文档库 最新最全的文档下载
当前位置:文档库 › 稻壳灰对铝酸盐水泥早期水化的影响

稻壳灰对铝酸盐水泥早期水化的影响

稻壳灰对铝酸盐水泥早期水化的影响
稻壳灰对铝酸盐水泥早期水化的影响

水化热讲解

第一章设计说明

第二章大体积混凝土承台水化热有限元分析 2.1 概论 2.1.1 大体积混凝土定义 目前国际上对大体积混凝土仍无一个统一的定义。就如美国混凝土学会的定义:任何就地现浇的混凝土,其尺寸到达必须解决水化热及随之引起的体积变形问题,以最大限度减少开裂的,称之为大体积混凝土。又如日本建筑学会对大体积混凝土的标准定义:结构断面最小尺寸在80cm以上;水热化引起混凝土内的最高温度与外界气温之差,预计超过25℃的混凝土。而我国《大体积混凝土施工规范》认为,混凝土结构物实体最小几何尺寸不小于1m的大体量混凝土,或预计会因混凝土中胶凝材料水化引起的温度变化和收缩而导致有害裂缝产生的混凝土属于大体积混凝土。 由以上可见,大体积混凝土主要是依靠结构物的断面尺寸和水化热引起的温度变化来定性的。 2.1.2 大体积混凝土温度裂缝成因 施工期间水泥的水化热作用,在其浇筑后将经历升温期、降温期和稳定期三个阶段。大体积混凝土自身有一定的保温性能,因此在升温期其内部温升幅度较其表层的温升幅度要大得多,而在降温期内部降温速度又比其表层慢得多,在这些阶段中,混凝土各部分的温度变形及由于其相互约束及外界环境温度约束的作用,在混凝土内产生的温度应力是相当复杂的。由于混凝土的抗拉能力比较弱,一旦温度应力超过混凝土所能承受的拉力极限值时,混凝土就会出现裂缝。 因此必需掌握其水化热的变化规律,从而为混凝土配合比的修改及养护方案的制定提供依据。 2.1.3 本章研究的主要内容 (一)利用MADIS有限元软件建立大体积混凝土承台模型,并对其进行仿 真水化热计算。 (二)对其水化热进行参数分析。

混凝土行业标准大全

建筑业企业资质管理规定 建筑业企业资质等级标准 预应力混凝土轨枕产品实施细则 铁路桥预应力混凝土简支粱产品实施细则 GB 175-2007 通用硅酸盐水泥 GB 8076-2008 混凝土外加剂 GB/T 9142-2000 混凝土搅拌机 GB 9774-2010 水泥包装袋 GB/T 10171-2005 混凝土搅拌站(楼) GB 13476-2009 先张法预应力混凝土管桩 GB 1499.1-2008 钢筋混凝土用钢第一部分热轧光圆钢筋 GB 1499.2-2007 钢筋混凝土用钢第二部分热轧带肋钢筋 GB/T 14684-2011 建筑用砂 GB 14685-2011 建筑用卵石、碎石 GB 50068-2001 建筑结构可靠度设计统一标准 GB/T 50107-2010 混凝土强度检验评定标准 GB 50119-2003 混凝土外加剂应用技术规范 GB 50164-2011 混凝土质量控制标准 GB 50204-2002 混凝土结构工程施工质量验收规范(2010版) GB 50300-2001 建筑工程施工质量验收统一标准 GB 50666-2011 混凝土结构工程施工规范 GB/T 50129-2011 砌体基本力学性能试验方法标准 GB/T 4623-2006 环形筋混凝土电杆 GB/T 1596-2005 用于水泥和混凝土中的粉煤灰

GB/T 5223-2002 预应力混凝土用钢丝 GB/T 5224-2003 预应力混凝土用钢绞线 GB/T 5483-2008天然石膏 GB/T 5484-2012石膏化学分析方法 GB/T 9775-2008纸面石膏板 GB/T 9776-2008 建筑石膏 GB/T 14902-2003 预拌混凝土 GB/T 15231-2008玻璃纤维增强水泥性能试验方法 GB/T 19631-2005玻璃纤维增强水泥轻质多孔隔墙条板 GB/T 26204-2010纸面石膏板护面纸板 GB/T 50080-2002 普通混凝土拌合物性能试验方法标准 JGJ/T 223-2010 预拌砂浆应用技术规程 JC 474-2008 砂浆、混凝土防水剂 JC 475-2004 混凝土防冻剂 JC 746-2007 混凝土瓦 JG/T 327-2011 植物纤维工业灰渣混凝土砌块 JC/T 364-2001 环形预应力混凝土电杆钢模 JC/T 412.1-2006 纤维水泥平板第1部分无石棉纤维水泥平板JC/T 412.2-2006 纤维水泥平板第2部分温石棉纤维水泥平板JC/T 517-2004 粉刷石膏JC/T 566-2008 吸声用穿孔纤维水泥板JC/T 567-2008 玻璃纤维增强水泥波瓦及其脊瓦 JC/T 641-2008 装饰混凝土砌块 JC/T 671-2008 维纶纤维增强水泥平板 JC/T 799-2007 装饰石膏板 JC/T 800-2007 嵌装式装饰石膏板

稻壳灰在各种混凝土中的应用

稻壳灰在各种混凝土中的应用 1. 轻混凝土 以往,将植物纤维破碎,与适量水泥拌合加工成型制成各种板材,如水泥刨花板、稻草板,作为隔热、吸音板得以应用。根据稻壳的材性,以稻壳为骨料,加入107胶、水泥和水拌合制成稻壳水泥混凝土,按质量用料比例:稻壳∶水泥= (27-18)∶100,水∶水泥=49∶100; 107胶∶稻壳=30∶100,该混凝土容重0.8 kg/m3~1.3 kg/m3,抗压强度8 MPa~15 MPa,抗折强度2 MPa~6 MPa,导热系数0.23 W/mK左右,在-20℃经过25次冻融后,试样无变化,具有良好的保温隔热性能和耐久性。 本混凝土的骨料不需要进行任何预处理,它与用砂石作骨料的混凝土具有完全相同的施工工艺,因此,便于现场拌和施工。稻壳含SiO2高,润湿后易于压实,干燥后体积不膨胀,也耐腐蚀,这种混凝土与金属有较强的粘接力,可以用钢丝网或钢筋作骨架。由于以韧性很好的稻壳作骨料,因此,混凝土的材性与木材相近,有可锯、可钉、防腐蚀、不易燃烧等特点,拼板可用水泥砂浆粘接,是一种比较理想的轻混凝土。 2. 稻壳灰水泥及稻壳灰水泥混凝土 稻壳经过专用的烧灰炉烧去有机物,残留下无机物SiO2灰烬等,再经过磨机磨细,即可得到稻壳灰。就目前来说,稻壳灰在建筑上的应用主要在水泥、高性能混凝土方面。 2.1 稻壳灰水泥 用稻壳灰与不同比例的波特兰水泥(普通硅酸盐水泥)按0∶100; 30∶70; 50∶50; 70∶30的比例混合,发现含70%的稻壳灰的混合料在所有3、7、28、90天龄期均具有最高强度,抗压强度值分别为: 3 d,31.9/22.4; 7 d,45.7/32.5; 28 d,58.7/42.4; 90 d,63.9/47.7 (分母代表0∶100时的水泥强度,单位MPa)。“稻壳灰砂浆及混凝土的一个重要性质是它的抗酸侵蚀耐久性特别好”。“稻壳灰作为一种高活性火山灰能减少含活性集料砂浆的碱集料膨胀”。在高强度大体积混凝土中,用稻壳灰可得到高强度而内部温升不大,典型地稻壳灰混凝土28 d强度比普通波特兰水泥混凝土高8%,而在7 d~28 d 内部温升却低于21℃。 2.2 石灰稻壳灰水泥 用消石灰与稻壳灰或生石灰与稻壳灰混合制成消石灰稻壳灰水泥及生石灰稻壳灰水泥。两种石灰稻壳灰水泥的安定性均合格。消石灰稻壳灰水泥的凝结时间较普通水泥略长,而生石灰稻壳灰水泥的凝结时间较快。两种石灰稻壳灰水泥的标准稠度,较硅酸盐水泥标准稠度(24%左右)大得多,这是稻壳灰有特大的比表面积,而引起标准稠度的增加。不掺减水剂用生石灰配制的配合比为0.76∶1∶1.53∶2.70的生石灰稻壳灰混凝土28 d物理力学性能是:塌落度2.5 cm~4.0 cm,抗压强度14.81 MPa,劈拉强度1.54 MPa,静压弹模2.01×104MPa。如适当掺加一些减水剂强度会有所提高。 2.3 稻壳灰水泥混凝土 稻壳灰有以外掺或内掺形式掺入混凝土,在等量取代20%水泥的情况下掺稻壳灰试件,3 d、7 d 抗压强度均小于未掺稻壳灰的空白组,但28 d抗压强度较空白组增加20%,说明稻壳灰具有较高的火山灰活性,在超量取代水泥的情况下,稻壳灰的增强效果更显著。稻壳灰以外掺形式掺入混凝土的技术条件及结果,力学性能见表1。从表1看出,掺稻壳灰的试验组抗压强度提高的幅度较大,且早期比后期强度高,表明稻壳灰有强烈的增强作用,与硅灰相似。掺入具有分散作用的减水剂,使稻壳灰增强作用得到充分发挥。这是由于稻壳灰掺入混凝土后,高活性的SiO2能较快地与水泥水化生成的氢氧化钙起强烈的火山灰反应形成低钙水化硅酸钙凝胶,起到增加强度,改善骨料水泥石界面结构和填充毛细孔的作用,使混凝土密实性增加,强度大为提高,劈裂抗拉强度、粘结强度、轴心抗压强度、静压弹模、抗氯离子渗透、防锈等性能都得到明显提高和改善。试验结果还表明,使用“双掺”技术效果更佳。南京水利科学研究院所作的该系统研究得出的结论是:掺稻壳灰能制造高强、密实、耐钢锈混

水泥水化机理

4.1水泥的水化机理 从化学角度来看,水泥的水化反应是一个复杂的溶解沉淀过程,在这一过程中,与单一成分的水化反应不同,各组分以不同的反应速度同时进行水化反应,而且不同的矿物组分彼此之间存在着互相影响。水泥中最多的熟料矿物是硅酸盐化合物,是制约水泥水化性质及相关性能的关键组分。水泥中的硅酸盐熟料矿物的主要成分为硅酸三钙和硅酸二钙。 (1)硅酸三钙(C3S)的水化 硅酸三钙是水泥熟料中的含量最多的组分,通常占材料总量的50%左右,有时高达60 %。硅酸钙的水化产物的化学组成成分不稳定,常随着水相中钙离子的浓度、温度、使用的添加剂、养护程度而发生变化,而且形态不固定,通常称为“C-S-H”凝胶。 C3S在常温下发生水化反应,可大致用下列方程式表述: 硅酸三钙的水化速率很快,其水化过程根据水化放热速率随时间的变化,可以将C3S的水化过程划分为五个阶段,各阶段的化学过程和动力学行为如表1.1所示。 表1.1 C3S水化各阶段的化学过程和动力学行为时期早期中期后期 反应阶段诱导前期诱导期加速期减速期稳定期 化学过程初始水解, 离子进入溶 液 继续溶解, 早期C-S-H 稳定水化产 物开始生长 水化产物继 续生长,微 结构发展 微结构组件 密实 动力学行为反应很快反应慢反应快反应变慢反应很慢(2)硅酸二钙的水化 C2S也是水泥主要熟料矿物组分之一,水化过程与C3S相似,也有诱导期、加速期,但是水化速率特别慢。C2S的水化反应可大致用下列方程表述:

(3)铝酸三钙的水化 C3A是水泥熟料矿物的重要组分之一,其水化产物的组成与结构受溶液中的氧化铝、氧化钙浓度的影响很大,它对水泥的早期水化和浆体的流变性能起着重要的作用。纯水中C3A的水化:大量的研究结果表明,C3A遇水后能够立即在表面形成一种具有六边形特征的初始胶凝物质粒子,开始时其结晶度很差也很薄,呈不规则卷层物,随着水化时间的推移,这些卷层物生长成结晶度较好的,成分为C4AH19和C2AH8济的六边形板状物。这种六边形水化物是亚稳的,并能转化成立方形稳定的晶体颗粒。常温下C3A在纯水中的水化反应可用下式表示: 有石膏存在时C3A的水化:在水泥浆体中,熟料中的C3A实际上是在和有石膏存在的环境中水化的,C3A在Ca(OH)2饱和溶液中的水化反应可以表述为C3A+CH+12H=C3AH13。当处于水泥浆体的碱性介质中时,C3AH13在室温下能稳定存在,其数量增长也很快,这是水泥浆体产生瞬时凝结的主要原因之一。(4)铁铝酸四钙的水化 铁铝酸四钙的水化与铝酸三钙的水化过程相似,只是反应速率很慢,而且产物是含铁和铝的共同产物。

陈诚-阿利特硫铝酸盐水泥合成与水化研究进展材料导报修改稿

阿利特-硫铝酸盐水泥的合成与水化研究进展 陈诚 芦令超 (济南大学材料科学与工程学院,济南 250022) 摘 要 阿利特和无水硫铝酸钙矿物分别是硅酸盐水泥和硫铝酸盐水泥的主导矿物。阿利特矿物的早期强度偏低,后期强度高。硫铝酸钙是典型的早强型矿物,但后期强度增进率低。因此,实现这两种矿物的复合,制备以阿利特和硫铝酸钙为主导矿物的新型水泥材料,将使水泥的早期强度进一步提高,并具有较高的强度增进率和后期强度。同时由于在水泥熟料矿物体系中含有硫铝酸盐矿物,将对以阿利特为主导矿物的硅酸盐水泥的水化产生重要影响。因此,深入分析该水泥的合成及水化机制具有重要意义。 关键词 阿利特 硫铝酸盐 水泥 合成 水化 中图分类号:TQ172.2文献标识码:A Review on the Hydration and Hardening of Alite Sulphoaluminate Cement CHEN Cheng,LU Ling-chao (School of Material Science and Engineering, University of Jinan, Jinan 250022, China) Abstract Alite and C4A3S are main minerals of Portland cement and Alite sulphoaluminate cement. Alite has lower early strength and good long-term strength. C4A3is the typical high early strength mineral, but its improving rate of the strength is small. So, the early strength of Alite sulphoaluminate cement will be further improved at the base of the compound of the two minerals. Also, it has important effect on the hydration of Portland cement on account of the existence of sulphoaluminate minerals in the clinker system. Therefore it’s useful to deeply study the synthesis and hydration of Alite Sulphoaluminate Cement. Key words Alite, sulphoaluminate, cement, synthesis, hydration 0 引言 水泥是重要的建筑材料,它对工程建设起着重要的作用。2006年我国水泥产量达10.64亿t,居世界第一,占世界水泥总产量的1/3,水泥仍然是二十一世纪主要的建筑材料。但目前大量使用的硅酸盐水泥尚存在一些缺点,主要表现在:早期强度偏低;烧成温度高,导致能源消耗高;水泥熟料中阿利特(C3S)含量高,消耗了大量高品质石灰石资源;生产过程中产生大量的CO2等废气,环境污染日趋严重;水泥水化后期,由于硬化水泥浆体体积收缩而造成收缩裂纹,影响水泥混凝土的体积稳定性与耐久性 因此,提高传统硅酸盐水泥的性能,满足现代建设工程对水泥的多功能、高性能的要求,并达到节约资源、保护环境的目的,是实现水泥工业可持续发展的关键,对国民经济与社会发展具有重要意义。而水泥水化硬化是影响水泥性能的重要因素,所以通过矿物复合技术合成新型高性能水泥并研究水泥的水化过程、水化产物以及水化硬化机理,是提高水泥性能的重要途径。 [1]。

水泥混凝土项目计划书

水泥混凝土项目计划书 一、水泥混凝土项目背景 实干成就实力,趋势扩大优势。随着众多大项目、大企业的落户,台州制造业将提前走出困境,台州的产业前景非常美好。只要我们立足制造业这个转型升级的主战场,继续这样不遗余力地开拓进取,搭上第四次工业革命的“快车”,未来十年我市将基本形成有利于创业创新的制造业产业生态,制造业结构也更趋合理,制造业自主创新、质量效益、融合发展和绿色发展的水平将进一步提升,在全球产业分工和价值链中的地位也将进一步提升。正如企业家邱继宝所说,“先进制造业给台州一个机会,台州将还世界一个奇迹”。 二、项目名称及承办单位 (一)项目名称 项目名称:水泥混凝土生产制造项目。

(二)项目承办单位 承办单位名称:襄阳某某有限公司。 项目规划设计单位:泓域咨询机构 项目战略合作单位:某某集团、某某研究机构 三、项目建设选址及用地综述 (一)项目建设选址 本期工程项目选址在襄阳某工业园。 (二)项目建设地概况 襄阳,湖北省地级市,国家历史文化名城,楚文化、汉文化、三国文化的主要发源地,已有2800多年建制历史,历代为经济军事要地。素有“华夏第一城池”、“铁打的襄阳”、“兵家必争之地”之称。襄阳位于湖北省西北部,汉江中游平原腹地。襄阳因地处襄水之阳而得名,汉水穿城而过,分出南北两岸的襄阳、樊城隔江相望。两城历史上都是军事与商业重镇。1949年两城合并后称襄樊市;1983年襄阳地区并入地级襄樊市;2010年12月襄樊市更名为襄阳市。现辖3个区(襄州、襄城、樊城)、3个县级市(枣阳、宜城、老河口)、3个县(南漳、保康、谷城)和3

个开发区(襄阳高新技术产业开发区、襄阳经济技术开发区、襄阳鱼梁洲经济开发区),总面积1.97万平方公里,2016年全市实现地区生产总值3694.5亿元,居湖北第三。襄阳名胜古迹旅游以三国文化为主要特色,有隆中风景名胜区、襄阳城等著名景点,刘备“三顾茅庐”“《隆中对》”等故事就发生在这里。襄阳是湖北省域副中心城市和鄂西生态文化旅游圈中心城市。2013年襄阳入围首批国家智慧城市。2014年襄阳入围“信息惠民”国家试点城市。 (三)项目用地性质 本期工程项目计划在襄阳某工业园建设。 (四)项目用地规模 项目拟定建设区域属于工业项目建设占地规划区,建设区总用地面积61917.61平方米(折合约92.83亩),净用地面积61917.61平方米(红线范围折合约92.83亩),土地综合利用率100.00%;项目建设遵循“合理和集约用地”的原则,按照水泥混凝土行业生产规范和要求进行科学设计、合理布局,符合水泥混凝土制造和经营的规划建设要求。 (五)项目用地控制指标

水泥水化热对混凝土早期开裂影响资料

水泥水化热对混凝土早期开裂影响 【来源:水泥工艺网】【2011年09月13日】 0 引言 对于预拌混凝土应用过程出现的早期开裂现象,有些混凝土专家归因于水泥比表面积太大和早期强度太高;而水泥界则认为,我国目前水泥的比表面积和早期强度并不比国外的高,混凝土的早期开裂主要是混凝土施工和养护不当所致。笔者认为,必须通过混凝土生产者和水泥生产商沟通,对早期裂缝的成因达成共识,在水泥生产、混凝土配制及施工养护等环节共同采取措施加以解决。“高强早强、高比表面积”及“水泥磨得太细”,这些都是表面现象,其本质是早期水化热太高及混凝土温度应力大的缘故。 1 水化热高是混凝土早期开裂的重要原因 混凝土早期开裂主要是由于初凝前后干燥失水引起的收缩应变和水化热产生的热应变所引起。关于混凝土的开裂,大家都已接受如下认识:抗拉强度越高,则混凝土开裂的危险性越小;弹性模量大、收缩大则开裂的危险性大;徐变大则开裂的危险性小。弹性模量越低,一定收缩量(或应变)产生的拉应力越小。混凝土处于塑性状态时弹性模量几乎为零,任何收缩或应变都不会产生拉应力,只有凝结固化具有一定强度后才有弹性模量,混凝土弹性模量随强度增加而增大。因此,混凝土强度的发展既有利于减少混凝土的开裂又因弹性模量增大而增加混凝土的开裂性。根据美国ACI建筑法规,混凝土弹性模量与标准圆柱体28d抗压强度的平方根成正比。混凝土徐变越大,应力松弛量越大,纯拉应力越小。因此,弹性模量低、徐变大及收缩小的混凝土开裂的危险小。高强混凝土因收缩

较大和徐变较小而较易开裂,而低强混凝土可能因收缩小和徐变大,而往往裂缝较少。关于干燥收缩及其避免或减少收缩的措施,大家都已达成共识,本文不拟赘述,但对于温度应变引起的应力往往认识不足。 温度应力是目前预拌混凝土早期开裂的一个很重要的因素。R.Springenschmid认为,混凝土的2/3应力来自于温度变化,1/3来自干缩和湿胀。水泥水化热是混凝土早期温度应力的主要来源。按照瑞典学者J.Byfors的观点,“混凝土拌和物成型的最初几个小时,还没有形成凝聚结构,此时主要表现为黏塑性。随着水化进行,塑性减少,弹性模量增大,成型后4~8h,弹性模量从10~102MPa迅速增长至104~105MPa,增加了3个数量级,而此期间抗压和抗拉强度以正常速度增长,因此极限抗拉应变由2h的4.0×10-3急剧下降至6~8h的0.04×10-3左右,即极限应变减小到原来的1/100,因此成型后6~8h极限抗拉应变达到最低值”。在混凝土终凝时,抗压强度只有0.7MPa,抗拉强度只有0.07MPa,混凝土弹性模量按1.0×104MPa计,只要产生大于0.07/(1.0×104)=7×10-6的应变即可使混凝土开裂。混凝土的热膨胀系数为10×10-6/℃,只要混凝土内外温差为1℃就足可使此时混凝土开裂。国外为使混凝土的早期不开裂,要求12h抗压强度不大于6MPa,相应的抗拉强度约0.6MPa,即使弹性模量仍按1.0×104MPa计,此时应变不应大于6×10-5,相当于内外温度梯度不大于6℃。而国内学者要求24h抗压强度不大于12MPa,相应的抗拉强度约1.2MPa,此时应变不应大于12×10-5,相当于内外温差不大于12℃。不幸的是,水泥的水化热释放主要集中在早期,水泥加水拌和后,立即出现放热(称为第一个放热峰),持续几分钟,这可能是铝酸盐和硫酸盐的溶解热。下一阶段是形成钙矾石所放出的热量,对于大部分

硫铝酸盐水泥发展现状

硫铝酸盐水泥的发展现状 梁鸣 重庆科技学院 摘要:硫铝酸盐水泥作为特种水泥品种之一,具有早期强度高、凝结时间短、抗腐蚀性好、抗冻融性好、液相碱度低、自由膨胀率低等优点,并且生产成本低,在目前具有广阔的市场前景。本文重点阐述了硫铝酸盐水泥的性能、用途、生产条件及状况。 关键词:硫铝酸盐水泥;特种水泥;性能;用途;生产条件;生产现状 The Current Situation Of Sulpho-aluminate LiangMing ChongQing Uinversity Of Science And Technology Abstract:Sulpho-aluminate, one of special cement varieties, has the advantages of higher strength in early period, shorter condensation time, better resistance to corrosion, better resistance to antifreeze, lower alkalinity in liquid phase, lower free expansive rate and so on. Moreover the production cost of sulpho-aluminate is low, so it has a large market foreground. In this article, we focus on the performance, application, production conditions and situations of sulpho-aluminate. Key words: sulpho-aluminate; special cement; performance; application; production conditions; production situation 随着现代工业的发展,到了20世纪初,仅仅有硅酸盐水泥、石灰、石膏等几种胶凝材料已远远不能满足重要工程建设的需要,因而一些专用水泥品种和特种水泥品种便应运而生。硫铝酸盐水泥是由矾土、石灰石、石膏按一定配比,经低温(1300℃~1350℃)煅烧而生产以硅酸二钙(C2S)、硫铝酸钙(C4A3S)为主要矿物相的熟料,再在该熟料中配加适量混合材(石灰石、石膏等)后,共同粉磨而制成的具有早期强度高强、凝结时间短、碱度低等一系列优异性能的水硬性胶凝材料[1]。硫铝酸盐水泥是1975年我国建筑材料科学研究院研制成功的,并于1982年获得国家发明二等奖[2],随着研究的不断深入这种水硬性胶凝材料被开发成了一系列特种水泥,包括高强硫铝酸盐水泥、自应力硫铝酸盐水泥、快硬硫铝酸盐水泥、低碱度硫铝酸盐水泥、膨胀硫铝酸盐水泥等5个硫铝酸盐水泥品种[3]。硫铝酸盐水泥熟料的生产所需要的热耗低,且其易磨性好,因而是一种节能水泥。2005年,我国硫铝酸盐水泥产量达到了125.3万吨。目前,全国硫铝酸盐水泥产量基本稳定在125万吨左右。 1硫铝酸盐水泥的性能 1.1早期强度高 在目前企业所生产的各种快硬水泥中,硫铝酸盐水泥的早期强度性能要比硅酸盐水泥高3个标号,最高达725,其3d或7d的抗压强度指标也与普通硅酸盐水泥

2016-2020年水泥混凝土预制构件市场深度调研及投资战略咨询报告

水泥混凝土预制构件 市场深度调研及投资战略咨询报告 2016-2020

核心内容提要 产业链(Industry Chain) 狭义产业链是指从原材料一直到终端产品制造的各生产部门的完整链条,主要面向具体生产制造环节; 广义产业链则是在面向生产的狭义产业链基础上尽可能地向上下游拓展延伸。产业链向上游延伸一般使得产业链进入到基础产业环节和技术研发环节,向下游拓展则进入到市场拓展环节。产业链的实质就是不同产业的企业之间的关联,而这种产业关联的实质则是各产业中的企业之间的供给与需求的关系。 市场规模(Market Size) 市场规模(Market Size),即市场容量,本报告里,指的是目标产品或行业的整体规模,通常用产值、产量、消费量、消费额等指标来体现市场规模。千讯咨询对市场规模的研究,不仅要对过去五年的市场规模进行调研摸底,同时还要对未来五年行业市场规模进行预测分析,市场规模大小可能直接决定企业对新产品设计开发的投资规模;此外,市场规模的同比增长速度,能够充分反应行业的成长性,如果一个产品或行业处在高速成长期,是非常值得企业关注和投资的。本报告的第三章对手工工具行业的市场规模和同比增速有非常详细数据和文字描述。 消费结构(consumption structure) 消费结构是指被消费的产品或服务的构成成份,本报告主要从三个角度来研究消费结构,即:产品结构、用户结构、区域结构。1、产品结构,主要研究各类细分产品或服务的消费情况,以及细分产品或服务的规模在整个市场规模中的占比;2、用户结构,主要研究产品或服务都销售给哪些用户群体了,以及各类用户群体的消费规模在整个市场规模中的占比;3、区域结构,主要研究产品或服务都销售到哪些重点地区了,以及某些重点区域市场的消费规模在整个市场规模中的占比。对消费结构的研究,有助于企业更为精准的把握目标客户和细分市场,从而调整产品结构,更好地服务客户和应对市场竞争。

浅谈稻壳水泥混凝土

姓名:粟东班级:环境工程10-1 学号:20104429 浅谈稻壳水泥混凝土 摘要:稻壳水泥混凝土是以稻壳为骨料,水泥为胶结剂,107 胶作增强剂的混凝土材料。该材料具有原料来源丰富,价格便宜,施工方便,保温性能好,抗腐蚀等特点。不同于以往轻混凝土之处,在于该混凝土的骨料不需进行任何预处理,与用砂石做骨料的混凝土具有完全相同的施工工艺。该混凝土可以加入钢筋或铁丝网做成预制块,从而大大提高其整体强度,也可用水泥砂浆进行粘接和填缝。 关键词:稻壳水泥混凝土轻混凝土保温材料 一、前言 水泥混凝土的主要优点在于原料来源丰富、价格便宜、施工方便、耐腐蚀、强度高等。因此在许多方面都是不可替代的室内外主要建筑材料。但采用砂石做骨料的水泥混凝土自重大。 轻混凝土虽然强度较低,但自重小,因此,对强度要求不高的非承重构件,若能采用轻混凝土,整个建筑物的自重将大为降低,不仅使承载构件可以采用较小的截面,而且基础尺寸也可相应减小,从而降低建筑造价。 稻壳是稻米加工后的副产品。稻壳约占稻谷重量的20%, 而目前世界上至少有1/ 3 的人以食稻米为主。水稻的主要产地集中在亚洲, 其中, 我国年产稻谷约2 亿t , 折算成稻壳年产量约4 000万t , 占世界总产量的30% 以上, 居世界第一位。将其用于混凝土中,不仅不同于以往轻混凝土,而且该混凝土的骨料不需进行任何预处理,与用砂石做骨料的混凝土具有完全相同的施工工艺。具有原料来源丰富,价格便宜,施工方便,保温性能好,抗腐蚀等特点。 二、原料的选择 1 稻壳 随着科学技术的进步,稻壳的开发利用在国内外得到了迅速的发展,但与其年产量相比,利用率仍然很低。稻壳约占稻谷重量的20 % ,稻壳内含可分解的养份很少,其主要成分是SiO2、木质素、纤维素等。从微观结构看,稻壳是以网状高纯度SiO2为骨架,再包裹一层致密的纤维素。因此稻壳孔隙度大、密度小、保温性能好、耐腐蚀能力强。它不仅具有非常好的韧性,而且还具有一定的强度。稻壳颗粒均匀,粒度适中,湿润后体积不膨胀,易于压实,这有利于拌和均匀和提高混合料的密实度。此外稻壳内含有少量钾,因此稻壳灰的水溶液呈弱碱性,

赤泥制备硫铝酸盐水泥熟料的物相组成及水化性能

赤泥制备硫铝酸盐水泥熟料的物相组成及水化性能 赵宏伟1,李金洪1,刘 辉2 (11中国地质大学矿物材料国家专业实验室,北京 100083; 21山东铝业股份有限公司,山东淄博 255052) 摘 要:以赤泥为主要原料,经配方设计,在1300℃条件下烧制硫铝酸盐水泥熟料。运用X 粉晶衍射(XRD )和扫描电镜 (SEM )等手段,对水泥熟料形成历程、水化产物进行分析。结果表明,水泥熟料有较好的易烧性,熟料主要矿物发育良好。水化产 物以花瓣状或片状的AFm 、短柱状的AFt 及C 2S 2H 等胶体为主,浆体结构致密。水泥净浆试块强度测试结果表明,1d ,3d ,28d 龄期的抗压强度分别为42MPa ,50MPa ,65MPa ,抗折强度分别为810MPa ,815MPa ,1215MPa ,早期强度较高且增进稳定。 关键词:环境工程;赤泥;水泥熟料;硫铝酸盐 中图分类号:X758;TQ17217;TF821 文献标识码:A 文章编号:1001-0211(2006)04-0119-05 收稿日期:2006-05-16 基金项目:国家自然科学基金资助项目(40602008); 矿物材料国家专业实验室基金项目(A05005) 作者简介:赵宏伟(1983-),男,陕西眉县人,助教,主要从事非金 属矿物材料等方面的研究。 赤泥是工业氧化铝生产中排放的高碱性泥浆 (p H 10~1215),化学成分极其复杂,属于工业有害废渣[1]。每生产1t 氧化铝约排放110~116t 赤泥,全世界每年赤泥排放量约为6600万t [1-2],我国赤泥年排放量高达300万t ,当前赤泥的利用率仅为15%左右[3]。因此,赤泥的治理与综合利用问题已 引起国内外普遍关注,是目前铝工业急需解决的重要课题之一。近年来,赤泥用于水泥、混凝土方面的研究,获得了较好的成果[4-9],但因赤泥的含碱R 2O (即Na 2O +K 2O )较高(一般在215%~310%),不能直接大量作为烧制普通硅酸盐水泥熟料的原料,大部分是作为水泥或混凝土等胶凝材料的性能调节型辅助胶凝组分掺杂。据文献的研究,与硅酸盐水泥相比,碱对硫铝酸盐水泥的影响要小,可以利用高碱原料或工业废渣生产硫铝酸盐水泥 [10] 。Manesh Singh 等人曾经做过赤泥烧制硫铝酸盐水泥的尝 试[1-2,11]。在已有研究的基础上,探索利用赤泥直接作为原料,制备硫铝酸盐水泥,获得了较好的性能,使赤泥的直接利用率可提高到40%左右。 1 实验方法 111 试验原料 试验用赤泥为山东铝业公司烧结法生产氧化铝冶炼过程中排出堆放的陈赤泥,呈棕黄色板结块状, 经105℃充分干燥,粉磨过74 μm 筛密封备用。石灰石取自北京市门头沟区军庄镇石灰石矿山,矾土由首钢耐火材料厂提供。赤泥、石灰石、矾土的化学成分见表1。硫酸钙由北京化学试剂厂生产,为分析纯。力学性能测试对比试验采用425标号的锏牌快硬硫铝酸盐水泥,由北京赛阳特种水泥公司生产。 表1 原料的化学组成(w i /%) Table 1 Chemical composition of raw materials 原料CaO SiO 2Fe 2O 3/FeO Al 2O 3MgO Na 2O 石灰石 5315221820101012201470102赤 泥351141811413133714211322123矾 土0111211411159215301050106原料K 2O P 2O 5TiO 2MnO Loss Total 石灰石010*********<010143108100132赤 泥01460123313501051718799157矾 土 0106 0119 3176 <0101 0120 100125 112 配料设计及试样制备 赤泥中铁含量较高,拟设计该硫铝酸盐水泥熟料的主要矿物为C 4A 3 S (C 代表CaO ,A 代表Al 2O 3, S 代表SO 3,S 代表SiO 2,下同)、C 2S (S 代表SiO 2,下同)和C 4AF (F 代表Fe 2O 3,下同),设计熟料的矿物 组成及原料配比见表2,化学组成见表3。表2 设计熟料的矿物组成与原料配比(w i /%) Table 2 Mineral composition of designed clinker and raw materials 试样 编号设计矿物组成C 4A 3 S C 2S C 4AF 原料配比 赤泥石灰石矾土硫酸钙Z 2160241640134261422219810126Z 225630143713930149221719141Z 235236123410234173221438182Z 244842103016039114221108116Z 25 44 48 8 26189 43189211767146 第58卷 第4期2006年11月 有 色 金 属Nonferrous Metals Vol 158,No 14 November 2006

混凝土行业运行现状及“十三五”发展趋势展望

混凝土行业运行现状及“十三五”发展趋势展望 近年来随着国家经济结构调整逐渐深入以及供给侧改革的加码,水泥等基础建材行业首当其冲,2015年全国水泥需求出现下降走势,官方统计的规模以上企业的商品混凝土产量同比仍有2.14%的增长,其他渠道统计的整体预拌混凝土产量均出现明显下滑。2016年以来,尽管全国固定资产投资增速仍延续下降走势,但基础设施建设和房地产投资增速出现明显回复,混凝土的需求也因此得到明显提升。 一、混凝土行业经济运行现状 1.1需求端:基建与房地产投资加速,有力拉动混凝土需求 2016年前三个季度,全国固定资产投资完成42.7万亿元,同比增长8.2%,增速较去年同期下滑2.1个百分点,较去年全年下滑1.7个百分点;其中与拉动混凝土需求有关的建筑安装工程完成30万亿元,同比增长9.7%,增速较去年同期下滑2个百分点,较去年全年下滑1.6个百分点。 图1:2016年前三季度全国固定资产投资增长及与历史情况比较(万元,%) 数据来源:国家统计局尽管整体固定资产投资增速呈现下滑态势,但从拉动混凝土需求的细分行业来看,基础设施投资、房地产两大重点需求终端投资增速与去年相比却出现上升走势。前三季度基础设施建设中占比47%左右的公共设施管理业投资同比增长23.6%,增速较去年同期上涨3.6个百分点;占基础设施建设投资近30%的道路运输业前三季度投资同比增长15%,增速较去年同期下降3个百分点,较去年全年下降1.7个百分点;另外占比较大的铁路运输业投资增速明显上涨,水利管理业投资增速略有下滑。 图2:2016年前三季度基础设施建设投资增长情况(万元,%)

数据来源:国家统计局在2015年下半年全国房地产销售市场逐渐升温,今年更是出现火爆行情,在去库存及火热销售行情的双面刺激下房地产投资升温,前三季度投资增速为5.8%,较去年同期上涨3.2个百分点;新开工面积在去年持续负增长的情况下呈现快速上涨局面,上半年累计新开工面积同比增长近15%,后期开始回落,前三季度降至6.8%。 图3:2016年前三季度房地产开发投资增长情况(万元,%) 数据来源:国家统计局房地产投资升温和基建投资的较快增长是保障混凝土需求增长的重要支撑,在商品混凝土消耗量增长的同时,混凝土电杆、混凝土预制桩等制品产量也出现明显上升,较去年全年增长率有明显好转。 1.2供给端:产量增速上涨,价格低位回升 2015年,中国混凝土与水泥制品协会官方统计商品混凝土产量16.4亿立方米,同比增长跌至2.14%;其他统计渠道统计的整体预拌混凝土产量不一,且走势也出现差异:中国建

低温养护下硫铝酸盐水泥的水化进程及强度发展

第45卷第2期2017年2月 硅酸盐学报Vol. 45,No. 2 February,2017 JOURNAL OF THE CHINESE CERAMIC SOCIETY https://www.wendangku.net/doc/a54715811.html, DOI:10.14062/j.issn.0454-5648.2017.02.10 低温养护下硫铝酸盐水泥的水化进程及强度发展 王培铭,李楠,徐玲琳,张国防 (先进土木工程材料教育部重点实验室,同济大学材料科学与工程学院,上海 200092) 摘要:研究了0、5 ℃和20 ℃养护下硫铝酸盐水泥的水化产物、水化程度及强度发展。结果表明:低温(0 ℃和5 ℃)养护延缓了硫铝酸盐水泥的水化,早期水化程度大幅减小,并出现二水石膏结晶;但2~3 d期间水化程度出现显著增长,二水石膏也被完全消耗。低温养护未阻碍水化反应的持续快速进行,也未改变水化产物的种类,但对其数量产生影响。抗压强度的发展规律与水化程度基本一致,低温养护下1 d的抗压强度显著降低,但后期增长明显,5 ℃养护28 d的抗压强度甚至超过20 ℃的。早期抗压强度的发展主要受制于水泥的水化速率和水化程度,后期的增长则更多地取决于主要水化产物的量变和微观结构的发展。 关键词:硫铝酸盐水泥;低温养护;水化程度;抗压强度;水化产物;微观结构 中图分类号:TQ172.75 文献标志码:A 文章编号:0454–5648(2017)02–0242–07 网络出版时间:2017-01-18 21:53:40 网络出版地址:https://www.wendangku.net/doc/a54715811.html,/kcms/detail/11.2310.TQ.20170118.2153.002.html Hydration Characteristics and Strength Development of Sulphoaluminate Cement Cured at Low Temperature WANG Peiming, LI Nan, XU Linglin, ZHANG Guofang (Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 200092, China) Abstract: The hydrate assemblage, hydration degree and compressive strength development of calcium sulphoaluminate cement pastes cured at 0, 5 ℃ and 20 ℃ were investigated. The results indicate that the hydration process is significantly delayed by the low temperature (0 ℃ and 5 ℃) curing, decreasing the degree of hydration in the early ages. Meanwhile, formation of gypsum is detected. However, the hydration degree increases significantly during 2–3 d, along with the completely consumption of gypsum. Neither the rapid hydration process is hindered nor the hydration products are changed by low temperature curing, but the amount of hydrates is affected. Compressive strength development is basically the same with the hydration degree evolution. The compressive strength at 1 d decreases sharply at 0 ℃ and 5 ℃, but increase significantly in the later ages. The 28 d compressive strength of pastes curing at 5 ℃ even exceed that at 20 ℃. It is revealed that the development of compressive strength mainly depends on the hydration rate and degree of cement paste in the early ages, while the growth of it in the later ages more depends on the quantitative change of main hydration products and the evolution of microstructure. Keywords: sulphoaluminate cement; low temperature curing; hydration degree; compressive strength; hydration product; microstructure 与硅酸盐水泥相比,硫铝酸盐水泥具有生产能耗低、早期强度高、抗冻性及耐久性好等特点,因而在冬季施工工程中得到广泛应用。养护温度对硫铝酸盐水泥水化速率、水化产物的物相组成及宏观性能发展等方面具有至关重要的作用。常温(20 ℃)下,硫铝酸盐水泥的主要水化产物为钙矾石(AFt)晶体,是其早期强度的主要来源[1]。邓君安等[2]的研究已经证明,硫铝酸盐水泥在负温(–5 ℃)下水化反应 收稿日期:2016–09–11。修订日期:2016–11–10。 基金项目:国家自然科学基金(51402216,51572196);高性能土木工程材料国家重点实验室开放基金;同济大学大型仪器设备开放 测试基金(0002015037)资助项目。 第一作者:王培铭(1952—),男,教授,博士研究生导师。Received date:2016–09–11. Revised date: 2016–11–10. First author: WANG Peiming (1952–), male, Professor. E-mail: tjwpm@https://www.wendangku.net/doc/a54715811.html,

相关文档