文档库 最新最全的文档下载
当前位置:文档库 › 数学归纳法知识总结

数学归纳法知识总结

数学归纳法知识总结
数学归纳法知识总结

理科数学归纳法知识总结

一 基本概念

1.运用数学归纳法证明命题要分两步,

第一步是归纳奠基(或递推基础),

第二步是归纳递推(或归纳假设),

两步缺一不可

二 易错点

1.归纳起点易错 (1)n 未必是从n=1开始

例 用数学归纳法证明:凸n 边形的对角线条数为2

32n n - 点拔:本题的归纳起点n=3

(2) n=1时的表达式

例 用数学归纳法证明),1(1112

2*+∈≠--=++++N n a a a a a a n n

,在验证n=1时,左边计算所得的式子是( )

A. 1

B.a +1

C.21a a ++

D. 421a a a +++

点拨 n=1时,左边的最高次数为1,即最后一项为a ,左边是a +1,故选B

2.没有运用归纳假设的证明不是数学归纳法

例1 用数学归纳法证明:

2243131414141?-=+++n 错证:

(1)当n=1时,左=右=4

11,等式成立 (2)假设当n=k 时等式成立,

则当n=k+1时,2112431314

11])41(1[41414141?-=--=+++++k k 综合(1)(2),等式对所有正整数都成立

点拨:错误原因在于只有数学归纳法的形式,没有数学归纳法的“实质”即在归纳递推中,没有运用归纳假设

3 从n=k 到n=k+1增加项错误

例1 已知n 是正偶数,用数学归纳法证明时,若已假设n=k (2≥k 且为偶数)时命题为真,,则还需证明( )

A.n=k+1时命题成立

B. n=k+2时命题成立

C. n=2k+2时命题成立

D. n=2(k+2)时命题成立

点拨:因n 是正偶数,故只需证等式对所有偶数都成立,因k 的下一个偶数是k+2,故选 例2 用数学归纳法证明不等式24

1312111>++++++n n n n 的过程中,由k 推导到k+1时,不等式左边增加的式子是

点拨:求)()1(k f k f -+即可

当 n=k 时, 左边k k k k ++++++=

12111 , n=k+1时,左边)

1()1(13121++++++++=k k k k , 故左边增加的式子是

11221121+-+++k k k ,即)22)(12(1++k k 三 知识应用 用数学归纳法可以证明许多与自然数有关的数学命题,其中包括恒等式、不等式、数列通项公式、整除性问题、几何问题等

1 用数学归纳法证明等式

例1 用数学归纳法证明等式:n

n n n n 212111211214131211+++++=--++-+-

例2 用数学归纳法证明: ()()12121217

51531311+=+-++?+?+?n n n n 2 用数学归纳法证明不等式

例3用数学归纳法证明不等式2)1(21)1(3221+<+++?+

?n n n 例4.证明不等式n n 21

31

21

1<+

+++ (n ∈N ). 3 用数学归纳法证明整除问题

例5 求证:)(53*∈+N n n n 能被6 整除.

例6 证明:)(,)3(1*∈+-N n x n 能被2+x 整除

4 用“归纳——猜想——证明”解决数列问题

例7在数列}{n a 中,n

n n a a a x a -+==+11,tan 11, (1)写出,,21a a 3a ;(2)求数列}{n a 的通项公式

例8 在数列{}n a 中,)(2)2(,2111*++∈-++==N n a a a n n n n λλλ,其中0>λ,求数列

}{n a 的通项公式

5用“归纳——猜想——证明”解决几何问题

例9.n 个半圆的圆心在同一条直线l 上,这n 个半圆每两个都相交,且都在直线l 的同侧,问这些半圆被所有的交点最多分成多少段圆弧?

四 练习巩固

1.用数学归纳法证明:1(n 2-1)+2(n 2-22)+…+n(n 2-n 2)=2n (n-1)(n+1)4(n ∈N*).

2.用数学归纳法证明:1·2·3+2·3·4+…+n(n+1)(n+2)=

n 4(n+1)·( n+2)·(n+3)(n ∈N*). 3.当n>1,n ∈N*时,求证:111912310

n n n ++???+>++ 4.用数学归纳法证明:n n 11111+1++++n 22322

≤???≤(n ∈N*) 5.用数学归纳法证明 49n +16n-1能被64整除(n ∈N*)

6.用数学归纳法证明 m n+2+(m+1)2n+1能被m 2+m+1整除(n ∈N*)

7.在数列{}n a 中,a n >0,且S n =1/2(a n +n

1a ) (1)求a 1、a 2、a 3;

(2)猜测出a n 的关系式并用数学归纳法证明。

8.设数列{a n }的前n 项和为S n ,且方程x 2-a n x -a n =0有一根为S n -1,n =1,2,3,….

(1)求a 1,a 2;(2)猜想数列{S n }的通项公式,并给出严格的证明.

9.平面内有n 个圆,其中每两个圆都相交于两点,且每三个圆都不相交于同一点,求证:这

n 个圆把平面分成n 2-n+2个部分。

人教版高中数学总复习[知识点整理及重点题型梳理]推理与证明、数学归纳法

推理与证明、数学归纳法 编稿:辛文升 审稿:孙永钊 【考纲要求】 1.了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用. 2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理. 3.了解合情推理和演绎推理之间的联系和差异. 4.了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程、特点. 5.了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点. 6.了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题. 【知识网络】 【考点梳理】 【推理与证明、数学归纳法407426 知识要点】 考点一:合情推理与演绎推理 1.推理的概念 根据一个或几个已知事实(或假设)得出一个判断,这种思维方式叫做推理.从结构上说,推理一般由两部分组成,一部分是已知的事实(或假设)叫做前提,一部分是由已知推出的判断,叫做结论. 2.合情推理 根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理称为合情推理. 合情推理又具体分为归纳推理和类比推理两类: (1)归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象具有这 推 理 与 证 明 归纳 推 理 证 明 合情推理 演绎推理 数学归纳法 综合法 分析法 直接证明 类比 间接证明 反证法

些特征的推理,或者由个别事实概括出一般结论的推理.简言之,归纳推理是由部分到整体、个别到一般的推理,归纳推理简称归纳. (2)类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,简言之,类比推理是由特殊到特殊的推理,类比推理简称类比. 3.演绎推理 从一般性的原理出发,推出某个特殊情况下的结论.简言之,演绎推理是由一般到特殊的推理. 三段论是演绎推理的一般模式,它包括: (1)大前提——已知的一般原理; (2)小前提——所研究的特殊情况; (3)结论——根据一般原理,对特殊情况作出的判断. 要点诠释: 合情推理与演绎推理的区别与联系 (1)从推理模式看: ①归纳推理是由特殊到一般的推理. ②类比推理是由特殊到特殊的推理. ③演绎推理是由一般到特殊的推理. (2)从推理的结论看: ①合情推理所得的结论不一定正确,有待证明。 ②演绎推理所得的结论一定正确。 (3)总体来说,从推理的形式和推理的正确性上讲,二者有差异;从二者在认识事物的过程中所发挥的作用的角度考虑,它们又是紧密联系,相辅相成的。合情推理的结论需要演绎推理的验证,而演绎推理的内容一般是通过合情推理获得的;演绎推理可以验证合情推理的正确性,合情推理可以为演绎推理提供方向和思路. 考点二:直接证明与间接证明 1.综合法 (1)定义:综合法是中学数学证明中最常用的方法,它是从已知到未知,从题设到结论的逻辑推理方法,即从题设中的已知条件或已证的真实判断出发,经过一系列的中间推理,最后导出所要求证的命题.综合法是一种由因索果的证明方法,又叫顺推法. (2)综合法的思维框图: 用P 表示已知条件,1i Q i =(,2,3,...,n )为定义、定理、公理等,Q 表示所要证明的结论,则综合法可用框图表示为: 1P Q ?()→12Q Q ?()→23Q Q ?()→.........n Q Q ?() 2.分析法 (1) 定义:一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判断一个明显成立的条件(已知条件,定理,定义,公理)为止.这种证明方法叫做分析法.分析法又叫逆推法或执果索因法. (2)分析法的思维框图: 1Q P ?()→12P P ?()→23P P ?() →.........得到一个明显成立的条件. 3.反证法

数学归纳法.知识点梳理

课题:数学归纳法 备课教师:沈良宏参与教师:郭晓芳、龙新荣审定教师:刘德清 1、教学重点:能用数学归纳法证明一些简单的数学命题 2、教学难点:学归纳法中递推思想的理解. 3、学生必须掌握的内容: 1.数学归纳法的定义 一般地,当要证明一个命题对于不小于某正整数n0的所有正整数n都成立时,可以用以下两个步骤: (1)证明当n=n0时命题成立. (2)假设当n=k(k∈N+且k≥n0)时命题成立,证明当n=k+1时命题也成立. 在完成了这两个步骤后,就可以断定命题对于不小于n0的所有正整数都成立,这种证明方法称为数学归纳法. 2.数学归纳法的适用范围 适用于证明一个与无限多个正整数有关的命题. 3.数学归纳法的步骤 (1)(归纳奠基)验证当n=n0(n0为命题成立的起始自然数)时命题成立; (2)(归纳递推)假设当n=k(k∈N+,且k≥n0)时命题成立,推导n=k+1时命题也成立. (3)结论:由(1)(2)可知,命题对一切n≥n0的自然数都成立. 注意:用数学归纳法证明,关键在于两个步骤要做到“递推基础不可少,归纳假设要用到,结论写明莫忘掉”,因此必须注意以下三点: (1)验证是基础.数学归纳法的原理表明:第一个步骤是要找一个数n0,这个n0就是我们要证明的命题对象的最小自然数,这个自然数并不一定就是“1”,因此“找准起点,奠基要稳”是正确运用数学归纳法要注意的第一个问题. (2)递推是关键.数学归纳法的实质在于递推,所以从“k”到“k+1”的过程,必须把归纳假设“n=k”时命题成立作为条件来导出“n=k+1”时命题成立,在推导过程中,要把归纳假设用上一次或几次,没有用上归纳假设的证明不是数学归纳法. (3)正确寻求递推关系.数学归纳法的第二步递推是至关重要的,那么如何寻找递推关系呢?①在第一步验证时,不妨多计算几项,并正确写出来,这样对发现递推关系是有帮助的;②探求数列的通项公式时,要善于观察式子或命题的变化规律,观察n处在哪个位置;③在书写f(k+1)时,一定要把包含f(k)的式子写出来,尤其是f(k)中的最后一项.除此之外,多了哪些项,少了哪些项都要分析清楚. 4、容易出现的问题: (1)混淆数学归纳法与归纳法; (2)忽视第一步的归纳基础,数学归纳法的解题步骤有两步,第一步是归纳基础,第二步是归纳假设,在证明命题成立时,归纳假设这部分是一个难点,学生往往比较重视第二步的证明,却对忽视了归纳基础。常见的错误有: ①没有写第一步,而是直接假设成立,进行第二步归纳假设的证明; ②有写第一步,但是只是形式上写一下归纳基础,并没有进行验证是否成立,容易发生第一步是不成立的情况。因为第一步往往是正确的,而且是比较显然的,所以学生容易忽视它,但是就像玩多米诺骨牌游戏一样,如果第一块骨牌没有办法倒下,那么就算后面的骨牌排得多么整齐都不会倒下. 5、解决方法: 针对数学归纳法的特殊证明思路和特点,讲解清楚数学归纳法的概念及它的特征和相关要点,并结合学生的课堂反应,课堂多注重基础,多找出有代表性的典例适时强化学生理解

数学归纳法知识点大全(综合)

数学归纳法 数学归纳法是用于证明与正整数n 有关的数学命题的正确性的一种严格的推理方法.在数学竞赛中占有很重要的地位. (1)第一数学归纳法 设)(n P 是一个与正整数有关的命题,如果 0n n =(N n ∈01.数学归纳法的基本形式)时,)(n P 成立; ②假设),(0N k n k k n ∈≥=成立,由此推得1+=k n 时,)(n P 也成立,那么,根据①②对一切正整数0n n ≥时,)(n P 成立. (2)第二数学归纳法 设)(n P 是一个与正整数有关的命题,如果 ①当0n n =(N n ∈0)时,)(n P 成立; ②假设),(0N k n k k n ∈≥≤成立,由此推得1+=k n 时,)(n P 也成立,那么,根据①②对一切正整数0n n ≥时,)(n P 成立. 2.数学归纳法的其他形式 (1)跳跃数学归纳法 ①当l n ,,3,2,1Λ=时,)(,),3(),2(),1(l P P P P Λ成立,

②假设k n =时)(k P 成立,由此推得l k n +=时,)(n P 也成立,那么,根据①②对一切正整数1≥n 时,)(n P 成立. (2)反向数学归纳法 设)(n P 是一个与正整数有关的命题,如果 )(n P 对无限多个正整数n 成立; ②假设k n =时,命题)(k P 成立,则当1-=k n 时命题)1(-k P 也成立,那么根据①②对一切正整数1≥n 时,)(n P 成立. 例如,用数学归纳法证明: 为非负实数,有 在证明中,由 真,不易证出 真;然而却很容易证出 真,又容易证明不等式对无穷多个 (只要 型的自然数)为真;从而证明 ,不等式成立. (3)螺旋式归纳法 P (n ),Q (n )为两个与自然数 有关的命题,假如 ①P(n0)成立; ②假设 P(k) (k>n0)成立,能推出Q(k)成立,假设 Q(k)成立,能推出 P(k+1)成立; 综合(1)(2),对于一切自然数n (>n0),P(n),Q(n)都成立;

数学归纳法案例分析

数学归纳法案例分析 一、内容提要 数学归纳法是高中数学中的一个重点和难点内容,也是一种重要的数学方法,数学归纳法这一方法,贯通了高中数学的几大知识点:不等式,数列,三角函数,平面几何等。通过对它的学习,能起到以下几方面的作用:提高学生的逻辑思维、推理能力;培养学生辩证思维素质,全面提高学生数学能力;培养学生科学探索的创新精神,提高学生综合素质。 二、教学设计 根据本节课的内容和学生的实际水平,我采用的引导发现法和感性体验法进行教学。 在引出的《数学归纳法》这个课题后,我通过一个盒子中的十个乒乓球和等差数列的通项公式,导出完全归纳法和不完全归纳法这两个概念,又通过的两个例子促进学生对“ 递推关系” 的理解,明了两个概念的必要性,为数学归纳法的应用前提和场合提供形象化的参照物。 同点做准备时抓住这两个问题的类似之处,由具体到抽象,引导学生掌握本堂课的重点,为进一步突出难。 三、设计理念 1 、初步掌握归纳与推理的能力;培养大胆猜想,小心求证的辩证思维素质。 2 、掌握了自主探索问题、自主学习的方法。 3 、培养学生对于数学内在美的感悟能力。 四、教学片断 师:问题1 :这个盒子里有十个乒乓球,如何证明里面的球全为白色? 问题2 :请大家回忆,课本是如何得出等差数列的通项公式的?

教师引导学生明了以上两个问题的异同点。由此,得出归纳法的概念,同时指明了完全归纳法与不完全归纳法的区别。 师:若盒子里的乒乓球有无数个,如何证明它们全是白色球呢? 生:①证明第一次拿出的乒乓球是白色的;②构造一个命题并证明,此命题的题设是:“ 若某一次拿出的球是白色的” ,结论是:“ 下次拿出的球也是白色的” 。以上两步都被证明,则盒子中的乒乓球全是白色的。 教师引导学生讨论:以上两个步骤如果都得到证明,是否能说明全部的乒乓球都是白色的?由此,得出数学归纳法的基本概念。 师:这种思考方法能不能用来证明第二个问题呢? 生:能,学生对比上一问题与此问题类似之处,进而得出数学归纳法的证题思路和步骤。 让学生用数学归纳法证明第二人个问题( 略) 。 师再强调数学归纳法的“ 奠基步骤” 和“ 递推步骤” 这“ 两个步骤” 以及“ 一个结论” 。 师引导学生总结: ①教学归纳法是一种完全归纳的证明方法,它适用于与自然数有关的问题。 ②两个步骤、一个结论缺一不可否则结论不能成立。 ③在证明递推步骤时,必须使用归纳假设,必须进行恒等变换。 五、课后反思 ? 通过一个生活事例和一个课本公式的比较,引导学生讨论,促使学生主动思维。? 通过本节课的教学也使学生掌握递推原理,提高学生的逻辑思维和推理能力。? 本节课的结构可以,对学生的学法指导不错,让学生清楚学习数学归纳法的用途,指明的方向。 对数学归纳法的解题步骤可再介绍具体一点

浅谈数学归纳法在高考中的应用

1、数学归纳法的理论基础 数学归纳法,人类天才的思维、巧妙的方法、精致的工具,解决无限的问题。它体现的是利用有限解决无限问题的思想,这一思想凝结了数学家们无限的想象力和创造力,这无疑形成了数学证明中一道绚丽多彩的风景线。它的巧妙让人回味无穷,这一思想的发现为后来数学的发展开辟了道路,如用有限维空间代替无限维空间(多项式逼近连续函数)用有限过程代替无限过程(积分和无穷级数用有限项和答题,导数用差分代替)。 1.1数学归纳法的发展历史 自古以来,人们就会想到问题的推广,由特殊到一般、由有限到无限,可人类对无限的把握不顺利。在对无穷思考的过程中,古希腊出现了许多悖论,如芝诺悖论,在数列中为了确保结论的正确,则必须考虑无限。还有生活中一些现象,如烽火的传递,鞭炮的燃放等,触动了人类的思想。 安提丰用圆周内接正多边形无穷地逼近圆的方法解决化圆为方;刘徽、祖冲之用圆内接正多边形去无穷地逼迫圆,无穷的问题层出不穷,后来古希腊欧几里得对命题“素数的个数是无穷的”的证明,通过了有限去实现无限,体现了数学归纳法递推思想。但要形成数学归纳法中明确的递推,清晰的步骤确是一件不容易的事,作为自觉运用进行数学证明却是近代的事。 伊本海塞姆(10世纪末)、凯拉吉(11世纪上叶)、伊本穆思依姆(12世纪末)、伊本班纳(13世纪末)等都使用了归纳推理,这表明数学归纳法使用较普遍,尤其是凯拉吉利用数学归纳法证明 22 333 (1)124n n n +++??????+= 这是数学家对数学归纳法的最早证明。 接着,法国数学家莱维.本.热尔松(13世纪末)用"逐步的无限递进",即归纳推理证明有关整数命题和排列组合命题。他比伊斯兰数学家更清楚地体现数学归纳法证明的基础,递进归纳两个步骤。 到16世纪中叶,意大利数学家毛罗利科对与全体和全体自然数有关的命题的证明作了深入的考察在1575年,毛罗利科证明了 21n n a a n ++= 其中1231,2k a k =+++?????? =?????? 他利用了逐步推理铸就了“递归推理”的思路,成为了较早找到数学归纳中“递 归推理”的数学家,为无限的把握提供了思维。 17世纪法国数学家帕斯卡为数学归纳法的发明作了巨大贡献,他首先明确而清晰地阐述数学归纳法的运用程序,并完整地使用数学归纳法,证明了他所发

数学归纳法经典练习及解答过程

数学归纳法经典练习及 解答过程 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

第七节数学归纳法 知识点数学归纳法 证明一个与正整数n有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当n取第一个值n0(n0∈N*)时命题成立. (2)(归纳递推)假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.易误提醒运用数学归纳法应注意: (1)第一步验证n=n0时,n0不一定为1,要根据题目要求选择合适的起始值. (2)由n=k时命题成立,证明n=k+1时命题成立的过程中,一定要用到归纳假设,否则就不是数学归纳法. [自测练习] 1.已知f(n)=1 n + 1 n+1 + 1 n+2 +…+ 1 n2 ,则( ) A.f(n)中共有n项,当n=2时,f(2)=1 2 + 1 3 B.f(n)中共有n+1项,当n=2时,f(2)=1 2 + 1 3 + 1 4 C.f(n)中共有n2-n项,当n=2时,f(2)=1 2 + 1 3 D.f(n)中共有n2-n+1项,当n=2时,f(2)=1 2 + 1 3 + 1 4 解析:从n到n2共有n2-n+1个数,所以f(n)中共有n2-n+1项,且f(2)=1 2 + 1 3 + 1 4 ,故选D. 答案:D

2.(2016·黄山质检)已知n 为正偶数,用数学归纳法证明1-12+13-14+…+1 n +1 = 2? ???? 1n +2+1n +4 +…+12n 时,若已假设n =k (k ≥2为偶数)时命题为真,则还需要用归纳假设再证n =( )时等式成立( ) A .k +1 B .k +2 C .2k +2 D .2(k +2) 解析:根据数学归纳法的步骤可知,则n =k (k ≥2为偶数)下一个偶数为k +2,故选B. 答案:B 考点一 用数学归纳法证明等式| 求证:(n +1)(n +2)·…·(n +n )=2n ·1·3·5·…·(2n -1)(n ∈N *). [证明] (1)当n =1时,等式左边=2,右边=21·1=2,∴等式成立. (2)假设当n =k (k ∈N *)时,等式成立,即(k +1)(k +2)·…·(k +k )=2k ·1·3·5·…·(2k -1). 当n =k +1时,左边=(k +2)(k +3)·…·2k ·(2k +1)(2k +2) =2·(k +1)(k +2)(k +3)·…·(k +k )·(2k +1) =2·2k ·1·3·5·…·(2k -1)·(2k +1) =2k +1·1·3·5·…·(2k -1)(2k +1). 这就是说当n =k +1时,等式成立. 根据(1),(2)知,对n ∈N *,原等式成立. 1.用数学归纳法证明下面的等式: 12-22+32-42+…+(-1)n -1·n 2=(-1)n -1n ?n +1? 2 . 证明:(1)当n =1时,左边=12=1, 右边=(-1)0 ·1×?1+1? 2 =1, ∴原等式成立. (2)假设n =k (k ∈N *,k ≥1)时,等式成立,

数学归纳法的应用

数学归纳法的应用 姓名 甘国优 指导教师 赵慧炜 中文摘要:数学归纳法是数学中一种非常普遍的证题的方法,其应用极为广泛.本次主要简述了数学归纳法的简略步骤:观察(探索)﹑归纳﹑猜想﹑证明于一体的数学思想,体现出数学归纳法的证题思路.并归纳总结了数学归纳法解决代数恒等式﹑几何等方面的一些简单应用问题的方法,对应用中常见的误区加以剖析,以及介绍一些证题方法技巧,有助于提高对数学归纳法的应用能力. 关键词:数学归纳法;步骤;证明方法. Abstract: Mathematical induction is a common evidence method in mathematics, it is have very broad application. In this paper, author research into the step of the Mathematical induction , it includes summariz ,evidence and guess embody the idea of the evidence of mathematical induction. Also at here ,we summariz the method of the mathematical induction application in solve algebra identities , geometric ,order and portfolio ,and so on .also analyze the common errors on application and into duct skill of the proof ,proof of skills introduced. It is help to increased the level of the Mathematical induction’s application . Key words :Mathematical induction; Steps ; Proof. 引言 演绎和归纳是人在思维过程中两个完全相反的过程.同时又是数学思维中两种基本的方法.数学归纳法是一种重要的数学证明方法,他有着其他方法所不能代替的作用,也是证明与自然数有关的数学命题的一种完全归纳法.我们在学习运用数学归纳法应具备两个条件:①当1n =时,这个命题为正确的(奠基),②当n k =时,这个命题也为正确的.推出当+1n k =时,这个命题也为正确的(递推).通过“递推”链接,实现从特殊到一般的转化,抽象的进行数学归纳.首先

用数学归纳法证明不等式举例 .知识点梳理

课题:用数学归纳法证明不等式举例 备课教师:沈良宏 参与教师:郭晓芳、龙新荣 审定教师:刘德清 1、教学重点:了解数学归纳法的原理及其使用范围和基本步骤. 2、教学难点: (1)认识数学归纳法的证明思路; (2)运用数学归纳法时,在“假设与递推”的步骤中发现具体问题中的递推关系. 3、学生必须掌握的内容: 1.数学归纳法证明不等式 (1)用数学归纳法证明一个与正整数有关的不等式的步骤. ①证明:当n 取第一个值n 0时结论成立; ②假设当n =k (k ∈N +,且k ≥n 0)时结论成立,证明当n =k +1时结论也成立. 由①②可知命题对从n 0开始的所有正整数n 都成立. (2)用数学归纳法证明不等式的重点. 用数学归纳法证明不等式的重点在第二步(同时也是难点所在),即假设f (k )>g (k )成立,证明f (k +1)>g (k +1)成立. 2.贝努利不等式 (1)定义:如果x 是实数,且x >-1,x ≠0,n 为大于1的自然数,那么有(1+x )n >1+nx . (2)作用:在数学研究中经常用贝努利不等式把二项式的乘方(1+x )n 缩小为简单的1+nx 的形式,这在数值估计和放缩法证明不等式中有重要应用.例如:当x 是实数,且x >-1, x ≠0时,由贝努利不等式不难得到不等式? ?? ??1-x 1+x n >1-nx 1+x 对一切不小于2的正整数n 成立. (3)贝努利不等式的一般形式. (1)当α是实数,并且满足α>1或α<0时,有(1+x )α≥1+αx (x >-1); (2)当α是实数,并且满足0<α<1时,有(1+x )α≤1+αx (x >-1). 3.归纳—猜想—证明的思想方法 数学归纳法作为一种重要的证明方法,常常体现在“归纳—猜想—证明”这一基本思想方法中.一方面可用数学归纳法证明已有的与自然数有关的结论;更重要的是,要用不完全归纳法去发现某些结论、规律并用数学归纳法证明其正确性,形成“观察—归纳—猜想—证明”的思想方法. 1.关于用数学归纳法证明不等式的四点注意 (1)在从n =k 到n =k +1的过程中,应分析清楚不等式两端(一般是左端)项数的变化,也就是要认清不等式的结构特征. (2)瞄准当n =k +1时的递推目标,从中分离出n =k 时的相应式子,借助不等式性质用上归纳假设. (3)明确用上归纳假设后要证明的不等式应是怎样的,然后通过运用放缩法、分析法、比较法、综合法等方法进行证明. (4)有些不等式先用分析法转化为另一个较为简单的不等式然后再用数学归纳法证明. 2.关于贝努利不等式 (1)(1+x )n >1+nx 成立的两个条件:①n ∈N +且n ≥2;②x 的取值范围是x >-1且x ≠0. 于是有命题:当n ∈N +且n ≥2时不等式(1+x )n >1+nx 对一切x ∈(-1,0)∪(0,+∞) 恒成立. (2)常用特例:①当x >-1且x ≠0时,(1+x )2>1+2x ;

高中数学专题复习数学归纳法的解题应用知识点例题精讲

数学归纳法的解题运用 【高考能力要求】 数学归纳法是证明与自然数有关的问题,在近年的高考题中,一般不作单独的考题,而是以应用为主,且常与数列、函数、不等式、导数等结合起来进行考查,主要考查归纳、猜想、证明的数学思想方法,若出现在押轴题中则往往难度较大,分值为7分左右。涉及的主要解题方法是先求出它的前几项,找出其规律、归纳出其共有形式(如问题的一般规律、结构特征等),才能作出正确的猜想,然后用数学归纳法加以证明.其解题模式是:归纳?猜想?证明。在用数学归纳法证明时,要注意正确掌握数学归纳法原理和证明步骤,特别在证明不等式时要注意结合不等式证明的放缩法、分析法等方法。 【例题精讲】 【例1】已知函数)(x f 满足1)1(),0,,()()(=≠∈+=f b R b a b x af x xf ,且使 x x f =)(成立的实数x 是唯一的。 (1) 求函数)(x f 的解析式、定义域、值域; (2) 如果数列{}n a 的前n 项和为n S ,且12) (++= n a f n S n n ,试求此数列的通项公式。 分析:(1)由1)1(=f 及x x f =)(有唯一解建立关于b a ,的方程组,解出b a ,即可;(2)利用n n n S S a -=++11将已知条件转化为1+n a 与n a 的递推关系式,从而猜想出 n a 的表达式并用数学归纳法加以证明。 解:(1)a x b x f -= )(,∵ b a f =-?=11)1( ① 由x x f =)(得 02=--b ax x 有唯一解,∴ 042=+=?b b ② 由①②得 1,2-==b a ,∴x x f -= 21 )(,其定义域为{}2|≠x x ,值域为{}0|≠y y

数学论文 浅谈数学归纳法的应用

浅谈数学归纳法的应用 数学归纳法是证明与自然数有关的命题的一种方法,应用广泛.在最近几年的高考试卷中体现的特别明显,以下通过几道高考试题来谈一谈数学归纳法的应用。 一、用数学归纳法证明整除问题 用数学归纳法证明整除问题时,由到时,首先要从要证的式子中拼凑出假设成立的式子,然后证明剩余的式子也能被某式(数)整除,这是数学归纳法证明问题的一大技巧。 例1、是否存在正整数m ,使得f (n )=(2n +7)·3n +9对任意自然数n 都能被m 整除?若存在,求出最大的m 值,并证明你的结论;若不存在,请说明理由. 证明:解:由f (n )=(2n +7)·3n +9,得f (1)=36, f (2)=3×36, f (3)=10×36, f (4)=34×36,由此猜想m =36. 下面用数学归纳法证明: (1)当n =1时,显然成立. (2)假设n =k 时, f (k )能被36整除,即f (k )=(2k +7)·3k +9能被36整除;当n =k +1时,[2(k +1)+7]·3k +1+9=3[(2k +7)·3k +9]+18(3k --1-1), 由于3k -1-1是2的倍数,故18(3k - 1-1)能被36整除.这就是说,当n =k +1时,f (n )也能被36整除. 由(1)(2)可知对一切正整数n 都有f (n )=(2n +7)·3n +9能被36整除,m 的最大值为36. 二、用数学归纳法证明恒等式问题 对于证明恒等的问题,在由证等式也成立时,应及时把结论和推导过程对比,也就是我们通常所说的两边凑的方法,以减小计算的复杂程度,从而发现所要证明的式子,使问题的证明有目的性. 例2、是否存在常数c b a ,,,使得等式)(12 )1()1(32212222c bn an n n n n +++=+?++?+?对一切自然数n 成立?并证明你的结论. 解:假设存在c b a ,,,使得题设的等式成立,则当时3,2,1=n 也成立,代入得 ???? ?????++=++=++=c b a c b a c b a 3970)24(2122)(614 解得10,11 ,3===c b a ,于是对3,2,1=n ,下面等式成立: )10113(12)1()1(32212222+++= +?++?+?n n n n n n 令222)1(3221+?++?+?=n n S n 假设k n =时上式成立,即)10113(12 )1(2+++= k k k k S k 那么21)2)(1(+++=+k k S S k k 22)2)(1()10113(12 )1(++++++=k k k k k k

高二上册数学(沪教版)知识点归纳

高二上册数学知识点归纳 第七章数列与数学归纳法 1.内容要目:第1节数列:数列的概念,等差数列与等比数列的定义,等差中项与等比数列,等差数列与等比数列的通项公式。第2节数学归纳法:数学归纳法的原理,数学归纳法的一般步骤,数学归纳法的应用。第3节数列的极限:数列极限的概念,数列极限的运算法则,常用的数列极限公式,无穷等比数列各项的和。 2.基本要求:第1节数列:理解数列的概念,掌握等差数列与等比数列的定义,会求等差中项与等比数列,理解数列通项公式的含义,掌握等差数列与等比数列的通项公式。第2节数学归纳法:会用数学归纳法解决整除问题及证明某些与正整数有关的等式,领会“归纳—猜想—论证”的思想方法。第3节数列的极限:掌握数列极限的运算法则,常用的数列极限公式,掌握无穷等比数列前n 项和的极限公式。 3.重难点:第1节数列:等差数列与等比数列的通项公式,数列的概念及由计算数列的前若干项,通过归纳得出数列的通项公式,第2节数学归纳法:用数学归纳法证明命题的步骤,数学归纳法的应用及通过归纳猜想命题的一般结论。第3节数列的极限:无穷等比数列各项和公式的应用。 公式:(1)等差数列}{n a 的通项公式:d n a a n )1(1.(2)等差数列}{n a 的前n 项和公式:d n n na a a n S n n 2)1(2)(11.(3)等比数列}{n a 的通项公式:.11n n q a a (4)等比数列}{n a 的前n 项和公式:)1(1q na S n )1(11)1(11q q q a a S q q a S n n n n 或.(5)当0lim 1n q q 时,,01lim n (n ) (6)无穷等比数列各项的和:)1(11 q q a S . 第8章平面向量的坐标表示 1.内容要目:平面向量及其运算,平面向量的坐标表示及其运算,基向量、平面向量分解定理,平面向量的数量积及其坐标表示,平面向量的夹角,平面向量的平行和垂直。 2.基本要求:理解平面向量的有关概念:向量的方向,向量的模,单位向量,位置向量,负向量,向量的相等,向量的平行,向量的垂直,向量的夹角,向量的加减法,向量的数乘,向量的数量积,一个向量在另一个向量上的投影等。掌握向量加减法的平行四边形法则和三角形法则,掌握向量的坐标表示方法,线段的定比分点公式和中点公式。会判别两个向量的平行关系和垂直关系,会运用两个非零向量平行或垂直的充要条件解决一些简单的问题。理解基向量和平面向量分

数学归纳法

数学归纳法 知识点数学归纳法 证明一个与正整数n有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当n取第一个值n0(n0∈N*)时命题成立. (2)(归纳递推)假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.7 易误提醒运用数学归纳法应注意: (1)第一步验证n=n0时,n0不一定为1,要根据题目要求选择合适的起始值. (2)由n=k时命题成立,证明n=k+1时命题成立的过程中,一定要用到归纳假设,否则就不是数学归纳法. 1.利用数学归纳法证明问题时有哪些注意事项? 剖析:(1)用数学归纳法证明有关命题的关键在第二步,即n=k+1时命题为什么成立?n=k+1时命题成立是利用假设n=k时命题成立,根据有关的定理、定义、公式、性质等数学结论推证出来的,而不是直接代入,否则n=k+1时命题成立也成假设了,命题并没有得到证明. (2)用数学归纳法可证明有关的正整数问题,但并不是所有的正整数问题都能用数学归纳法证明,学习时要具体问题具体分析. 2.运用数学归纳法时易犯的错误有哪些? 剖析:(1)对项数估算的错误,特别是寻找n=k与n=k+1的关系时,项数发生什么变化被弄错. (2)没有利用归纳假设:归纳假设是必须要用的.假设是起桥梁作用的,桥梁断了就通不过去了. (3)关键步骤含糊不清,“假设n=k时结论成立,利用此假设证明n=k+1时结论也成立”是数学归纳法的关键一步,也是证明问题中最重要的环节,对推导的过程要把步骤写完整,注意证明过程的严谨性、规范性.

【自主练习】 1.已知f (n )=1n +1n +1+1n +2+…+1 n 2,则( ) A .f (n )中共有n 项,当n =2时,f (2)=12+1 3 B .f (n )中共有n +1项,当n =2时,f (2)=12+13+1 4 C .f (n )中共有n 2-n 项,当n =2时,f (2)=12+1 3 D .f (n )中共有n 2-n +1项,当n =2时,f (2)=12+13+1 4 2.(2016·黄山质检)已知n 为正偶数,用数学归纳法证明1-12+13-14+…+1 n +1= 2? ???1n +2+1n +4+…+12n 时,若已假设n =k (k ≥2为偶数)时命题为真,则还需要用归纳假设再证n =( )时等式成立( ) A .k +1 B .k +2 C .2k +2 D .2(k +2)

数学归纳法及极限

龙文教育学科导学案 教师: 学生: 年级: 日期: 星期: 时段: 学情分析数学归纳法是中学数学证明的一种重要方法,在高考中也经常出现,极限也是重点内容,但是多以填空题形式出现 课题数学归纳法数列极限 学习目标与 考点分析 学习目标:1 数学归纳法,等比数列极限 学习重点用数学归纳法证明一些题目,会利用等比数列求极限,以及极限的运算法则 学习方法讲练说相结合 学习内容与过程 一、数学归纳法 (一)知识概述 数学归纳法是证明与正整数n有关的命题的一种方法,应用广泛,且常与不完全归纳法相结合,进行“观察——归纳——猜想——证明”.其广泛性表现在:与正整数n有关的命题可出现在代数、三角或几何中,有等式、不等式或整除问题,也有交点个数,平面、空间分割问题. (二)重难点知识归纳 1、数学归纳法 如果我们设想:先证明当n取第一个值n0(例如n0=1)时,命题成立,然后假设当n=k(k∈N*,k≥n0)时命题成立,并证明当n=k+1时命题也成立,那么就证明了这个命题的成立.因为证明了这一点,就可以断定这个命题对于n 取第一个值后面的所有正整数也都成立.这种证明方法叫作数学归纳法.

2、数学归纳法的证题步骤 数学归纳法是一种用递归方法来证明与正整数有关的命题的重要方法. 利用数学归纳法论证问题分为两步: (1)证明当n 取第一个值n 0时命题成立; (2)假设n=k(k ∈N *,k≥n 0)时命题成立,证明当n=k +1时命题也成立. 注意: 1数学归纳法的第一步是验证命题递推的基础,第二步是论证命题递推的依据,两个步骤密切相关,缺一不可.步骤(1)是要选取命题中最小的正整数n 0作为起始值进行验证.步骤(2)在推证当n=k +1时命题成立的过程中,必须要用到当n=k 时命题成立这个归纳假设,否则推理无效. 2在运用数学归纳法证明命题时,对第二步n =k +1时结论的正确性的证明是整个证明过程中的重难点.我们除了注意利用归纳假设外,还要注意对照结论充分利用其它数学证明方法,如:分析法、综合法、比较法、反证法、数形结合、分类讨论等.也就是说,当我们利用归纳假设后仍不能直接变形推出结论时,可采用上述方法进行证明,以达到目的. 二、极限 (一)常用数列的极限: (1)当1

数学归纳法教案(新)

教材背景: 归纳是一种由特殊事例导出一般规律的思维方法.归纳推理分完全归纳推理与不完全归纳推理两种.不完全归纳推理只根据一类事物中的部分对象具有的共同性质,推断该类事物全体都具有的性质,这种推理方法,在数学推理论证中是不允许的.完全归纳推理是在考察了一类事物的全部对象后归纳得出结论来.数学归纳法是用来证明某些与正整数n有关的数学命题的一种推理方法,在数学问题的解决中有着广泛的应用. 教学课题:数学归纳法 教材分析: “数学归纳法”既是高中代数中的一个重点和难点容,也是一种重要的数学方法。它贯通了高中代数的几大知识点:不等式,数列,三角函数……在教学过程中,教师应着力解决的容是:使学生理解数学归纳法的实质,掌握数学归纳法的证题步骤(特别要注意递推步骤中归纳假设的运用和恒等变换的运用)。只有真正了解了数学归纳法的实质,掌握了证题步骤,学生才能信之不疑,才能用它灵活证明相关问题。本节课是数学归纳法的第一节课,有两大难点:使学生理解数学归纳法证题的有效性;递推步骤中归纳假设的利用。不突破以上难点,学生往往会怀疑数学归纳法的可靠性,或者只是形式上的模仿而不知其所以然。这会对以后的学习造成极大的阻碍。根据本节课的教学容和学生实际水平,本节课采用“引导发现法”和“讲练结合法”。通过课件的动画模拟展示,引发和开启学生的探究热情,通过“师生”和“生生”的交流合作,掌握概念的深层实质。 教学目标 1、知识和技能目标 (1)了解数学推理的常用方法(归纳法) (2)了解数学归纳法的原理及使用围。 (3)初步掌握数学归纳法证题的两个步骤和一个结论。 (4)会用数学归纳法证明一些简单的等式问题。 2、过程与方法目标 通过对归纳法的复习,说明不完全归纳法的弊端,通过多米诺骨牌实验引出数学归纳法的原理,使学生理解理论与实际的辨证关系。在学习中培养学生探索发现问题、提出问题的意识,解决问题和数学交流的能力,学会用总结、归纳、演绎类比探求新知识。

(完整word版)高中数学(沪教版)知识点归纳

高中数学知识点归纳 高一(上)数学知识点归纳 第一章 集合与命题 1.主要内容:集合的基本概念、空集、子集和真子集、集合的相等;集合的交、 并、补运算。四种命题形式、等价命题;充分条件与必要条件。 2.基本要求:理解集合、空集的意义,会用列举法和描述法表示集合;理解子集、 真子集、集合相等等概念,能判断两个集合之间的包含关系或相等关系;理解 交集、并集,掌握集合的交并运算,知道有关的基本运算性质,理解全集的意 义,能求出已知集合的补集。理解四种命题的形式及其相互关系,能写出一个 简单命题的逆命题、否命题与逆否命题;理解充分条件、必要条件与充要条件 的意义,能在简单问题的情景中判断条件的充分性、必要性或充分必要性。 3.重难点:重点是集合的概念及其运算,充分条件、必要条件、充要条件。难点 是对集合有关的理解,命题的证明,充分条件、必要条件、充要条件的判别。 4.集合之间的关系:(1)子集:如果A 中任何一个元素都属于B ,那么A 是B 的 子集,记作A ?B.(2)相等的集合:如果A ?B,且B ?A ,那么A=B.(3).真子集: A ?B 且B 中至少有一个元素不属于A ,记作A ?B. 5.集合的运算:(1)交集:}.{B x A x x B A ∈∈=且I (2)并集:}.{B x A x x B A ∈∈=或Y (3)补集:}.{A x U x x A C U ?∈=且 6.充分条件、必要条件、充要条件 如果P Q ?,那么P 是Q 的充分条件,Q 是P 的必要条件。 如果P Q ?,那么P 是Q 的充要条件。也就是说,命题P 与命题Q 是等价命题。 有关概念:1.我们把能够确切指定的一些对象组成的整体叫做集合。 2.数集有:自然数集N ,整数集Z ,有理数集Q ,实数集R 。 3.集合的表示方法有列举法、描述法和图示法。 4.用平面区域来表示集合之间关系的方法叫做集合的图示法,所用图 叫做文氏图。

高考数学归纳法知识点精华总结

数学归纳法 (1)数学归纳法的基本形式 设P (n )是关于自然数n 的命题,若 1°P (n 0)成立(奠基) 2°假设P (k )成立(k ≥n 0),可以推出P (k +1)成立(归纳),则P (n )对一切大于等于n 0的自然数n 都成立 典型题例示范讲解 例3是否存在a 、b 、c 使得等式1·22+2·32+…+n (n +1)2=12 )1(+n n (an 2+bn +c ) 解 假设存在a 、b 、c 使题设的等式成立, 这时令n =1,2,3,有??? ??===∴???? ?? ???++=++=++=10 113 3970)24(2122)(6 14c b a c b a c b a c b a 于是,对n =1,2,3下面等式成立 1·22+2·32+…+n (n +1)2= )10113(12 )1(2 +++n n n n 记S n =1·22+2·32+…+n (n +1)2 设n =k 时上式成立,即S k =12)1(+k k (3k 2+11k +10) 那么S k +1=S k +(k +1)(k +2)2 =2 ) 1(+k k (k +2)(3k +5)+(k +1)(k +2)2 =12) 2)(1(++k k (3k 2 +5k +12k +24) = 12 ) 2)(1(++k k [3(k +1)2+11(k +1)+10] 也就是说,等式对n =k +1也成立 综上所述,当a =3,b =11,c =10时,题设对一切自然数n 均成立 学生巩固练习 1 已知f (n )=(2n +7)·3n +9,存在自然数m ,使得对任意n ∈N ,都能使m 整除f (n ),则最

数学归纳法经典练习及

数学归纳法经典练习及解答过程

第七节数学归纳法 知识点数学归纳法 证明一个与正整数n有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当n取第一个值n0(n0∈N*)时命题成立. (2)(归纳递推)假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立.只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立. 易误提醒运用数学归纳法应注意: (1)第一步验证n=n0时,n0不一定为1,要根据题目要求选择合适的起始值. (2)由n=k时命题成立,证明n=k+1时命题成立的过程中,一定要用到归纳假设,否则就不是数学归纳法. [自测练习]

1.已知f (n )=1n +1n +1+1n +2 +…+1n 2,则( ) A .f (n )中共有n 项,当n =2时,f (2)=12 +13 B .f (n )中共有n +1项,当n =2时,f (2)=12+13+14 C .f (n )中共有n 2-n 项,当n =2时,f (2)=12+13 D .f (n )中共有n 2-n +1项,当n =2时,f (2)=12+13+14 解析:从n 到n 2共有n 2-n +1个数,所以 f (n )中共有n 2 -n +1项,且f (2)=12+13+14,故选D. 答案:D

2.(2016·黄山质检)已知n 为正偶数,用数 学归纳法证明1-12+13-14+…+1n +1 =2? ?? ??1n +2+1n +4+…+12n 时,若已假设n =k (k ≥2为偶数)时命题为真,则还需要用归纳假设再证n =( )时等式成立( ) A .k +1 B .k +2 C .2k +2 D .2(k +2) 解析:根据数学归纳法的步骤可知,则n =k (k ≥2为偶数)下一个偶数为k +2,故选B. 答案:B 考点一 用数学归纳法证明等式|

相关文档
相关文档 最新文档