章 金属电化学热力学

金属腐蚀倾向的判断 ( 3种判断方法 )

腐蚀反应自由能变化( ΔG)T.P 腐蚀倾向性:

( ΔG)T.P <0 腐蚀可发生, ΔG 值越负反应可能性越大;

( ΔG)T.P > 0 腐蚀不可能发生。

i i μν∑ =ΔG 可判断:

Zn 在酸中可能腐蚀

Ni 在酸中可能腐蚀

Zn 腐蚀倾向性 > Ni 腐蚀倾向性

Au 在酸中不会腐蚀。

( 2)由标准电极电位可判断腐蚀倾向性

热力学数据只能判断腐蚀发生的趋势、倾向,不能知道其实际速度。

原电池可以看作是将化学能转变成电能的装置,电池输出电能。如果将原电池直接短路则形成了短路原电池,短路原电池只能是发生了氧化还原反应的装置,在这个装置中发生了金属的氧化反应,即金属的腐蚀,不能得到电能,电能全部以热的形式释放出来。这种不能对外界做有用功的短路原电池也称之为腐蚀原电池。发生了金属的氧化反应的驱动力是两个电极的电极电位之差。

腐蚀电池包括阴极、阳极、电解质溶液和电路四部分,缺一不可

Evans极化图的本质特征:用极化曲线的斜率来表示腐蚀电池工作的阻力,电极反应的阻力越大,极化曲线的斜率就越大。

Evans极化图的应用

1. 用于分析腐蚀速度的影响因素

(1) 腐蚀速度与初始电位差的关系其它条件相同时,初始电位差越大,腐蚀电流越大;不同金属的平衡电势不同,当阴极反应相同时,金属的平衡电势越低,其腐蚀电流越大(见例1)。

(2) 极化性能对腐蚀速度的影响其它条件相同时,极化率越小,腐蚀电流越大;(见例2)极化度的大小主要取决于活化及浓差极化的大小以及阳极是否钝化

(3) 欧姆电阻R的影响欧姆电阻较大时,腐蚀速度较小;欧姆电阻较小时,腐蚀速度较大。

电化学腐蚀的阴极过程

去极化剂还原的阴极过程与金属氧化的阳极过程共同组成整个腐蚀过程。显然,如果没有阴极过程,阳极过程就不会发生,金属就不会腐蚀。换言之,金属腐蚀的阳极过程与阴极过程相互依存,缺一不可。

原则上,所有能吸收金属中的电子的还原反应,都可以构成金属电化学腐蚀的阴极过程。

钝化的金属腐蚀过程有如下几个特点:

?(1)金属在钝化状态时,腐蚀速度非常低。

?(2)金属发生钝化都伴随着电位的较大范围的正移。

?(3)金属发生钝化的现象只是金属表面性质的改变,是金属的界面现象。

根据钝化发生的难易程度可以将金属分为自钝化金属和非自钝化金属。

自钝化金属是指那些在空气以及很多种含氧的溶液中能够自发钝化的金属。例如,金属铝在空气中很快在表面生成一层氧化膜,在空气中能自发钝化的金属还有铬、钛、

钼及不锈钢。

金属的自钝化:没有任何外加极化的情况下,由于腐蚀介质的氧化剂(去极化剂)的还原引起的金属的钝化。

1、氧化剂的氧化-还原平衡电位E0要高于该金属的致钝电位E pp,即E0>E pp;

2、在致钝电位E pp下,氧化剂阴极还原反应的电流密度或者阴极极限扩散掉流密度必须大于该金属的致钝电流密度i pp,即在E pp下,i d>i pp

实现金属的自钝化必须满足下列两个条件:自钝化趋势:不同的金属具有不同的自钝化趋势,按金属钝化趋势减小顺序为:Ti、Al、Cr、Be、Mo、Mg、Ni、Co、Fe、Mn、Zn、Cd、Sn、Pb、Cu。

?非自钝化金属是指在空气和含氧溶液中不能自发钝化的金属,如铁、镍、钴等在空气中不能自发钝化,必须在强氧化剂的作用下才能发生钝化。

金属除了可用一些钝化剂处理使之钝化外,还可采用对其进行阳极极化的方式进行钝化。

?阳极钝化与化学钝化之间并没有本质上的区别

阳极钝化的高电阻极化(钝化膜)是金属钝态的特征之一。

稳态极化曲线,可以通过准稳态方法测量,动电位扫描,扫描速度1mV/s

以铁的阳极极化曲线为例:

(1)A-B区,活化区,Fe→Fe2++2e

(2)B-C区,过渡区,此时在表面可能生成二价或三价的过渡氧化物,表面处于不稳定状态,可能发生溶解和钝化的交替,可能出现电流密度的剧烈震荡的现象。3Fe+4H2O →Fe3O4+8H++8e

(3)C-D区,稳定钝化区,金属表面生成一层耐蚀性好的钝化膜(γ–Fe2O3),对应很小的基本不变的电流密度,用于维持化学解的钝化膜的修补。此时,化学溶解速度等于成膜速度。

(4)D-E区,过钝化区,金属氧化膜可能氧化成高价的可溶性产物,或直接发生析氧反应。

影响进入钝化状态的因素:金属及合金成分的影响、钝化剂的性质、浓度影响、活性离子的影响、温度的影响

2020届高考化学二轮复习新型电化学装置的原理分析专题卷

新型电化学装置的原理分析 1.用粗硅做原料,熔融盐电解法制取硅烷的原理如图。下列叙述正确的是( ) A.电源的B极为负极 B.可选用石英代替粗硅 C.电解时,熔融盐中Li+向粗硅移动 D.阳极反应:Si+4H--4e-SiH4↑ D【微探究】根据装置图可知,该装置为电解池,总反应为Si+2H2SiH4。H2生成H-,发生还 原反应,Si发生氧化反应。根据电解池原理,阴极发生还原反应,阳极发生氧化反应,故通入H2的那一极是阴极,故A极是负极,B极是正极,A项错误;阳极粗硅失电子,若换成石英,即SiO2,SiO2中Si 已经是+4价,无法再失电子,B项错误;电解时,熔融盐中Li+向阴极移动,C项错误;阳极粗硅生成SiH4,故电极反应为Si+4H--4e-SiH4↑,D项正确。 [微纠错] 易错点一:原电池和电解池没有正确区分,此装置有外接电源,属于电解池;易错点二:受思维定势影响,不能注意到此电解池的工作环境是非水体系;易错三:不能正确判断电解质中传导的带电粒子,电子不能直接通过熔融电解质或电解质溶液,此装置中电解质中存在的可以自由移动的离子有Li+、Cl-、H-。 2.纳米氧化亚铜在制作陶瓷等方面有广泛应用。利用电解的方法可得到纳米Cu2O,电解原理如图所示。下列有关说法不正确的是( ) A.b极为负极 B.铜极的电极反应式为2Cu-2e-+2OH-Cu2O+H2O C.钛极附近逸出O2

D.每生成1 mol Cu2O,理论上有2 mol OH-从离子交换膜左侧向右侧迁移 C【微探究】铜为阳极,钛为阴极,阴极与负极相连,所以b极为负极,A项正确;铜极上发生氧化反应生成氧化亚铜,B项正确;C项,钛极的电极反应式为2H2O+2e-2OH-+H2↑,C项错误;左侧生成OH-,右侧消耗OH-,且每生成1 mol Cu2O时,消耗2 mol OH-,为维持电荷平衡,则理论上有2 mol OH-从离子交换膜左侧向右侧迁移,D项正确。 3.研究人员研制出一种可快速充、放电的超性能铝离子电池,其中Al、C n为电极,由有机阳离子与阴离子(AlC l4-、Al2C l7-)组成的离子液体为电解质。如图为该电池放电过程示意图。下列说法错误的是( ) A.充电时,Al做阴极,C n做阳极 B.充电时,每生成1 mol铝,同时消耗4 mol Al2C l7- C.放电时,电解质中的有机阳离子向铝电极移动 D.放电时,正极反应式为C n[AlCl4]+e-C n+AlC l4- C【微探究】由图示可知,该电池放电时,Al做负极,C n做正极,因此充电时,Al做阴极,C n做阳极,A项正确;充电时,阴极反应式为4Al2C l7-+3e-Al+7AlC l4-,B项正确;放电时,电解质中的有机阳离子向正极(C n电极)方向移动,C项错误;放电时,正极反应式为C n[AlCl4]+e-C n+AlC l4-,D项正确。 4.如图所示是一种以液态肼(N2H4)为燃料,氧气为氧化剂,某固体氧化物为电解质的新型燃料电池。该固体氧化物电解质的工作温度在700~900 ℃时,O2-可在该固体氧化物电解质中自由移动,反应产物均为无毒无害的物质。下列说法正确的是( )

电化学体会

学习液相传质步骤的收获 因为自己对电化学比较感兴趣并且决定要考电化学方向的研究生,所以这学期我选修了《电化学基础》这门课程。在苏老师耐心细致的讲述下,我不仅对以前在物理化学中学过的知识比如说两类电化学装置,极化曲线等有了更深入的理解而且学到了电化学极化以及气体电极过程等新的知识,下面将重点写写我自己对于学习电极过程中液相传质步骤的收获。 一、电极过程的步骤 在电极化中,人们习惯把发生在电极/溶液界面上的电极反应、化学转化和电极附近液层中的传质作用等一系列变化的总和统称为电极过程。电极过程是一种有电子参与的异相氧化还原过程,可看做一个连续的过程,包括以下几个步骤: 1 .反应物离子向电极表面迁移,称之为液相传质步骤。 2. 反应物离子在电极表面附近的液层中进行某种转化,如水化离子脱水在表面附近吸附或发生化学变化,但无电子转移,称为前置的表面转化步骤。 3. 电极/电解液界面上的电荷传递,称之为电化学步骤或电子转移步骤。 4. 反应物在电极表面或附近液层进行某种转化,如表面脱附,称后继的表面转化步骤。 5. 反应物从电极表面向溶液内部迁移,称液相传质步骤或生成新相,如结晶或生成气体。 二、研究液相传质步骤的重要意义 液相传质步骤是整个电极过程中的一个重要环节,因为液相中的反应粒子需要通过液相传质向电极表面不断地输送,而电极反应产物又需通过液相传质过程离开电极表面,只有这样,才能保证电极过程连续地进行下去。在许多情况下,可能成为电极过程的控制步骤,由它来决定整个电极过程动力学的特征。例如,当一个电极体系所通过的电流密度很大、电化学反应速度很快时,电极过程往往由液相传质步骤所控制,或者这时电极过程由液相传质步骤和电化学反应步骤共同控制,但其中液相传质步骤控制占有主要地位。由此可见,研究液相传质步骤动力学的规律具有非常重要的意义。 事实上,电极过程的各个单元步骤是连续进行的,并且存在着相互影响。因此,要想单独研究液相传质步骤,首先要假定电极过程的其他各单元步骤的速度非常快,处于准平衡态,以便使问题的处理得以简化,从而得到单纯由液相传质步骤控制的动力学规律,然后再综合考虑其他单元步骤对它的影响。液相传质动力学,实际上是讨论电极过程中电极表面附近液层中物质浓度变化的速度。这种物质浓度的变化速度,固然与电极反应的速度有关,但如果我们假定电极反应速度很快,即把它当作一个确定的因素来对待,那么这种物质浓度的变化速度就主要取决于液相传质的方式及其速度。因此.我们要先重点研究液相传质的几种方式。 三、液相传质的三种方式 1.电迁移 电极上有电流通过时,溶液中各种离子在电场作用下,均将沿着一定方向移动称为电迁移。溶液中各种离子均在电场下发生电迁移。

污水处理电化学处理技术

污水处理电化学处理技术 高级氧化技术一般针对难降解有机废水,如医药、化工、染料工业废水以及含有难处理的有毒物质物质等。 第一节电化学处理技术 一、基本原理与特点 1. 原理 电化学氧化法主要用于有毒难生物降解有机废水的处理,电化学水处理技术的基本原理是使污染物在电极上发生直接电化学反应或间接电化学而得到转化,从而达到削减和去除污染物的目的。根据不同的氧化作用机理,可分为直接电解和间接电解。 1 ) 直接电解 直接电解是指污染物在电极上直接被氧化或还原而从废水中去除今直接电解可分为阳极过程和阴极过程。阳极过程就是污染物在阳极表面氧化而转化成毒性较小的物质或易生物降解的物质,甚至发生有机物无机化,从而达到削减、去除污染物的目的。阴极过程就是污染物在阴极表面还原而得以去除,阴极过程主要用于卤代经的还原脱卤和重金属的回收,如卤代有机物的卤素通过阴极还原发生脱卤反应,从而可以提高有机物的可生化性。 直接电解过程伴随着氧气析出,氧的生成使氧化降解有机物的电流效率降低,能秏升高,因此,阳极材料对电解的影响很大。 2 ) 间接电解 间接电解是指利用电化学产生的氧化还原物质作为反应剂或催化剂,使污染物转化成毒性小的物质。间接电解分为可逆过程和不可逆过程。可逆过程(媒介电化学氧化)是指氧化还原物在电解过程中可电化学再生和循环使用。不可逆过程是指利用不可逆电化学反应产生的物质,如具有强氧化性的氯酸盐、次氯酸盐、H202和O2等氧化有机物的过程,还可以利用电化学反应产生强氧化性的中间体,包括溶剂化电子、?HO、?H02/02 等自由基。 2. 电化学水处理技术的特点 1) 电化学方法既可以单独使用,又可以与其他处理方法结合使用,如作为前处理方法,可以提高废水的生物降解性; 2) 一般电化学处理工艺只能针对特定的废水,处理规模小,且处理效率不高; 3)有的电化学水处理工艺需消耗电能,运行成本大。 二、电化学反应器与电极 电化学反应器按反应器的工作方式分类可分为:间歇式、置换流式和连续搅拌箱式电化学反应器。按反应器中工作电极的形状分类可分为二维电极反应器、三维电极反应器。二维电极呈平面或曲面状,电极的形状比较简单,如平板、圆柱电极。电极反应发生于电极表面上,其电极表面积有限,比表面积极小,但电势和电流在表面上分布比较均匀。三维电极的结构复杂,通常是多孔状。电极反应发生于电极内部,整个三维空间都有反应发生。特点是比表面积大,床层结构紧密,但电势和电流分布不均匀。下列出了常见电化学反应器的电极类型。

电化学基础-王玮

中国海洋大学本科生课程大纲 课程属性:公共基础/通识教育/学科基础/专业知识/工作技能,课程性质:必修、选修 一、课程介绍 1.课程描述: 电化学基础是在学习无机化学和物理化学的基础上开设的电化学入门课程,是材料化学专业的学科基础必修课程。主要介绍电化学材料科学的基本理论、基本概念等内容,为今后学习奠定基础。 2.设计思路: 尽管先修课程物理化学中有专门一章介绍电化学,但是随着电化学材料科学的快速发展,电化学技术在材料科学与工程领域中的应用越来越广泛。本课程着重介绍电化学的基本知识、基本原理和电化学技术应用。 3.课程与其他课程的关系 本课程的先修课程是物理化学。为后期更好的学习新能源材料概论、金属腐蚀与防护、功能高分子材料等专业课程,更好的开展毕业论文(设计)工作奠定基础。二、课程目标 本课程的目标是让学生在前期学习物理化学等课程的基础上,系统学习电化学的基本理论、基本原理等内容,并能够应用于后续其他专业课程的学习。了解、掌握电 - 1 -

化学材料科学研究所涉及的基本理论和基本原理以及电化学技术的应用。 三、学习要求 本课程要求学生(或小组)及时关注网络教学(包括移动客户端)的阅读资料、思考讨论题等,按照要求在课前完成相关的资料检索汇总及思考;在课堂上认真听讲,积极参与课堂讨论;课后积极参与小组活动并完成作业。 四、教学内容 五、参考教材与主要参考书 [1] (美)巴德等. 电化学方法原理和应用(第二版). 化学工业出版社. 2005.5 [2] 高鹏等. 电化学基础教程. 化学工业出版社. 2013.9 [3] (德)哈曼等. 电化学. 化学工业出版社. 2010 六、成绩评定 (一)考核方式 A.闭卷考试:A.闭卷考试 B.开卷考试 C.论文 D.考查 E.其他(二)成绩综合评分体系: - 1 -

电化学工程教学大纲

《电化学工程》教学大纲 课程编号 : 课程名称 :电化学工程/ 学时/学分:40/2.5 先修课程 :物理化学、有机化学、分析化学、电工学等 适用专业 :化工、制药、生物工程、轻工等 开课学院(部)、系(教研室):化工系化学工程系工艺研究所 一、课程的性质与任务 应用电化学是将有关电化学原理应用于与实际生产过程相关的领域,这些领域包括:电化学新能源、金属的表面精饰、无机、有机化合物的电解合成、金属的电化学腐蚀及防护、电化学传感器。课程的主要任务就是让学生掌握电化学理论基础知识,了解电化学理论如何应用在上述领域。使学生具备较强的理论基础和综合应用知识的能力。 二、课程的教学内容、基本要求及学时分配 (一)教学内容 1电化学理论基础:电化学体系的基本单元;电化学过程热力学;电极/溶液界面的性能;电极反应动力学;电化学研究方法介绍 2电催化过程:电催化原理;氢电极反应的电催化;氧电极反应的电催化;有机反应的电催化 3化学电源:化学电源的主要性能、选择及应用;一次电池;二次电池;燃料电池。 4金属的表面精饰:金属电沉积和电镀原理;电镀过程;电泳涂装 5电解工业:无机物的电解,工业氯碱工业;水的电解 有机物的电解合成,有机电解合成的发展方向,乙二氰的电解合成 6电化学传感器:控制电位电解型气体传感器;生物电化学传感器 7电化学腐蚀与防护:金属的电化学腐蚀;腐蚀电池;电位-PH图及其在金属防护中的应用;金属的电化学防护方法 (二)基本要求 1电化学理论基础:了解电解池的组成;可逆电化学过程与不可逆电化学过程;双电层理论;金属的零电荷电位;电极反应的种类、机理及影响因素。学会电化学研究的几种基本方法。 2电催化过程:电催化的类型、原理、影响因素及性能评价;氧电极反应的电催化;有机反应的电催化的机理 3化学电源:了解化学电源的主要性能、选择及应用;掌握一次电池;二次电池;燃料电池的机理,了解它们的结构、应用及研究现状。 4金属的表面精饰:掌握金属电沉积和电镀、电泳涂装的原理,了解电镀;电泳涂装工艺过程及相关技术。 5电解工业:掌握工业氯碱工业、水的电解、乙二氰的电解合成几个有代表性的电解工艺和机理。 6电化学传感器:了解控制电位电解型气体传感器;生物电化学传感器的电化学原理及两种传感器的应用。 7电化学腐蚀与防护:了解金属的电化学腐蚀的基本理论和过程,腐蚀倾向判断及电化学防护方法。

电化学-新型化学电源

电化学——新型化学电源(建议用时:120 min)1、【2019·全国卷Ⅰ】利用生物燃料电池原理研究室温下氨的合成,电池工作时MV+2/MV+ 在电极与酶之间传递电子,示意图如下所示。下列说法错误的是( B ) A.相比现有工业合成氨,该方法条件温和,同时还可提供电能 B.阴极区,在氢化酶作用下发生反应:H2+ 2MV+2=== 2H++ 2MV+ C.正极区,固氮酶为催化剂,N2发生还原反应生成NH3 D.电池工作时质子通过交换膜由负极区向正极区移动 【第1题】【第2题】 2、【2018·全国卷Ⅱ】我国科学家研发了一种室温下“可呼吸”的Na–CO2二次电池。将 NaClO4溶于有机溶剂作为电解液,钠和负载碳纳米管的镍网分别作为电极材料,电池的总反应为:3CO2+ 4Na2Na2CO3+ C。下列说法错误的是( D ) A.放电时,ClO- 向负极移动 4 B.充电时释放CO2,放电时吸收CO2 C.放电时,正极反应为:3CO2+ 4-e=== 2CO-23+ C D.充电时,正极反应为:Na++-e=== Na 3、【2017·海南高考】一种电化学制备NH3的装置如图所示,图中陶瓷在高温时可以传输 H+。下列叙述错误的是( A ) A.Pd电极b为阴极B.阴极的反应式为:N2+ 6H++ 6-e=== 2NH3 C.H+由阳极向阴极迁移D.陶瓷可以隔离N2和H2 【第3题】【第4题】

4、【2018·全国卷Ⅲ】一种可充电锂—空气电池如图所示。当电池放电时,O 2与Li +在多孔 碳材料电极处生成Li 2O 2-x (x =0或1)。下列说法正确的是( D ) A .放电时,多孔碳材料电极为负极 B .放电时,外电路电子由多孔碳材料电极流向锂电极 C .充电时,电解质溶液中Li +向多孔碳材料区迁移 D .充电时,电池总反应为:Li 2O 2-x === 2Li + ??? ?1-x 2 O 2 5、环境监察局常用“定电位”NO x 传感器来监测化工厂尾气中的氮氧化物是否达到排放标 准,其工作原理如图所示。下列说法不正确的是( D ) A .“对电极”是负极 B .“工作电极”上发生的电极反应为:NO 2 + 2H + + 2-e === NO + H 2O C .传感器工作时,H +由“对电极”移向“工作电极” D .“工作电极”的材料可能为活泼金属锌 【第5题】 【第6题】 6、尿素[CO(NH 2)2]与NO 在碱性条件下可形成燃料电池,如图所示,反应的方程式为: 2CO(NH 2)2 + 6NO + 4NaOH === 5N 2 + 2Na 2CO 3 + 6H 2O 。下列说法正确的是( D ) A .甲电极为电池的负极,发生还原反应 B .电子流向:甲电极→负载→乙电极→溶液→甲电极 C .一段时间后,乙电极周围溶液酸性增强 D .甲电极的反应式为:CO(NH 2)2 - 4-e + 8OH - === CO - 23 + N 2↑+ 6H 2O 7、【2019·山东八校联考】熔融碳酸盐燃料电池是一种高温电池(600~700 ℃),具有效率 高、噪声低、无污染等优点。熔融碳酸盐燃料电池的工作原理如图所示。下列说法正 确的是( B ) A .电池工作时,熔融碳酸盐只起到导电的作用 B .负极反应式为:H 2 - 2-e + CO - 23 === CO 2 + H 2O C .电子流向:电极a →负载→电极b →熔融碳酸盐→电极a D .电池工作时,外电路中通过0.2 mol 电子,消耗3.2 g O 2

污水处理电化学处理技术

污水处理电化学处理技术Last revision on 21 December 2020

污水处理电化学处理技术高级氧化技术一般针对难降解有机废水,如医药、化工、染料工业废水以及含有难处理的有毒物质物质等。 第一节电化学处理技术 一、基本原理与特点 1. 原理 电化学氧化法主要用于有毒难生物降解有机废水的处理,电化学水处理技术的基本原理是使污染物在电极上发生直接电化学反应或间接电化学而得到转化,从而达到削减和去除污染物的目的。根据不同的氧化作用机理,可分为直接电解和间接电解。 1 ) 直接电解 直接电解是指污染物在电极上直接被氧化或还原而从废水中去除今直接电解可分为阳极过程和阴极过程。阳极过程就是污染物在阳极表面氧化而转化成毒性较小的物质或易生物降解的物质,甚至发生有机物无机化,从而达到削减、去除污染物的目的。阴极过程就是污染物在阴极表面还原而得以去除,阴极过程主要用于卤代经的还原脱卤和重金属的回收,如卤代有机物的卤素通过阴极还原发生脱卤反应,从而可以提高有机物的可生化性。 直接电解过程伴随着氧气析出,氧的生成使氧化降解有机物的电流效率降低,能秏升高,因此,阳极材料对电解的影响很大。 2 ) 间接电解 间接电解是指利用电化学产生的氧化还原物质作为反应剂或催化剂,使污染物转化成毒性小的物质。间接电解分为可逆过程和不可逆过程。可逆过程(媒介电化学氧化)是指氧化还原物在电解过程中可电化学再生和循环使用。不可逆过程是指利用不可逆电

化学反应产生的物质,如具有强氧化性的氯酸盐、次氯酸盐、H202和 O2等氧化有机物的过程,还可以利用电化学反应产生强氧化性的中间体,包括溶剂化电子、HO、 H02/02 等自由基。 2. 电化学水处理技术的特点 1) 电化学方法既可以单独使用,又可以与其他处理方法结合使用,如作为前处理方法,可以提高废水的生物降解性; 2) 一般电化学处理工艺只能针对特定的废水,处理规模小,且处理效率不高; 3)有的电化学水处理工艺需消耗电能,运行成本大。 二、电化学反应器与电极 电化学反应器按反应器的工作方式分类可分为:间歇式、置换流式和连续搅拌箱式电化学反应器。按反应器中工作电极的形状分类可分为二维电极反应器、三维电极反应器。二维电极呈平面或曲面状,电极的形状比较简单,如平板、圆柱电极。电极反应发生于电极表面上,其电极表面积有限,比表面积极小,但电势和电流在表面上分布比较均匀。三维电极的结构复杂,通常是多孔状。电极反应发生于电极内部,整个三维空间都有反应发生。特点是比表面积大,床层结构紧密,但电势和电流分布不均匀。下列出了常见电化学反应器的电极类型。 常见电化学反应器的电极类型 三、电化学处理技术在废水处理中的应用 (一)微电解 1. 原理 微电解技术是目前处理高浓度有机废水的一种理想工艺,又称内电解法,它是在不通电的情况下,利用填充在废水中的微电解材料自身产生的电位差对废水进行电解处

电化学发展史

电化学发展史 电化学是物理化学的一个重要组成部分,它不仅与无机 化学、有机化学、分析化学和化学工程等学科相关,还渗透 到环境科学、能源科学、生物学和金属工业等领域。 电化学作为化学的分支之一,是研究两类导体(电子导 体,如金属或半导体,以及离子导体,如电解质溶液)形成 的接界面上所发生的带电及电子转移变化的科学。

传统观念认为电化学主要研究电能和化学能之间的相互转换,如电解和原电池。但电化学并不局限于电能出现的化学反应,也包含其它物理化学过程,如金属的电化学腐蚀,以及电解质溶液中的金属置换反应。 一、16-17世纪:早期的相关研究 公元16世纪标志着对于电认知的开始。在16世纪50年代,英国科学家William Gilbert (威廉·吉尔伯特,1540-1605)花了17年时间进行磁学方面的试验,也或多或少地进行了一些电学方面的研究。吉尔伯特由于在磁学方面的开创性研究而被称为“磁学之父”,他的磁学研究为电磁学的产生和发展创造了条件。 吉尔伯特按照马里古特的办法,制成球状磁石,取名为“小地球”,在球面上用罗盘针和粉笔划出了磁子午线。他证明诺曼所发现的下倾现象也在这种球状磁石上表现出来,在球面上罗盘磁针也会下倾。他还证明表面不规则的磁石球,其磁子午线也是不规则的,由此认为罗盘针在地球上和正北方的偏离是由陆地所致。他发现两极装上铁帽的磁石,磁力大大增加,他还研究了某一给定的铁块同磁石的大小和它的吸引力的关系,发现这是一种正比关系。吉尔伯特根据他所发现的这些磁力现象,建立了一个理论体系。他设想整个地球是一块巨大的磁石,上面为一层水、岩石和泥土覆盖着。他认为磁石的磁力会产生运动和变化。他认为地球的磁力一直伸到天上并使宇宙合为一体。在吉尔伯特看来,引力无非就是磁力。吉尔伯特关于磁学的研究为电磁学的产生和发展创造了条件。在电磁学中,磁通势单位的吉伯 (gilbert)就是以他的名字命名,以纪 念他的贡献。 1663年,德国物理学家Otto von Guericke(奥托·冯·格里克1602-1686) 发明了第一台静电起电机。这台机器由 球形玻璃罩中的巨大硫磺球和转动硫 磺球用的曲轴组成的。当摇动曲轴来转 动球体的时候,衬垫与硫磺球发生摩擦 产生静电。这个球体可以拆卸并可以用 作电学试验的来源。 二、18世纪:电化学的诞生 在18世纪中叶,法国化学家夏尔·杜菲发现了两种不同的静电,他将两者分别命名为“玻璃电”和“松香电”,同种相互排斥而不同种相互吸引。杜菲因此认为电由两种不同液体组成:正电“vitreous”(玻璃),以及负电“resinous”(树脂),这便是电的双液体理论,这个理论在18世纪晚期被本杰明·富兰克林的单液体理论所否定。 1781年,法国物理学家Charles Augustin de Coulomb (夏尔·奥古斯丁·库仑1736-1806)在试图研究由英国科学家Joseph Priestley (约瑟夫·普利斯特里1733-1804)提出的电荷相斥法则的过程中发展了静电相吸的法则。 1771年,意大利生理学家、解剖学家Luigi Galvani(路易吉·伽伐尼1737-1798)发现蛙腿肌肉接触金属刀片时候会发生痉挛。他于1791年发表了题为“电流在肌肉运动中所起的作用”的论文,提出在生物形态下存在的“神经电流物质”,在化学反应与电流之间架起了一座桥梁。这篇论文的发表标志着电化学和电生理学的诞生。在论文中,伽伐尼认为动物体内中存在着一种与“自然”形式(如闪电)或“人工”形式(如摩擦起电)都不同的“动物电”,

电化学原理之浓差极化和电化学极化

电化学极化和浓差极化的动力学研究 摘要:电极过程的进行速度在金属保护、腐蚀分析等电化学实践领域有重要应用,加深对它的理解很有必要。电极反应速度由控制步骤,即速度最慢的单元步骤决定。本文讨论了电化学反应和液相传质这两个单元步骤的动力学规律,以及当整个电极反应由电化学极化控制、浓差极化或者是两类极化共存时的极化规律。 关键词:控制步骤;电化学极化;浓差极化;过电位;极化电流 引言 电极过程是由一系列性质不同的单元步骤串联组成的复杂过程,一般有液相传质、前置转化、电化学反应、随后转化和反应后的液相传质五个步骤。每一步骤都有不同的特性,步骤的反应速度取决于其活化能,当某一步骤的速度远远小于其他步骤,则整个电极反应速度等于这个最慢步骤,一般称之为控制步骤。文献指出,只要整个反应中有一个步骤的活化能比其余高出8~10KJ/mol以上,则能成为控制步骤;而当两个单元步骤的活化能相差不到4KJ/mol时,它们的反应速度相差不到5倍,则可能同时成为控制步骤,称为混合控制。混合控制的规律比较复杂,但仍会有一个控制步骤起较主要的作用。因此研究控制步骤的规律对于了解整个电极反应的速度规律,以及控制电极反应的速度和反应进行的方向均有重要意义。本文中主要讨论的是电化学反应步骤和液相传质步骤的动力学规律,并讨论当其成为控制步骤时的极化规律。 电化学反应步骤指反应物质在电极/溶液界面得失电子,从而发生还原或氧化反应的过程。这一单元步骤包括了化学反应和电荷传递两步,是整个电极过程的核心步骤。当电化学反应步骤成为电极过程的控制步骤时,电极反应的速度就取决于电化学反应步骤。电极过程最重要特征之一就是由于电子参与反应,电极电位的改变将对反应速度将从热力学和动力学两个方面产生影响,因此讨论电化学反应步骤时先从电极电位的影响谈起。 由于液相中的反应粒子需要通过传质过程输送至电极表面,反应产物也需要

电化学传感器的应用及发展前景

苏州大学研究生考试答卷封面 考试科目:仪器分析考试得分:________________院别:材料与化学化工学部专业:分析化学 学生姓名:饶海英学号: 033 授课教师: 考试日期: 2012 年 1 月 10 日

电化学传感器的应用研究 摘要:随着电分析技术的发展,电化学传感技术越来越成为生命科学、临床诊断和药学研究的重要手段之一。本文主要介绍了电化学发光免疫传感器,电化学DNA 传感器、电化学氧传感器、纳米材料电化学传感器的基本概念、原理,以及这些传感器在各领域的应用。 关键词:电化学传感器免疫传感器传感器 电化学传感技术的核心是传感器。传感器能感受(或响应)规定的被测量并按照一定规律转换成可用信号输出的器件或装置。传感器通常由直接响应于被测量的敏感元件和产生可用信号输出的转换元件以及相应的电子线路所组成,是将一种信息能转换成可测量信号(一般指电学信号)的器件。传感器可分为物理传感器、化学传感器和生物传感器三大类。本文以化学传感器尤其是电化学传感器进行研究。 电致化学发光(Electrogenerated chemiluminescence),也称电化学发光(Electrochemiluminescence),简称ECL,是通过电极对含有化学发光物质的体系施加一定的电压或通过一定的电流,电极氧化还原产物之间或电极氧化还原产物与体系其它共存物质之间发生化学反应并生成某种不稳定的中间态物质,该物质分解而产生的化学发光现象。电致化学发光技术是电化学与化学发光相结合的检测技术,该技术既集成了发光与电化学分析技术的优点,又具有二者结合产生的可控性、选择性、重现性好、灵敏度高、检测限低及动力学响应范围宽等新优势[ 1~3 ]。 电化学传感器可分为以下几个类型。①吸附型:通过吸附方式将修饰物质结合在电极表面得到的修饰电极为吸附型化学修饰电极。可以制备单分子层和多分子层。根据吸附作用力的不同,又可分为平衡吸附型、静电吸附型、LB膜型、SA 膜型、涂层型。②共价键合型:在电极的表面通过键合反应把预定功能团接在电极表面而得到的化学修饰电极为共价型化学修饰电极。常用基体电极有碳电极、玻碳电极、金属和金属氧化物电极。③聚合物型:利用聚合反应在电极表面形成修饰膜的电极。制备方式有氧化还原沉积、有机硅烷缩合、等离子聚合、电化学聚合等。④其他类型:无机物修饰电极,如普鲁士蓝修饰电极、粘土修饰电极、

麻省理工电化学教程系列1

I. Equivalent Circuit Models Lecture 1: Basic Physics of Galvanic Cells MIT Student (and MZB) In this lecture, we give an overview of electrochemical cell operations, and define basic terminologies frequently used in a discussion of electrochemical cell operations. 1. Electrochemical Cells and Their Operations Faradaic Reaction : An electrochemical reaction that involves charge transfer Electrochemical Cell : Two half reactions involving charge transfer, connected via an electrolyte (conducting ions) and an external circuit (conducting electrons) Figure 1. Galvanic Operation of an Electrochemical Cell In a galvanic cell, electrons and ions flow spontaneously, converting chemical energy into electrical energy (and heat). As shown in Figure 1, in galvanic cell operation, an oxidation reaction occurs at anode, producing electrons. On the other hand, at cathode, a reduction reaction occurs, consuming electrons on the electrode surface. Since the electrons are not able to move through the electrolyte, they flow via external circuits from anode to cathode, making a current in a direction from cathode to anode. In electrolyte phase, oxidized species migrates from anode to cathode, and reduced species migrates from cathode to anode in net amount, respectively. In

8种电化学水处理方法

8种电化学水处理方法 电化学水处理- 世间万物,都是有一利就有一弊。社会的进步和人们生活水平的提高,也不可避免地对环境产生污染。废水就是其中之一。随着石化、印染、造纸、农药、医药卫生、冶金、食品等行业的迅速发展,世界各国的废水排放总量急剧增加,且由于废水中含有较多的高浓度、高毒性、高盐度、高色度的成分,使其难以降解和处理,往往会造成非常严重的水环境污染。 为了处理每天大量排出的工业废水,人们也是蛮拼的。物、化、生齐用,力、声、光、电、磁结合。今天笔者为您总结用电’ 来处理废水的电化学水处理技术。 电化学水处理技术,是指在电极或外加电场的作用下,在特定的电化学反应器内,通过一定的化学反应、电化学过程或物理过程,对废水中的污染物进行降解的过程。电化学系统设备相对简单,占地面积小,操作维护费用较低,能有效避免二次污染,而且反应可控程度高,便于实现工业自动化,被称为环境友好’ 技术。 电化学水处理的发展历程 1799 年 Valta制成Cu-Zn原电池,这是世界上第一个将化学能转化为电能的化学电源 1833 年 建立电流和化学反应关系的法拉第定律。 19世纪70年代 Helmholtz提出双电层概念。任何两个不同的物相接触都会在两相间产生电势,这是因电荷分离引起的。两相各有过剩的电荷,电量相等,正负号相反,相互吸引,形成双电层。 1887 年 Arrhenius提出电离学说。 1889 年 Nernst提出电极电位与电极反应组分浓度关系的能斯特方程。 1903 年 Morse 和Pierce 把两根电极分别置于透析袋内部和外部溶液中,发现带电杂质能迅速地从凝胶中除去。 1905年 提出Tafel 公式,揭示电流密度和氢过电位之间的关系。 1906年

电化学

1.什么是电池的循环寿命? 指在二次电池报废之前,在一定放电条件下,电池经历充放电循环的次数,循环寿命越长,电池的可逆性能就越好。使用寿命:在一定条件下,电池工作到不能使用的工作时间。贮存寿命:指电池性能或电池容量降低到额定指标以下时的贮存时间。 2.什么是容量效率? A.容量效率:蓄电池放电输出的电量和充电至原始状态时所需的电量之比。 B.伏特效率:蓄电池放电和充电过程的工作电压之比。 C.指容量效率和伏特效率的乘积,它是评价电池能量瞬时和极化行为的综合指标。 3.按使用的电解液分,一次电池分为哪些类别? 可分为碱或酸性电池,盐类电解质电池,有机电解质溶液电池和固体电解质电池。 4.什么是容量效率? 蓄电池放电输出的电量和充电至原始状态时所需电量的比。 5.对于镍氢电池,过充产生的气体怎样去除?生产中采用什么样的方法? A.负极容量比正极容量大,过充电时,正极产生的氧气在贮氢负极上还原。 B.生产中一般采用负极过量的办法,过充电时,正极产生的氧气经过扩散在负极重新化合成水,这样既保持了电池内压的恒定同时使电解液浓度保持不大变化。 6.燃料电池的原理是什么?试以质子交换膜燃料电池进行说明。 在原理上相当于水电解的逆装置,其单电池有阳极阴极和质子交换膜组成,阳极为氢燃料发生氧化的场所,两极都含有加速电极电化学反应的催化剂,质子交换膜为电解液当电池工作时,膜电极内发生下列过程a.反应气体在扩散层内扩散b.反应气体在催化层内被催化剂吸附并发生电催化反应 c.阳极生产的质子在固体电解质内传递到对侧,电子经外电路到达阴极。阳极:H2→ 2H+ + 2e .阴极:1/2O2 + 2H++ 2e → H2O 7.什么是电镀? 金属电沉积过程的一种,它是由改变固体表面特性从而改善外观,提高腐蚀性、抗摩性,增强硬度,提供特殊的光电磁热等表面性质的金属电沉积过程。 8.在电镀的过程中,为什么要增大阴极极化,途径有哪些? 对镀层的质量起着十分重要的作用。在极化很小的电镀液中镀出的镀层是十分粗糙的,甚至会出现海绵状,只有当阴极极化较大时才能镀出优质的镀层。在电沉积过程中,主要靠提高阴极极化的办法来实现结晶细密的目的。阴极极化程度大,相对而言,电沉积的晶核形成速度要比晶核生成速度快,镀层晶粒就细。 (1)提高阴极电流密度(2)络合剂和添加剂

电化学发展史

电化学发展史 作者:李京遥 院系:测绘学院 专业:测绘工程 年级:测绘1304 学号:311305010414 日期:2014年12月12日

摘要: 电化学是物理化学的一个重要组成部分,它不仅与无机化学、有机化学、分析化学和化学工程等学科相关,还渗透到环境科学、能源科学、生物学和金属工业等领域。 电化学作为化学的分支之一,是研究两类导体(电子导体,如金属或半导体,以及离子导体,如电解质溶液)形成的接界面上所发生的带电及电子转移变化的科学。 关键词:电化学的产生、电化学的发展、电化学的前景 一、16-17世纪:早期的相关研究 公元16世纪标志着对于电认知的开始。在16世纪50年代,英国科学家William Gilbert (威廉·吉尔伯特,1540-1605)花了17年时间进行磁学方面的试验,也或多或少地进行了一些电学方面的研究。吉尔伯特由于在磁学方面的开创性研究而被称为“磁学之父”,他的磁学研究为电磁学的产生和发展创造了条件。 吉尔伯特按照马里古特的办法,制成球状磁石,取名为“小地球”,在球面上用罗盘针和粉笔划出了磁子午线。他证明诺曼所发现的下倾现象也在这种球状磁石上表现出来,在球面上罗盘磁针也会下倾。他还证明表面不规则的磁石球,其磁子午线也是不规则的,由此认为罗盘针在地球上和正北方的偏离是由陆地所致。他发现两极装上铁帽的磁石,磁力大大增加,他还研究了某一给定的铁块同磁石的大小和它的吸引力的关系,发现这是一种正比关系。吉尔伯特根据他所发现的这些磁力现象,建立了一个理论体系。他设想整个地球是一块巨大的磁石,上面为一层水、岩石和泥土覆盖着。他认为磁石的磁力会产生运动和变化。他认为地球的磁力一直伸到天上并使宇宙合为一体。在吉尔伯特看来,引力无非就是磁力。吉尔伯特关于磁学的研究为电磁学的产生和发展创造了条件。在电磁学中,磁通势单位的吉伯(gilbert)就是以他的名字命名,以纪念他的贡献。 1663年,德国物理学家Otto von Guericke(奥托·冯·格里克1602-1686)发明了第一台静电起电机。这台机器由球形玻璃罩中的巨大硫磺球和转动硫磺球用的曲轴组成的。当摇动曲轴来转动球体的时候,衬垫与硫磺球发生摩擦产生静电。这个球体可以拆卸并可以用作电学试验的来源。 二、18世纪:电化学的诞生 在18世纪中叶,法国化学家夏尔·杜菲发现了两种不同的静电,他将两者分别命名为“玻璃电”和“松香电”,同种相互排斥而不同种相互吸引。杜菲因此认为电由两种不同液体组成:正电“vitreous”(玻璃),以及负电“resinous”(树脂),这便是电的双液体理论,这个理论在18世纪晚期被本杰明·富兰克林的单液体理论所否定。 1781年,法国物理学家Charles Augustin de Coulomb (夏尔·奥古斯丁·库仑1736-1806)在试图研究由英国科学家Joseph Priestley (约瑟夫·普利斯特里1733-1804)提出的电荷相斥法则的过程中发展了静电相吸的法则。 1771年,意大利生理学家、解剖学家Luigi Galvani(路易吉·伽伐尼1737-1798)发现蛙腿

电化学技术在新能源中的利用

本文由heshuquan_0贡献 ppt文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 电化学技术在新能源研发中的应用 陆天虹 中国科学院长春应用化学研究所南京师范大学化学与环境科学学院 一.能源的概况 1.能源的重要性 1.能源的重要性 自古以来,人类就为改善生存条件和促进社会经济的发展而不停地进行奋斗.在这一过程中,能源一直扮演着重要的角色. 从世界经济发展的历史和现状来看,能源问题已成为社会经济发展中一个具有战略意义的问题,能源的消耗水平已成为衡量一个国家国民经济发展和人民生活水平的重要标志,能源问题对社会经济发展起着决定性的作用. 2.能源的种类 2.能源的种类 大自然赋予人类的能源是多种多样的,一般可分为常规能源和新能源两大类.常规能源包括煤炭,石油, 天然气和水能,而新能源有生物质能,核能,风能,地热能,海洋能, 太阳能和氢能等.其中煤炭,石油, 天然气被成为化石能源,水能,生物质能,风能,太阳能和氢能等是可再生能源. 3.化石能源的问题 (1)化石能源的短缺化石能源的短缺能源是人类赖以生存和社会发展的重要物质基础,是国民经济发展的命脉,但目前主要使用的化石能源的储量不多. 据2002年世界探明的化石能源的储量和使用量统计,世界上煤,石油和天然气的储 采比分别为204,40和60年,中国的情况更为严峻,据2002年统计,中国煤, 石油和天然气的储采比只有82,15和46 年.这表明在人类历史的长河中,只有很短的 一段时间能使用化石能源. 随着我国经济的持续高速增长,对能源的需求也持续攀升.我国一次能源消费总量从1978年的5.3亿吨标准煤,上升到2002年的14.3亿吨.据估计,我国在2004,2020和2050年的石油消费量达3, 4.5和6亿吨,其中进口量分别为1,2.7 和4亿吨.4亿吨的进口量相当于目前美国的石油进口量,这不但会制约我国经济的可持续发展,而且对国家的安全也十分不利. (2)化石燃料造成严重环境污染和气候异常化石燃料造成严重环境污染和气候异常化石燃料的使用引起的环境污染,排放的 CO2会造成温室效应,使全球气候变暖.有关机构已向联合国发出警告,如再不对CO2 的排放采取严厉措施,在10年内,世界的气候将产生不可逆转的变化.我国的环境污染问题更是日趋严重,目前,我国CO2排放量占世界总排放量的14%,在美国之后位居第二,估计到2025年,将位居第一. 在本世纪初联合国关于环境污染的调查中, 发现在世界上十个环境污染最严重的城市中,七个在中国.它们是太原,北京,乌鲁木齐,兰州,重庆,济南和石家庄. 4. 21世纪世界能源发展趋势世纪世界能源发展趋势 (1)节能技术将备受重视节能技术将备受重视节能就是提高能源利用率,减少能源的浪费. 目前节能技术水平已是一个国家能源利用情况的综合性指标,也是一个国家总体科学技术水平的重要标志.许多研究报告指出,依靠节能可以将能源需

新型石墨烯纳米材料的合成在电化学中的应用

新型石墨烯纳米材料的合成在电化学中的应用 石墨烯是碳原子紧密堆积成单层二维蜂窝状晶格结构的一种碳质新材料。自从2004年发现以来石墨烯以其独特的电学、力学、热学和光学等性能,引起了人们的极大关注,在复合材料、纳米器件及能量储存等方面有着广泛的应用前景。本论文以石墨烯的不同修饰电极为研究对象,探讨其在电化学方面的应用。本论文得到的主要结果如下: 1.用化学氧化法将碳纳米管解开制备氧化石墨烯,然后分别通过化学还原和电化学还原方法得到石墨烯材料,并用透射电子显微镜(TEM)、扫描电子显微镜(SEM)、能量散射谱(EDS)、X射线衍射谱(XRD)、X射线光电子能谱(XPS)和拉曼光谱(Raman)等手段对其形貌、结构进行了表征。 2.以铁氰化钾、烟酰胺腺嘌呤二核苷酸、抗坏血酸、过氧化氢、氧气、多巴胺和尿酸等物质为探针分子,研究了氧化石墨烯、化学还原石墨烯和电化学还原石墨烯的电化学性能。结果发现,与裸玻碳电极相比,石墨烯材料表现出了更好的电子转移性能和电催化性能,使测定物的过电位大大降低。其中电化学催化能力由强至弱的排列顺序为:电化学还原石墨烯>化学还原石墨烯>氧化石墨烯。 3.用循环伏安法在氧化石墨烯修饰电极上制备了钯/石墨烯复合纳米材料,SEM和EDS研究表明钯纳米粒子成功地负载在石墨烯上。借助氢键和静电相互作用,氧化石墨烯和钯纳米粒子可以有序组装在玻碳电极上,从而制备出钯/石墨烯复合纳米材料修饰电极。 4.以铁氰化钾、烟酰胺腺嘌呤二核苷酸、抗坏血酸、过氧化氢、氧气、多巴胺和尿酸为探针分子,通过电化学阻抗(EIS)、循环伏安(CV)、计时电流(CA)和示差脉冲(DVP)等方法研究了钯/石墨烯复合纳米材料修饰电极的电化学行为。结果发现,在石墨烯和钯的共同促进作用下,钯/石墨烯复合纳米材料修饰电极在铁氰化钾溶液里表现出更快的电子转移能力,对烟酰胺腺嘌呤二核苷酸、抗坏血酸的氧化,过氧化氢、氧气的还原反应都有很高的电催化活性。该复合纳米材料同时对抗坏血酸、多巴胺、尿酸拥有较好的催化效果,而且三者不相互干扰。我们也研究了甲醇在钯/石墨烯复合纳米材料修饰电极上的电催化氧化行为,其性能良好,有望应用在燃料电池中。 本论文对石墨烯在生物传感器中的应用进行了基础性的研究。主要包括三部分内容:辣根过氧化物酶修饰石墨烯电极对H2O2的电催化研究;基于石墨烯负载纳米铂的葡萄糖生物传感器;MB/RG、MB/GO复合材料修饰电极对NADH的电催化研究。 具体的研究工作主要集中在以下几部分: (1)利用辣根过氧化物酶能够在石墨烯电极上实现直接电子转移的性质,组装了一种用电聚合吡咯的方法把HRP固定在石墨烯电极上的新的过氧化氢生物传感器。研究了此传感器对过氧化氢的电催化行为和分析测定。 (2)将石墨烯作为催化剂载体制备了新型的葡萄糖生物传感器。具体方法是先通过化学还原法将氯铂酸和石墨氧化物同时还原得到Pt/RG的混合物,将铂有效地固定在石墨烯载体上,之后制备了Pt/RG/GCE电极,并对此生物传感器的催化性能进行研究。接着用电聚合的

相关文档