文档库 最新最全的文档下载
当前位置:文档库 › 散热器面积及片数的计算方法

散热器面积及片数的计算方法

散热器面积及片数的计算方法
散热器面积及片数的计算方法

工程一:室内热水供暖工程施工

模块三:散热器施工安装

单元2 散热器的计算

1-3-2-1散热器面积及片数的计算方法

1.计算散热器的散热面积

供暖房间的散热器向房间供应热量以补偿房间的热损失。根据热平衡原理,散热器的散热量应等于房间的供暖设计热负荷。

散热器散热面积的计算公式为

3

21)

(βββn pj t t K Q

F -=

(2-1-2)

式中 F ——散热器的散热面积(m 2

);

Q ——散热器的散热量(W );

K ——散热器的传热系数[W/(m 2

·℃)]; t pj ——散热器内热媒平均温度(℃); t n ——供暖室内计算温度(℃); β1——散热器组装片数修正系数; β2——散热器连接形式修正系数; β3——散热器安装形式修正系数。 2.确定散热器的传热系数K

散热器的传热系数K 是表示当散热器内热媒平均温度t pj 与室内空气温度t n 的差为1℃时,

每1 m 2

散热面积单位时间放出的热量。选用散热器时希望散热器的传热系数越大越好。

影响散热器传热系数的最主要因素是散热器内热媒平均温度与室内空气温度的差值Δt pj 。另外散热器的材质、几何尺寸、结构形式、表面喷涂、热媒种类、温度、流量、室内空气温度、散热器的安装方式、片数等条件都将影响传热系数的大小。因而无法用理论推导求出各种散热器的传热系数值,只能通过实验方法确定。

国际化规范组织(ISO )规定:确定散热器的传热系数 K 值的实验,应在一个长×宽×高为(4±0.2)m ×(4±0.2)m ×(2.8±0.2)m 的封闭小室内,保证室温恒定下进行,散热器应无遮挡,敞开设置。

通过实验方法可得到散热器传热系数公式

K=a (Δt pj )b =a (t pj -t n )b

(2-1-3)

式中 K ——在实验条件下,散热器的传热系数[W/(m 2

·℃)]; a 、b ——由实验确定的系数,取决于散热器的类型和安装方式; Δt pj ——散热器内热媒与室内空气的平均温差,Δt pj =t pj –t n 。

从上式可以看出散热器内热媒平均温度与室内空气温差Δt pj 越大,散热器的传热系数 K 值就越大,传热量就越多。

附录9给出了各种不同类型铸铁散热器传热系数的公式。应用这些公式时,需要确定散热器内的热媒平均温度t pj 。 3.确定散热器内热媒平均温度

散热器内热媒平均温度t pj 应根据热媒种类(热水或蒸汽)和系统形式确定。 热水供暖系统

t pj =

2

)(c j t t + (2-1-4)

式中 t pj ——散热器内热媒平均温度(℃);

t j ——散热器的进水温度(℃); t c ——散热器的出水温度(℃)。 对于双管热水供暖系统,各组散热器是并联关系,散热器的进出口水温可分别按系统的供、回水温度确定,例如,低温热水供暖系统,供水温度95℃,回水温度70℃,热媒平均温度为

t pj =

2

)

7095(+℃=82.5 ℃ 对于单管热水供暖系统,各组散热器是串联关系,因水温沿流向逐层降低,需确定各管段的混合水温之后逐一确定各组散热器的进、出口温度[见公式(1-1-7)],进而求出散热器内热媒平均温度。公式(1-1-7)也适用于水平单管系统各管段水温的计算。计算出各管段水温后,就可以计算散热器内热媒的平均温度。

蒸汽供暖系统,当蒸汽压力 p ≤ 30kPa(表压)时,t pj 取100℃;当蒸汽压力 p>30kPa (表压)时,t pj 取与散热器进口蒸汽压力相对应的饱和温度。 4.确定散热器传热系数的修正系数

散热器传热系数的计算公式是在特定条件下通过实验确定的,如果实际使用条件与测定条件不相符,就需要对传热系数K 进行修正。

(1)组装片数修正系数β1 实验测定散热器的传热系数时,柱型散热器是以10片为一组进行实验的,在实际使用过程中单片散热器是组对成组的,各相邻片之间彼此吸收辐射热,热量不能全部散出去,只有两端散热器的外侧表面才能把绝大部分辐射热量传给室内,这减少了向房间的辐射热量。因此组装片数超过10片后,相互吸收辐射热的面积占总面积的比例会增加,散热器单位面积的平均散热量会减少,传热系数K 值也会随之减少,需要修正K 值,增加散热面积。反之,片数少于6片后,散热器单位面积的平均散热量会增加,K 值也会增加,需要减少散热面积。

散热器组装片数修正系数β1见表2-1-1。

表2-1-1 散热器组装片数修正系数β1

(2)连接形式修正系数β2 实验测定散热器传热系数时,散热器与支管的连接形式为同侧上进下出,这种连接形式散热器外表面的平均温度最高,散热器散热量最多。如果采用表2-1-2所列的其他连接形式,散热器外表面平均温度会明显降低,t pj 也远比同侧上进下出连接形式低,传热系数K 也会减小,因此需要对传热系数进行修正,取β2>1 ,增加其散热面积。

表2-1-2列出了不同连接形式时,散热器传热系数的修正系数β2。

表2-1-2 散热器连接形式修正系数β2

(3)安装形式修正系数β3实验确定传热系数K时,是在散热器完全敞开,没有任何遮挡的情况下测定的。如果实际安装形式发生变化,有时会增加散热器的散热量(如散热器外加对流罩);有时会减少散热量(如加装遮挡罩板)。因此需要考虑对散热器传热系数K 进行修正。

表2-1-3列出了散热器安装形式修正系数β3。其实质是在不同安装形式下对散热器散热面积进行修正。

另外,实验表明:在一定的连接方式和安装形式下,通过散热器的流量对某些形式散热器的K值和Q值有一定的影响;散热器表面采用不同的涂料时,对K值和Q值有影响;蒸汽供暖系统中,蒸汽散热器的传热系数K值要高于热水散热器的K值。可根据具体条件,查阅有关资料确定散热器的传热系数K值。

表2-1-3 散热器安装形式修正系数β3

5.计算散热器的片数或长度 散热器的片数或长度

n=

f

F

(2-1-5) 式中n ——散热器的片数或长度(片或m );

F ——所需散热器的散热面积(m 2

);

F ——每片或每 m 散热器的散热面积(m 2/片或m 2

/m ),可查附录9确定。

实际设置时,散热器每组片数或长度只能取整数。《供暖通风与空气调节设计规范》规

定,柱型散热器面积可比计算值小0.1 m 2

,翼型或其他散热器的散热面积可比计算值小5%。

另外,铸铁散热器的组装片数,粗柱型(M —132)不易超过20片;细柱型不易超过25片;长翼型不易超过7片。

4.【能力训练】试计算图2-1-8所示立管各组散热器的面积及片数。 已知条件:每组散热器的热负荷已标于图中,单位为W 。系统供水温度95℃,回水温度70℃。选用二柱M -132型散热器,装在墙龛内,上部距窗台板100mm 。供暖室内计算温度t n =18℃。 【解】计算步骤:

(1)计算各立管管段的水温 由公式(1-1-7)

图2-1-8

t 1=t g -

Q

t t Q h g i ∑-∑-)

(1=95-

2

)1474126012601495()

7095(21495?+++-?? =88.19℃

t 2=95-

2

)1474126012601495()

7095(2)12601495(?+++-??+=82.45℃

t 3=95-

2

)1474126012601495()

7095(2)126012601495(?+++-??++=76.71℃

(2)计算各组散热器的热媒平均温度t pj

t pj4=

2

19

.8895+=92℃ t pj3=2

45.8219.88+=85℃

t pj2=271.7645.82+=80℃

t pj1=2

7071.76+=73℃

(3)计算散热器的传热系数K 查附录9,M -132型散热器传热系数的计算公式为

K=2.426Δt pj 0.286

,所以

K 4=2.426×(92-18)0.286=8.31 W /(m 2

·℃)

K 3=2.426×(85-18)0.286=8.08 W /(m 2

·℃)

K 2=2.426×(80-18)0.286=7.90 W /(m 2

·℃)

K 1=2.426×(73-18)0.286=7.65 W /(m 2

·℃)

(4)计算散热器面积F 用公式(2-1-2)计算

四层:先假设片数修正系数β1=1.0,查表2-1-2,同侧上进下出连接形式修正系数β2=1.0;查表2-1-3,该散热器安装形式修正系数β3=1.06,则

F 4

=

2321444

58.206.111)

1892(31.81495

)

(m t t K Q n pj =???-?=-βββ

F 3

=

232133347.206.111)

1885(08.81260

)

(m t t K Q n pj =???-?=

-βββ

F 2

=

2321222

73.206.111)

1880(90.71260

)

(m t t K Q n pj =???-?=

-βββ

F 1

=

232111172.306.111)

1873(63.71474

)

(m t t K Q n pj =???-?=

-βββ

(5)计算散热器的片数n 查附录9,M —132型散热器每片面积f=0.24 m 2

/片,由公式(2-1-5)得

n 4=

75.10/24.058.222

=片

m m 片 查表2-1-1,片数修正系数β1=1.05

10.75片×1.05=12.29片 0.29片×0.24㎡/片=0.07 m 2<0.1 m 2

因此n 4=12片 同理n 3=2.47/0.24=10.29片 10.29片×1.05=10.8片 0.8片×0.24㎡/片=0.192 m 2>0.1 m 2

因此n 3=11片

n 2=2.73/0.24=11.38片 11.38片×1.05=11.95片 0.95片×0.24㎡/片=0.228 m 2

>0.1 m 2

因此n 2=12片

n 1=3.72/0.24=15.5片 15.5片×1.05=16.28片 0.28片×0.24㎡/片=0.07 m 2

<0.1 m 2

因此n 1=16片

(精选文档)散热器的表面积计算

散热器的表面积计算: S = 0.86W/(△T*a)) (平方米) 式中 △T——散热器温度与周围环境温度(T a)之差(℃); a——传导系数,是由空气的物理性质及空气流速决定的。 a的值可以表示为: A = Nu*λ/L 式中λ——热电导率由空气的物理性质决定; L——散热器海拔高度(); Nu——空气流速系数。 Nu值由下式决定 Nu = 0.664* [(V/V1)^(1/2)]*[Pr^(1/3)] 式中V——动黏性系数,是空气的物理性质; V1——散热器表面的空气流速; Pr——参数(见表1)。

散热器选择的计算方法 一,各热参数定义: Rja———总热阻,℃/W; Rjc———器件的内热阻,℃/W; Rcs———器件与散热器界面间的界面热阻,℃/W; Rsa———散热器热阻,℃/W; Tj———发热源器件内结温度,℃; Tc———发热源器件表面壳温度,℃; Ts———散热器温度,℃; Ta———环境温度,℃; Pc———器件使用功率,W; ΔTsa ———散热器温升,℃; 二,散热器选择: Rsa =(Tj-Ta)/Pc - Rjc -Rcs 式中:Rsa(散热器热阻)是选择散热器的主要依据。 Tj 和Rjc 是发热源器件提供的参数, Pc 是设计要求的参数, Rcs 可从热设计专业书籍中查表,或采用Rcs=截面接触材料厚度/(接触面积X 接触材料导热系数)。 (1)计算总热阻Rja:Rja= (Tjmax-Ta)/Pc (2)计算散热器热阻Rsa 或温升ΔTsa:Rsa = Rja-Rtj-Rtc ΔTsa=Rsa×Pc (3)确定散热器 按照散热器的工作条件(自然冷却或强迫风冷),根据Rsa 或ΔTsa和Pc 选择散热器,查所选散热器的散热曲线(Rsa 曲线或ΔTsa 线),曲线上查出的值小于计算值时,就找到了合适的热阻散热器及其对应的风速,根据风速流经散热器截面核算流量及根据散热器流阻曲线上风速对应的阻力压降,选择满足流量和压力工作点的风扇。

肋片散热数值计算

肋片散热数值计算2016年12月

目录 一、题目------------------------------------------3 二、数值计算--------------------------------------4 (1)网格划分-----------------------------------4 (2)节点方程-----------------------------------5 (3)计算方式-----------------------------------6 (4)计算结果-----------------------------------6 (5)温度分布云图-------------------------------7 (6)误差分析-----------------------------------10 三、结论------------------------------------------10 四、程序------------------------------------------11 五、参考文献--------------------------------------15

一、题目 肋片优化问题 考虑三种不同形状的肋片,如图所示。材料均为硬铝,热导率为,肋根半厚度为4mm,肋高为25mm。对于梯形肋和圆弧边肋,最右端的平面部分半厚度为1mm,且圆弧在最右端的切线为水平线。肋根温度即227℃,肋外流体温度即27℃,表面对流换热系数为。试编程求解每种肋片的温度分布及散热量,并讨论肋片形状对散热量、材料需求量的优劣。 散热量17115 W 15605 W 14726 W

散热器设计的基本计算(最新整理)

散热器设计的基本计算 一、概念 1、热路:由热源出发,向外传播热量的路径。在每个路径上,必定经过一些不同的介质, 热路中任何两点之间的温度差,都等于器件的功率乘以这两点之间的热阻,就像电路中的欧姆定律,与电路等效关系如下。 热路电路 热耗P (W)电流V ab I (A) 温差△T=T1-T2 (℃)电压V ab=V a-V b(V) 热阻R th=△T/P (℃/ W)电阻R=V ab/I (Ω) 热阻串联R th=R th1+R th2+…电阻串联R=R1+R2+… 热阻并联1/R th=1/R th1+1/R th2+…电阻并联1/R=1/R1+1/R2+… 2、热阻:在热路中,各种介质及接触状态,对热量的传递表现出的不同阻碍作用—— 在热路中产生温度差,形成对热路中两点间指标性的评价。 符号——Rth 单位——℃/W。 ?稳态热传递的热阻计算: R th= (T1-T2)/P T1——热源温度(无其他热源)(℃) T2——导热系统端点温度(℃) ?热路中材料热阻的计算: R th=L/(K·S) L——材料厚度(m) S——传热接触面积(m2) 3、导热率:是指当温度垂直向下梯度为1℃/m时,单位时间内通过单位水平截面积所 传递的热量。 符号——K or λ单位——W/m-K,

铝合金10702261900平面 铝合金1050209硅胶垫佳日丰泰 5.0铝合金6063201矽胶套帽佳日丰泰 1.0铝合金6061160相变基膜佳日丰泰 1.4铝合金7075 130矽硅膜鑫鑫顺源0.9铁80导热膏KDS-2 0.84不锈钢17 空气 0.04 二、热设计的目标 1、确保任何元器件不超过其最大工作结温(T jmax ) ?推荐:器件选型时应达到如下标准 民用等级:T jmax ≤150℃ 工业等级:T jmax ≤135℃军品等级:T jmax ≤125℃ 航天等级:T jmax ≤105℃ ?以电路设计提供的,来自于器件手册的参数为设计目标2、温升限值 器件、内部环境、外壳: △T ≤60℃ 器件每升高2℃,可靠性下降10%;器件温升为50℃时,寿命只有温升25℃的1/6,电解电容温升超过10℃,寿命下降1/2。三、计算 1、TO220封装+散热器 1)结温计算?热路分析 热传递通道:管芯j →功率外壳c →散热器 s →环境空气a

车用散热器散热面积的计算

车用散热器散热面积的计算 一、散热量的确定 1.用户已给散热量的按已给散热量计算. 2.对车用柴油机可按下式进行估算:Q=()P s式中P s表示发动机功率. 燃烧室为预燃室和涡流室的发动机取较大值P s 直接喷射式的发动机取较小值P s 增压的直喷柴油机可取P s 二、计算平均温度差Δt m 1.散热器的进水温度t s1 闭式冷却系可取t s1=95-100℃(节温器全开温度) 2.散热器出水温度t s2 t s2=t s1-Δt sΔt s是冷却水在散热器中的最大温降,对强制冷却 系可取Δt s=6-12℃ 3.进入散热器的空气温度t k1一般取t k1=40-45℃ 4.流出散热器的空气温度t k2 t k2= t k1+Δt kΔt k是空气流过散热器时的温升,可按下式计算: Δt k=Q/(3600×A Z×C P×V K×ρk) 式中A Z表示散热器芯部的正迎风面积; C P表示空气的定压比热容C P=kgf℃V K表示散热器前的空气流速,车用发动机可取V K=12-15m/s ρk表示空气密度,设定在一个大气压气温50℃下查表得ρk=1.09kg/m3

5.平均温差修正系数φ 汽车发动机的冷却形式,属于两种流体互不混合的交叉流式换热形式.与热力学的简单顺流与逆流的换热形式不同,所以要以修正系数φ对平均温度差结果进行计算修正.而φ值的大小取决于两个无量纲的参数P及R. P=(出气温度-进气温度)/(进水温度-进气温度) R=(进水温度-出水温度)/( 出气温度-进气温度) 查上表可得φ值 6.平均温差Δt m 根据传热学原理,平均温差Δt m可按下式计算: Δt m=φ{(Δt max-Δt min)/ ㏑(Δt max/Δt min)} Δt max= t s1- t k1Δt min= t s2- t k2

散热器片数计算方法

散热器片数计算方法(精确计算) 散热器(俗称暖气片),是将热媒(热水或蒸汽)的热量传导到室内的一种末端采暖设备,已成为 冬季采暖不可缺少的重要组成部分。散热器计算是确定供暖房间所需散热器的面积和片数。 一、散热器片数计算公式 (1)已知散热器传热系数K 和单片散热器面积F 散热器片数n 的计算公式如下: [1] 式中,Q 为房间的供暖热负荷,W ;K 为散热器传热系数,W/(㎡·℃);F 为单片散热器面积,㎡/片;Δt 为散热器传热温差,℃;β、β、β、β依次为散热器的安装长度修正系数、支管连接方式修正系数、安装形式修正系数、流量修正系数。 散热器的传热温差计算如下: Δt=t – t 式中,t 为散热器里热媒(热水或蒸汽)的平均温度(热媒为热水时,等于供/回水温度的算术平均值),℃;t 为供暖室内计算温度,一般为18℃。 以95/70℃的热水热媒为例,Δt=64.5℃: 1234pj n pj n

(2)已知单片散热器的散热量计算公式ΔQ 散热器片数n 的计算公式如下: [2] 式中,ΔQ 为单片散热器散热量,W/ 片。 式中,A 、b 为又实验确定的系数,可要求厂家提供。以椭四柱813型为例,ΔQ=0.657Δt 。 二、散热器修正系数β、β、β、β[2]表 安装长度修正系数β 表 支管连接方式修正系数β 表 安装形式修正系数β 1.30612341 2 3

表 进入散热器的流量修正系数β注:1)流量增加倍数 = 25 /(供水温度 - 回水温度);2)当散热器进出口水温为25℃时的流量,亦称标准流量,上表中流量增加倍数为1 。 三、房间层数位置修正 此外,对多层住宅根据多年实践经验,一般多发生上层热下层冷的现象,故在计算散热器片数时,建议在总负荷不变的条件下,将房间热负荷做上层减、下层加的调整,调整百分数一般为5% ~15%,见下表。 表 散热器片数调整百分表(%) 四、散热器片数近似问题 散热器的片数或长度,应按以下原则取舍:(《09 技术措施》2.3.3条)[3] 1)双管系统:热量尾数不超过所需散热量的5%时可舍去,大于或等于5%时应进位; 2)单管系统:上游(1/3)、中间(1/3)及下游(1/3)散热器数量计算尾数分别不超过所需散热量的7.5%、5%及2.5%时可舍去,反之应进位; 3)铸铁散热器的组装片数,不宜超过下列数值: 粗柱型(包括柱翼型):20片 细柱型:25片 长翼型:7片 4

车用散热器散热面积的计算

车用散热器散热面积的计算散热量的确定 1.用户已给散热量的按已给散热量计算. 2.对车用柴油机可按下式进行估算:Q=()P s 式中P s 表示发动机功率. 燃烧室为预燃室和涡流室的发动机取较大值P s 直接喷射式的发动机取较小值P s 增压的直喷柴油机可取P s 计算平均温度差厶t m 1. 散热器的进水温度t s1 闭式冷却系可取t si=95-100C (节温器全开温度) 2. 散热器出水温度t s2 t s2= t s1-A t s △ t s是冷却水在散热器中的最大温降,对强制冷却系可取△ t s=6-12C 3?进入散热器的空气温度t ki 一般取t ki=40-45C 4.流出散热器的空气温度t k2 t k2= t kl+A t k △ t k是空气流过散热器时的温升,可按下式计算:△t k=Q/(3600 x A z X C P X V K X P k) 式中A z表示散热器芯部的正迎风面积;C P表示空气的定压比热容C P二kgf C V K表示散热器前的空气流速,车用发动机可取 V K=12-15m/s p k表示空气密度,设定在一个大气压气温50C下查

表得P k=1.09kg/m3 △ t max= t s1- t k1 △ t min= t s2- t k2

5?平均温差修正系数? 汽车发动机的冷却形式,属于两种流体互不混合的交叉流式换热形式?与热力学的简单顺流与逆流的换热形式不同,所以要以修正系数? 对平均温度差结果进行计算修正?而?值的大小取决于两个无量纲的参数P及R. P二出气温度-进气温度)/(进水温度-进气温度) R=进水温度-出水温度)/(出气温度-进气温度) P 查上表可得?值 6.平均温差△ t m 根据传热学原理,平均温差△ t m可按下式计算: △t m= ? {(△t max- △t min)/ I n (△t max/ △t min)}

暖气片片数的计算方法

家庭安装暖气片片数的计算方法 最近小编家里装修,在选择暖气片的时候遇到一个问题,购买暖气片需要预留多少经费?怎么计算房间需要选多少组暖气片那?相信大家装修的时候也遇到过同样的问题。针对这个问题,小编在天猫鲁本斯店铺里购买暖气片时,详细咨询了一下店铺客服,现在小编告诉大家暖气片到底是一个怎样的算法呢? 首先,我们要了解,暖气片的购买单位是组,它是由多少片暖气片组成的,大多数暖气片厂家都可以定制。其次了解暖气片的高度,市面上常见的一般有670mm、1500mm、1800mm三种,不同高度的暖气片散热量也不一样,高度越高散热量越大。 对于普通的买家而言,一个房间一般只安装一组暖气片,包括客厅、餐厅、卧室、厨房、卫生间,一共几个房间就是几组暖气片。 厨房要不要安装暖气片那?小编建议大家不要在厨房安装暖气片,因为厨房里面全是蔬菜肉食,温度过高容易变质。而卫生间暖气片可以选择卫浴小背篓,因为它的特殊性,规格一般是固定的,像鲁本斯厨卫钢制暖气片,有600mm、800mm和1000mm三种规格,散热量足够家庭使用。 对于客厅和卧室,就得需要根据房间面积来计算暖气片的片数。首先选择一款性价比最高的暖气片,记住它每片的散热量,用这个【散热量】除以100就得到【每平米需要的片数】,然后用【房间面积】除以【每平米需要的片数】,就得到这个房间需要的【总片数】。举

个例子:小编客厅面积为20平米,选中鲁本斯塞尚大水道1800高的暖气片,每片的散热量是260W,算法是:用散热量260W除以100等于2.6(每平米需要的片数),铜铝暖气片十大品牌有哪些(房间面积)20除以2.6 等于7.7,所以20平房间需要8片一组的暖气片。最后,小编建议房屋密封性不好的买家在此算法的基础上多买一到两片,这样能达到更好的采暖效果。

散热器的选型与计算..

散热器的选型与计算 以7805 为例说明问题. 设I=350mA,Vin=12V, 则耗散功率Pd=(12V-5V)*0.35A=2.45W 按照TO-220封装的热阻θ JA=54℃/W,温升是132℃, 设室温25℃,那么将会达到7805的热保护点150℃,7805 会断开输出. 正确的设计方法是: 首先确定最高的环境温度, 比如60℃, 查出7805 的最高结温TJMAX=125℃ , 那么允许的温升是65℃. 要求的热阻是65℃ /2.45W=26℃/W.再查7805 的热阻,TO-220 封装的热阻θ JA=54℃/W, 均高于要求值,都不能使用,所以都必须加散热片,资料里讲到加散热片的时候, 应该加上4℃/W 的壳到散热片的热阻. 计算散热片应该具有的热阻也很简单, 与电阻的并联一样, 即 54//x=26,x=50 ℃/W.其实这个值非常大, 只要是个散热片即可满足. 散热器的计算: 总热阻RQj-a=(Tjmax-Ta)/Pd Tjmax : 芯组最大结温150℃ Ta : 环境温度85℃ Pd : 芯组最大功耗 Pd=输入功率- 输出功率 ={24×0.75+(-24) ×(-0.25)}-9.8 ×0.25 ×2

=5.5 ℃ /W 总热阻由两部分构成,其一是管芯到环境的热阻RQj-a, 其中包括结壳热阻RQj-C 和管壳到环境的热阻RQC-a.其二是散热器热阻RQd-a,两者并联构成总热阻. 管芯到环境的热阻经查手册知RQj-C=1.0 RQC-a=36 那么散热器热阻RQd-a 应<6.4. 散热器热阻RQd-a=[(10/kd)1/2+650/A]C 其中k:导热率铝为2.08 d: 散热器厚度cm A: 散热器面积cm2 C: 修正因子取1 按现有散热器考虑,d=1.0 A=17.6×7+17.6 ×1×13 算得散热器热阻RQd-a=4.1℃ /W, 散热器选择及散热计算目前的电子产品主要采用贴片式封装器件,但大功率器件及一些功率模块仍然有不少用穿孔式封装,这主要是可方便地安装在散热器上,便于散热。进行大功率器件及功率模块的散热计算,其目的是在确定的散热条件下选择合适的散热器,以保证器件或模块安全、可靠地工作。 散热计算 任何器件在工作时都有一定的损耗,大部分的损耗变成热量。小功率器件损耗小,无需散热装置。而大功率器件损耗大,若不采取散热措施,则管芯的温度可达到或超过允许的结温,器件将受到损坏。因此必须加散热装置,最常用的就是将功率器件安装在散热器上,利

散热与风量的计算doc资料

散热与风量的计算

风扇总热量=空气比热X空气重量X温差,这里的温差是指,你进风的温度与最终加热片的温度的差值,照你说 的,250-80(最加热片的温度)-25(进风空气的温度)=145度,你给的倏件还一样,就是热量不知道,或者电器做的 总功不知道,电器做的总功/4.2=风扇排出的总热量知道的话就可以根空气重量=风量/60X空气密度逆推出风量 . 设:半导体发热芯片平均温度T1(工作时的温度上限,也就是说改芯片能承受的最高温度,取决你的设计要 求了),散热片平均温度T2,散热片出口处空气温度T3 简化问题,假设: 1.散热片为热的良导体,达到热平衡时间忽略,则有T1=T2; 2.只考虑热传导,对流和辐射不予考虑。 又因为半导体发出的热量最终用来加热空气,则有: 880W=40CFM*空气比热*(T3-38°C)注意单位统一,至于空气的比热用定容的吧。。。 上式可以求出(实际上也就是估算而已)出口处空气温度T3, 根据散热片的散热公式(也是估算),有: P=λ*【T2-0.5(T3+38°C)】*A

其中:P为散热功率,λ为散热系数,A为与空气的接触面积,【T2-0.5 (T3+38°C)】为温差; 其中:λ可以通过对照试验求(好吧,还是估算)出来, 这样就能大概估算出需要的散热器面积A了。。。 P.S. 误差来源1:散热器温度和芯片温度肯定不相等,热传导需要时间,而且散热片不同位置的温度也不严格相同 ,只是处在动态平衡; 误差来源2:散热片的散热公式是凭感觉写的。。。应该没大错,但肯定很粗糙。。自己修正吧 能想到的就这么多了。。。 轴流风机风量散热器的信息讲解 2011-06-02 17:06 轴流风机风量散热器的信息讲解 风量是指风冷散热器风扇每分钟排出或纳入的空气总体积,如果按立方英尺来计算,单 位就是CFM;如果按立方米来算,就是CMM。散热器产品经常使用的风量单位是CFM(约

暖气片如何选型及计算

暖气片报价如何选型及计算 机械循环热水采暖系统,摩擦阻力损失占50%,局部阻力损失占50%; 换热器按0.1-0.15MPa估算; 设计裕量:10-20%。 1MPa=10KGF/CM2=100MH2O 1MMH2O=10Pa 循环水泵如何选择? 应根据计算所得的水量G及总循环阻力H来选择水泵.与外网连接的系统应换算外网在本楼接口处的供回水压差,是否够用(城市热网一般预留压差≥5MH2O)。 金旗舰散热器的工作压力定多少是合适的? 我国暖通空调设计规范规定,采暖系统高度超过50M时就应分区设置.这时系统的静压约为55MH2O。而采暖系统的动压(推动水循环,包括换热器等)约为20M-30M H2O,动压和静压的总和约为70-90MH2O (即0.7-0.9MPa)。所以散热器的工作压力取1.0MPa已够用了。关于个别城市热网直连的情况可作特殊处理。 系统运行前的压力测试如何进行? 在系统或系数的某部分投入运行前,必须对其进行压力测试.首先,所测系统应排出空气并充满处理过的水,然后用泵将压力升到至少为工作压力的1.5倍。这一压力应该至少保持10分钟,压力下降

不超过0.02 Mpa才为合格,在压力测试过程中,应对接头,连接处和设备进行目测检查以确保无泄漏。测试人员应进行记录,该记录应包括时间、地点、观测设备以及测试的初始和终了压力等信息,也应包括注意到的可能渗漏.最后测试人员在测试记录上签字。具体测点位置及系统试压的压力值均应按施工验收规范要求确定。 热水供暖系统设计应强调哪些问题? 应从以下6方面考虑: 1、必须保证满水条件下的闭式循环,最好实现密闭式热水采暖系统; 2、必须强调供暖水质的处理及控制; 3、必须保证有足够的水量,足够的资用压头; 4、必须有良好的排气,保证水循环畅通; 5、必须考虑水力平衡,保证各组散热器均能通水; 6、对较长的直管段,必须考虑热补偿。 三散热器选择与比较 购房要注意有关供暖系统的哪些问题? 可以从7个方面加以考虑: 1、注意散热器的热负荷,即每平方米的散热量.华北地区的砖混结构住宅,一般配置70W/㎡;节能型保温建筑配置50W/㎡;华中及华东地区的独立供暖住宅,一般配置120~130W/㎡。 2、看散热器类型是否安全舒适.面积很大的房间最好选用R021B 1800的散热器,散热均匀又安全舒适;

散热器简化设计计算方法

壁挂散热器价格简化设计计算方法 一. 金旗舰散热量Q的计算 1.基本计算公式: Q=S×W×K×4.1868÷3600 (Kw) 式中: ①.Q —散热器散热量(KW)=发动机水套发热量×(1.1~1.3) ②.S —散热器散热面积(㎡)=散热器冷却管的表面积+2×散热带 的表面积。 ③.W —散热器进出水、进出风的算术或对数平均液气温差(℃), 设计标准工况分为:60℃、55℃、45℃、35℃、25℃。它们分别对应散热器允许适用的不同环境大气压和自然温度工况条件。④.K —散热系数(Kcal/m.h.℃)。它对应关联为:散热器冷却管、散热带、钎焊材料选用的热传导性能质量的优劣;冷却管与散热带钎焊接合率的质量水平的优劣;产品内外表面焊接氧化质量水平的优劣;冷却管内水阻值(通水断面积与水流量的对应关联—水与金属的摩擦流体力学),散热带风阻值(散热带波数、波距、百叶窗开窗的翼宽、角度的对应关联—空气与金属的摩擦流体阻力学)质量水平的优劣。总体讲:K值是代表散热器综合质量水平的关键参数,它包容了散热器从经营管理理念、设计、工装设备、物料的选用、采购供应、制造管理控制全过程的综合质量水平。根据多年的经验以及

数据收集,铜软钎焊散热器的K值为:65~95 Kcal/m2.h.℃;改良的簿型双波浪带铜软钎焊散热器的K值为:85~105 Kcal/m2.h.℃;铝硬钎焊带电子风扇系统的散热器的K值为:120~150 Kcal/m2.h.℃。充分认识了解掌握利用K值的内涵,可科学合理的控制降低散热器的设计和制造成本。准确的K值需作散热器风洞试验来获取。 ⑤.4.1868和3600 —均为热能系数单位与热功率单位系数换算值⑥.发动机水套散热量=发动机台架性能检测获取或根据发动机升功 率、气门结构×经验单位系数值来获取。 二、计算程序及方法 1. 散热面积S(㎡) S=冷却管表面积F1+2×散热带表面积F2 F1={ [2×(冷却管宽-冷却管两端园孤半径)]+2π冷却管两端园孤半径}×冷却管有效长度×冷却管根数×10 F2=散热带一个波峰的展开长度×一根散热带的波峰数×散热带的 宽度×散热带的根数×2×10 2. 算术平均液气温差W(℃) W=[(进水温度+出水温度)÷2]-[(进风温度+出风温度)÷2] 常用标准工况散热器W值取60℃,55℃,增强型取45℃,35℃。这要根据散热器在什么工况环境使用条件下来选取。 3. 散热系数K

发动机散热器的设计计算

发动机散热器的设计计算 散热片面积是冷却水箱的基本参数,通常单位功率所需散热面积为0.20~0.28㎡/KW。发动机后置的车辆冷却条件比较差,工程机械行走速度慢没有迎风冷却,因此所配置的水箱散热面积宜选用上限。 水箱所配相关管道不能太小,其中四缸机的管道内径≧37mm,六缸机的管道内径≧42mm。 水箱迎风面积要求尽可能大一点,通常情况下为0.31~0.37㎡/KW,后置车、工程车辆还要大一些,由于道路条件改善,长时间的高速公路上高速行驶,或者容易超载,经常爬坡的车辆也要选得大一点。 对冷却液的要求: 1.冷却作用:有效的带走一定的热量,使发动机得到冷却,防止过热。 2.防冻作用:防止冷却液结冰而导致水箱和柴油机水腔冻裂。 3.防氧化和腐蚀:冷却液可防止金属件的氧化和腐蚀。 为改善发动机的工作条件,进一步提高其冷却性能,发动机后置或者重型车都配置了膨胀水箱。膨胀水箱应高于散热水箱50mm左右,必须具有相当于冷却系统总容积6%的冷却液膨胀空间,储备水量应是冷却系统总容积的11%,有暖风时达到20%,冷却液液面不能淹没加水伸长颈管,加水伸长颈管上部必须设通气孔,通气管不宜小于φ3.2mm,膨胀水箱最低液面以下水深不得低于50mm,以防止空气进入注水管。 由于受到发动机水循环系统进出口口径大小的限制,发动机进水接口外径为34mm(散热器出水接口外径也为34mm),发动机回水接口外径为35mm(散热器回水接口外径为35mm)。 本产品所选用的发动机额定功率为:110kw 在设计或选用冷却部件时应以散入冷却系统的热量Q为原始数据,来计算冷却系统的循环水量和冷却空气量:

用经验式 =???==3600 21.0431*******.03600u e e W h p Ag Q 69.14kJ/s=59450kcal/h 燃料热能传给冷却系的分数,取同类机型的统计量,%,柴油机A=0.23~0.30,取A=0.25 e g -燃料消耗率,kg/kw.h ;柴油机为0.210 e P -发动机有效功率,取最大功率110kw 若水冷式机油散热器,要增加散热量,W Q 增大5%~10%. 在算出发动机所需的散走的热量后,可计算冷却水循环量 187.41000814.69??=?= W W W W W C r t Q V =206.41L/min W t ?-冷却水循环的容许温升(6?-12?),取8? W r -水的密度,(1000kg/3m ) W C -水比热(4.187kJ/kg.C ?) 实际冷却水循环量为:==W a V V 2.1247.69L/min 冷却空气需要量:047.101.12014.69??=?= Pa W W W W C r t Q V =3.27m 3/s a t ?-散热器前后流动空气的温度差,取20C ? a r -空气密度,一般a r 取1.01kg/3m Pa C -空气的定压比热,可取Pa C =1.047kJ/kg.C ? 二.散热器设计 1.散热器的计算所根据的原始参数是散热器散发的热量和散热器的外形尺寸。 散热器散发的热量就等于发动机传给冷却液的热量。 已知散热器散发的热量后,所需散热面积F 可由下式计算:

散热片散热面积计算

散热片作为强化传热的重要技术之一,广泛地应用于提高固体壁面的传热速率。比如飞机、空调、电子元件、机动车辆的散热器、船用散热器等[1]。对散热片强化传热的研究引起国 内外众多学者的关注,如对散热片自然对流的研究[2-7],对散热片强制对流的研究[8-12 ]。前人对散热片的研究大致可分为两类:其一,采用实验的手段,在一定范围内改变散热片组的结构尺寸和操作参数,比较其传热性能,从而得出散热片组最优的结构尺寸和最优的操作参数;其二,采用数学方法,对某一具体情况推导出偏微分方程,简化其边界条件,求其数值解。本文深入分析散热片组间流体的流动特性及传热特性,总结各种因素对传热的影响,采用最优化技术及先进的计算机软件技术,对自然对流情况下矩形散热片组的散热过程进行了优化研究,并设计典型实验,检验优化结果。 2 散热片散热过程分析散热片多用于强化发热表面向空气散热的情况,故本文以与空气接触的散热片 为研究对 象。由于散热片表面温度(一般不超过250 C )不高,散热片组对空气的辐射换热量采用式(1) 计算可知,它所占比例小于总散热量的3%。因此,散热片表面与周围环境之间的散热主要 是对流传热。式(1)中的F为辐射角系数,本文散热片组的辐射角系数由G N ELLISON [13] 介绍的方法求得。 (1) 散热片传热是一个比较复杂的物理过程,对此过程,国内外学者进行了深入的实验研究,他们的工作主要着重于传热系数大小、传热系数与流体流速以及流道的几何形状等因素的内在联系。在实验研究中得到了许多适用于具体实验条件的准数关联式。这些结果对传热过程 的了解和散热片的设计有重要的意义。 在自然对流条件下,散热片组的结构参数(散热片的间距、高度、厚度 )是散热片散热的 主要影响因素,散热片组的结构见文献[ 14]。 2.1 间距对散热片散热的影响 描述流体与固体间对流传热的基本方程式为: Q=hA AT (2) 从上式可以看出,通过提高传热系数h,增大传热面积来强化流体与散热片表面间的对 流传热效果。当基面宽度 W给定时,假定传热温差AT,传热系数h不变,这样散热量 Q 的提高就取决于换热面积 A 的大小。增加散热片数量就可以增加换热面积,有利于散热。但散热片数目的增多,减小了散热片间的距离S,传热系数h也随之降低。 2.2 高度对散热片散热的影响 提高散热片的高度 H可以增加换热面积 A,从而达到强化传热的目的。但增加高度会使散热片顶部的局部传热系数降低,导致平均传热系数的降低。此外,高度也影响着从散热片基面到端部的温度降。高度越大,温度降也越大,导致散热片表面与周围大气的平均温度差就随之降低,不利于散热。实际上,散热片的高度还将受到整机外型尺寸的限制。 2.3 厚度对散热片散热的影响 散热片越薄,则单位长度上可装载的散热片的数量就越多,从而增大散热面积,强化散热片的散热;随着散热片厚度的增大,散热片表面与周围大气的平均换热温度差AT就随之 降低,这对于散热是不利的。在实际的应用中,厚度3的大小往往受工艺水平高低所限。一

汽车水散热器的概述及理论设计计算

汽车水散热器的概述 及理论设计计算 一、散热器概述 1汽车散热器的定义: 汽车散热器是水冷式发动机冷却系统的关键部件。通过强制水循环对发动机进行冷却,是保证发动机在正常的温度范围内连续工作的换热装置。 1、散热器在汽车中的重要地位 1汽车总成 产值比重按不同的车型能够占汽车总成的1~2.5% 2发动机总成 产值比重按不同的车型能够占发动机的15%左右 3、散热器结构的发展 1管片式开窗结构 2铜质管带式平片结构 3铜质管带式开窗结构 4铝质汽车散热器 5铜塑水箱或铝塑水箱 4、散热器的结构 1基本结构 2带补偿水壶结构 3带膨胀水箱结构

三、汽车的整体结构 温度过高及过低的坏处 温度过高 3温度过高时大多数零件都受热膨胀,温度越高,膨胀越大4零件在高温下会降低强度,不能很好地工作 5温度过高时,其润滑油粘度降低,会加剧零件的磨损 6气缸内的温度过高时,进入气缸内的新鲜空气很快膨胀,就减少了进气量,降低功率。 7在汽油机中,气缸内温度过高时,容易产生爆炸现象 温度过低 2燃料不能完全燃烧,使燃料消耗增加 3使润滑油粘度增高,零件的摩擦阻力加大,消耗较多的功率,因而减少了输出功率 4废气中的水蒸气与硫化物生成一种叫亚硫酸的液滴腐蚀零件5传走的热能增加,转变为机械功的热能减少,造成过多的散热损失.汽车分类最新标准 以前的分类是我国1988年6月发布的有关标准GB/T3730.1-1988。 2目前新标准已将汽车的分类作了修改: 3一是废除了“轿车”的提法 4二是不再将”越野车”单独分类 5三是将汽车分为乘用车和商用车两大类 乘用车(不超过9座):

1分为普通乘用车、活顶乘用车、高级乘用车、小型乘用车、敞篷车、仓背乘用车、旅行车、多用途乘用车、短头乘用车、越野乘用车、专用乘用车。 商用车: 2分为客车、货车和半挂牵引车 3客车细分为小型客车、城市客车、长途客车、铰接客车、无轨客车、越野客车、专用客车。 4货车细分为普通货车、多用途货车、全挂牵引车、越野货车、专用作业车、专用货车。 RV车-------休闲车 RV大致分为3大类型 1MPV:是在轿车底盘基础上开发的。 2SUV:是一种越野车、休闲车概念的延伸。 六、水散热器的设计 散热器在汽车零部件中是强度较薄弱的环节,要求散热器在有限的空间内应具有足够的散热能力和较高的使用寿命。 1、水套的总散热量的计算 (1)Qn=q * N q----水套的比散热量,取1994~2563KJ/KW*h,柴油取上限。 N----最大功率(KW) Qn----最大功率点工况水套总散热量(KJ/h) (2)Qm=q*Me*Ne/9550 q----水套的比散热量

冷却系统计算

冷却系统计算 一、 闭式强制冷却系统原始参数 都以散入冷却系统的热量 Q W 为原始数据,计算冷却系统的循环水量、冷却 空气量,以便设计或选用水泵、散热器、风扇 1.冷却系统散走的热量Q W 冷却系统散走的热量Q W ,受很多复杂因素的影响,很难精确计算,初估Q W ,可以用下列经验公式估算: 3600 h N g Q u e e W A (千焦/秒) (1-1) A ---传给冷却系统的热量占燃料热能的百分比,对汽油机A=0.23~0.30, 对柴油机A=0.18~0.25 g e ---内燃机燃料消耗率(千克/千瓦.小时) N e ---内燃机功率(千瓦) h u ---燃料低热值(千焦/千克) 如果内燃机还有机油散热器,而且是水油散热器,则传入冷却系统中的热量,也应将传入机油中的热量计算在冷却系统中,则按上式计算的热量Q W 值应增大5~10% 一般把最大功率(额定工况)作为冷却系统的计算工况,但应该对最大扭矩工况进行验算,因为当转速降低时可能形成蒸汽泡(由于气缸体水套中压力降低)和内燃机过热的现象。 具有一般指标的内燃机,在额定工况时,柴油机g e 可取0.21~0.27千克/千瓦.小时,汽油机g e 可取0.30~0.34千克/千瓦.小时,柴油和汽油的低热值可分别取41870千焦/千克和43100千焦/千克,将此值带入公式即得 汽油机Q W =(0.85~1.10)N e 柴油机Q W =(0.50~0.78)N e

车用柴油机可取Q W=(0.60~0.75)N e,直接喷射柴油机可取较小值,增压的直接喷射式柴油机由于扫气的冷却作用,加之单位功率的冷却面积小,可取Q =(0.50~0.60)N e,精确的Q W应通过样机的热平衡试验确定。 W 取Q W=0.60N e 考虑到机油散热器散走的热量,所以Q W在上式计算的基础上增大10% 额定功率: ∴对于420马力发动机Q W=0.6*309=185.4千焦/秒 增大10%后的Q W=203.94千焦/秒 ∴对于360马力发动机Q W=0.6*266=159.6千焦/秒 增大10%后的Q W=175.56千焦/秒 ∴对于310马力发动机Q W=0.6*225=135千焦/秒 增大10%后的Q W=148.5千焦/秒 最大扭矩: ∴对于420马力发动机Q W=0.6*250=150千焦/秒 增大10%后的Q W=165千焦/秒 ∴对于360马力发动机Q W=0.6*245=147千焦/秒 增大10%后的Q W=161.7千焦/秒 ∴对于310马力发动机Q W=0.6*180=108千焦/秒 增大10%后的Q W=118.8千焦/秒 2.冷却水的循环量 根据散入冷却系统中的热量,可以算出冷却水的循环量V W

散热器面积及片数的计算方法

工程一:室内热水供暖工程施工 模块三:散热器施工安装 单元2 散热器的计算 1-3-2-1散热器面积及片数的计算方法 1.计算散热器的散热面积 供暖房间的散热器向房间供应热量以补偿房间的热损失。根据热平衡原理,散热器的散热量应等于房间的供暖设计热负荷。 散热器散热面积的计算公式为 3 21) (βββn pj t t K Q F -= (2-1-2) 式中 F ——散热器的散热面积(m 2 ); Q ——散热器的散热量(W ); K ——散热器的传热系数[W/(m 2 ·℃)]; t pj ——散热器内热媒平均温度(℃); t n ——供暖室内计算温度(℃); β1——散热器组装片数修正系数; β2——散热器连接形式修正系数; β3——散热器安装形式修正系数。 2.确定散热器的传热系数K 散热器的传热系数K 是表示当散热器内热媒平均温度t pj 与室内空气温度t n 的差为1℃时, 每1 m 2 散热面积单位时间放出的热量。选用散热器时希望散热器的传热系数越大越好。 影响散热器传热系数的最主要因素是散热器内热媒平均温度与室内空气温度的差值Δt pj 。另外散热器的材质、几何尺寸、结构形式、表面喷涂、热媒种类、温度、流量、室内空气温度、散热器的安装方式、片数等条件都将影响传热系数的大小。因而无法用理论推导求出各种散热器的传热系数值,只能通过实验方法确定。 国际化规范组织(ISO )规定:确定散热器的传热系数 K 值的实验,应在一个长×宽×高为(4±0.2)m ×(4±0.2)m ×(2.8±0.2)m 的封闭小室内,保证室温恒定下进行,散热器应无遮挡,敞开设置。 通过实验方法可得到散热器传热系数公式 K=a (Δt pj )b =a (t pj -t n )b (2-1-3) 式中 K ——在实验条件下,散热器的传热系数[W/(m 2 ·℃)]; a 、b ——由实验确定的系数,取决于散热器的类型和安装方式; Δt pj ——散热器内热媒与室内空气的平均温差,Δt pj =t pj –t n 。 从上式可以看出散热器内热媒平均温度与室内空气温差Δt pj 越大,散热器的传热系数 K 值就越大,传热量就越多。 附录9给出了各种不同类型铸铁散热器传热系数的公式。应用这些公式时,需要确定散热器内的热媒平均温度t pj 。 3.确定散热器内热媒平均温度 散热器内热媒平均温度t pj 应根据热媒种类(热水或蒸汽)和系统形式确定。 热水供暖系统

电源功率器件散热器计算

电源功率器件散热器计算 一、7805 设计事例 设I=350mA,Vin=12V,则耗散功率 Pd=(12V-5V)*0.35A=2.45W。按照TO-220 封装的热阻θJA=54℃/W,温升是132℃,设室温25℃,那么 将会达到7805 的 热保护点150℃,7805 会断开输出。 二、正确的设计方法是: 首先确定最高的环境温度,比如60℃,查出民品7805 的最高结 温 Tj(max)=125℃,那么允许的温升是65℃。要求的热阻是 65℃/2.45W=26℃/W。 再查7805 的热阻,TO-220 封装的热阻θJA=54℃/W, TO-3 封装(也就是大家说的“铁壳”)的热阻θJA=39℃/W,均 高于要求值,都不能使用(虽然达不到热保护点,但是超指标使用还 是不对的),所以不论那种封装都必须加散热片。资料里讲到加散热片 的时候,应该加上4℃/W 的壳到散热片的热阻。 计算散热片应该具有的热阻也很简单,与电阻的并联一样,即 54//x=26, x=50℃/W。其实这个值非常大,只要是个散热片即可满足。 三、散热片尺寸设计 散热片计算很麻烦的,而且是半经验性的,或说是人家的实测结果。 基本的计算方法是:

1.最大总热阻θja =(器件芯的最高允许温度TJ -最高环境 温度 TA )/ 最大耗散功率 其中,对硅半导体,TJ 可高到125℃,但一般不应取那么高,温度太高会降 低可靠性和寿命。 最高环境温度TA 是使用中机箱内的温度,比气温会高。 最大耗散功率见器件手册。 2.总热阻θja=芯到壳的热阻θjc +壳到散热片的θcs +散热片到环 境的θsa 其中,θjc 在大功率器件的DateSheet 中都有,例如3---5 θcs对TO220 封装,用2 左右,对TO3 封装,用3 左右,加导热硅脂后, 该值会小一点,加云母绝缘后,该值会大一点。 散热片到环境的热阻θsa 跟散热片的材料、表面积、厚度都有关系,作为 参考,给出一组数据例子。 a.对于厚2mm 的铝板,表面积(平方厘米)和热阻(℃/W)的对应关系是: 中间的数据可以估计了。

散热片计算方法

征热传导过程的物理量 在图3的导热模型中,达到热平衡后,热传导遵循傅立叶传热定律: Q=K·A·(T1-T2)/L (1) 式中:Q为传导热量(W);K为导热系数(W/m℃);A 为传热面积(m2);L为导热长度(m).(T1-T2)为温度差. 热阻R表示单位面积、单位厚度的材料阻止热量流动的能力,表示为: R=(T1-T2)/Q=L/K·A(2) 对于单一均质材料,材料的热阻与材料的厚度成正比;对于非单一材料,总的趋势是材料的热阻随材料的厚度增加而增大,但不是纯粹的线形关系. 对于界面材料,用特定装配条件下的热阻抗来表征界面材料导热性能的好坏更合适,热阻抗定义为其导热面积与接触表面间的接触热阻的乘积,表示如下: Z=(T1-T2)/(Q/A)=R·A (3) 表面平整度、紧固压力、材料厚度和压缩模量将对接触热阻产生影响,而这些因素又与实际应用条件有关,所以界面材料的热阻抗也将取决于实际装配条件.导热系数指物体在单位长度上产生1℃的温度差时所需要的热功率,是衡量固体热传导效率的固有参数,与材料的外在形态和热传导过程无关,而热阻和热阻抗是衡量过程传热能力的物理量. 芯片工作温度的计算 如图4的热传导过程中,总热阻R为: R=R1+R2+R3 (4) 式中:R1为芯片的热阻;R2为导热材料的热阻;R3为散热器的热阻.导热材料的热阻R2为: R2=Z/A (5) 式中:Z为导热材料的热阻抗,A为传热面积.芯片的工作温度T2为:

T2=T1+P×R (6) 式中:T1为空气温度;P为芯片的发热功率;R为热传导过程的总热阻.芯片的热阻和功率可以从芯片和散热器的技术规格中获得,散热器的热阻可以从散热器的技术规格中得到,从而可以计算出芯片的工作温度T2. 实例 下面通过一个实例来计算芯片的工作温度.芯片的热阻为1.75℃/W,功率为5W,最高工作温度为90℃,散热器热阻为1.5℃/W,导热材料的热阻抗Z为5.8℃cm2/W,导热材料的传热面积为5cm2,周围环境温度为50℃.导热材料理论热阻R4为: R4=Z/A=5.8 (℃·cm2/W)/ 5(cm2)=1.16℃/W(7) 由于导热材料同芯片和散热器之间不可能达到100%的结合,会存在一些空气间隙,因此导热材料的实际热阻要大于理论热阻.假定导热材料同芯片和散热器之间的结合面积为总面积的60%,则实际热阻R3为: R3=R4/60%=1.93℃/W(8) 总热阻R为: R=R1+R2+R3=5.18℃/W (9) 芯片的工作温度T2为: T2=T1+P×R=50℃+(5W× 5.18℃/W)=75.9℃ (10) 可见,芯片的实际工作温度75.9℃小于芯片的最高工作温度90℃,处于安全工作状态. 如果芯片的实际工作温度大于最高工作温度,那就需要重新选择散热性能更好的散热器,增加散热面积,或者选择导热效果更优异的导热材料,提高整体散热效果,从而保持芯片的实际工作温度在允许范围以内(作者:方科 )转载

相关文档