文档库 最新最全的文档下载
当前位置:文档库 › 搅拌反应釜设计

搅拌反应釜设计

搅拌反应釜设计
搅拌反应釜设计

第六章 主要设备的设计及选型

6.1 搅拌反应釜

6.1.1 反应釜体积

由物料衡算结果可知:

生产每釜成品需要废涤纶的质量为:=1m 584.53 kg ;废涤纶密度

38.11=ρ3/cm g ,需要异辛醇的质量为:=2m 1187.32 kg ;异辛醇密度

832.02=ρ3/cm g

则废涤纶所占体积:=?=

=

3

1

1

110

38.153.584ρm V 0.424 m 3

, 异辛醇所占体积: =?=

=

3

2

2

210

832.032.1187ρm V 1.427 m 3

所以物料总体积为: =+=21'V V V 0.424 + 1.427 = 1.851 m 3 由于还有催化剂的加入,故取 V = 1.860 m 3

考虑到废涤纶较松散且呈沸腾状态及釜内安装的附件,参照《化工设备设计基础》,根据标准投料系数范围,取反应釜投料系数为0.7,则所需反应釜体积为:

657.27

.0860.1==V m 3

6.1.2 反应釜直径和高度

参照《化工设备设计基础》,取反应釜的长径比H/D i =1.2,反应釜的内径D i 由下式估算:

3

24

π+

=

i

i D H

V

D

由1.1的所得数据及长径比,代入以上公式可求得内径为:=i D 1.353 m ,取圆整值1400mm 。

选取标准反应釜,具体参数如下:

釜体容积 =V 2.689 m 3,封头容积 f V = 0.421 m 3,选取釜体壁厚s = 10 mm ,封头直边高度=0h 40 mm ,曲边高度=i h 350 mm ,内表面积F=2.306 m 2 。

则筒体高度为:474.14.14

421

.0689.24

2

2

=?-=

-=

π

π

i h

D V V H m ,取圆整值1.5 m 。

所以釜的总高度:)(200i h h H H ++==28.2)35.004.0(25.1=+?+ m

6.1.3 壁厚

根据设计任务,反应釜工作时压力为0.3 MPa ,内径i D =1400 mm ,取设计压力p 为0.33 MPa 。

原材料腐蚀不强,从经济方面考虑,反应釜采用通用材料0Cr18Ni9,查《化工设备机械基础》附表得知0Cr18Ni9材料在205℃、H/i D =1.2时,圆筒的壁厚选用10 mm ,其许用压力为0.38MPa ;椭圆封头厚度同釜壁,选用10 mm ,许用压力为0.49MPa ,大于设计压力0.33MPa ,均符合设计要求。

6.1.4 夹套

选用常用的不可拆式连接结构,夹套与内筒之间采用焊接,加工简单,密封可靠。

考虑加热介质性质,选取夹套材料与釜体一致,材料型号为0Cr18Ni9。 夹套所需壁厚由下式计算:

2[]c i

c t c

p D C p δσ??=

+?-

夹套内压为0.15MPa ,计算压力c p =0.15?1.1=0.165MPa ,查得在设计温度下许用压力[]t σ为122MPa ,焊接系数?取0.9,腐蚀裕量C 取2 mm ,故

0.1651400

221220.90.165

c δ?=+??-=3.05 mm

考虑容器在制造、运输及安装过程中的刚度强度要求,参照《化工设备机械基础》,选取夹套壁厚为8 mm 。

夹套内径按釜尺寸系列选取,以利于按标准选择夹套封头,夹套的内径取1400+100=1500 mm ,符合压力容器的公称直径。

夹套筒体高度j H 由下式估算:

j H =

24f i V V D ηπ-=20.7 2.6890.421

1.44

π?-?=0.950 m 反应釜筒体与上封头采用法兰连接,考虑物料的反应情况,选取夹套筒体高度j H =1.2 m ,夹套顶边距离法兰的高度H 0=1.5-1.2=0.3 m ,符合釜体法兰螺栓的装拆距离。

6.1.5 搅拌器设计选型

反应釜内为液固非均相反应,考虑到加入的物料及物料粘度,选用?45斜桨式搅拌器。

(1)叶轮尺寸确定 依据《化工设备设计基础》:

取D d /=0.5,即叶轮直径d =1400?0.5=700 mm

取B d /=6,即叶片宽度B=d/6=700/6=116.7 mm ,取120 mm 。 取D C /=0.25,即叶轮的安装高度C =0.25?1400=350 mm 取Z =2,即叶片数为2。 (2) 挡板

为了消除“圆柱状回转区”和“打漩”,以及为了避免固体堆积或液体粘附,在反应釜采用离壁安装的竖挡板,挡板数为4,板宽为釜体内径的1/10,即B = 140 mm 。 挡板与釜壁的缝隙为板宽的1/6,即140?1/6=23.33,取25 mm 。 (3)搅拌器的转速

搅拌器的转速n 、直径d 与叶端切线速度u 之间有如下关系式:d n u ?=π 叶端切线速度反映了搅拌作用的剧烈程度,根据搅拌目的、物料性质等来确定,桨式搅拌器的切线速度范围:1.0~5.0 m/s ,取u =3 m/s ,则转速:

827

.014.360360=??=??=d u n π r/min

(4)搅拌器功率

依据《化工厂设计》之搅拌器设计,斜式搅拌器消耗的功率按罗顿、顾斯许和爱弗兰脱等导出的一般关联式计算:

(0.35) 1.2

35

'(')()(sin )'/Re B s D p s P g H A N E B n d D

θρ+=+ 功率函数'p N =)(Re s f ,以及系数'A 、'B 、E (与搅拌器的几何尺寸有关)及雷诺数的值按下列公式计算:

222

2

'10exp[1.34(

0.5) 1.14]'14()[670(0.6)185]

1.14()

2.5(0.5)

Re s B d

A D D

B d

B D D

B d E D D nd ρμ

=---=+-+=+--=

代入各数值,得:

222322

530.120.7

'10exp[1.34(

0.5) 1.14]10.4441.4 1.4

0.120.7

'14()[670(0.6)185]30.431

1.4 1.4

0.120.7

1.14()

2.5(0.5) 1.443

1.4 1.4

82

1.106100.760Re 1.9894103.72310s A B E nd ρμ-=---==+-+==+--=???===?? 其中料液混合黏度μ=c γρ=3.366?1.106?10-3=3.723 ?10-3 kg/(m.s)。 由Re s 值查桨式搅拌器功率函数图(Re s —'p N 关联图),得'p N =0.53。将以上数值代入总公式,得:

0.12

(0.35) 1.21.4

355

30.43110.4440.53 1.443 1.2(sin 45) 5.71.989410s P g n d ρ+=????+=? 所以搅拌器功率的消耗为:

3358211

5.7 1.10610(

)(0.7) 2.7609.81102

s P =??????= kW 考虑温度计套管等附件后搅拌功率消耗,则:s P '=s P ?1.2=2.7?1.2=3.24 kW

6.1.6 搅拌轴设计

根据轴的各方面要求较高的特点,选用经过调质处理的45#钢作为轴的材料,其许用扭转应力为: ][τ=30~40 MPa 。 轴强度计算:

轴的扭转强度条件是:][max ττ≤=

p

T

W M 式中:max τ——轴横截面上的最大剪应力,MPa ;T M ——轴所传递的扭距,

mm N ?;p W ——轴的抗扭截面系数,3mm ;][τ——降低后的材料的许用应力,

MPa 。45钢取30 MPa~ 40MPa 。

而 n P M T 6

10

55.9?= 对于实心轴 16

3

d W p π=

p =3.24 kW ,取][τ=30 MPa ,则

[]

3

365τ?≥n p

d = 40.01 mm 轴刚度计算:

为了防止搅拌轴产生过大的扭转变形,从而在运转中引起振动,影响正常工作,应把轴的扭转变形限制在一个允许的范围内,即规定一个设计的扭转刚度条件。工程上以单位长度的扭转角θ不得超过许用扭转角[θ]作为扭转的刚度条件,即

][180103θπ

θρ≤??=

GI M T

式中:θ——轴扭转变形的扭转角, /m ;G ——搅拌轴材料的剪切弹性模数,MPa ,对于碳钢及合金钢为8.1?104MPa ;ρI ——轴截面的极惯性矩,mm4,

对于实心轴ρI =324

d ?π;][θ——许用扭转角, /m 。对于一般传动搅拌轴,][θ=

0.5~1.0

/m ,取0.5

/m , 由上述可得实心轴直径:4

44

5

.082101.824

.31537][1537???=≥θGn p d =48.31 mm 搅拌轴的直径应同时满足强度和刚度两个条件,取两者较大值,即取d =48.31 mm ,考虑到轴上键或孔对轴横截面的局部削弱,以及介质对搅拌轴的腐蚀,将搅拌轴直径增大并圆整,以便与其他零件相配合,取60 mm 。

6.1.7传动装置

电机:

要确定搅拌器马达所需要的实际功率,除了考虑搅拌液体时克服流体摩擦阻力所消耗的功率s P 之外,还要考虑搅拌器空运转时克服机械摩擦阻力所需的功率0P 。因此马达运转时的实际功率W P 是两者之和。一般中小型搅拌器0P 为1.5 kW ,则马达运转时实际功率W P =3.24+1.5=4.74 kW 。

一般情况启动功率可达运转功率的1.5倍,4.74?1.5=7.11 kW ,所以实际选用7 kW 的马达。选用1500 r/min 的Y 系列三相异步电动机,安装形式为V1(直立)型,型号为Y 200 M-4,参数如下:

表6-1 电动机的选型及相关的参数

项目数值及说明

电动机类型Y系列三相异步电动机

标定型号Y 200 M-4

功率/kW 7

频率/Hz 50

电压/V 380

功率/kW 7

转速/r/min 1450

标准编号GB 755-87

减速器:

电动机与减速机配套使用。减速机下设置一机座,安装在反应釜的封头上。考虑到传动装置与轴封装置安装时要求保持一定的同心度以及装卸检修的方便,常在封头上焊一底座。整个传动装置连同机座及轴封装置都一起安装在底座上。

根据设计需要,选用立式摆线针齿行星减速机,型号为:BLD 7.5-4-17;参数如下:

项目数值及说明

表6-2 减速器的选型及相关参数

6.1.8反应釜传热计算

6.1.8.1夹套内壁对釜液的传热系数

按Chilton Drew 和 Jekens 在夹套搅拌器公式:

i D

αλ=0.670.330.140.36(Re)Pr ()is V 相关参数计算如下:

22

5382

0.7110660Re 1.9894103.72310

d n ρ

μ

-??=

=

=?? 3600p r C g

P μλ

=

436000.75 3.539109.81115.40.0812

-????==

3.47 1.163.0

js w V μμ=

== (其中:p C =0.75 kcal/kg.℃;2EH λ-=0.0812 kcal/m.h.℃;μ=3.539?10-4 kg.s/m 2 μ——液体在主体温度下粘度,器壁温度t =200 ℃时,μ=3.47 p C ; w μ——液体在器壁温度下粘度,器壁温度w t =210 ℃时,w μ=3.0 p C 。) 故内壁总传热系数:

14.033.067.0516.14.115)109498.1(36.04

.10812

.0?????=

i α=357.75 kcal/m.h.℃ 6.1.8.2釜壁及垢层传热系数:

取垢层厚度δ为0.3 mm ,查得:s λ=1.8 kcal/m.h.℃ 碳素钢厚度:110δ= mm ,查得:'λ=38.0 kcal/m.h.℃

减速机类型 摆线针齿行星减速机

标定符号 BLD 7.5-4-17

公称出轴转速 r/min 85

公称减速比

17

6.1.8.3夹套内联苯对釜壁给热系数:

给热系数可由lehrer 公式计算:

0e

h D K

=0.7518

0.03Re Pr 1 1.74(Re)(Pr 1)

-+-

相关数据:夹套内定性温度取为 t w = 210℃,查得:λ=0.094 kcal/m.h.℃;

p C =0.58 kcal/m.h.℃;ρ=904 kg/m3;μ=1.368 kcal/m.h ;材料热膨胀系数

β=3103.0-?;常数81027.1?=g m/h 2;

联苯质量流量W :W =0.31?3600=1116 kg/h ; 联苯接管内径0d ,0d =25 mm ; 夹套总高度:j H =1.6 m 相关参数计算:

0.50.5188 1.500 1.400

()()()()0.081653232

i e D D D --=== m

0V =

2

4o W

d πρ=2411163.14(0.025)904

???=2516.21 m/h A V =

22214()W D D πρ-=904

)4.15.1(14.31116

422?-??=5.42 m/h

0.50.5()B j V g t H β=???5.05

.0386.1)

30103.01027.1(?????=-=1352.33 m/h 则0.50Re [()]

A B De V V V ρ

μ

?=+[]

33

.1352)42.521.2516(368

.1904

08165.05.0+???=

79267.14

44.8094

.0368

.158.0Pr =?=

=

λ

μ

p C

o α=

)

1(Pr Re 74.11Pr Re 03.08

175.0-+??

-e

D λ

=)

144.8(79267.1474.1144

.879267.1403.008165

.0094.08

1

75

.0-??+???-

=287.51 kcal/m2.h.℃

6.1.8.4夹套总传热系数:

∑++=

λ

δ

ααo i i K 1

1

1

.3801

.08.10003.051.287175.35711

+

++=149.18 kcal/m2.h.℃

6.1.8.5夹套传热面积 6.1.8.6所需夹套传热面积

釜内流体升温和维持平衡综合为 175 ℃

m t ?=

501752

210

240=-+ ℃ q =39492360097.10=? kcal/h

故所需夹套传热面积为:

m

i t K q

A ??=

=5018.14939492?=5.29 m 2 6.1.8.7夹套实际传热面积

夹套面积高度为1.6 m ,下封头高度为0.39 m ,则:

Dh A π=1=3.14?1.4?(1.4-0.39)=4.44 m 2 下封头表面积:

306.22=A m 2 故夹套实际面积为:

210A A A +==4.440+2.306 =6.746 m 2 由于0A > A ,所以不需要加盘管。

搅拌反应釜计算设计说明书

课程设计 设计题目搅拌式反应釜设计 学生姓名 学号 专业班级过程装备与控制工程 指导教师

“过程装备课程设计”任务书 设计者姓名:班级:学号: 指导老师:日期: 1.设计内容 设计一台夹套传热式带搅拌的反应釜 2.设计参数和技术特性指标 3.设计要求 (1)进行罐体和夹套设计计算;(2)选择接管、管法兰、设备法兰;(3)进行搅拌传动系统设计;(4)设计机架结构;(5)设计凸缘及选择轴封形式;(6)绘制配料反应釜的总装配图;(7)绘制皮带轮和传动轴的零件图 1罐体和夹套的设计 1.1 确定筒体内径

当反应釜容积V 小时,为使筒体内径不致太小,以便在顶盖上布置接管和传动装置,通常i 取小值,此次设计取i =1.1。 一般由工艺条件给定容积V 、筒体内径1D 按式4-1估算:得D=1084mm. 式中 V --工艺条件给定的容积,3m ; i ――长径比,1 1 H i D = (按照物料类型选取,见表4-2) 由附表4-1可以圆整1D =1100,一米高的容积1V 米=0.953m 1.2确定封头尺寸 椭圆封头选取标准件,其形式选取《化工设备机械基础课程设计指导书》图4-3,它的内径与筒体内径相同,釜体椭圆封头的容积由附表4-2 V 封=0.1983m ,(直边高度取50mm )。 1.3确定筒体高度 反应釜容积V 按照下封头和筒体两部分之容积之和计算。筒体高度由计算 H1==(2.2-0.198)/0.95=0.949m ,圆整高度1H =1000mm 。按圆整后的1H 修正实际容积由式 V=V1m ×H1+V 封=0.95×1.000+0.198=1.1483m 式中 V 封m --3封头容积,; 1V 米――一米高的容积3m /m 1H ――圆整后的高度,m 。 1.4夹套几何尺寸计算 夹套的结构尺寸要根据安装和工艺两方面的要求。夹套的内径2D 可根据内径1D 由

搅拌反应釜的设计

1 绪论 1.1 反应釜概况 搅拌设备是一种在一定容积的容器中,借助搅拌器向液相物料中传递必要的能量进行搅拌过程的化学反应设备。反应釜就是其中比较典型的一种,它适用于多种物性(如粘度、密度)和多种操作条件(温度、压力)的反应过程,广泛应用于石油化工、橡胶、农药、染料、医药等行业,是一种用以完成磺化、硝化、氢化、烃化、聚合、缩合等工艺过程,以及有机染料和中间体的许多其它工艺过程的反应设备。 搅拌式反应釜有很大的通用性,由于搅拌可以把多种液体物料相混合,把固体物料溶解在液体中、将几种不互溶的液体制成乳浊液、把固体微粒搅浑在液体中制成悬浮液或在液相中析出结晶等,故搅拌反应釜可以在带有搅拌的许多物理过程中广泛的应用。同时在研究容器的结构方面,如容器形状、搅拌装置、传热部件等,搅拌式反应釜都具有代表性。在大多数设备中,反映釜是作为反应器来应用的。例如在三大合成材料的生产中,搅拌设备作为反应器,约占反应器总数的90%。其它如染料、医药、农药、油漆等设备的使用亦很广泛。有色冶金部门对全国有色冶金行业中的搅拌设备作了调查及功率测试,结果是许多湿法车间的动力消耗50%以上是用在搅拌作业上。搅拌设备的应用范围之所以这样广泛,还因为搅拌设备操作条件(如浓度、温度、停留时间等)的可控范围广,又能适用于多样化的生产。 搅拌式反应釜在石油化工生产中被用于物料混合、溶解、传热、制备悬浮液、聚合反应、制备催化剂等。例如石油工业中,异种原油的混合调整和精致,汽油添加四乙基铅等添加物而进行混合,使原料液或产品均匀化。化工生产中,制造苯乙烯、乙烯、高压聚乙烯、聚丙烯、合成橡胶、苯胺燃料和油漆颜料等工艺过程,都装备着各种型式的搅拌设备。因为在石油工业中大量使用催化剂、添加剂,所以对于搅拌设备的需求量比较大。由于物料操作条件的复杂性、多样性、对搅拌

夹套反应釜课程设计

有搅拌装置的夹套反应釜 前言 《化工设备机械基础》化学工程、制药工程类专业以及其他相近的非机械类专业,对化下设备的机械知识和设计能力的要求而编写的。通过此课程的学习,是通过学习使同学掌握基本的设计理论并具有设计钢制的、典型的中、低、常压化工容器的设计和必要的机械基础知识。 化工设备机械基础课程设计是《化工设备机械基础》课程教学中综合性和实践性较强的教学环节,是理论联系实际的桥梁,是学生体察工程实际问题复杂性,学习初次尝试化工机械设计。化工设计不同于平时的作业,在设计中需要同学独立自主的解决所遇到的问题、自己做出决策,根据老师给定的设计要求自己选择方案、查取数据、进行过程和设备的设计计算,并要对自己的选择做出论证和核算,经过反复的比较分析,择优选定最理想的方案和合理的设计。 化工设备课程设计是培养学生设计能力的重要实践教学环节。在教师指导下,通过裸程设计,培养学生独立地运用所学到的基本理论并结合生产实际的知识,综合地分析和解决生产实际问题的能力。因此,当学生首次完成该课程设计后,应达到一下几个目的: ⑴熟练掌握查阅文献资料、收集相关数据、正确选择公式,当缺乏必要的数据时,尚需要自己通过实验测定或到生产现场进行实际查定。 ⑵在兼顾技术先进性、可行性、经济合理的前提下,综合分析设计任务要求,确定化工工艺流程,进行设备选型,并提出保证过程正常、安全可

行所需的检测和计量参数,同时还要考虑改善劳动条件和环境保护的有效措施。 ⑶准确而迅速的进行过程计算及主要设备的工艺设计计算及选型。 ⑷用精炼的语言、简洁的文字、清晰地图表来表达自己的设计思想和计算结果。 化工设备机械基础课程设计是一项很繁琐的设计工作,而且在设计中除了要考虑经济因素外,环保也是一项不得不考虑的问题。除此之外,还要考虑诸多的政策、法规,因此在课程设计中要有耐心,注意多专业、多学科的综合和相互协调。

夹套搅拌反应器设计(DOCX 30页)

夹套搅拌反应器设计(DOCX 30页)

夹套搅拌反应器设计 课程设计说明书设计题目夹套搅拌反应器设计 学生 学号 专业班级 指导老师耿绍辉 化工设备基础 Nefu.20121228

夹套搅拌反应器设计 目录 第一章设计方案简介 1.1反应釜的基本结构 1.2反应釜的机械设计依据 第二章反应釜机械设计的内容和步骤 第三章反应釜釜体的设计 3.1 罐体和夹套计算 3.2厚度的选择 3.3设备支座 3.4手孔 3.5选择接管、管法兰、设备法兰 第四章搅拌转动系统设计 4.1转动系统设计方案 4.2转动设计计算:定出带型、带轮相关计算 4.3选择轴承 4.4选择联轴器 4.5罐体搅拌轴的结构设计、搅拌器与搅拌轴的连接结构设计4.6电动机选择 第五章绘制装配图 第六章绘制大V带轮零件图 第七章本设计的评价及心得体会 第八章参考文献

夹套搅拌反应器设计 第一章设计方案简介 搅拌设备在石油、化工、食品等工业生产中应用范围很广,尤其是化学工业中,很多的化工生产或多或少地应用着搅拌操作,化学工艺过程的种种物理过程与化学过程,往往要采用搅拌操作才能得到好的效果。搅拌设备在许多场合时作为反应器来应用的,而带搅拌的反应器则以液相物料为特征,有液-液、液-固、液-气等相反应。 搅拌的目的是:1、使互不相溶液体混合均匀,制备均匀混合液、乳化液、强化传质过程;2、使气体在液体中充分分散,强化传质或化学反应;3、制备均匀悬浮液,促使固体加速溶解、浸取或发生液-固化学反应;4、强化传热,防止局部过热或过冷。所以根据搅拌的不同目的,搅拌效果有不同的表示方法。 搅拌操作分为机械搅拌和气流搅拌。气流搅拌是利用气体鼓泡通过液体层,对液体产生搅拌作用,或使气泡群以密集状态上升借所谓气升作用促进液体产生对流循环。与机械搅拌相比,仅气泡的作用对液体所进行的搅拌时比较弱的,所以在工业生产,大多数的搅拌操作均是机械搅拌。本设计实验要求的就是机械搅拌搅拌器设备的设计遵循以下三个过程:1根据搅拌目的和物理性质进行搅拌设备的选型。2在选型的基础进行工艺设计与计算。3进行搅拌设备的机械设计与费用评价。在工艺与计算中最重要的是搅拌功率的计算和传热计算。 1.1反应釜的基本结构

搅拌反应釜课程设计(优选.)

课程设计说明书 专业: 班级: 姓名: 学号: 指导教师: 设计时间:

要求与说明 一、学生采用本报告完成课程设计总结。 二、要求文字(一律用计算机)填写,工整、清晰。所附设备安 装用计算机绘图画出。 三、本报告填写完成后,交指导老师批阅,并由学院统一存档。

目录 一、设计任务书 (5) 二、设计方案简介 (6) 1.1罐体几何尺寸计算 (7) 1.1.1确定筒体内径 (7) 1.1.2确定封头尺寸 (8) 1.1.3确定筒体高度 (9) 1.2夹套几何计算 (10) 1.2.1夹套内径 (10) 1.2.2夹套高度计算 (10) 1.2.3传热面积的计算 (10) 1.3夹套反应釜的强度计算 (11) 1.3.1强度计算的原则及依据 (11) 1.3.2按内压对筒体和封头进行强度计算 (12) 1.3.2.1压力计算 (12) 1.3.2.2罐体及夹套厚度计算 (12) 1.3.3按外压对筒体和封头进行稳定性校核 (14) 1.3.4水压试验校核 (16) (二)、搅拌传动系统 (16) 2.1进行传动系统方案设计 (17) 2.2作带传动设计计算 (17) 2.2.1计算设计功率Pc (17) 2.2.2选择V形带型号 (17) 2.2.3选取小带轮及大带轮 (17) 2.2.4验算带速V (18) 2.2.5确定中心距 (18) (18) 2.2.6 验算小带轮包角 1 2.2.7确定带的根数Z (18) 2.2.8确定初拉力Q (19) 2.3搅拌器设计 (19) 2.4搅拌轴的设计及强度校核 (19) 2.5选择轴承 (20) 2.6选择联轴器 (20) 2.7选择轴封型式 (21) (三)、设计机架结构 (21) (四)、凸缘法兰及安装底盖 (22) 4.1凸缘法兰 (22) 4.2安装底盖 (23) (五)、支座形式 (24) 5.1 支座的选型 (24) 5.2支座载荷的校核计算 (26)

搅拌反应釜的釜体设计及夹套设计

搅拌反应釜的釜体设计及夹套设计 概述 夹套式反应釜的釜体是由封头、筒体和夹套三部分组成。封头有椭圆形封头和锥形封头等形式。上、下封头与筒体常为焊接。 釜体材料的选择 根据工艺参数及操作条件(见附录2)确定封头、筒体及夹套的材料。此设计的釜体材料选用0Cr18Ni9与夹套材料选用Q235-B ,热轧钢板,其性能与用途见表2-1。 表2-1 Q235-B 性能与用途 由工艺参数及操作条件和表2-1可知,0Cr18Ni9和Q235—B 材料能够满足任务书中的设计温度、设计压力。在操作条件下,Q235—B 能使设备安全运转,并且不会因腐蚀而对介质产生污染,而且相对与其他钢号价格便宜,所以本设计釜体材料选用0Cr18Ni9与夹套材料采用Q235-B ,热轧钢板。 封头的选择 搅拌反应釜顶盖在受压状态下操作常选用椭圆形封头,本设计采用椭圆形标准封头,直边高度mm h 45=ο,其内径取与筒体内径相同的尺寸。 椭圆形封头是由半个椭圆球体和一个圆柱体组成,由于椭圆部分径线曲率平滑连续,封头中的应力分布不均匀。对于2=b a 得标准形封头,封头与直边的连接处 的不连续应力较小,可不予考虑。椭圆形封头的结构特性比较好。 釜体几何尺寸的确定 釜体的几何尺寸是指筒体的内径i D 和高度H 。釜体的几何尺寸首先要满足化工工艺的要求。对于带搅拌器的反应釜来说,容积V 为主要决定参数。 2.4.1 确定筒体的内径

由于搅拌功率与搅拌器直径的五次方成正比,而搅拌器直径往往需随釜体直径的增加而增大。因此,在同样的容积下筒体的直径太大是不适宜的。对于发酵类物料的反应釜,为使通入的空气能与发酵液充分接触,需要有一定的液位高度,筒体的高度不宜太矮。因此,要选择适宜的长泾比(i D H )。 根据釜体长径比对搅拌功率、传热的影响以及物料特性对筒体长径比的要求,又由实践经验,针对一般反应釜,液—液相物料,i D H 取值在之间,并且考虑还 要在封头上端布置机座和传动装置,因此,取i D H =。 由<<搅拌设备设计>>可知: i D =3 ) (41i D H V πηο (2-1) 有:操作容积=全容积?= 式中:V ——操作容积,3m ;H ——筒体高度,m ;i D ——筒体内径;1η——装料系数,取值为。 则: i D =33 .28.04 .64???π =m 将i D 值圆整到标准直径,取筒体内径i D =1600mm 。 2.4.2确定筒体的高度 由《搅拌设备设计》可知: )(44 D 1 2 2i h i h V V D V V H -=-=ηππο (2-2) 式中:h V ——下封头所包含的容积,在《材料与零部件》中查得,h V = 。 ) (0.6178 .0.6.4 6.142-?=πH =m 把1H 的值圆整到H =3700mm ,则: 3.21600 3700 == i D H 夹套的结构和尺寸设计 常用的夹套结构形式有以下几种:(1)仅圆筒部分有夹套,用于需加热面积不大的场合;(2)圆筒一部分和下封头包有夹套,是最常用的典型结构;(3)在

立式搅拌反应釜设计

立式搅拌反应釜工艺设计 1. 推荐的设计程序 1.1 工艺设计 1、做出流程简图; 2、计算反应器体积; 3、确定反应器直径和高度; 4、选择搅拌器型式和规格; 5、按生产任务计算换热量; 6、选定载热体并计算K 值; 7、计算传热面积; 8、计算传热装置的工艺尺寸; 9、计算搅拌轴功率; 1.2 绘制反应釜工艺尺寸图 1.3 编写设计说明书 2. 釜式反应器的工艺设计 2.1 反应釜体积的计算 2.1.1 间歇釜式反应器 V a =V R /φ (2-1) V D =F v (t+t 0) (2-2) 式中 V a —反应器的体积,m 3; V R —反应器的有效体积,m 3。 V D —每天需要处理物料的体积,m 3。 F v —平均每小时需处理的物料体积,m 3/h ; t 0 —非反应时间,h ; t —反应时间,h ; ? =A x R A A A V r dx n t 0 (2-3) 等温等容情况下 ? =A x A A A r dx C t 0 0 (2-4)

对于零级反应 A A x k C t 0 = (2-5) 对一级反应 A x k t -= 11ln 1 (2-6) 对二级反应 2A →P ;A+B →P (C A0=C B0) () A A A x kC x t -= 100 (2-7) 对二级反应 A+B →P ()A B A B x x C C k t ---= 11ln 100 (2-8) φ—装料系数,一般为0.4~0.85,具体数值可按下列情况确定: 不带搅拌或搅拌缓慢的反应釜 0.8~0.85; 带搅拌的反应釜 0.7~0.8; 易起泡沫和在沸腾下操作的设备 0.4~0.6。 2.2反应器直径和高度的计算 在已知搅拌器的操作容积后,首先要选择罐体适宜的长径比(H/D),以确定罐体直径和高度。长径比的确定通常采用经验值,即2-1 表2-1 罐体长径比经验表 在确定了长径比和装料系数之后,先忽略罐底容积,此时 ??? ? ??≈ ≈ i i i D H D H D V 32 44 π π (2-9) 选择合适的高径比,将上式计算结果圆整成标准直径。椭圆封头选择标准件,其内径与筒体内径相同。可参照《化工设备机械基础课程设计指导书》的附录查找。通过式(2-10)得出罐体高度。 π 4 2?-= i D V V H 封 (2-10) 其中 V 封——封头容积,m 3

立式搅拌反应釜设计

立式搅拌反应釜设计 第一节推荐的设计程序 一、工艺设计 1、作出流程简图; 2、计算反应器体积; 3、确定反应器直径和高度; 4、选择搅拌器型式和规格; 5、按生产任务计算换热量; 6、选定载热体并计算K值; 7、计算传热面积及夹套高度; 8、计算搅拌轴功率。 二、机械设计 1、确定反应器的结构型式及尺寸; 2、选择材料; 3、强度计算; 4、选用零部件; 5、绘图; 6、提出技术要求。 三、化工仪表选型 四、编制计算结果汇总表 五、绘制反应釜装配图 六、编写设计说明书 第二节釜式反应器的工艺设计 一、反应釜体积和段数的计算 1、间歇釜式反应器: V=V R/φ(3—1) V R=V O(τ+τ') (3—2)式中V—反应器实际体积,m3; V R—反应器有效体积,m3。

V O —平均每秒钟需处理的物料体积,m 3/s ; τ' —非反应时间,s ; τ —反应时间,s ; ?=Af x R A A V dx n 00,τ (3—3) 等温等容情况下 ()? -=Af x A A A r dx C 0 0,τ (3—4) 对一级反应 Af x k -= 11 ln 1τ 对二级反应 ()Af A A x xC x -= 10,0 ,τ φ—装料系数,一般为0.4~0.85,具体数值可按下列情况确定: 不带搅拌或搅拌缓慢的反应釜 0.8~0.85; 带搅拌的反应釜 0.7~0.8; 易起泡沫和在沸腾下操作的设备 0.4~0.6。 2、连续釜式反应器 (1)单段连续釜式反应器: ()φφA A A R r x F V V -= =0, (3—5)其中 F A,O —每秒钟所处理的物料摩尔数,kmol/s 。 对于一级反应:(-γA )=kC A =kC A,O (1-A x ) 则有效反应体积: () () 20,00,0,1A A A A A A A R KC C C V x kC x F V -= -= 其中 V O —每秒所处理的物料体积,m 3/s 对于二级反应:(-γA )= ()2 20,21A A A x kC kC -=,代入式(3-5)中 则有效反应体积为:V R =()()2 0,020,01A A A A A A kC C C V x kC x V -=- 其中 A x —转化率,其它符号同前。 (2)多级连续釜式反应器 V= φ ∑=n i i R V 1 ,, 而 V R,i = () ()i A i A i A r C C V ---,1,0 (3—6)

反应釜课程设计说明书

课程设计 资料袋 机械工程学院(系、部) 2012 ~ 2013 学年第二学期 课程名称指导教师职称 学生专业班级班级学号题目酸洗反应釜设计 成绩起止日期 2013 年 6 月 24 日~ 2013 年 6 月 30 日 目录清单 . . .

过程设备设计 设计说明书 酸洗反应釜的设计 起止日期: 2013 年 6 月 24 日至 2013 年 6 月 30 日 学生 班级 学号 成绩 指导教师(签字) 机械工程学院(部) 2013年6月26日

课程设计任务书 2012—2013学年第二学期 机械工程学院(系、部)专业班级 课程名称:过程设备设计 设计题目:酸洗反应釜设计 完成期限:自 2013 年 6 月 24 日至 2013 年 6 月 30 日共 1 周 指导教师(签字):年月日系(教研室)主任(签字):年月日 目录

第一章绪论 (4) 1.1 设计任务 (2) 1.2 设计目的 (2) 第二章反应釜设计 (2) 第一节罐体几何尺寸计算 (2) 2.1.1 确定筒体径 (2) 2.1.2 确定封头尺寸 (2) 2.1.3 确定筒体高度 (2) 2.1.4 夹套的几何尺寸计算 (3) 2.1.5 夹套反应釜的强度计算 (4) 2.1.5.1 强度计算的原则及依据 (4) 2.1.5.2 筒及夹套的受力分析 (4) 2.1.5.3 计算反应釜厚度 (5) 第二节反应釜釜体及夹套的压力试验 (6) 2.2.1 釜体的水压试验 (6) 2.2.1.1 水压试验压力的确定 (6) 2.2.1.2 水压试验的强度校核 (6) 2.2.1.3 压力表的量程、水温及水中Cl-的浓度 (6) 2.2.2 夹套的水压试验 (6) 2.2.2.1 水压试验压力的确定 (6) 2.2.2.2 水压试验的强度校核 (6) 2.2.2.3 压力表的量程、水温及水中Cl-的浓度 (6) 第三节反应釜的搅拌装置 (1) 2.3.1 桨式搅拌器的选取和安装 (1) 2.3.2 搅拌轴设计 (1) 2.3.2.1 搅拌轴的支承条件 (1) 2.3.2.2 功率 (1) 2.3.2.3 搅拌轴强度校核 (2) 2.3.2.4 搅拌抽临界转速校核计算 (2) 2.3.3 联轴器的型式及尺寸的设计 (2) 第四节反应釜的传动装置与轴封装置 (1) 2.4.1 常用电机及其连接尺寸 (1) 2.4.2 减速器的选型 (2) 2.4.2.1 减速器的选型 (2) 2.4.2.2 减速机的外形安装尺寸 (2) 2.4.3 机架的设计 (3) 2.4.4 反应釜的轴封装置设计 (3) 第五节反应釜其他附件 (1) 2.5.1 支座 (1) 2.5.2 手孔和人孔 (2) 2.5.3 设备接口 (3) 2.5.3.1 接管与管法兰 (3) 2.5.3.2 补强圈 (3) 2.5.3.3 液体出料管和过夹套的物料进出口 (4) 2.5.3.4 固体物料进口的设计 (4) 第六节焊缝结构的设计 (7) 2.6.1 釜体上的主要焊缝结构 (7) 2.6.2 夹套上的焊缝结构的设计 (8) 第三章后言............................................................. 错误!未定义书签。 3.1 结束语 ......................................................... 错误!未定义书签。 3.2 参考文献....................................................... 错误!未定义书签。

反应釜温度过程控制课程设计

过程控制系统课程课题:反应釜温度控制系统 系另I」:电气与控制工程学院 专业:自动化_____________ 姓名: ________ 彭俊峰_____________ 学号:__________________ 指导教师: _______ 李晓辉_____________ 河南城建学院 2016年6月15日

反应器是任何化学品生产过程中的关键设备,决定了化工产品的品质、品种和生产能力。釜式反应器是一种最为常见的反应器,广泛的应用于化工生产的各个领域。釜式反应器有一些非常重要的过程参数,如:进料流量(进料流量比)、液体反应物液位、反应压力、反应温度等等。对于这些参数的控制至关重要,其不但决定着产品的质量和生产的效率,也很大程度上决定了生产过程的安全性。 由于非线性和温度滞后因素很多,使得常规方法对釜式反应器的控制效果不是很理想。本文以带搅拌釜式反应器的温度作为工业生产被控对象,结合PID 控制方式,选用FX2N-PLC 调节模块,同时为了提高系统安全性,设计了报警和紧急停车系统,最终设计了一套反应釜氏的温度过程控制系统。

1系统工艺过程及被控对象特性选取 被控对象的工艺过程 本设计以工业常见的带搅拌釜式反应器(CSTR)为过程系统被控对象。 反应器为标准3盆头釜,反应釜直径1000mm,釜底到上端盖法兰高度1376mm, 反应器总容积,耐压。为安全起见,要求反应器在系统开、停车全过程中压力不超过。反应器压力报警上限组态值为。反应器的工艺流程如图1-1所示。 S8Q A a珑厲娜口 图1-1釜式反应器工艺流程图 该装置主要参数如表1-1所示。各个阀门的设备参数如表1-2所示,其中,D g为阀门公称直径、K v为国际标准流通能力。 表1-1主要测控参数表

搅拌反应釜设计要点

<<化工容器>>课程设计 —搅拌反应釜设计 姓名: 余景超 学号: 2010115189 专业: 过程装备与控制工程 学院: 化工学院 指导老师: 淡勇老师 2013年 6 月18 日

目录一设计内容概述 1. 1 设计要求 1. 2 设计参数 1. 3 设计步骤 二罐体和夹套的结构设计 2. 1 几何尺寸 2. 2 厚度计算 2. 3 最小壁厚 2. 4 应力校核 三传动部分的部件选取 3.1 搅拌器的设计 3.2 电机选取 3.3 减速器选取 3.4 传动轴设计 3.5 支撑与密封设计 四标准零部件的选取 4.1 手孔 4.2 视镜

4.3 法兰 4.4 接管五参考文献

一设计内容概述 (一)设计内容:设计一台夹套传热式配料罐 设计参数及要求 容器内夹套内 工作压力,MPa 0.18 0.25 设计压力,MPa 0.2 0.3 工作温度,℃100 130 设计温度,℃120 150 介质染料及有 机溶剂 冷却水或蒸汽 全容积, 3 m 1.0 操作容积, 3 m0.80 传热面积, 2 m 3 腐蚀情况微弱推荐材料Q235--A 接管表 符号公称尺 寸DN 连接面形 式 用途 A 25 蒸汽入口 B 25 加料口 C 80 视镜 D 65 温度计管口 E 25 压缩空气入口 F 40 放料口 G 25 冷凝水出口 H 100 手孔

(二)设计要求: 压力容器的基本要求是安全性和经济性的统一。安全是前提,经济是目标,在充分保证安全的前提下,尽可能做到经济。经济性包括材料的节约,经济的制造过程,经济的安装维修。 搅拌容器常被称为搅拌釜,当作反应器用时,称为搅拌釜式反应器,简称反应釜。反应釜广泛应用于合成塑料、合成纤维、合成橡胶、农药、化肥等行业。反应釜由搅拌器、搅拌装置、传动装置、轴封装置及支座、人孔、工艺接管等附件组成。 压力容器的设计,包括设计图样,技术条件,强度计算书,必要时还要包括设计或安装、使用说明书。若按分析设计标准设计,还应提供应力分析报告。强度计算书的内容至少应包括:设计条件,所用规范和标准、材料、腐蚀裕度、计算厚度、名义厚度、计算应力等。设计图样包括总图和零部件图。 设计条件,应根据设计任务提供的原始数据和工艺要求进行设计,即首先满足工艺设计条件。设计条件常用设计条件图表示,主要包括简图,设计要求,接管表等内容。简图示意性地画出了容器的主体,主要内件的形状,部分结构尺寸,接管位置,支座形式及其它需要表达的内容。 (二)设计参数和技术性能指标 (三)设计步骤: 1.进行罐体和夹套设计计算; 2.搅拌器设计; 3.传动系统设计; 4.选择轴封; 5.选择支座形式并计算; 6.手孔校核计算; 7.选择接管,管法兰,设备法兰。

搅拌釜式反应器课程设计

搅拌釜式反应器课程设计任务书 一、设计内容安排 1. 釜式反应器的结构设计 包括:设备结构、人孔数量及位置,仪表接管选择、工艺接管管径计算等。 2. 设备壁厚计算及其强度、稳定性校核 3. 筒体和裙座水压试验应力校核 4. 编写设计计算书一份 5. 绘制装配图一张(电子版) 二、设计条件 三、设计要求 1.学生要按照任务书要求,独立完成塔设备的机械设计; 2.根据设计计算书、图纸及平时表现综合评分。 四、设计说明书的内容 1.符号说明 2.前言 (1)设计条件; (2)设计依据; (3)设备结构形式概述。 3.材料选择 (1)选择材料的原则; (2)确定各零、部件的材质;

(3)确定焊接材料。 4.绘制结构草图 (1)按照工艺要求,绘制工艺结构草图; (2)确定裙座、接管、人孔、控制点接口及附件、内部主要零部件的轴向及 环向位置,以单线图表示; (3)标注形位尺寸。 5.标准化零、部件选择及补强计算: (1)接管及法兰选择:根据结构草图统一编制表格。内容包括:代号,PN,DN, 法兰密封面形式,法兰标记,用途)。补强计算。 (2)人孔选择:PN,DN,标记或代号。补强计算。 (3)其它标准件选择。 6.结束语:对自己所做的设计进行小结与评价,经验与收获。 7.主要参考资料。 【设计要求】: 1.计算单位一律采用国际单位; 2.计算过程及说明应清楚; 3.所有标准件均要写明标记或代号; 4.设计计算书目录要有序号、内容、页码; 5.设计计算书中与装配图中的数据一致。如果装配图中有修改,在说明书中要注明变更; 6.设计计算书要有封面和封底,均采用A4纸,正文用小四号宋体,行间距1.25倍,横向装订成册。

连续搅拌反应釜系统的设计与仿真

吉林化工学院毕业设计说明书 连续搅拌反应釜系统的控制器设计与仿真Controller Design and Simulation for CSTR 学生学号:11510210 学生姓名:严新宇 专业班级:自动1102 指导教师:王野 职称:工程师 起止日期:2015.03.09~2015.06.26 吉林化工学院 Jilin Institute of Chemical Technology

吉林化工学院信控学院毕业设计说明书 摘要 连续搅拌反应釜(CSTR)是发酵、化工、石油生产、生物制药等工业生产过程中应用最广泛的一种化学反应器,其控制质量直接影响到生产的效益和质量指标。对连续搅拌反应釜通过控制内部的工艺参数,如温度、压力、浓度等稳定,保证反应的正常运行。本文针对连续搅拌反应釜的数学模型,应用泰勒展开得到了线性状态空间表达式,在此基础上设计了LQR控制器,仿真结果表明,控制效果令人满意。 本设计将CSTR的非线性动态模型进行了输入输出线性化,得到CSTR线性状态空间模型。设计出连续搅拌反应釜的极点配置控制器并对系统进行仿真。设计出连续搅拌反应釜的LQR控制器并对其系统进行仿真。并对两种控制方法的控制效果进行了比较。 关键词:连续反应搅拌釜;LQR控制器;MATLAB仿真 I

连续搅拌反应釜系统的控制器设计与仿真 Abstract Continuous stirred tank reactor (CSTR) is the most widely used in fermentation, chemical engineering, petroleum production, bio pharmaceutical and other industrial production process as a chemical reactor, control the quality directly affect the production efficiency and quality index. For continuous stirred tank reactor by controlling the process parameters, such as temperature, pressure, concentration and so on, ensure the normal operation of the reaction. In this paper, based on a continuous stirred reactor mathematical model, the application of Taylor expansion is obtained for the linear state space representation, on this basis, design the LQR controller. Simulation results show that the control effect is satisfactory. In this paper, the nonlinear dynamic model of CSTR is linearized, and the CSTR linear state space model is obtained. The pole assignment controller for continuous stirred tank reactor was designed and the simulation of the system was carried out. The LQR controller of the continuous stirred tank reactor is designed and the system is simulated. The control effect of the two control methods is compared. Key Words: Continuous Stirred Tank; LQR Controller; MATLAB Simulation II

毕业设计-搅拌反应釜设计(普通夹套)

乳化液泵站设计?专业:机械工程及自动化 导师:姜虹学生: 斯郎旺加

一.课题研究背景及意义?1.课题研究背景 ?乳化液泵站的技术是随着煤矿机械化的发展而迅速发展起来的。 ?早在70年代初,随着我国TZ-1型全工作面液压支架的研制成功,我国自行设计?公称压力为10MPa,公称流量为10OL/min的RB100/100行乳化液泵同时研制成功,从此我国煤矿生产有了第一套液压支架和第一套乳化液泵站。之后,不同型号的乳化液泵站,喷雾泵站,注水泵站又陆续被研制出来,并得到了推广和应用。 ?我国乳化If泵站从低压10 Mpa,小流量100L/min起步,压力逐步提高到20 Mpa,31.5 Mpa,和35Mpa,流量分别提高到110L/min,125 L/min,现已提高到200 L/min,甚至更大的流量。

定流量的乳化液泵站技术的发展带动了自动变量乳化液泵的研究,也提出了分级卸载式乳化液泵站。 乳化液泵站产品的发展,带动了喷雾泵站和注水泵站的发展,掘进机用喷雾泵的研制也取得了进展。 为了提高乳化液泵及泵站元件、喷雾泵站及元件、注水泵及元件的产品质量,推进乳化液泵站的技术水平提高,相关部门起草了一系列的标准、规范档,为乳化液泵站试验装置的研制和使用提供了科学的技术依据。

,面调力支回脏的些牵及靠在、乳要 一作、 压压站心中某机以是站产以重 之工架的液泵的作在煤,都泵生所常 备采移给是液体动,采顶,液常。■ 设综、供站化人架外、斤等 化正泵着 要。溜站泵乳像史作达千柱乳面液起 主置推泵液向好而。工马移支,作化产 的装现液化及就,中液压推压见工乳生 面换实化乳液站住相力液与液可证为全 作转能乳,供泵液液压链定体此保分安 工量并是说架液压化的紧固单由是部的 煤能,都以支化高乳给的的的。,心面 采的板,所压乳着的供机机用的位核作 化能顶作。液么送站站送载护作地其工 械压撑动果向那输泵泵输转支工的而采 机液支等结把,架到液板式前液要,综 合为够滑的们话支回化刮桥超压重备对 综变能防作我的压流乳曲、处高分设, 是转以、动果管液路靠弯顶口的十键坏 义站能所护顶如血向管架可斤出给有关好 意泵械之侧斤。作 地液支,千下供占的的 宄液机架、千源比断 回压面紧、站面率能 % 化把支壁种力道不从液 作张上泵作产性。 题乳种压护各动管源又除 工的面液工生泵用课一液、使的的源液采

搅拌反应釜设计

第三章立式搅拌反应釜设计 第一节推荐的设计程序 一、工艺设计 1、作出流程简图; 2、计算反应器体积; 3、确定反应器直径和高度; 4、选择搅拌器型式和规格; 5、按生产任务计算换热量; 6、选定载热体并计算K值; 7、计算传热面积及夹套高度; 8、计算搅拌轴功率。 二、机械设计 1、确定反应器的结构型式及尺寸; 2、选择材料; 3、强度计算; 4、选用零部件; 5、绘图; 6、提出技术要求。 三、化工仪表选型 四、编制计算结果汇总表 五、绘制反应釜装配图 六、编写设计说明书 第二节釜式反应器的工艺设计 一、反应釜体积和段数的计算 1、间歇釜式反应器: V=V R/φ(3—1) V R=V O(τ+τ') (3—2)式中V—反应器实际体积,m3; V R—反应器有效体积,m3。 1页

2页 V O —平均每秒钟需处理的物料体积,m 3/s ; τ' —非反应时间,s ; τ —反应时间,s ; ?=Af x R A A V dx n 00,τ (3—3) 等温等容情况下 ()? -=Af x A A A r dx C 0 0,τ (3—4) 对一级反应 Af x k -= 11 ln 1τ 对二级反应 ()Af A A x xC x -= 10,0 ,τ φ—装料系数,一般为0.4~0.85,具体数值可按下列情况确定: 不带搅拌或搅拌缓慢的反应釜 0.8~0.85; 带搅拌的反应釜 0.7~0.8; 易起泡沫和在沸腾下操作的设备 0.4~0.6。 2、连续釜式反应器 (1)单段连续釜式反应器: ()φφA A A R r x F V V -= =0, (3—5)其中 F A,O —每秒钟所处理的物料摩尔数,kmol/s 。 对于一级反应:(-γA )=kC A =kC A,O (1-A x ) 则有效反应体积: ()() 2 0,00,0,1A A A A A A A R KC C C V x kC x F V -= -= 其中 V O —每秒所处理的物料体积,m 3/s 对于二级反应:(-γA )= ()2 20,21A A A x kC kC -=,代入式(3-5)中 则有效反应体积为:V R =()()2 0,020,01A A A A A A kC C C V x kC x V -=- 其中 A x —转化率,其它符号同前。 (2)多级连续釜式反应器 V= φ ∑=n i i R V 1 ,, 而 V R,i = () ()i A i A i A r C C V ---,1,0 (3—6)

3M反应釜的设计及其制造工艺规范

前言 1、课题的背景及意义 反应釜广泛应用于石油、化工、橡胶、农药、染料、医药、食品,用来完成硫化、硝化、氢化、烃化、聚合、缩合等工艺过程的压力容器,材质一般有碳锰钢、不锈钢、锆、镍基(哈氏、蒙乃尔、因康镍)合金及其它复合材料。 不锈钢反应釜广泛应用于石油、化工、橡胶、农药、染料、医药、食品等生产型用户和各种科研实验项目的研究,用来完成水解、中和、结晶、蒸馏、蒸发、储存、氢化、烃化、聚合、缩合、加热混配、恒温反应等工艺过程的容器。不锈钢反应釜根据不同的生产工艺、操作条件等不尽相同,反应釜的设计结构及参数不同,即反应釜的结构样式不同,属于非标的容器设备。 搅拌机的操作性能直接关系到产品的质量、能耗和生产成本,工程界和学术界对搅拌混合都非常重视,进行了大量的研究工作,取得了不少的研究成果。

搅拌器是化学工程和生物工程中最常见也是最重要的单元设备之一。目前,搅拌器的选型和内构件的设计在很大程度上依赖试验和经验,对放大规模还缺乏深入的认识,对于能耗和生产成本只能在一定规模的生产装置上对比后才能得出结论,由于对产品的回收率和质量要求越来越高,对搅拌器的研究日趋深入,已从早期对搅拌功率和混合时间的研究,20世纪80年代对反应釜内的流体速度场分布的研究,进入20世纪90年代以来的搅拌釜内三维流场的数值模拟研究。流场数值模拟必须在深入进行流体力学研究的基础上,综合考虑流体流动的三维性、随机性、非线性和边界条件不确定性。通过数值模拟不但可以解决反应器的放大机理,而且可以优化设计开发新型高效搅拌器,使机械搅拌器的设计理论更加完善。 对于不同的介质,不同的化学反应过程,要求搅拌装置的结构和搅拌速度不同,根据不同的场合一般分为以下几种情况:1、液-液互溶系统的场合,一般采用低速搅拌就能足够完成,这种场合常用浆叶式搅拌装置。2、液-液互不相溶的场合,这种场合则需要强烈的上下翻滚,常用浆叶搅拌器,在釜体内加有一定形状的挡板,或采用推进式搅拌器。3、

搅拌釜式反应器课程设计书

搅拌釜式反应器课程设计书 一、设计容安排 1. 釜式反应器的结构设计 包括:设备结构、人孔数量及位置,仪表接管选择、工艺接管管径计算等。 2. 设备壁厚计算及其强度、稳定性校核 3. 筒体和裙座水压试验应力校核 4. 编写设计计算书一份 5. 绘制装配图一(电子版) 二、设计条件 三、设计要求 1.学生要按照任务书要求,独立完成塔设备的机械设计; 2.根据设计计算书、图纸及平时表现综合评分。 四、设计说明书的容 1.符号说明 2.前言 (1)设计条件; (2)设计依据; (3)设备结构形式概述。 3.材料选择 (1)选择材料的原则; (2)确定各零、部件的材质; (3)确定焊接材料。

4.绘制结构草图 (1)按照工艺要求,绘制工艺结构草图; (2)确定裙座、接管、人孔、控制点接口及附件、部主要零部件的轴向及环 向位置,以单线图表示; (3)标注形位尺寸。 5.标准化零、部件选择及补强计算: (1)接管及法兰选择:根据结构草图统一编制表格。容包括:代号,PN,DN, 法兰密封面形式,法兰标记,用途)。补强计算。 (2)人孔选择:PN,DN,标记或代号。补强计算。 (3)其它标准件选择。 6.结束语:对自己所做的设计进行小结与评价,经验与收获。 7.主要参考资料。

目录 搅拌釜式反应器设计条件 (1) 1 确定筒体的直径和高度 (2) 2. 确定夹套的直径和高度 (2) 3. 确定夹套的材料和壁厚 (3) 4. 确定筒的材料和壁厚 (3) 5. 水压试验及其强度校核 (5) 6. 选择釜体法兰 (6) 7. 选择搅拌器、搅拌轴和联轴器 (6) 8. 选择搅拌传动装置和密封装置 (7) 9. 校核L1/ B和L1/d (8) 10. 容器支座的选用计算 (8) 11. 选用手孔、视镜、温度计和工艺接管 (9) 12 参考资料 (10) 13 设计感想 (11)

夹套式加氢搅拌反应釜的设计

课程设计 专业名称 班级 学生姓名 学号 课题名称夹套式加氢搅拌反应釜的设计指导教师

目录 一课程设计任务书 (3) 1.1任务书 (3) 1.2 设计内容 (3) 1.3 设计数据基础 (3) 1.4 工作计划 (3) 1.5 设计成果要求 (3) 1.6几点说明 (4) 二加氢反应釜的 (5) 2.1加氢反应釜的总体结构 (5) 2.1.1筒体的直径与高度 (5) 2.1.2夹套的结构 (5) 2.1.3厚度的确定 (5) 2.1.4蛇管的设置 (5) 2.1.5工艺管口 (6) 2.2、反应釜釜体的一些相关计算 (6) 2.2.1、确定筒体和封头型式 (6) 2.2.2 罐体几何尺寸计算 (6) (1) 确定筒体尺寸 (6) (2) 确定夹套尺寸 (6) (3) 校核传热面积 (7) (4) 内筒及夹套的受力分析 (7) (5) 计算夹套筒体、封头厚度 (7) 2.2.3 夹套几何尺寸计算 (7) 2.2.4 夹套反应釜的强度计算 (8) (1) 强度计算的原则及依据 (8) (2) 水压试验校核计算 (8) 2.3 反应釜的搅拌装置 (8) 2.4 搅拌器的安装方式及其与轴连接的结构设计 (8)

2.4.1搅拌轴设计 (8) 2.5 反应釜的传动装置 (9) 2.6 常用电机及其连接 (9) 2.7 釜用减速机类型,标准及其选用 (9) 2.8 反应釜的一些常用装置 (10) 2.8.1 凸缘法兰 (10) 2.8.2安装底盖 (10) 2.8.3机架 (10) 2.8.4 联轴器 (10) 2.8.5 反应釜的轴封装置 (10) 2.9 反应釜的其他附件 (10) 2.9.1 支座 (10) 2.9.2人孔 (11) 2.9.3设备接口 (11) 参考文献 (12)

相关文档