文档库 最新最全的文档下载
当前位置:文档库 › 判别分析的基本原理

判别分析的基本原理

判别分析的基本原理
判别分析的基本原理

判别分析的基本原理和模型

一、判别分析概述 (一)什么是判别分析

判别分析是多元统计中用于判别样品所属类型的一种统计分析方法,是一种在已知研究对象用某种方法已经分成若干类的情况下,确定新的样品属于哪一类的多元统计分析方法。

判别分析方法处理问题时,通常要给出用来衡量新样品与各已知组别的接近程度的指标,即判别函数,同时也指定一种判别准则,借以判定新样品的归属。所谓判别准则是用于衡量新样品与各已知组别接近程度的理论依据和方法准则。常用的有,距离准则、Fisher 准则、贝叶斯准则等。判别准则可以是统计性的,如决定新样品所属类别时用到数理统计的显著性检验,也可以是确定性的,如决定样品归属时,只考虑判别函数值的大小。判别函数是指基于一定的判别准则计算出的用于衡量新样品与各已知组别接近程度的函数式或描述指标。

(二)判别分析的种类

按照判别组数划分有两组判别分析和多组判别分析;按照区分不同总体的所用数学模型来分有线性判别分析和非线性判别分析;按照处理变量的方法不同有逐步判别、序贯判别等;按照判别准则来分有距离准则、费舍准则与贝叶斯判别准则。

二、判别分析方法 (一)距离判别法

1.基本思想:首先根据已知分类的数据,分别计算各类的重心,即分组(类)均值,距离判别准则是对于任给一新样品的观测值,若它与第i 类的重心距离最近,就认为它来自第i 类。因此,距离判别法又称为最邻近方法(nearest neighbor method )。距离判别法对各类总体的分布没有特定的要求,适用于任意分布的资料。

2.两组距离判别

两组距离判别的基本原理。设有两组总体B A G G 和,相应抽出样品个数为21,n n ,

n n n =+)(21,每个样品观测p 个指标得观测数据如下,

总体A G 的样本数据为:

()

()()

()()()()()()

A x A x A x A x A x A x A x A x A x p n n n p p 111212222111211

该总体的样本指标平均值为:()()()A x A x A x p 21,

总体B G 的样本数据为:

()

()()

()()()()()()

B x B x B x B x B x B x B x B x B x p n n n p p 222212222111211

该总体的样本指标平均值为:()()()B x B x B x p 21,

现任取一个新样品X ,实测指标数值为X =(p x x x ,,,21 ),要求判断X 属于哪一类?

首先计算样品X 与A G 、B G 两类的距离,分别记为()A G X D ,、()B G X D ,,然后按照距离最近准则判别归类,即样品距离哪一类最近就判为哪一类;如果样品距离两类的距离相同,则暂不归类。判别准则写为:

A G X ∈,如果()A G X D ,<()

B G X D ,, B G X ∈,如果()A G X D ,>()B G X D ,,

X 待判,如果()A G X D ,=()B G X D ,。

其中,距离D 的定义很多,根据不同情况区别选用。如果样品的各个变量之间互不相关或相关很小时,可选用欧氏距离。采用欧氏距离时,

()A G X D ,=

∑=-p

A x x 1

2

))((α

αα

()B G X D ,=

∑=-p

B x x 1

2

))((α

αα

然后比较()A G X D ,和()B G X D ,的大小,按照距离最近准则判别归类。

但实际应用中,考虑到判别分析常涉及到多个变量,且变量之间可能相关,故多用马氏距离。马氏距离公式为:

()()()()()A A

A A X X S X X G X d -'-=-1

2,

()()()()()B B

B B X X S X X G X d -'-=-1

2, 其中()A X 、()B X 、A S 、B S 分别是A G 、B G 的均值和协方差阵。 这时的判别准则分两种情况给出: (1)当A S =B S =S 时

()()A B G X d G X d ,,22-

=

()()()()()()()()A

A

A

B

B

B

X X S X X X X S X X -'---'---11

=()()()()()()B A B A X X S X X X -'

??

????+--1

212

令()()()B A X X X +=

2

1

,同时记()=X W 2)),(),((22A B G X d G X d - 则()(

)()()()B

A

X X S

X X X W --=-1

所以判别准则写成:

A G X ∈,如果()0>X W ,

B G X ∈,如果()0

X 待判,如果()0=X W 。

该规则取决于()X W 的值,因此()X W 被称为判别函数,也可以写成:

()()X X X W -=α,其中()()()

B A X X S -=-1α。()X W 被称为线性判别函数。

作为特例,当1=p 时,两个总体的分布分别是(

)2

1,σ

μN 和()

22

,σμ

N ,判别函数为

()()2122112μμσ

μμ-??? ??

+-=X X W

()()2122112x x s x x X X W -??? ?

?

+-=(使用样本资料代替总体参数时)

不妨设21μμ<,这时()X W 的符号取决于μ>X 或μ

μ>X 时,判B G X ∈。

两组距离判别法,简单容易理解,判别准则也是合理的,但是有时也会出现错判。如下

图6.1,如果X 来自A G ,但却落入2D ,被错判为B G 组,错判的概率为图中阴影的面积,记为)1/2(P ,类似有)2/1(P ,显然)1/2(P =)2/1(P =)2(

12

μμ-Φ-。

图6.1

当两总体靠的比较近时,即两总体的均值差异较小的时候,无论用何种判别方法,错判的概率都比较大,这时的判别分析也是没有意义的。因此只有当两总体的均值有显著差异时,进行判别分析才有意义,为此,要对两总体的均值差异性进行检验,对此在下文中叙述。 (2)当A S ≠B S 时

按照距离最近准则,类似地有:

A G X ∈,如果()A G X D ,?()

B G X D ,, B G X ∈,如果()A G X D ,?()B G X D ,,

X

待判,如果()A G X D ,=()B G X D ,。 仍然用=)(X W ()B G X d

,2

()A G X d ,2-

()()()()B B

B X X S X X -'-=-1()()()()A A A X X S X X -'---1

作为判别函数,此时的判别函数是X 的二次函数。 (3)关于两组判别分析的检验

由于判别分析是假设两组样品是取自不同总体,如果两个总体的均值向量在统计上差异不显著,则进行判别分析意义不大。所以,两组判别分析的检验,实际就是要经验两个正态总体的均值向量是否相等,为此,检验的统计量为:

()()()1,~212212

2121--+-++--+=

p n n p F T

p

n n p n n F

其中:()()()?

??

? ??-+'

???? ??-+-+=-)()()()(2212112121212B X A X n n n n S B X A X n n n n n n T B A S S S +=

给定检验水平,查F 分布表使{}αα=>F F ,可得出αF ,再由样本值计算F ,若

αF F >,则否定原假设,认为两个总体的均值向量在统计上差异显著,否则两个总体的均

值向量在统计上差异不显著。

3、多个总体的距离判别法

类似两个总体的讨论推广到多个总体。

设有k 个总体k G G 1,相应抽出样品个数为k n n 1n n n k =++)(1 ,每个样品观测p 个指标得观测数据如下,

总体1G 的样本数据为:

()

()()

()()()()()()

111111111111212222111211p n n n p p x x x x x x x x x

该总体的样本指标平均值为: ()()()11,121p x x x

总体k G 的样本数据为:

()

()()

()()()()()()

k x k x k x k x k x k x k x k x k x p n n n p p 222212222111211

该总体的样本指标平均值为: ()()()k x k x k x p 21,

它们的样本均值和协方差阵分别为: () 1X ()k X 、 1S k S 。一般的,记总体的样本指标平均值为:=)(i X (()()()i x i x i x p 21,),k i 2,1=。

(1)当 =1S S S k ==时 此时()()()()()i i i i X X S X X G X d

-'-=-12

,,k i 2,1=

判别函数为())],(),([2

122

i j ij G X d G X d X W -=

()j i j i X X S X X X -???

? ?

?+-=21

2,k j i 2,1,= 相应的判别准则为:

i G X ∈, 当()0>X W ij 时,对于一切i j ≠ 待判, 若有一个()0=X W ij (2)当 1S k S 不相等时 此时判别函数为

()()()()()()()()()i i i j j j ji X X S X X X X S X X X W -'---'-=--1

1

相应的判别准则为:

i G X ∈, 当()0>X W ij 时,对于一切i j ≠ 待判, 若有一个()0=X W ij (二)费舍判别法

费舍判别法是1936年提出来的,该方法对总体分布未提出什么特定的要求。 1.基本思想

费舍判别法是基于统计上的费舍准则,即判别的结果应该使两组间区别最大,使每组内部离散性最小。在费舍准则意义下,确定线性判别函数:

p p x c x c x c y +++= 2211

其中p c c c 21,为待求的判别函数的系数。判别函数的系数的确定原则是使两组间区别最大,使每组内部离散性最小。有了判别函数后,对于一个新的样品,将p 个指标的具体数值代入判别式中求出y 值,然后与判别临界值进行比较,并判别其应属于哪一组。

2.两组判别分析 (1)方法原理

设有两组总体B A G G 和,相应抽出样品个数为21,n n n n n =+)(21,每个样品观测p 个指标得观测数据如下,

总体A G 的样本数据为:

()

()()

()()()()()()

A x A x A x A x A x A x A x A x A x p n n n p p 111212222111211

第1个总体的样本指标平均值为:()()()A x A x A x p 21,

总体B G 的样本数据为:

()

()()

()()()()()()

B x B x B x B x B x B x B x B x B x p n n n p p 222212222111211

第2个总体的样本指标平均值为:()()()B x B x B x p 21,

根据判别函数,用()()∑==

p

k k

k

A x c A y 1

表示A G

组样品的重心,

以()()∑==p

k k k B x c B y 1

示B G 组样品的重心。则两组之间的离差用()()()2

B y A y -来表示,A G 、B G 内部的离差程度分别用

()()()

∑=-1

12

n n i

A y A y 和

()()()

∑=-2

1

2

n n i

B y B y 来表示,其中()()∑==

p

k ik k

i A x c

A y 1

()()∑==p

k ik k i B x c B y 1

根据费舍准则,要使判别的结果满足两组间区别最大,每组内部离散性最小。则判别函数的系数p c c c 21,应该能够使:

()()()()()()()()()∑∑==-+--=

1

2

1

1

2

22

n i n i i i B y B y A y A y B y A y I

取得最大值。

(2)判别系数的导出

令 =Q ()()()2

B y A y -

=F ()()()∑=-11

2

n n i A y A y +()()()∑=-2

1

2

n n i B y B y

F

Q

I =

根据数学分析求极值的原理,对上式两边取对数:

LnF LnQ LnI -=

p k c LnF

c LnQ c LnI k k k 2,10==??-??=??

011=??-??k k c F

F c Q Q

k k c F

c Q Q F ??=??

k

k c F

c Q I ??=??1 而 ()()()

2

B y A y Q -==()()2

11???

?

??-∑∑==p k p

k k k k k B x c A x c

()()()2

1???

?

??-=∑=p k k k k B x A x c

令 ()()B x A x d k -= 有 2

1???

?

??

=∑=p

k k k d c Q 则有 k p l l l k d d c c Q

?=??∑=)(21

而 =

F ()()()∑=-1

1

2

n n i

A y A y +()()()

∑=-2

1

2

n n i

B y B y

=()()()()2

1112

11121

∑∑∑∑∑∑======????

??-+???? ??-n i p k p k k k ik k n i p k p k k k ik k B x c B x c A x c A x c

=()()()()2

112

112

1

)()(∑∑∑∑====????

??-+???? ??-n i p k k ik k n i p k k ik k B x B x c A x A x c

=()()()()∑∑∑===????

??-?-1

111)()(n i p

k l il l p k k ik k A x A x c A x A x c

+()()()()∑∑∑===????

??-?-2

111)()(n i p

k l il l p k k ik k B x B x c B x B x c

=

()()()()()()A x A x A x A x c c l

il

p k p

l n i k

ik

l

k --∑∑∑===111

1

[

+

()()()()()()B x B x B x B x l

il

n i k

ik

--∑=2

1

]

令 kl S =

()()()()()()A x A x A x A x l

il

n i k

ik

--∑=1

1

+()()()()()()B x B x B x B x l

il

n i k

ik

--∑=2

1

有 ∑∑===

p k p

l kl

l

k S

c c F 11

则有 ∑=?=??p

l kl l k S c c F

1

2

于是有 ∑∑==?=?p l kl l p

l k l l S c d d c I 1

12)(2

令 ???

? ???=∑=p

l l l d c I 11β ()p k d S c

p

l k

kl l

2,11

=?=?∑=β

β是一个常数因子,不依赖k ,它对方程组的解只起到共同扩大β倍的作用,不影响

它的解p c c c ,,,21 之间的比例关系,因此也不会影响判别函数,所以,取1=β,得方程组:

()p k d S c

p

l k

kl l

2,11

==?∑=

即 ??

?????=+++=+++=+++p

p pp p p p p p p d c S c S c S d c S c S c S d c S c S c S 22112

22221211

1212111

解此方程即得p c c c ,,,21 ,进而得判别函数:

p p x c x c x c y +++= 2211

(3)判别准则

由判别函数,可得两组总体B A G G 和各自样品的重心:

()()∑==p

k k k A x c A y 1

()()∑==p

k k k B x c B y 1

对它们进行根据样本的容量进行加权得:

()()

2

121n n B y n A y n y AB ++=

AB y 称为两组判别的综合指标。据此可得判别准则为:

①如果()AB y A y >,则对于给定的新样品()

p x x x ,,21,若有

p p x c x c x c y +++= 2211AB y >

则将该样品判属于A G 组,若y ≤AB y ,则判其属于B G 组;

②如果()AB y B y >,则对于给定的新样品()

p x x x ,,21,若有

p p x c x c x c y +++= 2211AB y >

则将该样品判属于B G 组,若y ≤AB y ,则判其属于A G 组。

(4)两组判别分析的检验

由于判别分析是假设两组样品是取自不同总体,如果两个总体的均值向量在统计上差异不显著,则进行判别分析意义不大。所以,两组判别分析的检验,实际就是要检验两个正态总体的均值向量是否相等,为此,检验的统计量为:

()()()1,~212212

2121--+-++--+=

p n n p F T

p

n n p n n F

其中:()()()?

??

? ??-+'

???? ??-+-+=-)()()()(2212112121212B X A X n n n n S B X A X n n n n n n T B A S S S +=,

给定检验水平,查F 分布表使{}αα=>F F ,可得出αF ,再由样本值计算F ,若

αF F >,则否定原假设,认为两个总体的均值向量在统计上差异显著,判别函数有效,可

用;否则两个总体的均值向量在统计上差异不显著,判别函数无效不可用。

3、多组费舍判别分析 (1)方法原理

类似两总体的费舍判别法,下面给出多总体的费舍判别法。设有k 个总体,,k G G 1抽取

样品数分别为,,,k n n n 21令k n n n n +++= 21。)

,()

()()(i p i i x x x ααα 1=为第i 个总体的第α个样品的观测向量。

假定所建立的判别函数为

x c x c x c x y p p '?+= 11)

( 其中 ,),,('=p c c c 1 ),,('=

p x x x 1 记()

i x 和)

(i s

分别是总体i G 内x 的样本均值向量和样本协差阵,根据求随机变量线性组

合的均值和方差的性质可知,)(x y 在i G 上的样本均值和样本方差为

c s c x c y i i i i )

()()(,'='=2

σ

记x 为总的均值向量,则x c y '=

在多总体情况下,Fisher 准则就是要选取系数向量c ,使

∑∑==-=

k i i

i

k

i i i q y y

n 1

21

2

σ

λ)

()

达到最大,其中是i q 人为的正的加权系数,它可以取为先验概率。如果取1-=i i n q ,并将 ,)()

(i i x c y

'=x c y '=,c s c i i )

('=2

σ代入上式可化为:

Ec

c Ac

c ''=

λ 其中E 为组内离差阵,A 为总体之间样本的协差阵,即

(i k

i i s q E ∑==1

))(()()

('--=∑=x x x x

n A i i k

i i 1

(2)判别函数

判别系数(矩阵A 关于矩阵E 的广义特征向量)的导出。为求λ的最大值,根据极值

存在的必要条件,令

C ??λ

=0,利用对向量求导的公式: )()()()(Ac c Ec c Ec

Ec c Ec c Ac C '?'-'?'=??2

222λ Ec c Ac

c Ec c Ec Ec c Ac ''?

'-'=22 λ?'-'=Ec c Ec Ec c Ac 22 因此 Ec Ac C

λλ

=?=??0

这说明了λ及c 恰好是矩阵A 关于矩阵E 的广义特征根及其对应的特征向量(因为根

据定义有,设A 为n 阶对称矩阵,E 为n 阶正定矩阵,若有Bc Ac λ=或()0=-c B A i λ,则λ称为A 关于E 矩阵的广义特征根,c 是对应的特征向量)。由于一般都要求加权协差阵E 是正定的,因此由代数知识可知,上式非零特征根个数m 不超过),1min(p k -,又因为E 为非负定的,所以非零特征根必定为正根,记为

021>≥≥≥m λλλ

于是可构造m 个判别函数:

x c x y l l )

()

('= m l ,, 1= 判别函数的判别能力与判别函数的个数。由上述知,由于非零特征根λ有m 个,由此对应有m 个特征向量,即m 个判别函数,为了选取有效的判别函数,对于每个判别函数必须给出一个用以衡量判别能力的指标l p ,衡量判别函数判别能力的指标定义为:

∑==

m

i i

l

l p 1

λ

λ m l ,,1 =

0m 个判别函数的判别能力定义为

∑∑∑====

?m

i i

m l l

m l l m p sp 11

1

λ

如果0m 达到某个人定的值(比如85%)则就认为0m 个判别函数就够了。 (3)判别准则

有了判别函数之后,如何对待判的样品进行分类?Fisher 判别法本身并未给出最合适的

分类法,在实际工作中可以选用下列分类法之一进行分类。

第一方法,当取0m =1时(即只取一个判别函数),此时有两种可供选用的方法 ①不加权法

若)

()

()()(j k

j i y x y y

x y -=-≤≤1m in 则判i G x ∈

②加权法 将)

()

()

(、k y y

y 21按大小次序排列,记为)

()()(k y y y ≤≤≤ 21,相应的判别函数的标准差排为)(i σ。

令)

()()()

()()()(,i i i i i i i i y y d σσσσ++=

++++1111 1,1-=k i

则1+i i d ,可作为i j G 与1+i j G 之间的分界点。如果x 使得,)(,,11+-≤≤i i i i d x y d ,则判i j G x ∈。

第二种方法,当取10>m 时(即取多个判别函数),也有类似两种供选用的方法 ①不加权法

记)()

()

(i l i l x c y '= k i m l ,,;,, 110==

对待判样品),,('=

p x x x 1,计算 x c x y l l )

()

('= []

l m l i l l i y x y D λ2

1

)(20

)(∑=-= k i ,, 1

= 若2

12min i k

j D D ≤≤=γ,则判γG x ∈

②加权法

考虑到每个判别函数的判别能力不同,记

[

]l

m l i l l i y x y D λ

2

1

20

∑=-=)

()

其中l λ是由Ec Ac λ=求出的特征根。若2

12min i k

j D D ≤≤=γ,则判γG x ∈。

(三)贝叶斯判别法 1.基本思想

设有m 个总体,m G G G 21,,它们的先验概率分别为m q q q 21,,密度函数为

()()()X f X f X f m 21,(在离散情形是概率函数),在观测到一个样品x 的情况下,可用

贝叶斯公式计算它来自第g 个总体的后验概率:

()()

()

m g X f q X f q x g p m

i g

g

g g ,2,1,1

==

∑=

并且当

()()x g p x h p m

g ≤≤=1max

时,判定X 来自第h 个总体。

另外,有时为了合理考虑错判所带来的损失,还使用错判损失最小的概念确定判别函数,这时,把X 错判给第h 个总体的平均损失定义为:

()()

()

()g h L x f q x f q x h E h

g m

i i

i g g ?=∑

∑≠=1

其中()g h L 称为损失函数。它表示本来是第g 个总体的样品错判为第h 个总体的损失。于是建立判别准则为,如果

()()x g E x h E m

g ≤≤=1min

则,判定X 来自第h 个总体。

显然考虑损失函数更为合理,但是由于实际应用中,由于()g h L 不容易确定,经常在数学模型中假定各种错判的损失皆相等,这样,寻找h 使后验概率最大实际上等价于使错判损失最小。

()()min max →→?h

h x h E x h p

根据上述思想,在假定协方差矩阵相等的条件下,即可以导出判别函数。

2.多元正态总体的Bayes 判别法

在实际问题中遇到的许多总体往往服从正态分布,下面给出p 元正态总体的Bayes 判别法,以及判别函数的导出。

(1)待判样品的先验概率和密度函数

使用Bayes 准则进行分析,首先需要知道待判总体的先验概率g q 和密度函数)(x f g (如果是离散情形则是概率函数)。

对于先验概率,一般可用样品频率来代替,即令n

n q g g =

,其中g n 为用于建立判别函

数的已知分类数据中来自第g 总体样品的数目,且n n n n k =+++ 21,或者干脆令先验概率相等,即k

q g 1

=

,这时可以认为先验概率不起作用。 对于第g 总体的密度函数,设p 元正态分布密度函数为:

?

?????-∑'--?∑=---

)()()()

()()()()(g g g g p

g x x x f μμπ12

1

221exp 2

式中)

(g μ

和)

(g ∑

分别是第g 总体的均值向量(p 维)和协差阵(p 阶)。

把)(x f g 代入)(x g P 的表达式中,因为我们只关心寻找使)(x g P 最大的g ,而分式中的分母不论g 为何值都是常数,故可改令

max →g

g g x f q )(

对)

(x f q g g 取对数并去掉与g 无关的项,记为, )

()()()()

()()(g g g g g x x q x g Z μμ-∑'--∑-=-12

1ln 21ln )()

()()()()()(g g g g g g g g x x x q μμμ1112

121ln 21ln ---∑'+∑'-∑'-∑-=

则问题可化为

max →g

x g Z )(

(2)假设各组协方差阵相等,导出判别函数

)(x g Z 中含有k 个总体的协方差阵(逆阵及行列式值),而且对于x 还是二次函数,

实际计算时工作量很大。如果进一步假定k 个总体协方差阵相同,即

∑=∑=∑=∑)()()(k 21,这时)(x g Z 中)(g ∑ln 21和x x g 12

1-∑')

(两项与g 无关,求

最大时可以去掉,最终得到如下形式的判别函数与判别准则(如果协方差阵不等,则有非线形判别函数);

?

????∑'+∑'-=→--max 21ln 11g

g g g g x g y x q x g y )

()()

()()(μμμ 上式判别函数也可以写成多项式形式:

i p

i g i

g g x C C

q x g y ∑=++=1

ln )

()

()( 其中,用样本资料这里为,

∑==p

j g j

ij g i

x s C

1

()

( p i ,, 1= )()()

(g g g x S x C 10

2

1-'-= )()(g j g i p i p j ij x x s ∑∑==-=11

21

)()(g i p i

g i x C ∑-=21

),,,('=p x x x x 21,)

,,()()()()('=g p g g g x x x x 21 总样本总协差p p ij s S ?=)(为总协差阵∑的估计,

p p ij s S ?--=1

1)(为总协差阵S 的逆矩阵。

(3)计算后验概率

进行计算分类时,主要根据判别式)(x g y 的大小,而它不是后验概率)(x g P ,但是有了)(x g y 之后,就可以根据下式算出后验概率)(x g P :

{}{}∑==k

i x i y x g y x g P 1ex p ex p )

()()

因为 )())

(()(x x f q x g y g g ?-=ln

其中)(x ?是))

((x f q g g ln 中与g 无关的部分。所以 ∑==

k

i i i

g g x f q

x f q x g P 1

()

()(

{}{}∑=?+?+=

k

i x x i y x x g y 1ex p ex p )()

()()(

{}{}{}{}∑=??=

k

i x x i y x x g y 1ex p ex p ex p ex p )()

()()

{}{}∑==

k

i x i y x g y 1ex p ex p )

()(

由上式知使y 为最大的h ,其)(x h P 必为最大,因此我们只须把样品x 代入判别式中:分别计算)(x g y ,k g ,, 1=。

若 {})

()(x g y x h y k

g ≤≤=1max ,则把样品x 归为第h 总体。 (4)辅助性检验

为了检验p 个变量是否有能力区分这m 个组,还需要用广义的马哈拉诺比斯2

D 统计量来进行检验。马氏统计量为:

∑∑∑===---?=p

i p

j m

l j l j i l i ij l x x x x s n D 111)()(1

2

))(( 统计量2

D 在正态分布各组均值、协方差阵全部相同的假定下,服从()1-m p 个自由度

的2χ分布。所以,当统计量2

D 值大于查表得的临界值时,可以断定p 个变量有能力区分这m 个组。

贝叶斯方法一般多用于多组判别分析,贝叶斯判别方法的数学模型所要求的条件严格,它要求各组变量必须服从多元正态分布,各组的协方差矩阵相等,各组的均值向量有显著差异。而费舍判别法主要要求各组均值向量有显著差异即可。

各种仪器分析的基本原理及谱图表示方法!!!紫外吸收光谱UV分析

各种仪器分析的基本原理及谱图表示方法!!! 紫外吸收光谱UV 分析原理:吸收紫外光能量,引起分子中电子能级的跃迁谱图的表示方法:相对吸收光能量随吸收光波长的变化提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息荧光光谱法FS 分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光谱图的表示方法:发射的荧光能量随光波长的变化提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息红外吸收光谱法IR 分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁谱图的表示方法:相对透射光能量随透射光频率变化提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率拉曼光谱法Ram 分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射谱图的表示方法:散射光能量随拉曼位移的变化提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率核磁共振波谱法NMR 分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁谱图的表示方法:吸收光能量随化学位移的变化提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息电子顺磁共振波谱法ESR 分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁谱图的表示方法:吸收光能量或微分能量随磁场强度变化提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息 质谱分析法MS 分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e 分离 谱图的表示方法:以棒图形式表示离子的相对峰度随m/e 的变化提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息气相色谱法GC 分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:峰的保留值与组分热力学参数有关,是定性依据;峰面积与组分含量有关反气相色谱法IGC 分析原理:探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力谱图的表示方法:探针分子比保留体积的对数值随柱温倒数的变化曲线提供的信息:探针分子保留值与温度的关系提供聚合物的热力学参数裂解气相色谱法PGC 分析原理:高分子材料在一定条件下瞬间裂解,可获得具有一定特征的碎片谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:谱图的指纹性或特征碎片峰,表征聚合物的化学结构和几何构型凝胶色谱法GPC 分析原理:样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:高聚物的平均分子量及其分布热重法TG 分析原理:在控温环境中,样品重量随温度或时间变化谱图的表示方法:样品的重量分数随温度或时间的变化曲线提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区热差分析DTA 分析原理:样品与参比物处于同一控温环境中,由于二者导热系数不同产生温差,记录温度随环境温度或时间的变化 谱图的表示方法:温差随环境温度或时间的变化曲线提供的信息:提供聚合物热转变温度及各种热效应的信息示差扫描量热分析DSC 分析原理:样品与参比物处于同一控温环境中,记录维持温差为零时,所需能量随环境温度或时间的变化 谱图的表示方法:热量或其变化率随环境温度或时间的变化曲线提供的信息:提供聚合物热转变温度及各种热效应的信息静态热―力分析TMA 分析原理:样品在恒力作用下产生的形变随温度或时间变化谱图的表示方法:样品形变值随温度或时间变化曲线提供的信息:热转变温度和力学状态

各种光谱原理解读

紫外吸收光谱 UV 分析原理:吸收紫外光能量,引起分子中电子能级的跃迁 谱图的表示方法:相对吸收光能量随吸收光波长的变化 提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息 荧光光谱法 FS 分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光 谱图的表示方法:发射的荧光能量随光波长的变化 提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息 红外吸收光谱法 IR 分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁 谱图的表示方法:相对透射光能量随透射光频率变化 提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率 拉曼光谱法 Ram 分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射 谱图的表示方法:散射光能量随拉曼位移的变化 提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率 核磁共振波谱法 NMR 分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁 谱图的表示方法:吸收光能量随化学位移的变化 提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息 电子顺磁共振波谱法 ESR 分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁 谱图的表示方法:吸收光能量或微分能量随磁场强度变化 提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息 质谱分析法 MS 分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离 谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化 提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息 气相色谱法 GC 分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离 谱图的表示方法:柱后流出物浓度随保留值的变化 提供的信息:峰的保留值与组分热力学参数有关,是定性依据;峰面积与组分含量有关 反气相色谱法 IGC

光谱分析知识点

原子发射光谱分析 1、原子发射光谱分析的基本原理(依据) 2、ICP光源形成的原理及特点(习题2) :ICP是利用高频加热原理。 当在感应线圈上施加高频电场时,由于某种原因(如电火花等)在等离子体工作气体中部分电离产生的带电粒子在高频交变电磁场的作用下做高速运动,碰撞气体原子,使之迅速、大量电离,形成雪崩式放电,电离的气体在垂直于磁场方向的截面上形成闭合环形的涡流,在感应线圈内形成相当于变压器的次级线圈并同相当于初级线圈的感应线圈耦合,这种高频感应电流产生的高温又将气体加热、电离,并在管口形成一个火炬状的稳定的等离子体焰矩。 其特点如下: 工作温度高、同时工作气体为惰性气体,因此原子化条件良好,有利于难熔化合物的分解及元素的激发,对大多数元素有很高的灵敏度。 (2)由于趋肤效应的存在,稳定性高,自吸现象小,测定的线性范围宽。(3)由于电子密度高,所以碱金属的电离引起的干扰较小。 (4)ICP属无极放电,不存在电极污染现象。 (5)ICP的载气流速较低,有利于试样在中央通道中充分激发,而且耗样量也较少。 (6)采用惰性气体作工作气体,因而光谱背景干扰少。 3、掌握特征谱线、共振线、灵敏线、最后线、分析线的含义及其它们之间的内 在联系。(习题3) 4、:由激发态向基态跃迁所发射的谱线称为共振线(resonance line)。共振线 具有最小的激发电位,因此最容易被激发,为该元素最强的谱线。 5、灵敏线(sensitive line) 是元素激发电位低、强度较大的谱线,多是共振 线(resonance line)。 最后线(last line) 是指当样品中某元素的含量逐渐减少时,最后仍能观察到的几条谱线。它也是该元素的最灵敏线。 进行分析时所使用的谱线称为分析线(analytical line)。 由于共振线是最强的谱线,所以在没有其它谱线干扰的情况下,通常选择共振线作为分析线。 发射光谱定性分析的基本原理和常用方法。(习题5 由于各种元素的原子结构不同,在光源的激发下,可以产生各自的特征谱线,其波长是由每种元素的原子性质决定的,具有特征性和唯一性,因此可以通过检查谱片上有无特征谱线的出现来确定该元素是否存在,这就是光谱定性分析的基础。 进行光谱定性分析有以下三种方法: (1)比较法。将要检出元素的纯物质或纯化合物与试样并列摄谱于同一感光板上,在映谱仪上检查试样光谱与纯物质光谱。若两者谱线出现在同一波长位置上,即可说明某一元素的某条谱线存在。本方法简单易行,但只适用于试样中指定组分的定性。

光谱分析仪多少钱

光谱分析仪的分析原理是将光源辐射出的待测元素的特征光谱通过样品的蒸汽中待测元素的基态原子所吸收,由发射光谱被减弱的程度,进而求得样品中待测元素的含量。它符合郎珀-比尔定律A= -lg I/I o= -LgT = KCL 式中I为透射光强度,I0为发射光强度,T为透射比,L为光通过原子化器光程由于L是不变值所以A=KC。下面就让合肥卓越分析仪器有限责任公司为您简单介绍一下光谱分析仪多少钱,希望可以帮助到您! 光谱分析仪是根据原子所发射的光谱来测定物质的化学组分的。不同物质由不同元素的原子所组成,而原子都包含着一个结构紧密的原子核,核外围绕着不断运动的电子。每个电子处于一定的能级上,具有一定的能量。在正常的情况下,原子处于稳定状态,它的能量是最低的,这种状态称为基态。但当原子受到能量(如热能、电能等)的作用时,原子由于与高速运动的气态粒子和电子相互碰撞而获得了能量,使原子中

外层的电子从基态跃迁到更高的能级上,处在这种状态的原子称激发态。 电子从基态跃迁至激发态所需的能量称为激发电位,当外加的能量足够大时,原子中的电子脱离原子核的束缚力,使原子成为离子,这种过程称为电离。原子失去一个电子成为离子时所需要的能量称为一级电离电位。离子中的外层电子也能被激发,其所需的能量即为相应离子的激发电位。处于激发态的原子是十分不稳定的,在极短的时间内便跃迁至基态或其它较低的能级上。 合肥卓越分析仪器有限责任公司是一家生产销售红外碳硫,直读光谱,智能元素分析仪,分光光度计专业化公司,公司数年来生产化学分析仪器,直读光谱分析仪,理化实验室工程,理化分析检测人员培训服务遍及全国各省市地区。 公司多年来对耐磨材料、耐热材料、球墨铸铁、球铁灰铁分析检测,分析研究投入大量人力、财力,总结丰富经验。为用户提供了可靠可行

光谱分析方法

光谱分析方法

第一章绪论 一、填空题 1仪器分析方法分为()、()、色谱法、质谱法、电泳法、热分析法和放射化学分析法。 2 光学分析法一般可分为()、()。 3仪器分析的分离分析法主要包括()、()、()。 4仪器分析较化学分析的优点()、()、操作简便分析速度快。 答案 1光学分析法、电化学分析法 2光谱法、非光谱法 3色谱法、质谱法、电泳法 4灵敏度高检出限低、选择性好 第二章光学分析法导论 一、选择题 1 电磁辐射的粒子性主要表现在哪些方面()A能量B频率C波长D波数

2 当辐射从一种介质传播到另一种介质时,下列哪种参量不变() A波长B速度C频率D方向 3 电磁辐射的二象性是指: A.电磁辐射是由电矢量和磁矢量组成;B.电磁辐射具有波动性和电磁性; C.电磁辐射具有微粒性和光电效应;D.电磁辐射具有波动性和粒子性 4 可见区、紫外区、红外光区、无线电波四个电磁波区域中,能量最大和最小的区域分别为:A.紫外区和无线电波区;B.可见光区和无线电波区; C.紫外区和红外区;D.波数越大。 5 有机化合物成键电子的能级间隔越小,受激跃迁时吸收电磁辐射的 A.能量越大;B.频率越高;C.波长越长;D.波数越大。 6 波长为0.0100nm的电磁辐射的能量是多少eV? A.0.124;B.12.4eV;C.124eV;D.1240 eV。 7 受激物质从高能态回到低能态时,如果以光辐

射形式辐射多余的能量,这种现象称为()A光的吸收B光的发射C光的散射D 光的衍射 8 利用光栅的()作用,可以进行色散分光A散射B衍射和干涉C折射D发射9 棱镜是利用其()来分光的 A散射作用B衍射作用C折射作用D 旋光作用 10 光谱分析仪通常由以下()四个基本部分组成 A光源、样品池、检测器、计算机 B信息发生系统、色散系统、检测系统、信息处理系统 C激发源、样品池、光电二级管、显示系统 D光源、棱镜、光栅、光电池 二、填空题 1. 不同波长的光具有不同的能量,波长越长,频率、波数越(),能量越(),反之,波长越短,能量越()。 2. 在光谱分析中,常常采用色散元件获得()来作为分析手段。 3. 物质对光的折射率随着光的频率变化而变

光谱分析原理

拉曼光谱、红外光谱、XPS的原理及应用 作者: 3040821025(站内联系TA)发布: 2007-10-26 拉曼光谱的原理及应用 拉曼光谱由于近几年来以下几项技术的集中发展而有了更广泛的应用。这些技术是:CCD 检测系统在近红外区域的高灵敏性,体积小而功率大的二极管激光器,与激发激光及信号过滤整合的光纤探头。这些产品连同高口径短焦距的分光光度计,提供了低荧光本底而高质量的拉曼光谱以及体积小、容易使用的拉曼光谱仪。 (一)含义 光照射到物质上发生弹性散射和非弹性散射. 弹性散射的散射光是与激发光波长相同的成分.非弹性散射的散射光有比激发光波长长的和短的成分, 统称为拉曼效应当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征 (二)拉曼散射光谱具有以下明显的特征: a.拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关; b. 在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧, 这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的能量。 c. 一般情况下,斯托克斯线比反斯托克斯线的强度大。这是由于Boltzmann分布,处于振动基态上的粒子数远大于处于振动激发态上的粒子数。 (三)拉曼光谱技术的优越性 提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。此外 1 由于水的拉曼散射很微弱,拉曼光谱是研究水溶液中的生物样品和化学化合物的理想工具。 2 拉曼一次可以同时覆盖50-4000波数的区间,可对有机物及无机物进行分析。相反,若

光谱仪的工作原理

光谱仪的工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

光谱仪的工作原理元素的原子在激发光源的作用下发射谱线,谱线经光栅分光后形成光谱,每种元素都有自己的特征谱线,谱线的强度可以代表试样中元素的含量,用光电检测器将谱线的辐射能转换成电能。检测输出的信号,经加工处理,在读出装置上显示出来。然后根据相应的标准物质制作的分析曲线,得出分析试样中待测元素的含量。 表面轮廓仪介绍 表面轮廓仪 - 简介 表面轮廓仪LK-200M型表面轮廓仪采用广精精密最新的基于windows版本的测量软件,具有强大卓越的数据处理分析功能。测量时,零件装夹位置即使任意放置,也能得到满意的测量结果;即使需要测量长度为220mm的工件,测量软件也能保证其1μm的采样步长。 LK-200H型表面轮廓仪采用耐用可靠的16位A/D功能板,其极高的分辨率量程比(1/65536),用户即使需要大量程测量,仍能保持极高的测量精度。 LK-200M型表面轮廓仪采用工控计算机处理测量数据及仪器控制操作。其高质量、高可靠性及突出的防尘、防振、防油、防静电能力使广精精密用户将使用维护成本降至最低。 表面轮廓仪 - 原理 表面轮廓仪LK-200M型表面轮廓仪采用直角坐标法,传感器移动式。直线运动导轨采用高精度气浮导轨,作为测量基准; 电器部分由高级计算机组成;测量软件采用基于中文版Windows操作系统平台的系统测量软件,完成数据采集、处理及测量数据管理等工作。 表面轮廓仪 - 功能 角度处理:两直线夹角、直线与Y轴夹角、直线与X轴夹角 点线处理:两直线交点、交点到直线距离、交点到交点距离、交点到圆心距离、交点到点距离 圆处理:圆心距离、圆心到直线的距离、交点到圆心的距离、直线到切点的距离线处理:直线度、凸度、LG凸度、对数曲线 表面轮廓仪 - 技术规格 表面轮廓仪测量长度:≤200mm

光谱分析方法

第一章绪论 )、色谱法、质谱法、电泳法、热分析法和放射化 ( )。 )、( )、( )。 )、( )、操作简便分析速度快。 答案 1光学分析法、电化学分析法 2光谱法、非光谱法 3色谱法、质谱法、电泳法 4灵敏度高检出限低、选择性好 第二章光学分析法导论 一、 选择题 1电磁辐射的粒子性主要表现在哪些方面( ) A 能量 B 频率 C 波长 D 波数 2当辐射从一种介质传播到另一种介质时,下列哪种参量不变( ) A 波长 B 速度 C 频率 D 方向 3电磁辐射的二象性是指: A .电磁辐射是由电矢量和磁矢量组成; B .电磁辐射具有波动性和电磁性; C ?电磁辐射具有微粒性和光电效应; D ?电磁辐射具有波动性和粒子性 4可见区、紫外区、红外光区、无线电波四个电磁波区域中, 能量最大和最小的区域分别为: A ?紫外区和无线电波区; B ?可见光区和无线电波区; C .紫外区和红外区; D ?波数越大。 一、 填空题 1仪器分析方法分为( )、( 学分析法。 2光学分析法一般可分为( ) 3仪器分析的分离分析法主要包括(

5有机化合物成键电子的能级间隔越小,受激跃迁时吸收电磁辐射的A .能量越大;B .频率越高;C .波长越长;D .波数越大。

7受激物质从高能态回到低能态时,如果以光辐射形式辐射多余的能量,这种现象称为() A光的吸收B光的发射C光的散射D光的衍射 8利用光栅的()作用,可以进行色散分光 A散射B衍射和干涉C折射D发射 9棱镜是利用其()来分光的 A散射作用B衍射作用C折射作用D旋光作用 10光谱分析仪通常由以下()四个基本部分组成 A光源、样品池、检测器、计算机 B信息发生系统、色散系统、检测系统、信息处理系统 C激发源、样品池、光电二级管、显示系统 D光源、棱镜、光栅、光电池 二、填空题 ),能量越(),反1. 不同波长的光具有不同的能量,波长越长,频率、波数越( 之,波长越短,能量越()。 2. 在光谱分析中,常常采用色散元件获得()来作为分析手段。 3. 物质对光的折射率随着光的频率变化而变化,这中现象称为() 4. 吸收光谱按其产生的本质分为()、()、()等。 5. 由于原子没有振动和转动能级,因此原子光谱的产生主要是()所致。 6?当光与物质作用时,某些频率的光被物质选择性的吸收并使其强度减弱的现象,称为(), 此时,物质中的分子或原子由()状态跃迁到()的状态。 7.原子内层电子跃迁的能量相当于()光,原子外层电子跃迁的能量相当于()和()。 三. 简答题: 1?什么是光学分析法? 2?何谓光谱分析法和非光谱分析法? 3. 简述光学分析法的分类? 4. 简述光学光谱仪器的基本组成。 5. 简述瑞利散射和拉曼散射的不同?

实验室常用光谱仪及其它们各自的原理

实验室常用光谱仪及其它们各自的原理 光谱仪,又称分光仪。以光电倍增管等光探测器在不同波长位置,测量谱线强度的装置。其构造由一个入射狭缝,一个色散系统,一个成像系统和一个或多个出射狭缝组成。以色散元件将辐射源的电磁辐射分离出所需要的波长或波长区域,并在选定的波长上(或扫描某一波段)进行强度测定。分为单色仪和多色仪两种。 下面就介绍几种实验室常用的光谱仪的工作原理,它们分别是:荧光直读光谱仪、红外光谱仪、直读光谱仪、成像光谱仪。 荧光直读光谱仪的原理: 当能量高于原子内层电子结合能的高能X射线与原子发生碰撞时,驱逐一个内层电子而出现一个空穴,使整个原子体系处于不稳定的激发态,激发态原子寿命约为(10)-12-(10)-14s,然后自发地由能量高的状态 跃迁到能量低的状态.这个过程称为发射过程.发射过程既可以是非辐射跃迁,也可以是辐射跃迁. 当较外层的电子跃迁到空穴时,所释放的能量随即在原子内部被吸收而逐出较外层的另一个次级光电子,此称为俄歇效应,亦称次级光电效应或无辐射效应,所逐出的次级光电子称为俄歇电子.它的能量是特征的,与入射辐射的能量无关.当较外层的电子跃入内层空穴所释放的能量不在原子内被吸收,而是以辐射形式放出,便产生X 射线荧光,其能量等于两能级之间的能量差.因此,X射线荧光的能量或波长是特征性的,与元素有一一对应的关系. K层电子被逐出后,其空穴可以被外层中任一电子所填充,ad4yjmk从而可产生一系列的谱线,称为K系谱线: 由L层跃迁到K层辐射的X射线叫Kα射线,由M层跃迁到K层辐射的X射线叫Kβ射线同样,L层电子被逐出可以产生L系辐射.如果入射的X 射线使某元素的K层电子激发成光电子后L层电子跃迁到K层,此时就有能量ΔE释放出来,且ΔE=EK-EL,这个能量是以X射线形式释放,产生的就是Kα 射线,同样还可以产生Kβ射线,L系射线等. 莫斯莱(H.G.Moseley) 发现,荧光X射线的波长λ与元素的原子序数Z有关,其数学关系如下: λ=K(Z-s)-2 这就是莫斯莱定律,式中K和S是常数,因此,只要测出荧光X射线的波长,就可以知道元素的种类,这就是荧光X射线定性分析的基础.此外,荧光X射线的强度与相应元素的含量有一定的关系,据此,可以进行元素定量分析. 红外光谱仪的原理: 红外光谱与分子的结构密切相关,是研究表征分子结构的一种有效手段,与其它方法相比较,红外光谱由于对样品没有任何限制,它是公认的一种重要分析工具。在分子构型和构象研究、化学化工、物理、能源、材料、天文、气象、遥感、环境、地质、生物、医学、药物、农业、食品、法庭鉴定和工业过程控制等多方面的分析测定中都有十分广泛的应用。

光谱半定量分析示意图

1Cr18Ni9Ti 材质元素含量铁基线强度对比1Cr18Ni9Ti:Cr:17.00-19.00 Cr6=7 -------Cr6>7 Ni:8.00-11.00 1>32>61=4 Ti:0.02-0.8 2≥32=4 (黄绿色第一区) Cr5 Cr6 2 5 3 Cr7 1647 (绿色第一区域) 2 Ti 3 2 2 1 Ti3Ni33W26Ni Ni区V8Cr1Ti2 4 1W37

12CrIMoV 材质元素含量铁基线强度对比 12Cr1MoV:Cr:0.90-1.20 Cr5<4并Cr6>3┄┄ Cr5≤4或Cr5≥4 Mo:0.25-0.35 1≥3 1>3 1<4 V: 0.15-0.30 1≤1 (黄绿色第一区)(黄绿色第二区) Cr 5 Cr 6Mo3 53Mo4 4 7 4 5 3 2 Cr7 2 1 7 1 6 3 Sn (紫色区域V1组)(橙色区域Mn2组) Cr4V1V2 3 23V3Mn10Mn11 1V4Mn9 4 Mo2 V5V621V11 V7

10CrMo910 材质元素含量铁基线强度对比10CrMo910:Cr:2.00-2.50 1≥52≤4 Mo:0.90-1.20 1=62<5 (黄绿色第一区)(黄绿色第二区) Cr 5 Cr6Mo3 5 3 Mo4 4 7 4 5 3 2 Cr7 2 1 7 1 6 3 6 Sn 15NiCuMoNb5 材质元素含量铁基线强度对比WB36 Ni:1.00-1.30 1≤31隐约出现15NiCuMoNb5Nb:0.015-0.045 1隐约出现2刚出现(蓝色第二区域) Mn8 2低Ni1Mn1Mn4Mn5Mn7 4 Nb1Nb23 5 Mn2Mn3Mn62 1 3 2 1 3 4

光谱仪原理

光纤光谱仪的原理及基础知识 2014-05-25 光谱学是测量紫外、可见、近红外和红外波段光强度的一种技术。光谱测量被广泛应用于多种领域,如颜色测量、化学成份的浓度检测或电磁辐射分析等。 上海辰昶仪器设备有限公司是国内领先的光纤光谱仪的生产厂商,以“光谱引领生活”为理念,致力于为国内广大用户提供符合国情的一揽子光谱系统解决方案! 光谱仪器一般都包括入射狭缝、准直镜、色散元件(光栅或棱镜)、聚焦光学系统和探测器。而在单色仪中通常还包括出射狭缝,让整个光谱中一个很窄的部分照射到单象元探测器上。单色仪中的入射和出射狭缝往往位置固定而宽度可调,可以通过旋转光栅来对整个光谱进行扫描。 在九十年代,微电子领域中的多象元光学探测器迅猛发展,如CCD 阵列、光电二极管(PD )阵列等,使生产低成本扫描仪和CCD 相机成为可能。光纤光谱仪使用了同样的CCD 和光电二极管阵列(PDA )探测器,可以对整个光谱进行快速扫描而不必移动光栅。 由于光通信技术对光纤的需求大大增长,从而开发了低损耗的石英光纤。该光纤同样可以用于测量光纤,把被测样品产生的信号光传导到光谱仪的光学平台中。由于光纤的耦合非常容易,所以可以很方便地搭建起由光源、采样附件和光纤光谱仪组成的模块化测量系统。 光纤光谱仪的优点在于系统的模块化和灵活性。上海辰昶仪器的微小型光纤光谱仪的测量速度非常快,使得它可以用于在线分析。而且由于它选用低成本的通用探测器,所以光谱仪的成本也大大降低,从而大大扩展了它的应用领域。 ?光学平台设计 上海辰昶仪器的光谱仪采用Czerny-Turner 光学平台设计(如图1 所示)。 图1 EQ2000光学平台设计图

傅立叶变换红外光谱仪的基本原理

傅立叶变换红外光谱仪的 基本原理及其应用 红外光谱仪是鉴别物质和分析物质结构的有效手段,其中傅立叶变换红外光谱仪(FT-IR)是七十年代发展起来的第三代红外光谱仪的典型代表。它是根据光的相干性原理设计的,是一种干涉型光谱仪,具有优良的特性,完善的功能,并且应用围极其广泛,同样也有着广泛的发展前景。本文就傅立叶变换红外光谱仪的基本原理作扼要的介绍,总结了傅立叶变换红外光谱法的主要特点,综述了其在各个方面的应用,并对傅立叶变换红外光谱仪的发展方向提出了一些基本观点。 关键词:傅立叶变换红外光谱仪;基本原理;应用;发展

目录 摘要................................................................................... I ABSTRACT......................................................................... II 1 傅里叶红外光谱仪的发展历史 (1) 2 基本原理 (4) 2.1光学系统及工作原理 (4) 2.2傅立叶变换红外光谱测定 (6) 2.3傅立叶变换红外光谱仪的主要特点 (7) 3 样品处理 (8) 3.1气体样品 (8) 3.2液体和溶液样品 (8) 3.3固体样品 (8) 4 傅立叶变换红外光谱仪的应用 (9) 4.1在临床医学和药学方面的应用⑷ (9) 4.2在化学、化工方面的应用 (10) 4.3在环境分析中的应用 (11) 4.4在半导体和超导材料等方面的应用⑼ (11) 5 全文总结 (12) 参考文献 (13)

现代近红外光谱分析仪工作原理

现代近红外光谱分析仪工作原理 现代近红外光谱分析仪工作原理 2011年02月08日 20世纪90年代初,外国厂商开始在我国销售近红外光谱分析仪器产品,但在很长时间内,进展不大,其原因主要是:首先,近红外光谱分析要求光谱仪器、光谱数据处理软件(主要是化学计量学软件)和应用样品模型结合为一体,缺一不可。但被分析样品会由于样品产地的不同而不同,国内外的样品通常有差异,因此,进口仪器的应用模型一般不适合分析国内样品。如果自己建立模型,就需要操作人员了解和熟悉化学计量学知识和软件,而外商在中国的代理机构缺乏这方面的专业人才,不能有效地根据用户的需要组织培训,因此,用户对这项技术缺乏全面了解,影响到了它的推广使用。其次,进口仪器价格昂贵,售后技术服务费用也往往超出大多数用户的承受能力。 现代近红外光谱分析技工作原理 近红外光谱主要是由于分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的。近红外光谱记录的是分子中单个化学键的基频振动的倍频和合频信息,它常常受含氢基团X-H(X-C、N、O)的倍频和合频的重叠主导,所以在近红外光谱范围内,测量的主要是含氢基团X-H振动的倍频和合频吸收。 由于倍频和合频跃迁几率低,而有机物质在NIR光谱区为倍频与合频吸收,所以消光系数弱,谱带重叠严重。因此从近红外光谱中提取有用信息属于弱信息和多元信息,需要充分利用现有的光机技术、电子技术和计算机技术进行处理。计算机技术主要包括光谱数据处理和数据关联技术。光谱数据处理是消除仪器因素(灯及测量方式等)环境因素(如温度等)和样品物态(如颜色、形态等)等对光谱的影响。常采用的方法有平滑、微分、基线漂移扣减、多元散射校正(MSC)和有限脉冲响应滤波(FIR)等也可以用小波变换来进行部分处理。数据关联技术主要是化学计量学方法。化学计量学的发展使多组分分析中多元信息处理理论和技术日益成熟,解决了近红外光谱区重叠的问题。通过关联技术可以实现近红外光谱的快速分析。在近红外光谱的应用中我们所关心的是被测样品的组成或各种物化性质,因此,如何提取这些有用信息是近红外光谱分析的技术核心。现在的许多研究与应用表明,

紫外吸收光谱的基本原理

紫外吸收光谱的基本原理,应用与其特点 紫外吸收光谱的基本原理 吸收光谱的产生 许多无色透明的有机化合物,虽不吸收可见光,但往往能吸收紫外光。如果用一束具有连续波长的紫外光照射有机化合物,这时紫外光中某些波长的光辐射就可以被该化合物的分子所吸收,若将不同波长的吸收光度记录下来,就可获的该化合物的紫外吸收光谱. 紫外光谱的表示方法 通常以波长λ为横轴、吸光度A(百分透光率T%)为纵轴作图,就可获的该化合物的紫外吸收光谱图。 吸光度A,表示单色光通过某一样品时被吸收的程度A=log(I0/I1), I0入射光强度,I1透过光强度; 透光率也称透射率T,为透过光强度I1与入射光强度I0之比值,T= I1/I0透光率T与吸光度A的关系为A=log(1/T) 根据朗伯-比尔定律,吸光度A与溶液浓度c成正比A=εbc ε为摩尔吸光系数,它是浓度为1mol/L的溶液在1cm的吸收池中,在一定波长下测得的吸光度,它表示物质对光能的吸收强度,是各种物质在一定波长下的特征常数,因而是检定化合物的重要数据;c为物质的浓度,单位为mol/L;b为液层厚度,单位为cm。 在紫外吸收光谱中常以吸收带最大吸收处波长λmax和该波长下的摩尔吸收系数εmax来表征化合物吸收特征。吸收光谱反映了物质分子对不同波长紫外光的吸收能力。吸收带的许多无色透明的有机化合物,虽不吸收可见光,但往往能吸收紫外光。如果用一束具有连续波长的紫外光照射有机化合物,这时紫外光中某些波长的光辐射就可以被该化合物的分子所吸收,若将不同波长的吸收光度记录下来,就可获的该化合物的紫外吸收光谱. 通常以波长λ为横轴、吸光度A(百分透光率T%)为纵轴作图,就可获的该化合物的紫外吸收光谱图。 吸光度A,表示单色光通过某一样品时被吸收的程度A=log(I0/I1), I0入射光强度,I1透过光强度; 透光率也称透射率T,为透过光强度I1与入射光强度I0之比值,T= I1/I0透光率T与吸光度A的关系为A=log(1/T) 根据朗伯-比尔定律,吸光度A与溶液浓度c成正比A=εbc ε为摩尔吸光系数,它是浓度为1mol/L的溶液在1cm的吸收池中,在一定波长下测得的吸光度,它表示物质对光能的吸收强度,是各种物质在一定波长下的特征常数,因而是检定化合物的重要数据;c为物质的浓度,单位为mol/L;b为液层厚度,单位为cm。 在紫外吸收光谱中常以吸收带最大吸收处波长λmax和该波长下的摩尔吸收系数εmax来表征化合物吸收特征。吸收光谱反映了物质分子对不同波长紫外光的吸收能力。吸收带的形状、λmax和εmax与吸光分子的结构有密切的关系。各种有机化合形状、λmax 和εmax与吸光分子的结构有密切的关系。各种有机化合物的λmax和εmax都有定值,同类化合物的εmax比较接近,处于一个范围。 紫外吸收光谱是由分子中价电子能级跃迁所产生的。由于电子能级跃迁往往要引起分子中核的运动状态的变化,因此在电子跃迁的同时,总是伴随着分子的振动能级和转动能级的跃迁。考虑跃迁前的基态分子并不是全是处于最低振动和转动能级,而是分布在若干不同的

X荧光光谱分析仪工作原理

X荧光光谱分析仪工作原理 用X射线照射试样时,试样可以被激发出各种波长的荧光X射线,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析,为此使用的仪器叫X射线荧光光谱仪。由于X光具有一定波长,同时又有一定能量,因此,X射线荧光光谱仪有两种基本类型:波长色散型和能量色散型。下图是这两类仪器的原理图。 用X射线照射试样时,试样可以被激发出各种波长的荧光X射线,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析,为此使用的仪器叫X射线荧光光谱仪。由于X光具有一定波长,同时又有一定能量,因此,X射线荧光光谱仪有两种基本类型:波长色散型和能量色散型。下图是这两类仪器的原理图。 现将两种类型X射线光谱仪的主要部件及工作原理叙述如下: 1.X射线管

两种类型的X射线荧光光谱仪都需要用X射线管作为激发光源。上图是X射线管的结构示意图。灯丝和靶极密封在抽成真空的金属罩内,灯丝和靶极之间加高压(一般为40KV),灯丝发射的电子经高压电场加速撞击在靶极上,产生X射线。X射线管产生的一次X射线,作为激发X射线荧光的辐射源。只有当一次X射线的波长稍短于受激元素吸收限lmin时,才能有效的激发出X射线荧光。笥?SPAN lang=EN-US>lmin的一次X射线其能量不足以使受激元素激发。 X射线管的靶材和管工作电压决定了能有效激发受激元素的那部分一次X射线的强度。管工作电压升高,短波长一次X射线比例增加,故产生的荧光X射线的强度也增强。但并不是说管工作电压越高越好,因为入射X射线的荧光激发效率与其波长有关,越靠近被测元素吸收限波长,激发效率越高。 X射线管产生的X射线透过铍窗入射到样品上,激发出样品元素的特征X射线,正常工作时,X射线管所消耗功率的0.2%左右转变为X射线辐射,其余均变为热能使X射线管升温,因此必须不断的通冷却水冷却靶电极。 2.分光系统

光谱仪工作原理+图

海洋光纤光谱特有的信息 1.光谱仪的工作原理 CCD探测器型的海洋光学光谱仪的工作原理如动画展示。光通过光纤有效的耦合到光谱仪中,经球面镜将进入光谱仪中的发散光束会聚准直到衍射光栅上,衍射分光后又经第二面球面镜会聚聚焦,光谱像投射到线性CCD阵列上,数据信号经A/D转换传至计算机上。 光子撞击CCD像素上的光敏二极管后,这些反向偏置的二极管释放出与光通量成比例的电容器,当探测器积分时间结束,一系列开关关闭并传输电荷至移位寄存器中。当传输完成,开关打开并且与二极管关联的电容器又重新充电开始一个新的积分周期。同时,光能被累积,通过A/D转换数据被读出移位寄存器。数字化的数据最后显示在计算机上。 2.光学分辨率

单色光源的光学分辨率以半高全宽值(FWHM)来表征,它依赖于光栅刻槽密度(mm-1)及光学入瞳直径(光纤或狭缝)。海洋光纤光谱配置客户所要求的系统时,必须平衡两个重要的因素: 1) 光栅刻槽密度增加,分辨率增大,但光谱范围及信号强度会减小。 2) 狭缝宽度或光纤直径变窄,分辨率增大,但信号强度会减小。 如何估算光学分辨率(nm,FWHM) 2. 1. 确定光栅光谱范围,找到光栅的光谱范围通过: 选择光栅:“S”光学平台;选择光栅:“HR”光学平台;选择光栅:“NIR”光学平台。(有想详细了解的,烦请光纤专家予以解释) 2. 2. 光栅光谱范围除以探测器像元数,结果为Dispersion。Dispersion (nm/pixel) = 光谱范围/像元数 探测器像元素见图2

3.像素分辨率 下表列出了不同狭缝(或光纤直径)尺寸下的像素分辨率。尽管狭缝入射宽度不同,但高度一致(1000um)。有想深入了解的版友直接向专家提问。 4.计算光学分辨率(nm) Dispersion (Step 2) x Pixel Resolution (Step 3) 举例:确定光学分辨率,光谱仪型号:USB4000,光栅型号:#3,狭缝宽度:10um 650nm(#3光栅光谱范围)/3648(USB4000探测器像元数)X5.6(像素分辨率)=0.18X5.6nm=1.0nm(FWHM) 5.海洋光纤光谱仪的系统灵敏度 海洋光纤光谱仪对系统灵敏度的定义打破常规,不需要对影响光谱幅度的各种因素进行校正。他们提供一种更有用的方法:NIST-traceable 辐射标准(LS-1-CAL),它可以用能量项来标准化光谱数据。在他们的SpectraSuite操作软件中,可以使用“I”模式下相对能量分布(0到1)或绝对值(以 W/cm2/nm或流明或勒克斯/单位面积为单位)来标准化光谱数据。对透射或反射实验,可以使一个物理标准来标准化(归一化)数据如利用空气中的传播或漫射白板来确定。 6.海洋光纤光谱解决影响光谱幅度值的因素

常见的化学成分分析方法及其原理

常见的化学成分分析方法 一、化学分析方法 化学分析从大类分是指经典的重量分析和容量分析。重量分析是指根据试样经过化学实验反应后生成的产物的质量来计算式样的化学组成,多数是指质量法。容量法是指根据试样在反应中所需要消耗的标准试液的体积。容量法即可以测定式样的主要成分,也可以测定试样的次要成分。 1.1重量分析 指采用添加化学试剂是待测物质转变为相应的沉淀物,并通过测定沉淀物的质量来确定待测物的含量。 1.2容量分析 滴定分析主要分为酸碱滴定分析、络合滴定分析、氧化还原滴定分析、沉淀滴定分析。 酸碱滴定分析是指以酸碱中和反应为原理,利用酸性标定物来滴定碱性物质或利用碱性标定物来滴定酸性待测物,最后以酸碱指示剂(如酚酞等)的变化来确定滴定的终点,通过加入的标定物的多少来确定待测物质的含量。 络合滴定分析是指以络合反应(形成配合物)反应为基础的滴定分析方法。如EDTA与金属离子发生显色反应来确定金属离子的含量等。络合反应广泛地应用于分析化学的各种分离与测定中,如许多显色剂,萃取剂,沉淀剂,掩蔽剂等都是络合剂,因此,有关络合反应的理论和实践知识,是分析化学的重要内容之一。 氧化还原滴定分析:是以溶液中氧化剂和还原剂之间的电子转移为基础的一种滴定分析方法。氧化还原滴定法应用非常广泛,它不仅可用于无机分析,而且可以广泛用于有机分析,许多具有氧化性或还原性的有机化合物可以用氧化还原滴定法来加以测定。通常借助指示剂来判断。有些滴定剂溶液或被滴定物质本身有足够深的颜色,如果反应后褪色,则其本身就可起指示剂的作用,例如高锰酸钾。而可溶性淀粉与痕量碘能产生深蓝色,当碘被还原成碘离子时,深蓝色消失,因此在碘量法中,通常用淀粉溶液作指示剂。

各种光谱分析的原理解读

各种仪器分析的基本原理及谱图表示方法!!!来源:张月娟的日志 紫外吸收光谱 UV 分析原理:吸收紫外光能量,引起分子中电子能级的跃迁 谱图的表示方法:相对吸收光能量随吸收光波长的变化 提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息 荧光光谱法 FS 分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光 谱图的表示方法:发射的荧光能量随光波长的变化 提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息 红外吸收光谱法 IR 分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁谱图的表示方法:相对透射光能量随透射光频率变化 提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率 拉曼光谱法 Ram 分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射 谱图的表示方法:散射光能量随拉曼位移的变化 提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率 核磁共振波谱法 NMR 分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁 谱图的表示方法:吸收光能量随化学位移的变化 提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息电子顺磁共振波谱法 ESR 分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁 谱图的表示方法:吸收光能量或微分能量随磁场强度变化 提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息质谱分析法 MS 分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化 提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息气相色谱法 GC 分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离 谱图的表示方法:柱后流出物浓度随保留值的变化

光学光谱各种仪器分析的基本原理及谱图表示方法

各种仪器分析的基本原理及谱图表示方法——牛人总结,留着备用来源:刘艳的日志 紫外吸收光谱UV 分析原理:吸收紫外光能量,引起分子中电子能级的跃迁 谱图的表示方法:相对吸收光能量随吸收光波长的变化 提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息 荧光光谱法FS 分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光 谱图的表示方法:发射的荧光能量随光波长的变化 提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息 红外吸收光谱法IR 分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁 谱图的表示方法:相对透射光能量随透射光频率变化 提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率 拉曼光谱法Ram 分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射 谱图的表示方法:散射光能量随拉曼位移的变化 提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率 核磁共振波谱法NMR 分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁 谱图的表示方法:吸收光能量随化学位移的变化 提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息 电子顺磁共振波谱法ESR 分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁 谱图的表示方法:吸收光能量或微分能量随磁场强度变化 提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息 质谱分析法MS 分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离 谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化 提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息

相关文档
相关文档 最新文档