文档库 最新最全的文档下载
当前位置:文档库 › SUS430不锈钢带焊接相关文件整理2

SUS430不锈钢带焊接相关文件整理2

SUS430不锈钢带焊接相关文件整理2
SUS430不锈钢带焊接相关文件整理2

SUSS430不锈钢带TIG焊接焊丝牌号

不锈钢丝》并且对照使用环境可知,焊丝应采用308L以上牌号焊丝。

焊丝直径

焊丝直径主要是根据工件厚度来选择。

最适合全位置钨极氩弧自动焊的焊丝直径为?0.8mm及?1.0mm。

这两种规格的焊丝,通过不同送丝速度的选择,可适应的热输入范围比较广,对于各种材料的焊接应用来讲,比较容易实现。

一般薄板采用Ф0.8~1.0mm的焊丝焊接。

TIG焊接工艺参数选择

1)焊接电流

焊接电流种类和极性:通常根据母材的材质按下表选择焊接电流的种类和极性。

电流的种类与极性被焊金属材料

直流正极性低合金高强钢,不锈钢,耐热钢,铜及其合金。

直流反极性适用于各种金属的熔化极氩弧焊。

交流铝、镁及它们的合金。

直流正接时,工件接正极,钨极接负极。这时在钨极上的阴极斑点比较稳定,发射电子的能力强,电弧稳定,钨极的许用电流大,烧损小,而且工件上的温度较高,故适于用来焊接熔点较高或导热性较好的金属,如不锈钢、铜和铜合金等。

焊接电流大小:焊接电流的选择应保证单位时间内给焊缝适宜的热量。焊接电流的大小主要影响熔深,对焊缝的宽度和余高影响不大。

通常根据焊接条件(板厚、材质、接头形式、焊接速度等参数)选定合适的焊接电流。

焊接热量三要素:热量= I2 R t 。

I2:焊接电流的平方

R: 电弧的等效电阻

t: 对被焊部位施加热量的时间注意:焊接电流的选择不允许超过焊机的额定电流。

2)焊接电压(电弧电压)

焊接电压主要影响焊缝的宽度,对熔深影响不大。电弧电压增高时,焊缝宽度增加,熔深稍减小。

合适的弧长应近似等于钨极直径。

焊接电流与焊接电压的关系如下:

GB标准:U=10+0.04I

式中,U为焊接电压(V);I为焊接电流(A)

电流大于600A时,电压保护34V恒定。

3)电弧长度

电弧长度(钨极与工件间距离):

电弧长度增加: 焊道宽度增加,

熔深减小,保护效果变差。

电弧长度减少: 不宜观察熔池,

填充焊丝易与钨极短路。

L =(1~1.5)倍板厚

最大小于6 ㎜

钨极伸出长度:

对焊时: 5 ~ 6 ㎜(过长时钨极易氧化)

4)焊接速度

焊接速度增加时,焊道窄,熔深浅。太快,易产生未焊透。

焊接速度慢时,焊道宽,熔深深。太慢,产生焊漏、烧穿。

选择焊接速度应考虑以下因素:

焊接高导热金属时,为了减少变形,应采用较快的焊接速度。

焊接速度太快时,会降低保护效果,特别是在自动TIG焊时,由于焊速太高,可能使熔池裸露在空气中。

5)钨极直径与端部形状

a)根据焊接电流的种类、极性和大小选择合适的钨极直径。

若钨极较粗,焊接电流很小,由于电流密度低,钨极端部温度低,电弧会在钨极端部不规则地漂移,电弧很不稳定,破坏了保护区,熔池易被氧化。

当焊接电流超过了相应直径的许用电流时,由于电流密度太高,钨极端部温度达到或超过了钨极的熔点,会出现端部局部熔化现象,端部很亮。当电流继续增大时,熔化了的钨极在端部形成一个小尖状突起,逐渐变大形成熔滴,电弧在熔滴尖端漂移,很不稳定,不仅破坏了氩气保护区,使熔池被氧化,焊缝成形不好,而且熔化的钨落入熔池后将产生夹钨缺陷。

当焊接电流合适时,电弧稳定,保护效果好,焊接质量好。

脉冲TIG焊的许用电流可提高40%~100%。

b)钨极端部形状

在大电流焊接时,应将电极末端磨成带有平顶的锥角,这样可使电弧斑

c)钨极磨尖

沿轴线方向磨削,表面无缺陷

双相不锈钢管道的焊接工艺

双相不锈钢管道的焊接工 艺 Prepared on 22 November 2020

双相不锈钢管道的焊接摘要:以辽阳石化80万吨/年PTA装置双相不锈钢管线为例,向读者介绍双相不锈钢2205的管道焊接,整个焊接具有一定的价值,为双相不锈钢焊接提供依据。 关键词:双相不锈钢管道焊接工艺耐腐蚀 0 前言 铁素体-奥氏体双相不锈钢是在超低碳铁素体不锈钢基础上发展起来的一种双相不锈钢,常温下为双相组织,与一般不锈钢相比,其Ni的质量分数低,Cr、N的质量分数高,具有较好的抗点蚀和抗应力腐蚀的性能。此外,其结晶结构中的Fe的质量分数高,所以比其他的不锈钢有更高的屈服强度。双相不锈钢由于具有奥氏体+铁素体双相组织,且两个相组织的含量基本相当,故兼有奥氏体不锈钢和铁素体不锈钢的特点。屈服强度可达400Mpa ~ 550MPa,是普通奥氏体不锈钢的2倍。与铁素体不锈钢相比,双相不锈钢的韧性高,脆性转变温度低,耐晶间腐蚀性能和焊接性能均显着提高;同时又保留了铁素体不锈钢的一些特点,如475℃脆性、热导率高、线膨胀系数小,具有超塑性及磁性等。与奥氏体不锈钢相比,双相不锈钢的强度高,特别是屈服强度显着提高,且耐孔蚀性、耐应力腐蚀、耐腐蚀疲劳等性能也有明显的改善。辽阳石化80万吨/年PTA装置中共有双相不锈钢有497m,最小管径为Φ×,最大管径为×,属于中、低压管道。PTA装置双相不锈钢管道中介质为浓度60%~90%的高浓度醋酸,是具有强腐蚀和刺激性的介质,焊接质量的好坏直接关系到整个装置生产的安全性。 1 双相不锈钢2205的焊接性分析

铁素体-奥氏体双相不锈钢具有良好的焊接性,铁素体-奥氏体双相不锈钢被加热到足够的温度时,出现奥氏体向铁素体的转变,温度升高到1250-1300℃时,可转变为纯铁素体组织,此时在进行冷却,首先在铁素体晶界生成晶核,逐渐生成奥氏体。冷却速度较慢生成的奥氏体越多,反之生成的奥氏体越少。该双相不锈钢与铁素体不锈钢相比,焊接出现的裂纹倾向低;与奥氏体不锈钢相比,焊接产生的脆化倾向低。然而,焊接工艺掌握不好,这种双相钢组织会引起焊缝和热影响区的脆化和焊接热裂纹的产生。实验表明,焊缝和热影响区德铁素体含量超过80%时,会降低韧性并增加裂纹的产生,因此对焊缝的化学成分尤其是Ni的质量分数和冷却速度加以控制,防止单相铁素体以及晶粒粗大和裂纹的产生。双相不锈钢化成成分和力学性能见下表1、2: 2 双相不锈钢的焊接工艺 焊前准备 坡口的制备:坡口角度为70±5°,主要是考虑稍大的坡口角度有利于保证熔合比和提高脱渣性能,实践证明当坡口角度小于这个数值时,产生夹渣的几率会增大。 焊前清理:管道坡口表面的清洁性是双相钢成功焊接的一个关键因素,2205坡口表面的污染物主要是切割时表面的氧化皮、油脂和引起铁素体增多的脆化元素。因此,焊接前必须进行完全清理打磨,打磨时使用不锈钢专用砂轮片,防止渗碳等情况的发生。坡口加工完毕后,最后利用丙酮溶液清洗坡口内外100mm区域内的有机物、手印等。丙酮擦洗时不宜用棉质物擦洗。

不锈钢的物理性能、力学性能和耐热性能

不锈钢的物理性能、力学性能和耐热性能 不锈钢的物理性能 不锈钢和碳钢的物理性能数据对比,碳钢的密度略高于铁素体和马氏体型不锈钢,而略低于奥氏体型不锈钢;电阻率按碳钢、铁素体型、马氏体型和奥氏体型不锈钢排序递增;线膨胀系数大小的排序也类似,奥氏体型不锈钢最高而碳钢最小;碳钢、铁素体型和马氏体型不锈钢有磁性,奥氏体型不锈钢无磁性,但其冷加工硬化天生成氏体相变时将会产生磁性,可用热处理方法来消除这种马氏体组织而恢复其无磁性。 奥氏体型不锈钢与碳钢相比,具有下列特点: 1)高的电导率,约为碳钢的5倍。 2)大的线膨胀系数,比碳钢大40%,并随着温度的升高,线膨胀系数的数值也相应地进步。 3)低的热导率,约为碳钢的1/3。 不锈钢的力学性能 不论不锈钢板还是耐热钢板,奥氏体型的钢板的综合性能最好,既有足够的强度,又有极好的塑性同时硬度也不高,这也是它们被广泛采用的原因之一。奥

氏体型不锈钢同尽大多数的其它金属材料相似,其抗拉强度、屈服强度和硬度,随着温度的降低而进步;塑性则随着温度降低而减小。其抗拉强度在温度15~80°C范围内增长是较为均匀的。更重要的是:随着温度的降低,其冲击韧度减少缓慢,并不存在脆性转变温度。所以不锈钢在低温时能保持足够的塑性和韧性。 不锈钢的耐热性能 耐热性能是指高温下,既有抗氧化或耐气体介质腐蚀的性能即热稳定性,同时在高温时双有足够的强度即热强性。 316和316L不锈钢 316和317不锈钢(317不锈钢的性能见后)是含钼不锈钢种。317不锈钢 中的钼含量略高明于316不锈钢.由于钢中钼,该钢种总的性能优于310和304 不锈钢,高温条件下,当硫酸的浓度低于15%和高于85%时,316不锈钢具有 广泛的用途。316不锈钢还具有良好的而氯化物腐蚀的性能,所以通常用于海洋环境。 316L不锈钢的最大碳含量0.03,可用于焊接后不能进行退火和需要最大耐 腐蚀性的用途中。

奥氏体不锈钢的焊接特点及焊材选用原则

奥氏体不锈钢的焊接特点及焊条选用 摘要:奥氏体不锈钢是石油化工生产中应用最为广泛的金属材料之一,本文简要地阐述了不锈钢焊接过程中容易出现的一些问题,针对这些问题提出了相应的预防措施,并根据这些措施提出了焊条的选用原则。 关键词:奥氏体不锈钢焊接特点防止措施焊条选用 不锈钢是指主加元素Cr高于12%、能使钢处于钝化状态、又具有不锈特性的钢。不锈钢根据其显微组织分为铁素体型、马氏体型、奥氏体型、奥氏体+铁素体型和沉淀硬化型不锈钢。奥氏体不锈钢通常在常温下的组织为纯奥氏体,也有一些为奥氏体+少量铁素体。 一、奥氏体不锈钢的焊接特点 奥氏体不锈钢是石油化工生产中应用最为广泛的金属材料之一,其焊接性能良好,但在焊接过程中也容易产生不少问题,主要表现为以下几种: 1、晶间腐蚀 奥氏体不锈钢焊接件容易在焊接接头处发生晶间腐蚀,根据贫铬理论, 其原因是焊接时焊缝和热影响区在加热到450~850℃温度范围停留一定时间的接头部位,在晶界处析出高铬碳化物(Cr23C6),引起晶粒表层含铬量降低,形成贫铬区,在腐蚀介质的作用下,晶粒表层的贫铬区受到腐蚀而形成晶间腐蚀。这时被腐蚀的焊接接头表面无明显变化,受力时则会沿晶界断裂,几乎完全失去强度。 为防止和减少焊接接头处的晶间腐蚀,一般采取的防止措施有:(1)采用低碳或超低碳的焊材,如A002等,或采用含钛、铌等稳定化元素的焊条,如A137、A132等;(2)由焊丝或焊条向焊缝熔入一定量的铁素体形成元素,使焊缝金属成为奥氏体+铁素体的双相组织(铁素体一般控制4-12%);(3)减少焊接熔池过热,选用较小的焊接电流和较快的焊接速度,加快冷却速度;(4)对耐晶间腐蚀性能要求很高的焊件进行焊后稳定化退火处理。 2、焊接热裂纹 热裂纹产生的主要原因是焊缝中的树枝晶方向性强,有利于S、P等元素的低熔点共晶产物的形成和聚集。另外,此类钢的导热系数小(约为低碳钢的1/3),线胀系数大(比低碳钢大50%),所以焊接应力也大,加剧了热裂纹的产生。其防止的办法是: (1) 选用含碳量低的焊接材料,采用含适量Mo、Si等铁素体形成元素的焊接材料,使焊缝形成奥氏体加铁素体的双相组织,减少偏析;(2)尽量选用碱性药皮的优质焊条,以限制焊缝金属中S、P、C等的含量。 3、应力腐蚀开裂 应力腐蚀开裂是焊接接头在特定腐蚀环境下受拉伸应力作用时所产生的延迟开裂现象。奥氏体不锈钢焊接接头的应力腐蚀开裂是焊接接头比较严重的失效形式,表现为无塑性变形的脆性破坏。 应力腐蚀开裂防止措施:(1) 采取合适的焊接工艺,保证焊缝成形良好,不产生任何应力集中或点蚀的缺陷,如咬边等;采取合理的焊接顺序,降低焊接残余应力水平;(2)合理选择焊材,焊缝与母材应有良好的匹配,不产生任何不良组织,如晶粒粗化及硬脆马氏体等;(3)消除应力处理:焊后热处理,如焊后完全退火或退火;在难以实施热处理时采用焊后锤击或喷丸等。 4、焊缝金属的低温脆化。 对于奥氏体不锈钢焊接接头,在低温使用时,焊缝金属的塑韧性是关键问题。此时,焊缝组织中的铁素体的存在总是恶化低温韧性。一般可以通过选用纯奥氏体焊材和调整焊接工艺获得单一的奥氏体焊缝的方法来防止焊缝金属的低温催化。

(双相不锈钢)复合板焊接工艺

1 要求 1.1 材料 1.1.1 用于制造压力容器的不锈钢复合钢板材料及焊材应符合相应的国家标准或行业标准的规定,并具有材料制造厂的质量证明书。采用国外材料时,应符合《压力容器安全技术监察规程》第22条的规定。 1.1.2 用于主要受压元件的材料,其复验要求应符合《压力容器安全技术监察规程》第61条的规定。 1.1.3不锈钢复合钢板的使用范围应符合GB150的规定。 1.1.4材料不得有分层,表面不允许有裂纹、结疤等缺陷。用于制造有表面粗糙度要求的设备的不锈钢复合钢板板,需经80~100号砂头抛光后,再检查表面质量。经酸洗供应的材料表面不允许有氧化皮和过酸洗现象。 1.1.5不锈钢复合钢板应按牌号、规格和炉批号分类存放,并作明确标志。与碳钢等原材料有严格的隔离措施。1.1.6 不锈钢复合钢板材料上应有清晰的入库标记。该标记和1.1.6条规定的标志应采用无氯、无硫记号笔书写,不得采用油漆等有污染的物料书写,不得在与介质接触的表面打钢印。 1.1.7 焊接材料应按种类、牌号、批次、入库时间分类放置于干燥、通风良好的室内,一般应放在离地约200~500mm 以上的架子上。室内应整洁,不允许放置有害气体和腐蚀性介质。并应建立严格的验收、保管、烘干、发放和回收制度。 1.1.8 钢板吊运时,要防止钢板变形。钢丝绳要加护套,以防损伤材料表面。 1.2 制造环境 1.2.1 不锈钢复合钢板压力容器的制造应有独立、封闭的生产车间或专用场地,应与碳钢制产品严格隔离。不锈钢复合钢板压力容器如附有碳钢零部件,其碳钢零部件的制造场地应与不锈钢复合钢板件分开。 1.2.2 为了防止铁离子和其它有害杂质的污染,不锈钢复合钢板压力容器生产场地必须保持清洁、干燥、地面应铺设橡胶或木质垫板。零部件半成品、成品的堆放需配有木质堆放架。 1.2.3 不锈钢复合钢板压力容器在制造过程中应使用专用滚轮架(如滚轮衬有橡胶等)、吊夹具及其它工艺设备。起吊容器或零部件的吊缆宜采用绳制吊缆或柔性材料(橡胶、塑料等)铠装的金属吊缆。进入生产现场的人员应穿着鞋底不得带有铁钉等尖锐异物的工作鞋。 1.2.4 不锈钢复合钢板材料或零部件在周转和运输过程中,应配备必要的防铁离子污染和磕划的运送工具。 1.2.5 不锈钢复合钢板压力容器的表面处理应有独立且配备必要的环境保护措施的场地。 1.3 加工成型及焊接 1.3.2 划线应在清洁的木板或光洁的平台上进行,加工过程中不能去除的不锈钢复合钢板材料表面严禁用钢针划线或打冲印。 1.3.3 下料时,应将不锈钢复合钢板原材料移至专用场地用等离子切割或机械切割方法下料。用等离子切割方法下料或开孔的板材,如割后尚需焊接,则要去除割口处的氧化物至显露金属光泽。当利用机械切割方法时,下料前应将机床清理干净,为防止板材表面划伤,压脚上应包橡胶等软质材料。严禁在不锈钢复合钢板材料垛上直接切割下料。 1.3.4 板材的剪口和边缘不应有裂缝、压痕、撕裂等现象。 1.3.5 剪好的材料应整齐地堆放在底架上,以便连同底架吊运,板间须垫橡胶、木板、毯子等软质材料,以防损伤表面。 1.3.8 不锈钢复合钢板板卷圆时,应在卷板机的轧辊表面或在不锈钢复合钢板表面上覆盖无铁离子的材料。 1.3.9 进行钻、锪、车削等机械加工时,冷却液一般采用水基乳化液。 1.3.10 不锈钢复合钢板封头采用热成型时,应按热处理规范和冲压工艺的要求,严格控制炉内温度和冲压的起始温度与终了温度,并作好记录。不允许与碳钢封头同炉加热。热成型所用的工具、压模等须清洁干净,不允许有碳钢屑、氧化皮等污物存在。 1.3.11 壳体组装过程中,临时所需的楔铁、垫板等与壳体表面接触的用具应选用与壳体相适应的不锈钢复合钢板材料。 1.3.12 不锈钢复合钢板压力容器严禁强力组装,组装过程中不得使用可能造成铁离子污染的工具。容器的开孔应采用等离子或机械切割的方法。 1.3.13 不锈钢复合钢板压力容器施焊前的焊接工艺评定和首次焊接的钢种,首次采用的焊接材料及焊接方法,以及改变已经评定合格的焊接工艺中任何一项重要因素或补加因素时的施焊前焊接工艺评定均应符合JB4708的规定,焊接规程应符合JB/T4709的规定。 1.3.14 施焊的焊工必须持有劳动部门颁发的相应类别有效焊工合格证。 1.3.15 不合格的焊缝允许返修,但同一部位的返修次数不宜超过两次。对经过两次返修仍不合格的焊缝,如再进行返修,每次须经制造单位技术负责人批准,并将返修次数、部位和返修情况记入产品的质量证明书。有抗晶间腐蚀要求的零部件,焊缝返修后仍应保证原有要求。 1.3.16 制造过程中应避免尖锐、硬性物质擦伤不锈钢复合钢板表面。如进行容器内工作,应采取铺设衬垫等保护措施。 1.3.17 不锈钢复合钢板压力容器的表面如有局部磕碰或划伤等影响耐腐蚀性能的缺陷,必须修复。 1.4 表面处理 1.4.1 不锈钢复合钢板压力容器的所有焊缝修补工作结束后按设计图样的要求进行表面处理。 1.4.2 压力容器表面的焊接飞溅物、熔渣、氧化皮、焊疤、凹坑、油污等杂质均应清除干净,清除过程中不得使用碳钢刷清理不锈钢复合钢板压力容器的表面。 1.4.3 采用机械抛光时,抛光磨料宜选用氧化铝或氧化铬,不得使用铁砂等作磨料。磨料应按不同的粒度分开放置,不得混放。

不锈钢焊接方法

不锈钢焊接方法 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

不锈钢焊接方法、不锈钢焊接技术及注意事项 不锈钢管的标准规格有200多种,大小均有,小管较贵,尤其是毛细管.毛细管最差得由304材质生产,不然管子容易爆裂.还可以为客户定做非标规格的管材.无缝管主要用于工业上,表面为雾面,不光亮.有缝管的表面是光亮面,管内有一条很细的焊接线,俗称焊接管,主要用于装饰材料.另有工业流体管,其抗压力视壁厚决定.310与310S为耐高温管.1080度以下能正常使用,最高耐温达到1150度.不锈钢焊管生产工艺:原料--分条--焊接制管--修端--抛光--检验(喷印)--包装--出货(入仓)(装饰焊管)原料--分条--焊接制管--热处理--矫正--矫直--修端--酸洗--水压测试--检验(喷印)-包装--出货(入仓)(焊管工业配管用管) 不锈钢最常用的焊接方法是手工焊(MMA),其次是金属极气体保护焊 (MIG/MAG) 和钨极惰性气体保护焊(TIG)。 焊前准备:4mm一下的厚度不用开破口,直接焊接,单面一次焊透。4到6mm厚度对接焊 缝可采用不开破口接头双面焊。6mm以上,一般开V或U,X形坡口。

其次:对焊件,填充焊丝进行除油和去氧化皮。以保证焊接质量。 焊接参数:包括焊接电流,钨极直径,弧长,电弧电压,焊接速度,保护气流,喷嘴直径等。 (1)焊接电流是决定焊缝成形的关键因素。通常根据焊件材料,厚度,及坡口形状来决定的。 (2)焊极直径根据焊接电流大小决定,电流越大,直径也越大。 (3)焊弧和电弧电影,弧长范围约到3mm,对应的电弧电压为8~10V。 (4)焊速:选择时要考虑到电流大小,焊件材料敏感度,焊接位置及操作方式等因素决定。?

不锈钢力学性能

不锈钢的物理性能不锈钢和碳钢的物理性能数据对比,碳钢的密度略高于铁素体和马氏体型不锈钢,而略低于奥氏体型不锈钢;电阻率按碳钢、铁素体型、马氏体型和奥氏体型不锈钢排序递增;线膨胀系数大小的排序也类似,奥氏体型不锈钢最高而碳钢最小;碳钢、铁素体型和马氏体型不锈钢有磁性,奥氏体型不锈钢无磁性,但其冷加工硬化生成成氏体相变时将会产生磁性,可用热处理方法来消除这种马氏体组织而恢复其无磁性。奥氏体型不锈钢与碳钢相比,具有下列特点:1)高的电阴率,约为碳钢的5倍。2)大的线膨胀系数,比碳钢大40%,并随着温度的升高,线膨胀系数的数值也相应地提高。3)低的热导率,约为碳钢的1/3。不锈钢的力学性不论不锈钢板还是耐热钢板,奥氏体型的钢板的综合性能最好,既有足够的强度,又有极好的塑性同时硬度也不高,这也是它们被广泛采用的原因之一。奥氏体型不锈钢同绝大多数的其它金属材料相似,其抗拉强度、屈服强度和硬度,随着温度的降低而提高;塑性则随着温度降低而减小。其抗拉强度在温度15~80°C范围内增长是较为均匀的。更重要的是:随着温度的降低,其冲击韧度减少缓慢,并不存在脆性转变温度。所以不锈钢在低温时能保持足够的塑性和韧性。不锈钢的耐热性能耐热性能是指高温下,既有抗氧化或耐气体介质腐蚀的性能即热稳定性,同时在高温时双有足够的强度即热强性。不锈钢国际标准标准标准标准名GB 中华人民共和国国家标准(国家技术监督局)KS 韩国工业标准协会规格Korean Standard AISI 美国钢铁协会规格America Iron and Steel Institute SAE 美国汽车技术者协会规格Society of Automative Engineers ASTM 美国材料试验协会规格American Society for Testing and Material AWS 美国焊接协会规格American Welding Society ASME 美国机械技术者协会规格American Society of Mechanical Engineers BS 英国标准规格British Standard DIN 德国标准规格Deutsch Industria Normen CAS 加拿大标准规格Canadian Standard Associatoin API 美国石油协会规格American Petroleum Association KR 韩国船舶协会规格Korean Resister of Shipping NK 日本省事协会规格Hihon Kanji Koki LR 英国船舶协会规格Llouds Register of Shipping AB 美国舰艇协会规格American Bureau of Shipping JIS 日本工业标准协会规格Japanese Standard 316和316L不锈钢316和317不锈钢(317不锈钢的性能见后)是含钼不锈钢种。317不锈钢中的钼含量略高明于316不锈钢.由于钢中钼,该钢种总的性能优于310和304不锈钢,高温条件下,当硫酸的浓度低于15%和高于85%时,316不锈钢具有广泛的用途。316不锈钢还具有良好的而氯化物侵蚀的性能,所以通常用于海洋环境。316L不锈钢的最大碳含量0.03,可用于焊接后不能进行退火和需要最大耐腐蚀性的用途中。耐腐蚀性:耐腐蚀性能优于304不锈钢,在浆和造纸的生产过程中具有良好的耐腐蚀的性能。而且316不锈钢还耐海洋和侵蚀性工业大气的侵蚀。耐热性:在1600度以下的间断使用和在1700度以下的连续使用中,316不锈钢具有好的耐氧化性能:在800-1575度的范围内,最好不要连续作用316不锈钢,但在该温度范围以外连续使用316不锈钢时,该不锈钢具有良好的耐热性。316L不锈钢的耐碳化物析出的性能比316不锈钢更好,可用上述温度范围。热处理:在1850-2050度的温度范围内进行退火,然后迅速退火,然后迅速冷却。316不锈钢不能过热处理进行硬化。焊接:316不锈钢具有良好的焊接性能。可采用所有标准的焊接方法进行焊接。焊接时可根据用途,分别采用316Cb、316L或309Cb不锈钢填料棒或焊条进行焊接。为获得最佳的耐腐蚀性能,316不锈钢钢的焊接断面需要进行焊后退火处理。如果使用316L不锈钢,不需要进行焊后退火处理。典型用途:纸浆和造纸用设备热交换器、染色设备、胶片冲洗设备、管道、沿海区域建筑物外部用材料。不锈钢加工及施工Drawing深加工:易产生磨擦热量所以使用耐压、耐热性高不锈钢种同时成型加工结束后应除掉表面附着的油。焊接:焊接之前应彻底除掉有害于焊接的锈、油、水份、油漆等,选定适合钢种的焊条。点焊时间距比碳钢点焊间距短,除掉焊渣时应使用不锈钢刷。焊完以后,为了防止局部腐蚀或强度下降,应对表面进行研磨处理或清洗。切断以及冲压:由于不锈钢比一般材料强度高,所以冲压以及剪切时需要更高的压力,而刀与刀间隙准确时才能不发生切变不良和加工硬化,最好采用等离子或激光切断,当不得不采用气割或电弧切断时,对热影响区进行研磨以及必要进行热处理。折弯加工:簿板可以折弯到180,但为了减少弯面的裂纹同半径大小最好2倍板厚的,厚板沿压延方向时给2倍板厚半径,与压延垂直方

不锈钢材料技术标准

不锈钢材料技术标准 前言 不锈钢材料应用通则: 1、中国与亚洲、北美诸国(地区)以及澳大利亚的不锈钢钢号近似对照:

2、特性及应用范围

3、理论重量计算

4、不锈钢制造过程中的表面处理法以及机械研磨表面处理法

近期国内钢厂发布了不锈钢新牌号标准,经过比较分析,新牌号与旧牌号标识上基本没有太大变动,主要的化学元素标识都没有变动,只有碳含量标识和个别钢种里面化学元素发生变动: A、碳(C)含量标识 1)旧牌号:Cr之前的数字表示碳的千份之几的含量。如201(1Cr17Mn6Ni5N ):碳(C)含量千分之一;2Cr13 (420),7Cr17(440A),分别表示碳(C)含量千分之二和千分之七;如果C≤0.08%为低碳,标识为“0”,如(304) 0Cr18Ni9;C≤ 0.03%为超低碳,标识为“ 00,”如00Cr17Ni14Mo2 (316L)。 2)新牌号:Cr 之前的数字表示碳(C)的万分之几的含量。如201 牌号为12Cr17Mn6Ni5N ,表示碳(C)含量万分之十二(0.12%);304 牌号为06Cr19Ni10 ,表示碳(C)含量万分之六(0.06% );316L 牌号为 022Cr17Ni12Mo2 ,表示碳(C)含量万分之二点二(0.022%)。其它标识基本不变。 新牌号中碳(C)含量较之以前更加明确,对产品生产技术也有了更高的要求。 B、个别材质原料含量发生调整原料含量发生变动的部分钢种比较: 【相关:中国主要不锈钢牌号最新国家标准】 304中Cr和Ni的含量分别上涨了1个的点;316L中Ni的含量上涨2个的点;444中Cr含量上涨了1个的点并加入了Nb 、Ti 微量元素;321 中Ni 含量减少了1 个的点;304N1 中Ni 含量减少了1 个的点。各钢种之间做了不同程度的调整,镍奥式体中调整幅度比例比较大。 、常用不锈钢管技术标准 1GB/T14975-结构用不锈钢无缝钢管; 2GB/T14976-流体输送用不锈钢无缝钢 3GB/T12770-机械结构用不锈钢焊接钢 4GB/T12771-流体输送用不锈钢焊接钢 5GB/T18705-装饰用焊接不锈钢钢管; 6QB/T 2467-食品工业用不锈钢管 7ASTM A270-03a 卫生设施用无缝钢管 8ISO-2851-2852\ISO2037 国际食品工业用不 、对应技术标准 1、油漆用输送用不锈钢管(冷轧(拔))WC 1)、水性漆输送

不锈钢的种类及其焊接方法注意事项

不锈钢的种类及其焊接方法注意事项 不锈钢种类按金相组织可分为: 铁素体不锈钢(400系),为铬不锈钢,主要代表有Gr13,G17,Gr27-30 奥氏体不锈钢(300系),铬镍不锈钢,主要代表有304,316,321等 马氏体不锈钢(200系),铬锰不锈钢,碳含量高,主要代表有1Gr13等 321,(1Cr18Ni9Ti)又称18-8 304,(0Cr18Ni9) 304L,(00Cr19Ni10) 316,(0Cr17Ni12Mo2) 316L,(00Cr17Ni14Mo2) 201 () 不锈钢201与304区别 不锈钢201与304的区别 1、规格:常用的不锈钢板材分为201和304两种型号,实际是是成分不同,304质量好一些,但价格贵,201差一些。304为进口不锈钢板,201为国产不锈钢板。 2、201组成为,是节Ni钢种,301钢的替代钢。经冷加工后具有磁性,用于铁路车辆。 3、304组成为18Cr-9Ni,是得到最广泛应用的不锈钢、耐热钢。用于食品生产设备、昔通化工设备、核能等。 4、201是含锰较高,表面很亮带有暗黑的亮,含锰较高容易生锈。304含铬较多,表面呈现哑光,不生锈.两种放在一起就有比较了。最重要的就是耐腐蚀性能不同,201的耐腐蚀性能很差,所以价格就要便宜很多?又因为201含镍低,所以价格比304的低,于是耐腐蚀性能就不如304的了。 5、201与304之间的区别就是含镍的问题。而且304的价格现在都比较贵,一般都要接近50000 一吨,但304的话起码可以保证在使用过程中不会生锈。(可用药水做实验) 6、不锈钢不易生锈是因为在钢体表面形成富铬氧化物可保护钢体,201料属于高锰不锈钢较304硬度大高碳低镍. 7、成分不同(主要从含碳,含锰,含镍,含铬几方面来区分201与304的不锈钢)钢号碳(C)硅(Si)锰(Mn)磷(P)硫(S)铬(Cr)镍(Ni)钼杆(Mo)铜(Cu)AISI(304) <<<<< (201) ww 以上是摘抄的,说到耐疲劳,201硬度较大,韧性不如304,还是304的耐疲劳度好些。不锈钢标号分类 一、奥氏体型不锈钢(201、202、301、304、309、309S、310、310S、316、316L、

2205双相不锈钢的焊接工艺规程完整

1 绪论 随着工业技术的日益发展,一般奥氏体不锈钢难以满足应力腐蚀、点腐蚀和缝隙隧洞式腐蚀的要求。为此,冶金工作者进行了大量研究,研制出奥氏体—铁素体型不锈钢,即双相不锈钢。 传统的奥氏体不锈钢在晶间腐蚀、应力腐蚀、点腐蚀和缝隙腐蚀等局部腐蚀方面的抗力不足,尤其是应力腐蚀引起的断裂,其危害性极大。双相不锈钢是近二十年来开发的新钢种。通过正确控制各合金元素比例和热处理工艺使其固溶组织中铁素体相和奥氏体相各约占50%,从而将奥氏体不锈钢所具有的优良韧性和焊接性与铁素体不锈钢所具有的较高强度和耐氯化物应力腐蚀性能结合在一起,使双相不锈钢兼有铁素体不锈钢和奥氏体不锈钢的优点。 所谓双相不锈钢是在其固溶组织中铁素体相与奥氏体相约各占一半,一般量少相的含量也需要达到30%。在含C较低的情况下,Cr含量在18%-28%,Ni含量在3%-10%。有些钢还含有Mo、Cu、Nb、Ti,N等合金元素。该类钢兼有奥氏体和铁素体不锈钢的特点,与铁素体相比,塑性、韧性更高,无室温脆性,耐晶间腐蚀性能和焊接性能均显著提高,同时还保持有铁素体不锈钢的475℃脆性以及导热系数高,具有超塑性等特点。与奥氏体不锈钢相比,强度高且耐晶间副食和耐氯化物应力腐蚀有明显提高。双相不锈钢具有优良的耐孔蚀性能,也是一种节镍不锈钢。 由于两相组织的特点,通过正确控制化学成分和热处理工艺,使双相不锈钢兼有铁素体不锈钢和奥氏体不锈钢的优点,它将奥氏体不锈钢所具有的优良韧性和焊接性与铁素体不锈钢所具有的较高强度和耐氯化物应力腐蚀性能结合在一起,正是这些优越的性能使双相不锈钢作为可焊接的结构材料发展迅速,80年代以来已成为和马氏体型、奥氏体型和铁素体型不锈钢并列的一个钢类。 上世纪30年代就已在瑞典的试验室中研制出双相不锈钢(3RE60、Uranus50等),但是双相不锈钢真正产业化还是在上世纪60年代以后,其发展经历了3代历程。 1.1 我国双相不锈钢的应用 双相不锈钢是根据石油化工中强酸强碱造成的局部点蚀、应力腐蚀以及孔穴式腐蚀现象,一般不锈钢难以胜任的容器、管道以及零部件等而研制的,但由于

不锈钢焊接冶金学及焊接性

不锈钢焊接冶金学及焊接性 第1章引言 本书涉及到目前可以用作工程材料的广泛范围的不锈钢系列。这个系列包括各类不锈钢,按微观组织分为马氏体不锈钢、铁素体不锈钢、奥氏体不锈钢和双相不锈钢(奥氏体和铁素体)。 1.1不锈钢的定义 不锈钢是一类Fe-C、Fe-C-Cr和Fe-Cr-Ni为合金系的高合金钢。作为一类不锈的钢必须含有质量分数不低于10.5%的铬。含有这个最低含量的钢在其表面可以形成一个惰性氧化层,这个惰性氧化层可以保护内层的金属在不含腐蚀介质的空气中不被氧化和腐蚀。某些铬的质量分数低于11%的钢,比如用于电站的w (Cr)=9%铬合金的钢有时也被划为不锈钢。另外某些铬的质量分数w(Cr)=12%的钢,甚至更高铬含量的钢,暴露在空气中也会生锈。这是因为某些铬被结合为碳化物或其他化合物而降低了母材中的铬含量,使其低于形成连续氧化物保护层所必需的铬含量水平。 不锈钢的腐蚀有多种形式,包括点蚀、缝隙腐蚀、晶间腐蚀。腐蚀的形式受腐蚀环境、材料的冶金状态和局部应力的影响。工程师和设计师在选择用于腐蚀条件下的不锈钢时,必须充分了解结构的腐蚀环境和制造过程对材料冶金行为的重要影响。 即使在高温下,不锈钢也有好的抗氧化性,因而也常常被称为耐热钢。高温抗氧化性也是含有铬成分的一个主要功能,某些高铬合金钢(w(Cr)=25%~30%)能用于1000℃的高温。另外一种耐热性是指高温防渗碳,为了具有这种耐热性,开发了含有中等含量的铬[w(Cr=16%)]和镍含量很高[w(Ni)=35%]的一类不锈钢。 1.2不锈钢的发展史

1.3不锈钢的种类及其应用 紧接着碳钢和C-Mn钢,不锈钢是最广泛应用的钢种。 和其他材料以成分来分类有所不同,不锈钢的分类是基于其冶金学上起主导作用的相成分。在不锈钢中三种可能的相成分是马氏体、铁素体和奥氏体。双相钢含有近似50%的奥氏体和50%的铁素体,从而得益于这两种相所期望的性能。析出硬化(PH)类钢因形成强化析出相并由时效热处理硬化而得名。PH不锈钢又进而由在其中形成析出相的母相或基体被分为:马氏体类、半奥氏体类和奥氏体类。 美国钢铁研究院(AISI)用三个数字,有时附加一个字母的系列来标识不锈钢,例如304,304L,410和413等。磁性也可以用来鉴别某些不锈钢。奥氏体类不锈钢本质上是非磁性的。少量参与铁素体或冷加工可能引起轻微的铁磁性,但其磁性明显的低于磁性材料。铁素体和马氏体类不锈钢是铁磁性的。双相钢由于有较高的铁素体含量,而有相对较强的磁性。 对于不同类型的不锈钢,其物理性能如导热性、热膨胀性和力学性能可以变化很大并影响其焊接性。例如奥氏体不锈钢导热性差而线胀系数高,因而焊接时引起的变形大于其他类型(主要是铁素体和马氏体钢种)。 1.4不锈钢的耐蚀性能 大多数情况下选用不锈钢是因其有较高的耐腐蚀性和耐热性。由于形成惰性的富铬氧化物层,不锈钢本身能够避免困扰碳-锰结构钢和低合金结构钢的一般性腐蚀问题。然而不锈钢可能遭受其他情况下的腐蚀,因而必须从工作环境考虑对其精心选择和应用。本书只对可用于不锈钢焊件的腐蚀机理做一般性的小结。 在不锈钢中发生的两种局部性腐蚀是点蚀和缝隙腐蚀。从机理上看两种腐蚀是相似的,都引起严重的局部侵蚀。从点蚀的名词可以看出其是由于惰性膜局部被损而造成的,并且总和某些冶金学上的特殊区域,如晶界、金属间化合物组分等有关。一旦惰性层破裂,层下面的金属受到腐蚀而在表面形成小点穴,随后点穴中的溶液化学成分发生变化使侵蚀性(即酸性)不断增强而导致很快的表面下侵蚀和相邻腐蚀穴的连接,最终导致构件的破坏。由于点蚀只有很小的针眼暴露在表面,因此可以很隐蔽。 缝隙腐蚀从机理上看很相似,但其产生不再需要存在某些冶金上的特殊区域,而从“缝隙”这个名词上可以看到本来就有一个四周围着的空间存在,在其中化学溶液成分发生和点蚀类似的变化。缝隙腐蚀普遍在螺栓连接结构中发生,此时螺栓头和被栓接的表面提供了这种缝隙。点蚀和缝隙腐蚀都容易在含有氯化

不锈钢焊接要点及注意事项

不锈钢焊接要点及注意事项 1.采用垂直外特性的电源,直流时采用正极性(焊丝接负极) 2.一般适合于6mm以下薄板的焊接,具有焊缝成型美观,焊接变形量小的特点 3.保护气体为氩气,纯度为99.99%。当焊接电流为50~150A时,氩气流量为8~10L/min,当电流为150~250A时,氩气流量为12~15L/min。 4.钨极从气体喷嘴突出的长度,以4~5mm为佳,,在角焊等遮蔽性差的地方是2~3mm,在开槽深的地方是5~6mm,喷嘴至工作的距离一般不超过15mm。 5.为防止焊接气孔之出现,焊接部位如有铁锈、油污等务必清理干净。 6.焊接电弧长度,焊接普通钢时,以2~4mm为佳,而焊接不锈钢时,以1~3mm为佳,过长则保护效果不好。 7.对接打底时,为防止底层焊道的背面被氧化,背面也需要实施气体保护。 8.为使氩气很好地保护焊接熔池,和便于施焊操作,钨极中心线与焊接处工件一般应保持80~85°角,填充焊丝与工件表面夹角应尽可能地小,一般为10°左右。 9.防风与换气。有风的地方,务请采取挡网的措施,而在室内则应采取适当的换气措施。 不锈钢MIG焊要点及注意事项 1.采用平特性焊接电源,直流时采用反极性(焊丝接正极) 2.一般采用纯氩气(纯度为99.99%)或Ar+2%O2,流量以20~25L/min为宜。 3.电弧长度,不锈钢的MIG焊接,一般都在喷射过渡的条件下来施焊,电压要调整到弧长在4~6mm的程度。 4.防风。MIG焊接容易受到风的影响,有时微风而产生气孔,所以风速在0.5m/sec以上的地方,都应当采取防风措施。 不锈钢药芯焊丝焊接要点及注意事项 1.采用平特性焊接电源,直流焊接时采用反极性。使用一般的CO2焊机就可以施焊,但送丝轮的压力请稍调松。

双相不锈钢的焊接工艺规程完整版

双相不锈钢的焊接工艺 规程 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

1 绪论 随着工业技术的日益发展,一般奥氏体不锈钢难以满足应力腐蚀、点腐蚀和缝隙隧洞式腐蚀的要求。为此,冶金工作者进行了大量研究,研制出奥氏体—铁素体型不锈钢,即双相不锈钢。 传统的奥氏体不锈钢在晶间腐蚀、应力腐蚀、点腐蚀和缝隙腐蚀等局部腐蚀方面的抗力不足,尤其是应力腐蚀引起的断裂,其危害性极大。双相不锈钢是近二十年来开发的新钢种。通过正确控制各合金元素比例和热处理工艺使其固溶组织中铁素体相和奥氏体相各约占50%,从而将奥氏体不锈钢所具有的优良韧性和焊接性与铁素体不锈钢所具有的较高强度和耐氯化物应力腐蚀性能结合在一起,使双相不锈钢兼有铁素体不锈钢和奥氏体不锈钢的优点。 所谓双相不锈钢是在其固溶组织中铁素体相与奥氏体相约各占一半,一般量少相的含量也需要达到30%。在含C较低的情况下,Cr含量在18%-28%,Ni含量在3%-10%。有些钢还含有Mo、Cu、Nb、Ti,N等合金元素。该类钢兼有奥氏体和铁素体不锈钢的特点,与铁素体相比,塑性、韧性更高,无室温脆性,耐晶间腐蚀性能和焊接性能均显着提高,同时还保持有铁素体不锈钢的475℃脆性以及导热系数高,具有超塑性等特点。与奥氏体不锈钢相比,强度高且耐晶间副食和耐氯化物应力腐蚀有明显提高。双相不锈钢具有优良的耐孔蚀性能,也是一种节镍不锈钢。 由于两相组织的特点,通过正确控制化学成分和热处理工艺,使双相不锈钢兼有铁素体不锈钢和奥氏体不锈钢的优点,它将奥氏体不锈钢所具有的优良韧性和焊接性与铁素体不锈钢所具有的较高强度和耐氯化物应力腐蚀性能结合在一起,正是这些优越的性能使双相不锈钢作为可焊接的结构材料发展迅速,80年代以来已成为和马氏体型、奥氏体型和铁素体型不锈钢并列的一个钢 类。 上世纪30年代就已在瑞典的试验室中研制出双相不锈钢(3RE60、 Uranus50等),但是双相不锈钢真正产业化还是在上世纪60年代以后,其 发展经历了3代历程。

不锈钢焊接工艺标准

不锈钢焊接工艺标准 Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-

焊接工艺指导书 一氩弧焊接 1.目的 为规范焊工操作,保证焊接质量,不断提高焊工的实际操作技术水平,特编制本指导书。 2. 编制依据 . 设计图纸 .《手工钨极氩弧焊技术及其应用》 .《焊工技术考核规程》 3. 焊接准备 . 焊接材料 焊丝:H1Cr18Ni9Tiφ1、φ、φ、φ3 焊丝应有制造厂的质量合格证,领取和发放有焊材管理员统一管理。焊丝在使用前应清除油锈及其他污物,露出金属光泽。 3. 2. 氩气 氩气瓶上应贴有出厂合格标签,其纯度≥%,所用流量6-9升/分钟,气瓶中的氩气不能用尽,瓶内余压不得低于,以保证充氩纯度。 . 焊接工具输送氩气的胶皮管,不得与输送其它气体的胶皮管互相串用,可用新的氧气胶皮管代用,长度不超过30米。 . 其它工器具 焊工应备有:手锤、砂纸、扁铲、钢丝刷、电磨工具等,以备清渣和消缺。4.工艺参数 不锈钢焊接工艺参数选取表

. 焊工必须按照“考规”规定经相应试件考试合格后,方可上岗位焊接。 . 严禁在被焊件表面随意引燃电弧、试验电流或焊接临时支撑物等。 . 焊工所用的氩弧焊把、氩气减压流量计,应经常检查,确保在氩弧焊封底时氩气为层流状态。 . 接口前应将坡口表面及母材内、外壁的油、漆、垢锈等清理干净,直至发出金属光泽,清理范围为每侧各为10-15mm,对口间隙为~。 .接口间隙要匀直,禁止强力对口,错口值应小于壁厚的10%,且不大于 1mm。 . 接口局部间隙过大时,应进行修整,严禁在间隙内添加塞物。 . 接口合格后,应根据接口长度不同点4-5点,点焊的材料应与正式施焊相同,点焊长度10-15mm,厚度3-4mm。 . 打底完成后,应认真检查打底焊缝质量,确认合格后再进行氩弧焊盖面焊接。 . 引弧、收弧必须在接口内进行,收弧要填满熔池,将电弧引向坡口熄弧。. 点焊、氩弧焊、盖面焊,如产生缺陷,必须用电磨工具磨除后,再继续施焊,不得用重复熔化方法消除缺陷。 . 应注意接头和收弧质量,注意接头熔合应良好,收弧时填满熔池。为保证焊缝严密性。 . 盖面完毕应及时清理焊缝表面熔渣、飞溅。 6. 质量标准: . 质量按Q/ZB74-73 焊接通用技术条件和机械结构用不锈钢焊接管 (GB/T12770—2002)标准检验。 . 缺陷种类、原因分析及改进方法 氩弧焊焊接产生缺陷的原因及防止方法

各类不锈钢的焊接特点要点

各类不锈钢的焊接特点 马氏体。可焊性较差,焊接时有强烈的淬火倾向,经焊接加热后在空气中冷却就能导致淬火,使焊缝和热影响区形成坚硬的马氏体组织,因温差引起的热应力和奥氏体转变为马氏体组织的相变应力的综合作用,导致焊后残余应力较大。含碳量愈高,其淬硬性就愈大。还存在由于扩散氢的作用而引起的滞后裂纹。因此,焊接薄板时采用较小的电源,尽可能快的焊速,应使焊道狭窄,熔池体积减小,以免金属过热;厚板焊前应进行预热(200~ 400℃),焊后高温回火或退火,随后缓冷;焊丝、坡口、氩气要清洁、干燥,以消除氢的产生。 铁素体。易在焊合线附近热影响区产生粗晶,使常温塑性、韧性降低而引起脆化;高铬(≥16%Cr)不锈钢焊后在600~400℃阶段缓慢冷却时,会出现475℃脆化,造成韧性恶化。因此,采用小电流、快焊速、窄焊道、加快焊缝冷却的方法,以尽量避免晶粒长大,缩短高温停留时间,防止过热;对高铬不锈钢焊前应预热,使其在韧性温度范围内焊接,但预热温度不应超过150℃,以免焊后冷却缓慢,增加475℃脆性。 奥氏体。由于在奥氏体晶界上有低熔点杂质物,冷却时在焊接收缩应力的作用下易产生热应力,从而产生热裂纹;在550~850℃长时间加热时,焊接热影响区的晶界上析出铬的碳化物,造成贫铬区,因而热影响区易发生晶间腐蚀;由于线膨胀系数较大,导热性较差,而产生较大的焊接应力和变形,易造成热裂纹。因此,避免焊缝过热,选用较小的焊接电流、较快的焊速,缩短高温停留时间,减小熔池面积,避免焊缝、近缝区的晶粒过渡长大;控制输入的焊接热量,采用能量集中的焊接方法,加强冷却,缩短经过危险温度区域的冷却时间;焊后进行消除应力热处理和固溶处理,使焊接时析出的铬的碳化物重新固溶到奥氏体中,或进行稳定化处理;选用超低碳奥氏体焊丝(w(C)≤0.04%)焊接,防止晶粒边界产生贫铬区,提高抗晶间腐蚀的能力。 氩弧焊 氩气是单原子气体,不会产生化合物,高温不分解,也不溶于金属中,不与任何元素发生反应,其稳弧性能好,热损耗小,电弧热集中,热效率高。在氩气的保护下,通过电热使钨极发射大量电子,从而使氩气电离,产生足够的正、负离子和电子,使气体导电,在钨极与钢带之间产生连续的弧光放电,即产生了“弧氢”。弧氢中心白色耀眼部分叫“弧柱”,其温度非常高,能熔化任何金属,作为焊接的热源。氩弧焊用从专用的焊枪喷嘴喷出严密的氩气层流,使电弧包围在其中,与空气隔开,利用电弧产生的热量熔化被焊处,并填充焊丝,将两块分离的金属连接在一起,从而获得牢固的焊接接头。氩气不纯易使焊缝氧化、氮化,使焊缝硬淬,破坏其气密性,降低焊接质量。 TIG(惰性气体保护钨极电弧焊)采用高纯(99.9%)Ar保护气,使用非消耗性的钨棒,焊缝强度和致密度较好,适用于3mm以下的不锈钢带。MIG(惰性气体保护金属电弧焊)采用98%Ar的混合气,使用消耗性细实心焊丝(材质与母材相似),焊接速度快、效率高,适用于3mm以上的不锈钢带。

316L不锈钢管道焊接工艺要求.

316L不锈钢管道焊接工艺要求 一焊接方法 根据不锈钢的特点,尽可能减少热输入量,故采用手工电弧焊,氩弧焊两种方法。 d>φ159mm的采用氩弧焊打底,手工电弧焊盖面;d<φ159mm的采用氩弧焊。焊机采用手工电弧焊/氩弧焊两用WS7-400逆变式弧焊机。 二焊接材料 奥氏体不锈钢是特殊性能用钢,为满足接头具有相同性能,应该遵循“等成分”原则选择焊接材料。同时为增强接头抗热裂纹和晶间腐蚀能力,使接头出现少量铁素体,选择HooCr19Ni12Mo2氩弧焊用焊丝。手工电弧焊用焊条CHS022 作为填充材料。其成化学分见表1和表2; 表1焊丝HooCr19Ni12Mo化学成分 C Si Mn P S Ni Cr Mo 0.0120.131.700.0190.00713.2318.722.38 表2焊条CHS022化学成分 C Cu Si Mn P S Ni Cr Mo 0.030.200.640.750.020.00711.7719.662.05三焊接参数 奥氏体不锈钢的突出特点是对过热敏感,故采用小电流,快速焊,多层焊时要严格控制层间温度,使层间温度小于60℃。具体参数见表3; 接头形式焊缝 层次

焊接 方法 材料牌号材料 直径 d/mm 焊接电 流I/A 电弧电 压U/V 焊接速度 V/cm.min 管对接一层手工钨极 氩弧 焊 HooCr19Ni12Mo2 2.575-8010-116-8 管对接一层手工钨极

氩弧 焊 HooCr19Ni12Mo2 3.283-9011-136-8 管对接二层手工钨极 氩弧 焊 HooCr19Ni12Mo2 2.575-8010-116-8 管对接二层手工钨极 氩弧 焊 HooCr19Ni12Mo2 3.285-9312-136-8 管对接二层手工电弧 焊

304L不锈钢化学化学成分及力学性能

304L不锈钢化学化学成分及力学性能 304L 是碳含量较低的304不锈钢的变种,用于需要焊接的场合。较低的碳含量使得在靠近焊缝的热影响区中所析出的碳化物减至最少,而碳化物的析出可能导致不锈钢在某些环境中产生晶间腐蚀(焊接侵蚀)。 304L不锈钢的化学成分:C:≤0.03 ,Si :≤1.0 ,Mn :≤2.0 ,Cr :18.0~20.0 ,Ni :8.0~11.0,S :≤0.03 , P :≤0.035; 304L不锈钢的力学性能: 屈服强度(N/mm2)≥205抗拉强度≥520延伸率(%)≥40硬度HB ≤187 HRB≤90 HV ≤200 密度7.93 g·cm-3比热c(20℃)0.502 J·(g·C)-1热导率λ/W(m·℃)-1 (在下列温度/℃)20 100 500 12.1 16.3 21.4线胀系数α/(10-6/℃) (在下列温度间/℃)20~100 20~200 20~300 20~400 16.0 16.8 17.5 18.1电阻率0.73 Ω·mm2·m-1熔点1398~1420℃ 310S不锈钢化学化学成分及力学性能 310S对应国内牌号为0Cr25Ni20,又称2520双相不锈钢,应用范围:石油、电子、化工、医药、轻纺、食品、机械、建筑、核电、航空航天、军工等行业! 310S不锈钢的化学成分C :≤0.25,Si :≤1.50,Mn :≤2.00,P :≤0.045,S :≤0.0.03,Cr :24.0-26.0 Ni :19.0-22.0 310S不锈钢的力学性能:硬度(HB) :≤187,抗拉强度(бb)(Mpa) :≥520,屈服强度(σs)(Mpa) :≥205,伸长率(δ)% :≥40面积缩减(ψ)% :≥50 310S不锈钢通过铬元素的局部氧化使其具有抗氧化性,在铬元素局部氧化的过程中,可以形成一种非常稳定的氧化物(Cr2O3 氧化铬)。只要金属的铬含量充足,在金属表面即可形成一层连续的氧化铬绿,防止其他氧化物生成,并对金属起到保护作用。奥氏体不锈钢的抗氧化性可以通过铬含量来推算。耐高温的合金含铬量至少20%(重量百分百)。用镍成分代替铁成分也通常可以提供合金在高温下的性能。309/309S,310/310S是高合金材料,因此,具有相当好的抗氧化性。

相关文档
相关文档 最新文档