文档库 最新最全的文档下载
当前位置:文档库 › 晶体管单级共射放大电路

晶体管单级共射放大电路

晶体管单级共射放大电路
晶体管单级共射放大电路

5.2 晶体管单级共射放大电路

一.实验目的

1.学会晶体管单级共射放大电路静态工作点的测量和调试方法,分析静态工作点对放大电路性能的影响。

2.掌握晶体管单级共射放大电路电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。

3.熟悉常用电子仪器及模拟电子实验装置的使用。

4.掌握模拟电子电路基本调试技术,培养训练排除故障的能力。 二、 预习要求

1.预习放大电路静态工作点及动态性能指标(A U 、R i 、R o 、U opp 、BW )的调整测量方法。

2.复习实验电路工作原理,熟悉实验内容、方法和步骤。 三.实验电路与原理

图5-7为晶体管单级共射放大电路。放大电路的基本任务是将输入信号给以不失真的放大,实现输入变量对输出变量的控制作用。要使放大电路正常工作,除有保证放大电路正常工作的电压外,还要有合适的静态工作点。若工作点选得太高,放大器在加入交流信号后容易引起饱和失真;若工作点选得太低,容易引起截止失真。一般提到工作点主要是指I CQ 和U CEQ 。

o

图5-7 晶体管单级共射放大电路

实验电路为分压式偏置工作点稳定电路,它的偏置电路采用R b1和R b2组成分压电路,通过改变上偏置电阻R b1的阻值来确定合适的静态工作点Q 。当流过偏置电阻R b1 (R 和电位器R p 的阻值)和R b2 的电流远大于晶体管的基极电流I B 时(一般5~10倍),则它的静态工作点可用下式估算

CC b b b B V R R R U 2

12

+=

B

C E BE

B E

C I I R U U I I =-=

≈β,

)(e C C CC CE R R I V U +-=

放大电路的动态指标是在放大电路处于线性工作状态下进行测试的,本实验电路的主要性能指标可由下列各式估算。

be

L

C U r R R A //β

-= R i =R b1 //R b2 //r be

R o ≈ R c

由于电子器件性能的分散性比较大,因此在设计和制作晶体管放大电路时,离不开测量和调试技术。在设计前应测量所用元器件的参数,为电路设计提供必要的依据,在完成设计和装配以后,还必须测量和调试放大电路的静态工作点和各项性能指标。一个优质放大器,必定是理论设计与实验调整相结合的产物。因此,除了学习放大电路的理论知识和设计方法外,还必须掌握必要的测量和调试技术。

放大电路的测量和调试一般包括:放大电路静态工作点的测量与调试,消除干扰与自激振荡及放大电路各项动态参数的测量与调试等。 1.放大电路静态工作点的测量与调试 1) 静态工作点的测量

测量放大电路的静态工作点,应在输入信号U i = 0的情况下进行,即将放大电路输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流I C 以及各电极对地的电位U B 、U C 和U E 。一般实验中,为了避免断开集电极,所以采用测量电压,然后算出I C 的方法,例如,只要测出U E ,即可用I C ≈ I E =U E /R e 算出I C (也可根据I C =(V CC -U C )/R C ,由U C 确定I C ),同时也能算出U BE =U B -U E ,U CE =U C -U E 。为了减小误差,提高测量精度,应选用内阻较高的直流电压表。 2) 静态工作点的调试

静态工作点是否合适,对放大电路的性能和输出波形都有很大影响。如工作点偏高,放大电路在加入交流信号以后易产生饱和失真,此时U o 的负半周将被削底,如图5-8(a)所示;如工作点偏低则易产生截止失真,即U o 的正半周被缩顶,如图5-8(b)所示。这些情况都不符合不失真放大的要求。所以在选定工作点以后还必须进行动态调试,即在放大器的输入端加入一定的U i ,检查输出电压U o 的大小和波形是否满足要求。如不满足,则应调节静态工

作点的位置。

(a) (b) (c)

图5-8 放大电路的失真波形

改变电路参数U CC 、R C 、R b (R b1、R b2)都会引起静态工作点的变化,工作点“偏高”或“偏低”不是绝对的,应该是相对信号的幅度而言,如信号幅度很小,即使工作点较高或较

低也不一定会出现失真。所以确切地说,产生波形失真是信号幅度与静态工作点设置配合不当所致。如需满足较大信号幅度的要求,静态工作点最好尽量靠近交流负载线的中点。 2.放大电路动态指标测试

放大电路动态指标测试有电压放大倍数、输入电阻、输出电阻、最大不失真输出电压(动态范围)和通频带等。

1) 电压放大倍数A u 的测量

调整放大器到合适的静态工作点,然后加入输入电压U i ,在输出电压U o 不失真的情况下,用交流毫伏表测出U i 和U o 的有效值,则

i

o

U U U A =

2)输入电阻R i 的测量

为了测量放大器的输入电阻,按图5-9电路在被测放大器的输入端与信号源之间串入一已知电阻R ,在放大器正常工作的情况下,用交流毫伏表测出U s 和U i ,则根据输入电阻的定义可得

R U U U R U U I U R i

S i

R i i i i -===

图5-9 输入、输出电阻测量原理图

测量时应注意:

① 由于电阻R 两端没有电路公共接地点,所以测量R 两端电压U R 时必须分别测出U s 和U i ,然后按U R =U s -U i,求出U R 值。

② 电阻R 的值不易取得过大或过小,以免产生较大的测量误差,通常取R 与R i 为同一数量级为好,本实验可取R =1 K Ω~2 K Ω。 3) 输出电阻R o 的测量

按图5-9电路,在放大器正常工作条件下,测出输出端不接负载R L 的输出电压U o 和接入负载后的输出电压U L ,根据

o L o L

L U R R R U +=

即可求出R o

L L

o

o R U U R )1(

-= 在测试中应注意,必须保持R L 接入前后输入信号的大小不变。 4) 最大不失真输出电压U opp 的测试(最大动态范围)

如上所述,为了得到最大动态范围,应将静态工作点调在交流负载线的中点。为此在放

大器正常工作情况下,逐步增大输入信号的幅度,并同时调节R P (改变静态工作点),用示波器观察U o ,当输出波形同时出现削底和缩顶现象时,说明静态工作点已调在交流负载线的中点。然后反复调整输入信号,使波形输出幅度最大,且无明显失真时,用示波器直接测量U opp 。

5) 放大器频率特性的测量

单管阻容耦合放大电路的幅频特性曲线如图5-10所示,A um 为中频电压放大倍数,通常规定电压放大倍数随频率变化下降到中频放大倍数的1/2倍,即0.707Aum 所对应的频率分别称为下限频率?L 和上限频率?H ,则通频带

?BW =?H -?L

放大器的幅率特性就是测量不同频率信号时的电压放大倍数A u 。为此,可采用前述测A u 的方法,每改变一个信号频率,测量其相应的电压放大倍数,测量时应注意取点要恰当,在低频段与高频段应多测几点,在中频段可以少测几点。此外,在改变频率时,要保持输入信号的幅度不变。

?

A A 0.707A

图5-10 幅频特性曲线

四.实验内容 1.组装电路

(1)用万用表检查实验板上所用三极管的好坏。

(2)按图5-7所示组装电路。为防止干扰,各电子仪器的公共端必须连在一起,同时函数发生器、交流毫伏表和示波器的引线应采用专用测试线。

2.调整测量静态工作点

接通电源前,先将R P 调到最大,信号输入U i =0(可直接将信号输入端接地)。接通+12V 电源,调节R P 使I C =2.0mA(即U E =3.0V),测量此时的静态工作点,将结果填入表5-1中。

表5-1 静态工作点的测量

3.测量电压放大倍数A u

将静态测试时的信号输入端接地线断开,调节函数发生器,使其输出频率?为1KH Z 、信号幅值为15mV 的正弦信号U s ,将此信号加入放大电路的U i

输入端,用示波器同时观察放大电路的输入、输出波形。在输出波形放大且不失真的情况下,用示波器或交流毫伏表分别测出U i 、U o 值,求出放大倍数。

保持U i 不变,改变R L 值,观察负载变化对电压放大倍数的影响,将测量结果填入表5-2中。

表5-2 电压放大倍数的测量

实验过程中,有时由于测试仪器连线过长或电路中分布参数的影响,在示波器上显示的输入、输出波形扰动过大而不能完成正常的测试,这时可利用数字存储示波器的“数字滤波”功能先将扰动信号滤除,再完成测试要求。

操作方法:在CH1或CH2 显示界面下, 按“数字滤波”,系统显示“FILTER ”数字滤波功能菜单,打开数字滤波器,设置滤波类型(本实验为低通滤波),调节示波器水平“POSITION ”旋钮,设置频率上限和下限,选择或设定滤波频率范围。

4.测量输入电阻R i 、输出电阻R o

置R C =3K Ω,R L =3K Ω,I C =2.0mA 。输入1KH Z 正弦信号,在输出电压U o 不失真的情况下,用交流毫伏表测出U s 、U i 和U L 记入表5-3中。

保持U s 不变,断开R L ,测量输出电压U o ,记入表5-3中。

5. 观察静态工作点变化对输出波形的影响

置R C =3K Ω,R L =3K Ω,U i = 0,调节R P 使

I C = 2.0mA (可通过测量U E 来估算I C )测出U CE 值,再逐步加大输入信号,使输出电压U o 足够大但不失真。然后保持输入信号不变,分别增大和减小R P ,使波形出现失真,绘出U o 的波形,并测出失真情况下的I C 和U CE 值,把结果计入表5-4中。

表5-4 静态工作点对输出波形的影响

i 6. 测量最大动态范围U opp (选做)

首先将工作点设在合适位置,适当增大输入信号U i 幅度,用示波器观察输出波形。如出现上、下不对称的失真波形,可调节R P 修正工作点,使输出不失真。然后再继续增大输入信号反复调节,直到输出端得到最大的不失真输出波形,用示波器或交流毫伏表测量U opp 及U o ,记入表5—5中。

7.测量幅频特性曲线(选做)

(1)取I c = 2.0mA,R C =3KΩ,R L=3KΩ,U i =15mv, ?=1KH Z,在输出波形不失真的情况下,用交流毫伏表或示波器测出U o值。

(2)保持U i大小不变,增加或减少输入信号频率,输出电压U o,即A u将会减小。当U o减小到原输出电压的0.707倍(下降3dB)时,此时对应的输入信号频率即分别为放大电路的上限截止频率?H和下限截止频率?L,即通频带BW=?H -?L。

五、注意事项

1.直流电源、函数发生器、示波器和实验电路板等要共地,以免引起干扰。

2.要保证在输出电压波形不失真的前提下进行电路指标的测试。

六、实验仪器

数字存储示波器;DDS任意波形函数发生器;数字万用表;交流毫伏表;网络智能模拟电路实验装置。

七、思考题

1.调整静态工作点时,R b1不能直接用电位器调节,而要用一固定电阻与电位器串联,为什么?

2.当调节偏置电阻R b1,使放大器输出波形出现饱和或截止失真时,晶体管的管压降U CE怎样变化?

3.分析下列各输出波形分别是何种失真?是什么原因造成的?如何解决?

(1)正弦波上半部出现削波;(2)下半部出现削波;(3)上、下同时削波。

4.在测试A u,R i和R o时怎样选择输入信号的大小和频率? 为什么信号频率一般选1KH Z,而不选100KH Z或更高?

5.能否用数字万用表测量放大电路的幅频特性?为什么?

6.测试中,如果将函数发生器、交流毫伏表、示波器中任一仪器的二个测试端子接线换位(即各仪器的接地端不连在一起),将会出现什么问题?

八、实验报告

1.列表整理测量结果,并把实测的静态工作点、电压放大倍数、输入电阻、输出电阻之值与理论计算值相比较(取一组数据进行比较),分析产生误差原因。

2.将实测值与理论估算值比较,如有误差分析其原因。

3.记录实验过程中出现的故障,产生故障的原因及排除故障的方法。

4.撰写的实验报告应注意图表齐全、结论简明,并回答思考题。

5.分析讨论在调试过程中出现的问题。

共射极基本放大电路解读

实验一共射极基本放大电路 一、实验目的 1、掌握放大器静态工作点的调试及其对放大性能的影响。 2、学习测量放大器Q点,Av,r i,r0的方法,了解共射级电路特性。 二、实验环境 1、Electronics Workbench5.12软件 2、器件:有极性电容滑动变阻器三极管信号发生器直流电源示波器 三、实验内容 图1.1为一共射极基本放大电路,按图连接好电路 . . 图1.1 共射极基本放大电路 1、静态分析 选择分析菜单中的直流工作点分析选项(Analysis/DC operating Point),电路静态分析结果如图1.2所示,分析结果表明晶体管Q1工作在放大电路。 . 图1.2 共射极基本放大器的静态工作点 2、动态分析 用仪器库的函数发生器为电路提供正弦输入信号V i(幅值为5mV,频率为10KHz)用示波器可观察输入、输出信号如图1.3所示,图中V A表示输入电压(电路中的节点4)V B为输出电压(电路中的节点5),由图波形图可观察到电路的输入、输出电压信号反相位关系。

图1.3共射极放大电路的输入、输出波形 由上图可得: 放大器的放大倍数:Av=801.54mv/4.97mv=161.3 理论计算:rbe=300+(1+β)×26mv/I E=300+26mv/I BQ=300+26mv/0.0226mA=1450Ω Av=-βR L′/ r be= 250×1000Ω/1450Ω=172.4 (其中R L′为RL与Rc的并联值,β的值约为250) 实验结果与理论值基本相符 3、频率响应分析 选择分析菜单中的交流频率分析项(Analysis/AC Frequency Analysis),在交流频率分析参数设置对话框中设定:扫描起始频率为1Hz,终止频率为1GHz,扫描形式为十进制,纵向刻度为线性,节点5做输出节点。分析结果如图2.4所示。 图1.3 共射极基本放大电路的频率响应 由图1.3可得:电路的上限频率(x1)为10.78Hz,下限频率(x2)为23.1MHz,放大器的通频带约为23.1MHz,频率响应图理论结果基本相符。 1、测量放大器的输入、输出电压: (1)输入电阻的测量 在A点与B点之间串接一个2KΩ的电阻,如图1.1,测量 A点与B点的电位就可计算输入电阻Ri。 (2)、输出电阻的测量 用示波器监视,在输出不失真是,分别测量有负载是和无负载时的Vo,即可计算Ro 将上述测量及计算填入下表:

实验三_晶体管共射级单管放大器实验报告

实验三晶体管共射级单管放大器实验报告学号:姓名: 一、题目:晶体管共射级单管放大器 二、实验原理: 下图为电阻分压式工作点稳定单管放大 器实验电路图。晶体管共射电路是电压反向放大器。当在放大器的输入端加入输入信号U i后,在放大器的输出端便可得到一个与U i相位相反,幅值被放大了的输出信号U o,从而实现了电压放大。 实验电路图 三、实验过程

1.放大器静态工作点的测量与测试 ①静态工作点的测量 置输入信号U i=0,将放大器的输入端与地端短接,然后选用量程合适的万用表分别测量晶体管的各电极对地的电位U、U和U。通过 I=(U-U)/R 由U确定I。 ②静态工作点的调试 在放大器的输入端加入一定的输入电压U i,检查输出电压U o的大小和波形。若工作点偏高,则放大器在加入交流信号后易产生饱和失真,若工作点偏低则易产生截止失真。 2.测量最大不失真输出电压 将静态工作点调在交流负载的中点。在放大器正常工作的情况下,逐步加大输入信号的幅度,并同时调节R w,用示波器观察U o,当输出波形同时出现削底和缩顶现象时,说明静态工作点已调在交流负载线的中点。然后反复调整输入信号,使波形输出幅度最大,且无明显失真时,用示波器直接读出U opp。 3.测量电压放大倍数 调整放大器到合适的静态工作点,然后加入输入电压U i,在输出电压U o不失真的情况下,测出U i和U o的有效值, A u=U o/U i 4.输入电阻R i的测量 在被测放大器的输入端与信号源之间串入一已知电阻R,

在放大器正常工作的情况下,用毫伏表测出U s和U i。 根据输入电阻的定义可求出R i。 5.输出电阻R o的测量 在放大器正常工作条件下,测出输出端不接负载的输出电压U o和接入负载的输出电压U L。 U L=R L U O /(R O+R L) 计算出Ro。 在测试中保证负载接入前后输入信号的大小不变。 四、实验数据 1.调试静态工作点 测量值计算值 U(V)U(V)U(V)R(K)U(V)U(V)I(mA) 2.测量电压放大倍数 ∞

PNP型单级共射放大电路

PNP 型单级共射放大电路 一、 实验目的 1、 设计一个PNP 型共射放大器,使其放大倍数为80,工作电流为80mA 。 二、 实验仪器 1、 示波器 2、信号发生器 3、数字万用表 4、交流毫伏表 5、直流稳压源 三、 实验原理 1、PNP 型单级共射放大器电路图如下: 2、 静态工作点的理论计算: 静态工作点可由以下几个关系式确定: 4 34 B C C R U V R R = + 5 B BE C E U U I I R -≈= 由以上式子可知,当管子确定后,改变CC V 、3R 、4R 中任意参数值,都会导致静态工作点的变化。当电路参数确定后,静态工作点主要通过P R 调整。工作点偏高,输出信号波形易产生饱和失真;工作点偏低,输出波形易产生

截止失真。但当输入信号过大时,管子将工作在非线性区,输出波形会产生双向失真。当输出波形不很大时,静态工作点的设置应偏低,以减小电路的 静态损耗。 3、电压放大倍数的测量与计算 电压放大倍数是指放大电路输出端的信号电压(变化电压)与输入端的信号电压之比, 即:o u i u A u = 电路中有12 (//) u be R R A r β =-、 26 '(1) be bb EQ mV r r I β =++ 其中,' bb r一般取300Ω。 当放大电路静态工作点设置合理后,在其输入端加适当的正弦信号,同时用示波器观察放大电路的输出波形,在输出波形不失真的条件下,用交流毫伏表或示波器分别测量放大电路的输入、输出电压,再按定义式计算即可。 四、实验内容及结果 1、按图连接电源,确认电路无误后接通电源。 2、在放大器的输入端加入频率f=1KHz,幅值约为10mV的正弦信号,用示波器观察,同时,用示波器的另一端监视放大器的输出电压Uo的波形。调整Rp的阻值,使静态工作点处于合适位置,此时,输出波形最大而不失真。 3、测量电路工作电流Ic并与理论计算值比较

2.1晶体管单级放大器

2.1晶体管共射极单管放大器 一、实验目的 1、掌握用multisim仿真软件分析单级放大器主要性能指标的方法。 2、掌握晶体管放大器静态工作点的调试和调整方法,观察静态工作点对放大器输出波形的影响。 3、测量放大器的放大倍数、输入电阻和输出电阻。 二、实验原理 实验电路如图2.1-1所示,采用基极固定分压式偏置电路。电路在接通直 流电源V cc 而未加入信号(V i =0)时,三极管三个极电压和电流称为静态工作点, 即 V BQ =R 2 V CC /(R 2 +R 3 +R 7 ) (2.1-1) I CQ =I EQ =(V BQ -V BEQ) /R 4 (2.1-2) I BQ =I EQ /β(2.1-3) V CEQ =V CC -I CQ (R 5 +R 4 )(2.1-4) 1、放大器静态工作点的选择和测量

放大器的基本任务是不失真的放大小信号。为了获得最大不失真输出电压,静态工作点应选在输出特性曲线上交流负载线的中点。若工作点选的太高,则容易引起饱和失真;而选的太低,又易引起截止失真。 静态工作点的测量是指在接通电源电压后放大器输入端不加信号时,测量晶 体管的集电极电流I CQ 和管压降V CEQ 。其中V CEQ 可直接用万用表直流电压档测C-E 极间的电压既得,而I CQ 的测量则有直接法和间接法两种: (1)直接法:将万用表电流档串入集电极电路直接测量。此法精度高,但要断开集电极回路,比较麻烦。 (2)间接法:用万用表直流电压档先测出R 5上的压降,然后根据已知R 5 算出 I CQ ,此法简单,在实验中常用,但其测量精度差。为了减小测量误差,应选用内 阻较高的电压表。 当按照上述要求搭好电路,在输入端引入正弦信号,用示波器观察输出。静态工作点具体的调节步骤如下: 根据示波器上观察到的现象,做出不同的调整动作,反复进行。当加大输入信号,两种失真都出现,减小输入信号,两种失真同时消失,可以认为此时的静态工作点正好处于交流负载线的中点,就是最佳的静态工作点。去掉输入信号, 测量此时的V CQ ,就得到了静态工作点。 2、电压放大倍数的测量 电压放大倍数是指放大器的输入电压Ui输出电压Uo之比 A V =U O /U i (2.1-5) 用示波器分别测出U O 和U i ,便可按式(2.1-5)求得放大倍数,电压放大倍数与 负载R 6 有关。 3、输入电阻和输出电阻的测量 (1)输入电阻Ri用电流电压法测得,电路如图2.1-3所示。在输入回路中 串接电阻R=1kΩ,用示波器分别测出电阻两端电压V i 和V s ,则可求得输入电阻 R i 为 R i =V i /R i =V i ×R/(V s -V i )(2.1-6)

晶体管共射极单管放大电路实验报告

晶体管共射极单管放大 电路实验报告 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

实验二 晶体管共射极单管放大器 一、实验目的 1.学会放大器静态工作点的调式方法和测量方法。 2.掌握放大器电压放大倍数的测试方法及放大器参数对放大倍数的影 响。 3.熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图2—1为电阻分压式工作点稳定单管放大器实验电路图。偏置电阻R B1、R B2组成分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号后,在放大器的输出端便可得到一个与输入信号相位相反、幅值被放大了的输出信号,从而实现了电压放大。 三、实验设备 1、信号发生器 2、双踪示波器 3、交流毫伏表 4、模拟电路实验箱 5、万用表 四、实验内容 1.测量静态工作点 实验电路如图2—1所示,它的静态工作点估算方法为: U B ≈ 2 11B B CC B R R U R +?

图2—1 共射极单管放大器实验电路图 I E = E BE B R U U -≈Ic U CE = U C C -I C (R C +R E ) 实验中测量放大器的静态工作点,应在输入信号为零的情况下进行。 1)没通电前,将放大器输入端与地端短接,接好电源线(注意12V 电源位置)。 2)检查接线无误后,接通电源。 3)用万用表的直流10V 挡测量U E = 2V 左右,如果偏差太大可调节静态工作点(电位器RP )。然后测量U B 、U C ,记入表2—1中。 表2—1 测 量 值 计 算 值 U B (V ) U E (V ) U C (V ) R B2(K Ω) U BE (V ) U CE (V ) I C (mA ) 2 60 2 B2所有测量结果记入表2—1中。 5)根据实验结果可用:I C ≈I E = E E R U 或I C =C C CC R U U -

模电实验单级共射放大电路

单极共射放大电路 一、实验目的 (1)掌握用Multisim 13 仿真软件分析单极放大电路主要性能指标的方法。 (2)熟悉掌握常用电子仪器的使用方法,熟悉基本电子元器件的作用。 (3)学会并熟悉“先静态后动态”的电子线路的基本调试方法。 (4)分析静态工作点对放大器性能的影响,学会调试放大器的静态工作点。 (5)掌握放大器的放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 (5)测量放大电路的频率特性。 二、实验原理 1.基本电路 电路在接通直流电源CC V 而未加入输入信号时(通过隔直流电容1C 将输入端接地),电路中产生的电流、电压为直流量,记为BEQ V ,CEQ V ,BQ I ,CQ I ,由它们确定了电路的一个工作点,称为静态工作的Q 。三极管的静态工作点可用下式近似估算: )7.0~6.0(=BEQ V V 硅管; (0.2~0.3)V 锗管 ()e c CQ CC CEQ R R I V V +-= CC P BQ V R R R R V 2 12++= E BEQ BQ EQ CQ R V V I I -=≈ β CQ BQ I I = 2.静态工作点的选择 放大器静态工作点的选择是指对三极管集电极电流C I (或CE V )的调整与测试。 在晶体管低频放大电路中,静态工作点的选择及稳定具有举足轻重的作用,直接关系到放大电路能否正常可靠地工作。若工作点偏高(C I 放大),则放大器在加入交流信号以后易产生饱和失真,此时输出信号o u 的负半周将被削底;若工作点偏低,则易产生截止失真,即o u 的正半周被削顶(一般截止失真不如饱和

失真明显)。这些情况都不符合不失真放大的要求。所以在选定工作点以后还必须进行动态调试,即在放大电路的输入端加入一定的输入电压i u ,并检查输出电压o u 的大小和波形是否满足要求。如不满足,则应调节静态工作点的位置。 还应说明的是,上面所说的工作点“偏高”或“偏低”不是绝对的,应该是相对信号的幅度而言。若输入信号幅度很小,则即使工作点较高或较低也不一定会出现失真。所以确切地说,产生波形失真是信号幅度与静态工作点设置配合不当所致。若须满足较大信号幅度的要求,则静态工作点最好尽量靠近输出特性曲线上交流负载线的中点,如图Q 点,使静态CE V 大致等于电源电压的一半。这样可使交流信号输入时,工作点Q 沿着交流负载线向上或向下移动较大范围,使得输出电压的动态范围大致在2CEQ V 范围内变化,从而获得较大的输出电压幅度,且波形上下对称。 实际工作中往往通过调节基极偏置电阻的大小,观察输出波形的变化。当输入电阻逐渐放大时,若要输出波形正、负同时出现削波现象,即表明此时放大电路的静态工作点选择合适,此时放大电路动态范围最大。 按照图连好电路,在输入端引入正弦信号,用示波器观察输出。静态工作点 略微增大,两种失真同时出现;输入信号略微减小,两种失真同时消失时,可以认为此时的静态工作点正好处于交流负载线的中点。去掉输入信号,测量BEQ V ,CEQ V ,BQ I ,CQ I ,就得到了该电路的最佳静态工作点。 3.电压放大倍数的测量 电压放大倍数是指输出电压o V 和输入电压i V 之比,其值与负载L R 有关,是衡量放大电路放大能力的指标。 i o V V V A 4.输入电阻和输出电阻的测量 (1)输入电阻。输入电阻是指从放大器输入端看进去的等效电阻,它表明放大器对信号源的影响程度。一般采用间接法进行测量。 当被测电路的输入电阻不太高时(与毫伏级电压表内阻相比),采用如图的电路进行测量。在信号源与被测放大器的输入端之间串入一已知电阻R ,在放大器正常工作的情况下(保证输出电压不失真),用交流毫伏表测出s V

西工大模电实验报告总结计划晶体管单级放大器.docx

实验一晶体管共射极单管放大器 一、实验目的 1、掌握用 multisim仿真软件分析单级放大器主要性能指标的方法。 2、掌握晶体管放大器静态工作点的调试和调整方法,观察静态工作点对放 大器输出波形的影响。 3、测量放大器的放大倍数、输入电阻和输出电阻。 二、实验原理 实验电路如图 2.1 -1 所示,采用基极固定分压式偏置电路。电路在接通直流电源 V cc而未加入信号( V i =0)时,三极管三个极电压和电流称为静态工作点, 即 图2.1 -1 晶体管单级放大器 V BQ=R2V CC/(R 2+R3+R7) I CQ=I EQ=(V BQ-V BEQ)/R 4 I BQ=I EQ/ β V CEQ= V CC-I CQ( R5+R4) 1、放大器静态工作点的选择和测量 放大器的基本任务是不失真的放大小信号。为了获得最大不失真输出电压, 静态工作点应选在输出特性曲线上交流负载线的中点。若工作点选的太高,则容易引起饱和失真;而选的太低,又易引起截止失真。 静态工作点的测量是指在接通电源电压后放大器输入端不加信号时,测量晶

体管的集电极电流I CQ和管压 降 V CEQ。其中V CEQ可直接用万用表直流电压档测C-E 极间的电压既得,而I CQ的测量则有直接法和间接法两种: (1)直接法:将万用表电流档串入集电极电路直接测量。此法精度高,但 要断开集电极回路,比较麻烦。 ( 2)间接法:用万用表直流电压档先测出R5上的压降,然后根据已知R5算出I CQ,此法简单,在实验中常用,但其测量精度差。为了减小测量误差,应选用内 阻较高的电压表。 当按照上述要求搭好电路,在输入端引入正弦信号,用示波器观察输出。静态工作点具体的调节步骤如下: 现象出现截止失真动作减小 R 出现饱和失真 增大 R 两种失真都出 现 减小输入信号 无失真 加大输入信号 根据示波器上观察到的现象,做出不同的调整动作,反复进行。当加大输入信号,两种失真都出现,减小输入信号,两种失真同时消失,可以认为此时的静态工作点正好处于交流负载线的中点,就是最佳的静态工作点。去掉输入信号,测量此时的 V CQ, 就得到了静态工作点。 2.电压放大倍数的测量 Ui 输出电压 Uo 之比 电压放大倍数是指放大器的输入电压 Au=Uo/Ui(2.1-5) 用示波器分别测出 Uo 和 Ui ,便可按式( 2.1-5)求得放大倍数,电压放大倍数与负载 Rl 有关。 3.输入电阻和输出电阻的测量 ( 1)输入电阻 Ri 用电流电压法测得,电路如图电阻 R=1kΩ,用示波器分别测出电阻两端电压 2.1-3 所示。在输入回路中串接Ui 和 Us,则可求得输入电阻Ri 为 Ri=Ui/Ri=Ui×R/(Us-Ui )(2.1-6)

晶体管共射极单管放大器 实验报告

实验二 晶体管共射极单管放大器 一、实验目的 1、 学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 2、 掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 3、 熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图2-1为电阻分压式工作点稳定单管放大器实验电路图。它的偏置电路采用R B1和R B2 组成的分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号u i 后,在放大器的输出端便可得到一个与u i 相位相反,幅值被放大了的输出信号u 0,从而实现了电压放大。 在图2-1电路中,当流过偏置电阻R B1和R B2 的电流远大于晶体管T 的 基极电流I B 时(一般5~10倍),则它的静态工作点可用下式估算 CC B2 B1B1B U R R R U +≈ C E BE B E I R U U I ≈+-≈ 1 F R U CE =U CC -I C (R C +R E +R F1) 电压放大倍数 1 )1(F R // β++-=be L C V r R R β A 输入电阻 R i =R B1 // R B2 // [ r be +(1+β)R F1 ] 输出电阻 R O ≈R C 由于电子器件性能的分散性比较大,因此在设计和制作晶体管放大电路时,离不开测量 图2-1 共射极单管放大器实验电路

和调试技术。在设计前应测量所用元器件的参数,为电路设计提供必要的依据,在完成设计和装配以后,还必须测量和调试放大器的静态工作点和各项性能指标。一个优质放大器,必定是理论设计与实验调整相结合的产物。因此,除了学习放大器的理论知识和设计方法外,还必须掌握必要的测量和调试技术。 放大器的测量和调试一般包括:放大器静态工作点的测量与调试,消除干扰与自激振荡及放大器各项动态参数的测量与调试等。 1、放大器静态工作点的测量与调试 1) 静态工作点的测量 测量放大器的静态工作点,应在输入信号u i =0的情况下进行,即将放大器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流 I C 以及各电极对地的电位U B 、U C 和U E 。一般实验中,为了避免断开集电极,所以采用测量电 压U E 或U C ,然后算出I C 的方法,例如,只要测出U E ,即可用 C E BE B E I R U U I≈ + - ≈ 1 F R 算出I C (也可根据C C CC C R U U I - = ,由U C 确定I C ),同时也能算出U BE =U B -U E ,U CE =U C -U E 。 为了减小误差,提高测量精度,应选用内阻较高的直流电压表。 2) 静态工作点的调试 放大器静态工作点的调试是指对管子集电极电流I C (或U CE )的调整与测试。 静态工作点是否合适,对放大器的性能和输出波形都有很大影响。如工作点偏高,放 大器在加入交流信号以后易产生饱和失真,此时u O 的负半周将被削底,如图2-2(a)所示; 如工作点偏低则易产生截止失真,即u O 的正半周被缩顶(一般截止失真不如饱和失真明显),如图2-2(b)所示。这些情况都不符合不失真放大的要求。所以在选定工作点以后还必须进 行动态调试,即在放大器的输入端加入一定的输入电压u i ,检查输出电压u O 的大小和波形 是否满足要求。如不满足,则应调节静态工作点的位置。 (a) (b) 图2-2 静态工作点对u O 波形失真的影响

晶体管共射极单管放大电路实验报告

实验二晶体管共射极单管放大器 一、实验目得 1.学会放大器静态工作点得调式方法与测量方法。 2.掌握放大器电压放大倍数得测试方法及放大器参数对放大倍数得影响。 3.熟悉常用电子仪器及模拟电路实验设备得使用。 二、实验原理 图2—1为电阻分压式工作点稳定单管放大器实验电路图。偏置电阻R B1、R B2组成分压电路,并在发射极中接有电阻R E,以稳定放大器得静 态工作点。当在放大器得输入端加入输入信号后,在放大器得输出端便可 得到一个与输入信号相位相反、幅值被放大了得输出信号,从而实现了电 压放大。 三、实验设备 1、信号发生器 2、双踪示波器 3、交流毫伏表 4、模拟电路实验箱 5、万用表 四、实验内容 1.测量静态工作点 实验电路如图2—1所示,它得静态工作点估算方法为: UB≈

图2—1共射极单管放大器实验电路图 I E=≈Ic U CE=UCC-I C(RC+RE) 实验中测量放大器得静态工作点,应在输入信号为零得情况下进行。 1)没通电前,将放大器输入端与地端短接,接好电源线(注意12V电源位置)。 2)检查接线无误后,接通电源。 3)用万用表得直流10V挡测量UE =2V左右,如果偏差太大可调节静态工作点(电位器RP)。然后测量U B、U C,记入表2—1中。 表2—1 测量值计算值UB(V) UE(V) UC(V)R B2(KΩ)U BE(V) UCE(V) I C(mA) 2、6 2 7、2 60 0、6 5、2 2 B2 量结果记入表2—1中。 5)根据实验结果可用:I C≈I E=或I C= UBE=U B-U E U CE=U C-UE 计算出放大器得静态工作点。 2.测量电压放大倍数

PS软件仿真练习(一)——单级共射放大电路(DOC)

华中科技大学 《电子线路设计、测试与实验》实验报告 实验名称:PS软件仿真练习(一)——单 级共射放大电路 院(系):自动化学院 指导教师:汪小燕 2014 年4月3 日 PS软件仿真练习(一)——单级共射放大电路 一.实验目的 电子电路CAD技术现已广泛被应用到科学研究、产品设计、电子电路分析与设计等许多领域中,采用CAD技术和工具已成为工程技术人员对电子电路进行设计、分析必不可少的方法和手段。为了培养学生使用CAD技术的能力,全面提高学生的素质和创新能力,就必须掌握电子电路的仿真方法。为此,本实验力图达到以下目的: 1.了解电子电路CAD技术的基本知识,熟悉仿真软件PSpice的主要功能。 2.学习利用仿真手段,分析,设计电子电路。 3.初步掌握用仿真软件PSpice分析,设计电路的基本方法和技巧。

二.实验条件 计算机,PSpice仿真软件。 三、预习要求 1.认真阅读本书附录A,详细了解PSpice软件的功能,仿真步骤及使用方法。 2.熟悉单极共射放大电路的静态工作点,输入,输出电阻及幅频特性,相频特性等。 四.实验说明 PSpice用于电子电路的仿真分析,除了可以对模拟电路,数字电路进行仿真分析外,还可以对模拟混合电路进行分析,具有优化设计的功能。它主要包括Capture(电子原理图设计)、PSpiceA/D(模数混合仿真)、PSpice Optimizer(电路优化)和Layout Plus(PCB 设计)等组件。根据电子技术基础课程的教学要求,本实验以单级共射放大电路为例,简要介绍Capture和PSpice A/D两部分软件的仿真步骤及使用方法。 单级共射放大参考电路的仿真步骤如图4.1.1所示,三极管型号为Q2N222( =50),试 分析: (1)放大电路的工作点。 (2)当输入电压信号为幅值10mV,频率1kHz的正弦波时,仿真输入,输出波形。 (3)仿真该电路电压增益的幅频响应和相频响应曲线。 (4)仿真该电路的输入,输出电阻频率响应曲线。 图4.1.1 单级共射放大电路

单级共射放大电路实验报告(完整资料).doc

【最新整理,下载后即可编辑】 单级共射放大电路实验报告 1.熟悉常用电子仪器的使用方法。 2.掌握放大器静态工作点的调试方法及对放大 器电路性能的影响。 3.掌握放大器动态性能参数的测试方法。 4.进一步掌握单级放大电路的工作原理。 二、实验仪器 1.示波器 2.信号发生器 3.数字万用表 4.交流毫伏表 5.直流稳压源 三、预习要求 1.复习基本共发射极放大电路的工作原理,并进 一步熟悉示波器的正确使用方法。 2.根据实验电路图和元器件参数,估算电路的静 态工作点及电路的电压放大倍数。 3.估算电路的最大不失真输出电压幅值。 4.根据实验内容设计实验数据记录表格。 四、实验原理及测量方法 实验测试电路如下图所示:

1.电路参数变化对静态工作点的影响: 放大器的基本任务是不失真地放大信号,实现输入变化量对输出变化量的控制作用,要使放大器正常工作,除要保证放大电路正常工作的电压外,还要有合适的静态工作点。放大器的静态工作点是指放大器输入端短路时,流过电路直流电流IBQ、ICQ及管子C、E极之间的直流电压UCEQ和B、E 极的直流电压UBEQ。图5-2-1中的射极电阻BE1、RE2是用来稳定放大器的静态工作点。其工作原理如下。 ○1用RB和RB2的分压作用固定基极电压UB。 由图5-2-1可各,当RB、RB2选择适当,满足I2远大于IB时,则有

UB=RB2·VCC/(RB+RB2)式中,RB、RB2和VCC都是固定不随温度变化的,所以基极电位基本上是一定值。 ○2通过IE的负反馈作用,限制IC的改变,使工作点保持稳定。具体稳定过程如下: T↑→IC↑→IE↑→UE↑→UBE ↓→IB↓→IC↓ 2.静态工作点的理论计算: 图5-2-1电路的静态工作点可由以下几个关系式确定 UB=RB2·VCC/(RB+RB2) IC≈IE=(UB-UBE)/RE UCE=VCC-IC(RC+RE) 由以上式子可知,,当管子确定后,改变V CC、RB、RB2、RC、(或RE)中任一参数值,都会导致静态工作点的变化。当电路参数确定后,静态工作点主要通过RP调整。工作点偏高,输出信号易产生饱和失真;工作点偏低,输出波形易产生截止失真。但当输入信号过大时,管子将工作在非线性区,输出波形会产生双向失真。当输出波形不很大时,静态工作点的设置应偏低,以减小电路的表态损耗。3.静态工作点的测量与调整: 调整放大电路的静态工作点有两种方法(1)将放大电路的输入端电路(即Ui=0),让其工作在直流状态,用直流电压表测量三极管C、E间的电压,调整电位器RP使UCE稍小于电源电压的1/2(本实

晶体管单级放大电路实验报告

晶体管单级放大电路 实验目的: 1.掌握放大电路的组成,基本原理及放大条件。 2.掌握放大电路静态工作点的测量方法。 3.观察晶体管单级放大电路的放大现象。 实验仪器: 1.双踪示波器 2.函数发生器 3.数字万用表 4.交流毫伏表 5.直流稳压电源 实验原理: 1.晶体管,又叫半导体三极管,其主要分为两大类:双极性晶体管(包含发射极,基极和集电极)和场效应晶体管(包括源极,栅极,漏极)。晶体管在电路中主要起放大和开关的作用。 2.共射放大电路原理图: 3.放大电路的本质为它利用晶体管的基极对集电极的控制作用来实现,即iC= iB。放大的前提是晶体管的发射极正偏,集电极反偏。 4.放大电路的电压放大倍数是指电压不失真时,输出电压U0与输入电压Ui振幅或有效值之比,即Au=U0/Ui 5.输出电阻R0是指从放大器输出端看进去的等效电阻,其反映了放大器带负载的能力,在被测放大器后加一个负载电阻RL,输入端加正弦信号,分别测空载时和加负载电阻RL时的输出电压U0与UL,则RL=(U0-UL)/UL。 6.输入电阻Ri是指从放大器输入端看进去的等效电阻,其大小表示放大器从信号源获取电流的多少。在信号源与放大器之间串入一个样电阻Rs,分别测出UA与UB,则:Ri=UAXRs/(UB-UA)。 实验内容: 1.静态工作点测量 实验电路: 实验步骤: 1.使用万用表检查三极管的好坏:红笔接三极管基极,黑笔接集电极或射极,此时PN 结正偏,若显示数字为“500~700”(PN结正向导通管压降的毫伏值),说明其正向导通。当

用黑笔接基极,红笔分别接集电极.射极,此时PN结反偏,如果显示“1”,说明其反向不导通。当红笔接射极,黑笔接集电极,显示“1”,表示不导通;交换红黑笔,显示“1”,表示不导通。测试三极管满足上述数值,基本可以认为三极管是好的。 2.按照实验电路图连接电路。稳压电源的+极接到电路的Vcc,-极接地。 3.将稳压电源调到+12V,用万用表直流电压档测量静态工作点 UBQ,UCQ,UEQ。 实验结果: 提示:,Ucq,Ueq分别为晶体管各极对地的电压 =Ieq=Ueq/(Re1+Re2); Ubeq=Ubq-Ueq; Uceq=Ucq-Ueq 3.静态工作点是载电路无输入信号下测量的 :晶体管的集电极c与发射极e之间的电压。 2.输入输出波形观察及放大倍数的测量 实验步骤 1.在第一个实验的基础上,在电路A点输入Ui=50mV(峰峰值),f=1kHz的正弦波信号。 2.用示波器的二通道分别观察输入输出波形。 实验结果: 3.输出电阻Ro的测量 实验电路:

模电实验 晶体管共射极放大电路

晶体管共射极放大电路 一、实验目的 1、 学习放大电路静态工作点的测试及调整方法,分析静态工作点对放大器性能的影 响。 2、 掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 3、 熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图2-1为电阻分压式工作点稳定单管放大器实验电路图。它的偏置电路采用R B1和R B2组成的分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号u i 后,在放大器的输出端便可得到一个与u i 相位相反,幅值被放大了的输出信号u 0,从而实现了电压放大。 图1-1 共射极单管放大器实验电路 在图2-1电路中,当流过偏置电阻R B1和R B2 的电流远大于晶体管T 的 基极电流I B 时(一般5~10倍),则它的静态工作点可用下式估算 CC B2 B1B1B U R R R U +≈ (1-1) (1-2) U CE =U CC -I C (R C +R E ) (1-3) 电压放大倍数 be L C V r R R β A // -= (1-4) C E BE B E I R U U I ≈-≈

输入电阻 R i =R B1 / R B2 / r be (1-5) 输出电阻 R O ≈R C (1-6) 由于电子器件性能的分散性比较大,因此在设计和制作晶体管放大电路时,离不开测量和调试技术。在设计前应测量所用元器件的参数,为电路设计提供必要的依据,在完成设计和装配以后,还必须测量和调试放大器的静态工作点和各项性能指标。一个优质放大器,必定是理论设计与实验调整相结合的产物。因此,除了学习放大器的理论知识和设计方法外,还必须掌握必要的测量和调试技术。 放大器的测量和调试一般包括:放大器静态工作点的测量与调试,消除干扰与自激振荡及放大器各项动态参数的测量与调试等。 1、 放大器静态工作点的测量与调试 1) 静态工作点的测量 测量放大器的静态工作点,应在输入信号u i =0的情况下进行, 即将放大器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流I C 以及各电极对地的电位U B 、U C 和U E 。一般实验中,为了避免断开集电极,所以采用测量电压U E 或U C ,然后算出I C 的方法,例如,只要测出U E ,即可用 E E E C R U I I = ≈算出I C (也可根据C C CC C R U U I -= ,由U C 确定I C ),同时也能算出 U BE =U B -U E ,U CE =U C -U E 。 为了减小误差,提高测量精度,应选用内阻较高的直流电压表。 2) 静态工作点的调试 放大器静态工作点的调试是指对管子集电极电流I C (或U CE )的调整与测试。 静态工作点是否合适,对放大器的性能和输出波形都有很大影响。如工作点偏高,放大器在加入交流信号以后易产生饱和失真,此时u O 的负半周将被削底,如图2-2(a)所示;如工作点偏低则易产生截止失真,即u O 的正半周被缩顶(一般截止失真不如饱和失真明显),如图2-2(b)所示。这些情况都不符合不失真放大的要求。所以在选定工作点以后还必须进行动态调试,即在放大器的输入端加入一定的输入电压u i ,检查输出电压u O 的大小和波形是否满足要求。如不满足,则应调节静态工作点的位置。 (a) (b) 图1-2 静态工作点对u O 波形失真的影响 改变电路参数U CC 、R C 、R B (R B1、R B2)都会引起静态工作点的变化,如图2-3所示。但通常多采用调节偏置电阻R B2的方法来改变静态工作点,如减小R B2,则可使静态工作点提高等。

实验一单级共射放大电路SB

实验一 单级共射放大电路 电子信息工程 2011117105 徐博 一、实验目的 1.熟悉常用电子仪器的使用方法。 2.掌握放大器静态工作点的调试方法及其对放大电路性能的影响。 3.掌握放大器动态性能参数的测试方法。 4.进一步掌握单级放大电路的工作原理。 二、实验仪器 信号发生器、数字万用表、交流毫伏表、直流稳压源。 三、预习要求 1.复习基本共射放大电路的工作原理,并进一步熟悉示波器的正确使用方法。 2.根据实验电路图和元器件参数,估算电路的静态工作点及电路的电压放大倍数。 3.估算电路的最大不失真输出电压幅值。 4.根据实验内容设计实验数据记录表格。 四、实验原理及测量方法 1.电路参数变化对静态工作点的影响 放大器的基本任务是不失真地放大信号,实现输入变化量对输出变化量的控制作用,要使放大器正常工作,除要保证放大电路正常工作的电压外,还要有合适的静态工作点。放大器的静态工作点是指放大器输入端短路时,流过三极管的直流电流IBQ 、ICQ 及管子C 、E 极之间的直流电压UCEQ 和B 、E 极的直流电压UBE 中的射极电阻R6、R7是用来稳定放大器的静态工作点。其工作原理如下。 ① 利用RB 和RB2的分压作用固定基极电压UB 。 由图可知,当RB 、RB2选择适当,满足I2远大于IB 时,则有 b2b=*2 R U Vcc Rb Rb + 式中,RB 、RB2和VCC 都是固定不随温度变化的,所以基极电位基本上为一定值。 ② 通过IE 的负反馈作用,限制IC 的改变,使工作点保持稳定。具体稳定过程如下: T Ic Ie Ue Ube Ib Ic ↑→↑→↑→↑→↓→↓→↓ 2.静态工作点的理论计算 电路的静态工作点可由以下几个关系式确定 b2b=*2R U Vcc Rb Rb + Re Ub Ube Ic -=

实验一单级共射放大电路

实验一单级共射放大电路 实验单级共发射放大电路 胡军2010117114 实验目的 1。熟悉常用电子仪器的使用 2。掌握放大器静态工作点的调试方法及其对放大器电路性能的影响3.掌握放大器动态性能参数的测试方法4.进一步掌握单级放大电路的工作原理 实验仪器 1。示波器2。信号发生器3。数字万用表4。交流毫伏表5。DC稳压器 静态测试 实验原理和测量方法 电路图如下: 注意:由于实验箱负载RL=10k1.电路参数变化对静态工作点的影响放大器的基本任务是无失真地放大信号,实现输入变化对输出变化的控制效果。为了使放大器正常工作,除了保证放大器电路的正常工作电压外,还应该有一个合适的静态工作点。放大器的静态工作点是指流经三极管的直流IBQ和ICQ中的发射极电阻R6和R7,管的C极和E极之间的直流电压UCEQ,以及放大器输入端短路时B极和E

极的直流电压ube。工作原理如下 ①基极电压UB由RB和RB2的部分电压作用固定从图中可以看出,UB =? Rb2*Vcc Rb?在RB2公式中,铷、RB2和VCC是固定的,不随温度变化,所以基本势是一个确定的值。(2)通过工业工程的负反馈,限制集成电路的变化,保持工作点稳定。具体稳定过程如下: T??Ic??Ie??Ue??Ube??Ib??Ic?静态工作点 2的理论计算。 电路的静态工作点可由以下关系确定: UB = RB2 * CRB?Rb2 Ub?Ube ReIc? Uce?Vcc?Ic(Rc?关于)? 从以上公式可以看出,当管道确定后,改变VCC、RB、RB2、RC(或RE)的任何参数值都会导致静态工作点的改变当电路参数确定后,静态工作点主要由RP调整由于高工作点,输出信号波形容易出现饱和失真。工作点低,输出波形易于截止失真。然而,当输入信号太大时,电子管将工作在非线性区域,输出波形将产生双向失真当输出波形不是很大时,静态工作点的设置应该很低,以减少电路的静态损耗。3.测量和调整 调整放大器电路静态工作点的方法一般有两种(1)将放大电路的输入端(即ui=0)短路,使其工作在DC状态,用DC电压表测量三极管

共发射极放大电路理论分析与计算

共发射极放大电路理论分析与计算 理论计算与分析是实现电子电路的非常好的设计手段,这方面是职业学校同学们的弱点,适当地学习一些计算与分析的方法,更能使你的动手能力如虎添翼,节约时间与成本. 1.共发射极放大电路 电路组成 + + + + - + - +U CC R b1 R c R b2 R e R L + - C 1 C 2 u i u o U B C e (a ) C e : 射极旁路电容,使发射极交流接地 静态工作点的估算 R U U I U R R R U E BE BQ EQ CC b b b BQ -= +≈2 12 ) (R R I U U I I I I e c CQ CC CEQ CQ BQ EQ CQ +-≈=≈β 动态分析 1)画出H 参数微变等效电路如下:

r be R b +- u i u o r i r o β i b R c R L + - i b i c b c (a ) 2)共发射放大电路基本动态参数的估算 (1)电压放大倍数 ' -='-=R i R i u L b L c o β r i u R R R be b i L C L ==' // r R r i R i A be L be b L b u ' - ='- =ββ (2)输入电阻r i r R I u r be b i i i //== )//(21R R R b B b = (3)输出电阻r 0 R r C o = (4)源电压放大倍数 r r R u u A be s L s o us +' -==β

下面是对图示共发射极放大电路的计算分析,可以和仿真分析进行对比; 设晶体管的 =100,'bb r =100Ω。(1)求电路的Q 点、u A 、R i 和R o ;(2)若电容C e 开路,则将引起电路的哪些动态参数发生变化如何变化 解:(1)静态分析: V 7.5)( A μ 101mA 1 V 2e f c EQ CEQ EQ BQ e f BEQ BQ EQ CC b2b1b1 BQ =++-≈≈+=≈+-==?+≈R R R I V U I I R R U U I V R R R U CC β 动态分析: Ω ==Ω≈++=-≈++-=Ω≈++=k 5k 7.3])1([7.7)1()(k 73.2mV 26) 1(c o f be b2b1i f be L c EQ bb'be R R R r R R R R r R R A I r r u ββββ∥∥∥ (2)R i 增大,R i ≈Ω;u A 减小,e f ' L R R R A u +-≈ ≈-。

晶体管单级放大电路的测试与分析

晶体管单级放大电路的测试与分析 一、实验目的 1、学习单级共射电压放大器静态工作点的设置与调试方法。 2、学习放大器的放大倍数(A u)、输入电阻(R)、输出电阻(RJ的测试方法。 3、观察基本放大电路参数对放大器的静态工作点、电压放大倍数及输出波形的影响。 4、进一步熟悉函数信号发生器、示波器、数字万用表和直流稳压电源等常用仪器的使用方法。 二、实验工具 电脑、Multisim 三、实验内容 (一)如图所示,建立放大电路,进行静态分析。 图S4-2 共发射极放大电路 图S4-3 放大电路的输入输出波形 (二)、测量电路的静态工作点 图S4-4 放大电路的直流工作点分析 (三)、测量电路的放大倍数、输入电阻、输出电阻。 1、放大倍数A的测量 方法一:瞬态分析法电压放大倍数是指输出电压与输入电压的有效值(或峰峰值)之比,即

图S 4-10 输入输出瞬态分析结果 从图S4-10读取输入、输出信号波形峰峰值,代入 4 - 1 : 方法二:幅频特性的测量 图S4-11 幅频特性图 知,A v =- 2、输入电阻R 、输出电阻R 0的测量 图S4-12 输入电阻和输出电阻的测量电路图 图S4-13 I i 、U 、L O1 (带负载R 6= k Q 的输出电压)、U (不带负载的输出电压)的值 仿真运行后,各表读数如图S4-13,读取各表的测量值得到:输 入电 流的有效无值I i =,输入电压U 二,输出电压U O1 =,输出电压 U)2 = Av U o Ui (4-1 ) Av U o Ui 11706.2 1075.7 9.899.3 9.899.3 112.46 该电路的幅频特性如图 S4-11所示。启动标尺移动至中频,如图

单级共射放大电路的设计共7页word资料

实验二、单级共射放大电路的设计 一、实验目的 1.掌握共射放大器电路的设计方法 2.掌握如何设置放大电路的静态工作点及其调试方法 3.学习放大电路性能指标 4.观察基本放大电路参数对放大器的静态工作点、电压放大倍数及最 大不失真电压、以及频率响应的测量方法 5.进一步熟悉函数发生器、等常用仪器的使用方法 6.进一步熟悉晶体管参数的测试 7.了解负反馈对放大电路性能的影响 二、实验仪器与器件: 直流稳压电源、万用电表、双踪示波器、交流毫伏表、直流毫安表、频率计、三极管、电阻器、电容器、电位器若干。 三、实验原理: 连接电路图如下图,并测量相关数据,了解单级共设放大电路 四、实验内容 1.静态工作点的调整与测量: 将R L 开路;在接通电源钱,将R b2 调至最大,并使u i =0.调节R b2 测量相应数 据填入下表

2.观察静态工作点对输出波形失真的影响: 调节函数信号发生器找到最大不失真输入电压,然后观察u O 输出波形,判断失真情况以及管子工作状态填入下表

3.电压放大倍数的测量 将频率为1kHz 、u i =300mV (参考)的正弦信号作为输入信号,用交流毫伏表测量U i 和U o 有效值,用示波器观察输入输出电压的波形,把测量结果记入下表 U i =248mV

4.观察静态工作点对电压放大倍数的影响 将R L 开路,R C =2k欧姆,输入适当u i 。改变R b2 ,将数据填入下表 U i =106.06mV 注意:测量U CE 时它是静态参数。 5.输入电阻和输出电阻的测量 输入端开关打开,用交流毫伏表测量U i 和U s ,计算输入电阻 R i =U i /I i =R s *U i /(U s -U i ) 闭合输入端开关,打开和闭合输出端开关,用交流毫伏表测量U L 和U O ,计 算输出电阻 R O =(U O /U L -1)*R L 6.最大不是真输出电压V opp 的测量 同时调节输入信号的幅度和电位器R b2 ,用示波器和交流毫伏表测量填表 7.幅频特性的测量 采用主点法进行测量,填表。

相关文档
相关文档 最新文档