文档库 最新最全的文档下载
当前位置:文档库 › 立体几何中的探索性问题

立体几何中的探索性问题

立体几何中的探索性问题
立体几何中的探索性问题

立体几何中的探索性问

文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

立体几何中的探索性问题

一、探索平行关系

1.[2016·枣强中学模拟] 如图所示,在正四棱柱A1C中,E,F,G,H分别是棱CC1,C1D1,D1D,DC的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M只需满足条件________,就有MN∥平面B1BDD1.(注:请填上一个你认为正确的条件,不必考虑全部可能的情况) 答案:M位于线段FH上(答案不唯一) [解析] 连接HN,FH,FN,

则FH∥DD

1,HN∥BD,FH∩HN=H,DD

1

∩BD=D,∴平面FHN∥平面

B

1BDD

1

,故只要M∈FH,则MN?平面FHN,且MN∥平面B

1

BDD

1

.

2.如图所示,在正方体ABCD-A1B1C1D1中,E是棱DD1的中点.

(1)求直线BE和平面ABB1A1所成的角的正弦值;

(2)在棱C1D1上是否存在一点F,使B1F∥平面A1BE证明你的结论.

解:(1)如图所示,取AA1的中点M,连接EM,BM.因为E是DD1的中点,四边形ADD1A1为正方形,所以EM∥AD.(2分)

又在正方体ABCD-A1B1C1D1中,AD⊥平面ABB1A1,

所以EM⊥平面ABB1A1,从而BM为直线BE在平面ABB1A1上的射影,∠EBM为BE和平面ABB1A1所成的角.(4分)

设正方体的棱长为2,

则EM=AD=2,BE=22+22+12=3.

于是,在Rt△BEM中,sin∠EBM=EM

BE

2

3

,(5分)

即直线BE和平面ABB1A1所成的角的正弦值为2

3

.(6分)

(2)在棱C1D1上存在点F,使B1F∥平面A1BE.

事实上,如图(b)所示,分别取C1D1和CD的中点F,G,连接B1F,EG,BG,CD1,FG.

因A1D1∥B1C1∥BC,且A1D1=

BC,所以四边形A1BCD1是平行四边形,

因此D1C∥A1B.

又E,G分别为D1D,CD的中点,

所以EG∥D1C,从而EG∥A1B.

这说明A1,B,G,E四点共面.所以BG?平面A1BE.

(8分)

因四边形C1CDD1与B1BCC1皆为正方形,F,G分别为C1D1和CD的中点,

所以FG∥C1C∥B1B,且FG=C1C=B1B,

因此四边形B1BGF是平行四边形,所以B1F∥BG,

(10分)

而B1F?平面A1BE,BG?平面A1BE,

故B1F∥平面A1BE.(12分)

3.如图,四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD为矩形,PD =DC=4,AD=2,E为PC的中点.

(1)求三棱锥A-PDE的体积;

(2)AC边上是否存在一点M,使得PA∥平面EDM若存在,求出AM的长;若不存在,请说明理由.

解析:(1)∵PD⊥平面ABCD,∴PD⊥AD.

又∵ABCD是矩形,

∴AD⊥CD.

∵PD∩CD=D,

∴AD⊥平面PCD,

∴AD是三棱锥A-PDE的高.

∵E为PC的中点,且PD=DC=4,

∴S△PDE=1

2

S△PDC=

1

2

×

?

?

?

?

?

1

2

×4×4=4.

又AD=2,

∴V A-PDE=1

3

AD·S△PDE=

1

3

×2×4=

8

3

.

(2)取AC中点M,连接EM,DM,∵E为PC的中点,M是AC的中点,

∴EM∥PA.

又∵EM?平面EDM,PA?平面EDM,

∴PA∥平面EDM.

∴AM=1

2

AC= 5.

即在AC边上存在一点M,使得PA∥平面EDM,AM的长为 5.

4.如图所示,在三棱锥P - ABC中,点D,E分别为PB,BC的中点.在

线段AC上是否存在点F,使得AD∥平面PEF若存在,求出AF

FC

的值;若不

存在,请说明理由.

解:假设在AC上存在点F,使得AD∥平面PEF,连接DC交PE于G,连接FG,如图所示.

∵AD∥平面PEF,平面ADC∩平面PEF=FG,

∴AD∥FG.

又∵点D,E分别为PB,BC的中点,∴G为△PBC的重心,∴AF

FC

DG

GC

1

2

.

故在线段AC上存在点F,使得AD∥平面PEF,且AF

FC

1

2

.

5.[2016·北京卷] 如图,在四棱锥P - ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.

(1)求证:DC⊥平面PAC.

(2)求证:平面PAB⊥平面PAC.

(3)设点E为AB的中点,在棱PB上是否存在点F,使得PA∥平面CEF说明理由.

解:(1)证明:因为PC⊥平面ABCD,

所以PC⊥DC.

又因为DC⊥AC,

所以DC⊥平面PAC.

(2)证明:因为AB∥DC,DC⊥AC,

所以AB⊥AC.

因为PC⊥平面ABCD,

所以PC⊥AB,

所以AB⊥平面PAC,

所以平面PAB⊥平面PAC.

(3)棱PB上存在点F,使得PA∥平面CEF.证明如下:

取PB的中点F,连接EF,CE,CF.

因为E为AB的中点,

所以EF∥PA.

又因为PA?平面CEF,

所以PA∥平面CEF.

6.[2016·四川卷] 如图,在四棱锥P - ABCD中,PA⊥CD,AD∥BC,

∠ADC=∠PAB=90°,BC=CD=1

2 AD.

(1)在平面PAD内找一点M,使得直线CM∥平面PAB,并说明理由;

(2)证明:平面PAB⊥平面PBD.

解:(1)取棱AD的中点M(M∈平面PAD),点M即为所求的一个点.理由如下:

因为AD∥BC,BC=1

2

AD,所以BC∥AM,且BC=AM,

所以四边形AMCB是平行四边形,从而CM∥AB.

又AB?平面PAB,CM?平面PAB,

所以CM∥平面PAB.

(说明:取棱PD的中点N,则所找的点可以是直线MN上任意一点) (2)证明:由已知,PA⊥AB,PA⊥CD.

因为AD∥BC,BC=1

2

AD,所以直线AB与CD相交,所以PA⊥平面ABCD,

从而PA⊥BD.

因为AD∥BC,BC=1

2 AD,

所以BC∥MD,且BC=MD,

所以四边形BCDM是平行四边形,

所以BM=CD=1

2

AD,所以BD⊥AB.

又AB∩AP=A,所以BD⊥平面PAB.

又BD?平面PBD,

所以平面PAB⊥平面PBD.

7. [2016·阳泉模拟] 如图7-41-10,在四棱锥P-ABCD中,BC∥AD,BC =1,AD=3,AC⊥CD,且平面PCD⊥平面ABCD.

(1)求证:AC⊥PD.

(2)在线段PA上是否存在点E,使BE∥平面PCD若存在,求出PE PA

值;若不存在,请说明理由.

解:(1)证明:∵平面PCD⊥平面ABCD,平面PCD∩平面ABCD=CD,AC⊥CD,AC?平面ABCD,∴AC⊥平面PCD,

∵PD ?平面PCD ,∴AC ⊥PD .

(2)在线段PA 上存在点E ,使BE ∥平面PCD ,且

PE PA =1

3

.下面给出证明: ∵AD =3,BC =1,

∴在△PAD 中,分别取PA ,PD 靠近点P 的三等分点E ,F ,连接EF ,BE ,CF .

∵PE PA =PF PD =13,∴EF ∥AD ,且EF =1

3AD =1. 又∵BC ∥AD ,∴BC ∥EF ,且BC =EF , ∴四边形BCFE 是平行四边形,

∴BE ∥CF ,又∵BE ?平面PCD ,CF ?平面PCD , ∴BE ∥平面PCD .

8.(10分)[2016·河南中原名校联考] 如图所示,在四棱锥S -ABCD 中,平面SAD ⊥平面ABCD ,AB ∥DC ,△SAD 是等边三角形,且SD =2,BD =23,AB =2CD =4.

(1)证明:平面SBD ⊥平面SAD .

(2)若E 是SC 上的一点,当E 点位于线段SC 上什么位置时,SA ∥平面EBD 请证明你的结论.

(3)求四棱锥S -ABCD 的体积.

解:(1)证明:∵△SAD 是等边三角形, ∴AD =SD =2,又BD =23,AB =4,

∴AD 2+BD 2=AB 2

,∴BD ⊥AD ,

又∵平面SAD ⊥平面ABCD ,平面SAD ∩平面ABCD =AD . ∴BD ⊥平面SAD .

又BD ?平面SBD ,∴平面SBD ⊥平面SAD .

(2)当E 为SC 的三等分点,即ES =2CE 时,结论成立. 证明如下:连接AC 交BD 于点H ,连接EH .

∵CD ∥AB ,CD =1

2

AB ,

∴CH HA =12=CE

ES

,∴HE ∥SA . 又SA ?平面EBD ,HE ?平面EBD , ∴SA ∥平面EBD .

(3)过S 作SO ⊥AD ,交AD 于点O . ∵△SAD 为等边三角形,

∴O 为AD 的中点,∴SO = 3.易证得SO ⊥平面ABCD ,

∴V 四棱锥S -ABCD =1

3S 梯形ABCD ·SO .

∵S 梯形ABCD =1

2

×(2+4)×3=33,

∴V四棱锥S - ABCD=3.

二、探索垂直关系

1.如图所示,在三棱锥P - ABC中,已知PA⊥底面ABC,AB⊥BC,E,F 分别是线段PB,PC上的动点,则下列说法错误的是( )

A.当AE⊥PB时,△AEF一定为直角三角形

B.当AF⊥PC时,△AEF一定为直角三角形

C.当EF∥平面ABC时,△AEF一定为直角三角形

D.当PC⊥平面AEF时,△AEF一定为直角三角形

答案:B [解析] 已知PA⊥底面ABC,则PA⊥BC,又AB⊥BC,PA∩AB=A,

则BC⊥平面PAB,BC⊥AE.

当AE⊥PB时,又PB∩BC=B,则AE⊥平面PBC,则AE⊥EF,A正确.

当EF∥平面ABC时,又EF?平面PBC,平面PBC∩平面ABC=BC,则EF∥BC,故EF⊥平面PAB,则AE⊥EF,故C正确.

当PC⊥平面AEF时,PC⊥AE,又BC⊥AE,PC∩BC=C,则AE⊥平面PBC,则AE⊥EF,故D正确.用排除法可知选B.

2.如图所示,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,底面是以∠ABC为直角的等腰直角三角形,AC=2a,BB1=3a,D是A1C1的中点,点F在线段AA1上,当AF=________时,CF⊥平面B1DF.

答案:a或2a[解析] 由题意易知,B1D⊥平面ACC1A1,所以B1D⊥CF.要使CF⊥平面B1DF,只需CF⊥DF即可.当CF⊥DF时,设AF=x,则A1F=3a-x.

由Rt△CAF∽Rt△FA1D,得AC

A1F

AF

A1D

,即

2a

3a-x

x

a

,整理得x2-3ax+

2a2=0,解得x=a或x=2a.

3.如图所示,PA⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E,F分别是点A在PB,PC上的正投影,给出下列结论:①AF⊥PB;

②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确结论的序号是________.

答案:①②③[解析] 由题意知PA⊥平面ABC,∴PA⊥BC.又AC⊥BC,PA∩AC=A,∴BC⊥平面PAC,∴BC⊥AF.∵AF⊥PC,BC∩PC=C,∴AF⊥平面PBC,∴AF⊥PB,AF⊥BC.又AE⊥PB,AE∩AF=A,∴PB⊥平面AEF,∴PB⊥EF.故①②③正确.

4.如图所示,已知长方体ABCD-A1B1C1D1的底面ABCD为正方形,E为线段AD1的中点,F为线段BD1的中点.

(1)求证:EF∥平面ABCD;

(2)设M为线段C1C的中点,当D1D

AD

的比值为多少时,DF⊥平面D1MB并

说明理由.

解析:(1)证明:∵E为线段AD1的中点,F为线段BD1的中点,∴EF ∥AB.

∵EF?平面ABCD,AB?平面ABCD,

∴EF∥平面ABCD.

(2)当D1D

AD

=2时,DF⊥平面D1MB.

∵ABCD是正方形,

∴AC⊥BD.

∵D1D⊥平面ABC,

∴D1D⊥AC.

∴AC⊥平面BB1D1D,

∴AC⊥DF.

∵F,M分别是BD1,CC1的中点,

∴FM∥AC.

∴DF⊥FM.

∵D1D=2AD,

∴D1D=BD.

∴矩形D1DBB1为正方形.

∵F为BD1的中点,

∴DF⊥BD1.

∵FM∩BD1=F,

∴DF⊥平面D1MB.

5.如图(1),在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图(2).

(1) (2)

(1)求证:DE∥平面A1CB.

(2)求证:A1F⊥BE.

(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ说明理由.解:(1)∵D,E分别为AC,AB的中点,

∴DE∥BC.(2分)

又∵DE?平面A1CB,

∴DE∥平面A1CB.(4分)

(2)由已知得AC⊥BC且DE∥BC,∴DE⊥AC.

∴DE⊥A1D,DE⊥CD.

∴DE⊥平面A1DC.

而A1F?平面A1DC,(6分)

∴DE⊥A1F.

又∵A1F⊥CD,CD∩DE=D,

∴A1F⊥平面BCDE,又BE?平面BCDE,

∴A1F⊥BE.(9分)

(3)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:

如图,分别取A1C,A1B的中点P,Q,则PQ∥BC.

又∵DE∥BC,∴DE∥PQ.

∴平面DEQ即为平面DEP.

由(2)知,DE⊥平面A1DC,

∴DE⊥A1C.

又∵P是等腰三角形DA1C底边A1C的中点,

∴A1C⊥DP.

又DP∩DE=D,

∴A1C⊥平面DEP.(12分)

从而A1C⊥平面DEQ.

故线段A1B上存在点Q,使得A1C⊥平面DEQ.(14分)

6.如图,在正方体ABCD-A1B1C1D1中,E、F分别是CD、A1D1的中点.

(1)求证:AB1⊥BF;

(2)求证:AE⊥BF;

(3)棱CC1上是否存在点P,使BF⊥平面AEP若存在,确定点P的位置,若不存在,说明理由.

解析:(1)证明:连接A1B,则AB1⊥A1B,

又∵AB1⊥A1F,且A1B∩A1F=A1,

∴AB1⊥平面A1BF.

又BF?平面A1BF,∴AB1⊥BF.

(2)证明:取AD中点G,连接FG,BG,则FG⊥AE,

又∵△BAG≌△ADE,

∴∠ABG=∠DAE.

∴AE⊥BG.

又∵BG∩FG=G,∴AE⊥平面BFG.

又BF?平面BFG,∴AE⊥BF.

(3)存在.取CC1中点P,即为所求.

连接EP,AP,C1D,

∵EP∥C1D,C1D∥AB1,

∴EP∥AB1.

由(1)知AB1⊥BF,∴BF⊥EP.

又由(2)知AE⊥BF,且AE∩EP=E,

∴BF⊥平面AEP.

7.如图(1)所示,在Rt△ABC中,∠ABC=90°,D为AC的中点,AE⊥BD 于点E(不同于点D),延长AE交BC于点F,将△ABD沿BD折起,得到三棱锥A1-BCD,如图(2)所示.

(1)若M是FC的中点,求证:直线DM∥平面A1EF.

(2)求证:BD⊥A1F.

(3)若平面A1BD⊥平面BCD,试判断直线A1B与直线CD能否垂直并说

明理由.

解:(1)证明:在题图(1)中,因为D,M分别为AC,FC的中点,所以DM是△ACF的中位线,所以DM∥EF,

则在题图(2)中,DM∥EF,又EF?平面A1EF,DM?平面A1EF,

所以DM∥平面A1EF.

(2)证明:因为A1E⊥BD,EF⊥BD,且A1E∩EF=E,

所以BD⊥平面A1EF.

又A1F?平面A1EF,所以BD⊥A1F.

(3)直线A1B与直线CD不能垂直.理由如下:

因为平面A1BD⊥平面BCD,平面A1BD∩平面BCD=BD,EF⊥BD,EF?平面BCD,

所以EF⊥平面A1BD.

因为A1B?平面A1BD,所以A1B⊥EF,

又EF∥DM,所以A1B⊥DM.假设A1B⊥CD,

因为A1B⊥DM,CD∩DM=D,

所以A1B⊥平面BCD,

所以A1B⊥BD,这与∠A1BD为锐角矛盾,

所以假设不成立,所以直线A1B与直线CD不能垂直.

以立体几何中探索性问题为背景的解答题(解析版)知识讲解

【名师综述】利用空间向量解决探索性问题立体几何中的探索性问题立意新颖,形式多样,近年来在高考中频频出现,而空间向量在解决立体几何的探索性问题中扮演着举足轻重的角色,它是研究立体几何中的探索性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探索性问题提供了新的视角、新的方法.下面借“题”发挥,透视有关立体几何中的探索性问题的常见类型及其求解策略,希望读者面对立体几何中的探索性问题时能做到有的放矢,化解自如.1.以“平行、垂直、距离和角”为背景的存在判断型问题是近年来高考数学中创新型命题的一个显著特点,它以较高的新颖性、开放性、探索性和创造性深受命题者的青睐.此类问题的基本特征是:要判断在某些确定条件下的某一数学对象(数值、图形等)是否存在或某一结论是否成立.“是否存在”的问题的命题形式有两种情况:如果存在,找出一个来;如果不存在,需要说明理由.这类问题常用“肯定顺推”的方法.求解此类问题的难点在于:涉及的点具有运动性和不确定性.所以用传统的方法解决起来难度较大,若用空间向量方法来处理,通过待定系数法求解其存在性问题,则思路简单、解法固定、操作方便.解决与平行、垂直有关的存在性问题的基本策略是:通常假定题中的数学对象存在(或结论成立),然后在这个前提下 进行逻辑推理,若能导出与条件吻合的数据或事实,说明假设成立,即存在,并可进一步证明;若导出与条件或实际情况相矛盾的结果,则说明假设不成立,即不存在.如本题把直二面角转化为这两个平面的法向量垂直,利用两法向量数量积为零,得参数p 的方程.即把与两平面垂直有关的存在性问题转化为方程有无解的问题. 2.与“两异面直线所成的角、直线与平面所成的角和二面角”有关的存在性问题,常利用空间向量法解决,可以避开抽象、复杂地寻找角的过程,只要能够准确理解和熟练应用夹角公式,就可以把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.事实说明,空间向量法是证明立体几何中存在性问题 的强有力的方法. 【精选名校模拟】 1. 在四棱锥E ABCD中,底面ABCD是正方形,AC与BD交于点O,EC 底面ABCD ,F 为BE 的中点.(Ⅰ)求证:DE ∥平面ACF ; (Ⅱ)求证:BD AE ;

2019年高考数学一轮复习专题探究课4立体几何中的高考热点问题理北师大版

四立体几何中的高考热点问题 (对应学生用书第127页) [命题解读] 立体几何是高考的重要内容,从近五年全国卷高考试题来看,立体几何每年必考一道解答题,难度中等,主要采用“论证与计算”相结合的模式,即首先利用定义、定理、公理等证明空间的线线、线面、面面平行或垂直,再利用空间向量进行空间角的计算,考查的热点是平行与垂直的证明、二面角的计算,平面图形的翻折,探索存在性问题,突出三大能力:空间想象能力、运算能力、逻辑推理能力与两大数学思想:转化化归思想、数形结合思想的考查. 空间点、线、面间的位置关系 空间线线、线面、面面平行、垂直关系常与平面图形的有关性质及体积的计算等知识交汇考查,考查学生的空间想象能力和推理论证能力以及转化与化归思想,一般以解答题的形式出现,难度中等. 用向量法证明平行、垂直、求空间角,通过建立空间直角坐标系,利用空间向量的坐标运算来实现,实质是把几何问题代数化,注意问题: (1)恰当建系,建系要直观;坐标简单易求,在图上标出坐标轴,特别注意有时要证 明三条轴两两垂直(扣分点). (2)关键点,向量的坐标要求对,把用到的点的坐标一个一个写在步骤里. (3)计算要认真细心,特别是|n|,n1、n2的运算. (4)弄清各空间角与向量夹角的关系. 如图1所示,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC =1,E,F分别是A1C1,BC的中点. 图1 (1)求证:平面ABE⊥平面B1BCC1; (2)求证:C1F∥平面ABE; (3)求三棱锥E-ABC的体积. [解] (1)证明:在三棱柱ABC-A1B1C1中,BB1⊥底面ABC,所以BB1⊥AB. 又因为AB⊥BC,BB1∩BC=B,所以AB⊥平面B1BCC1.又AB平面ABE,

立体几何中存在性问题教案.docx

教学背景分析 立体几何中常出现点的存在性和位置待定的问题,以“是否存在”、“是否有”、“在何位置”教学 等形式设问,以示结论有待于确定.文科主要涉及到平行与垂直的位置关系的考查,其中渗透反证 内容 法与分析法的解题思路,也是高考中的常见题型。2012 年北京市高考文科就考查了有关线面垂直的分析 存在性问题,2016 年北京市高考文科就考查了有关线面平行的存在性问题。 1、进一步熟悉空间直线与直线、直线与平面和平面与平面平行的位置关系;理解并掌握线面平行和 教学 面面平行的判定定理及性质定理,会运用定理解决与平行有关的存在性问题; 目标 2、通过对例题的分析,以及对问题的探究,会把空间问题转化为平面问题,尝试用不同的方法找到 需要确定的点、线、面,初步形成解决存在性问题的思路及方法; 3、感受“线线问题、线面问题、面面问题”之间的转化,逐步体会逻辑推理的严谨性。 学生情况 学生在前面立体几何的复习过程中,基本掌握了线线、线面、面面平行的判定与性质,碰到证明问题有一定的思路,但碰到存在性问题多以猜想特殊点的方法去尝试解决,并没从深层次上思考为什么去找这个位置。另外前面的复习过程中由于对反证法并没有过多的强调,所以在碰到结论是不存在的情况时,还不会叙述,不会写解题格式。 教学方法教学重点教学难点教学引导启发式 线线平行、线面平行、面面平行的相互转化 探索立体几何中(与平行有关的)存在性问题的解题思路,思考存在性问题的本质多媒体、几何画板课件 辅助手段

课题:立体几何中与平行有关的存在性问题 板书例题分析 设计问题 3:方法总结:问题 6: 教学步骤 教学过程 教师活动学生活动设计目的 一、热身训练 二、例题精讲判断下列命题是否正确,若不正确,请修改或 添加条件使结论成立. ①若 a / /b,b,则 a / /; ②若 a / / ,b,则 a / /b ; ③若 m / / , n / / , m, n,则 / /; ④若/ / , a,则 a / /; ⑤若/ / , m, n,则 m / / n . 例题:如图,在四棱锥P ABCD 中,底面 ABCD 是梯形,AB∥ CD ,AB 1 CD . 2 问题 1:请指出图中的线面平行的位置关系并选 择一组证明; 问题 2:AD∥平面PBC吗为什么 问题 3:过点A能做平面PBC 的平行线吗如果 能,请在图中作出一条或两条直线并证明. 回忆、思考、小组讨论 说明或操作演示为什么不正 确,如何改正 总结证明线线、线面、面面平 行的证明方法以及相互关系 P D C A B 梳理平行的相关知 识,为本节课的复 习内容作铺垫,加 强知识之间的联系 检验学生对定理的 理解程度 为例题及问题的证 明明确证明的思路 培养学生学习的自 主性 训练学生如何说明 结论不成立

以立体几何中探索性问题为背景的解答题(解析版)知识讲解

【名师综述】利用空间向量解决探索性问题 立体几何中的探索性问题立意新颖,形式多样,近年来在高考中频频出现,而空间向量在解决立体几何的探索性问题中扮演着举足轻重的角色,它是研究立体几何中的探索性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探索性问题提供了新的视角、新的方法.下面借“题”发挥,透视有关立体几何中的探索性问题的常见类型及其求解策略,希望读者面对立体几何中的探索性问题时能做到有的放矢,化解自如. 1.以“平行、垂直、距离和角”为背景的存在判断型问题是近年来高考数学中创新型命题的一个显著特点,它以较高的新颖性、开放性、探索性和创造性深受命题者的青睐.此类问题的基本特征是:要判断在某些确定条件下的某一数学对象(数值、图形等)是否存在或某一结论是否成立.“是否存在”的问题的命题形式有两种情况:如果存在,找出一个来;如果不存在,需要说明理由.这类问题常用“肯定顺推”的方法. 求解此类问题的难点在于:涉及的点具有运动性和不确定性.所以用传统的方法解决起来难度较大,若用空间向量方法来处理,通过待定系数法求解其存在性问题,则思路简单、解法固定、操作方便.解决与平行、垂直有关的存在性问题的基本策略是:通常假定题中的数学对象存在(或结论成立),然后在这个前提下进行逻辑推理,若能导出与条件吻合的数据或事实,说明假设成立,即存在,并可进一步证明;若导出与条件或实际情况相矛盾的结果,则说明假设不成立,即不存在.如本题把直二面角转化为这两个平面的法向量垂直,利用两法向量数量积为零,得参数p 的方程.即把与两平面垂直有关的存在性问题转化为方程有无解的问题. 2.与“两异面直线所成的角、直线与平面所成的角和二面角”有关的存在性问题,常利用空间向量法解决,可以避开抽象、复杂地寻找角的过程,只要能够准确理解和熟练应用夹角公式,就可以把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.事实说明,空间向量法是证明立体几何中存在性问题的强有力的方法. 【精选名校模拟】 1. 在四棱锥ABCD E -中,底面ABCD 是正方形,AC 与BD 交于点O ,⊥EC 底面ABCD ,F 为BE 的中点. (Ⅰ)求证:DE ∥平面ACF ; (Ⅱ)求证:AE BD ⊥;

高考数学立体几何中探索性问题

立体几何中探索性问题 立体几何中的探索性问题立意新颖,形式多样,近年来在高考中频频出现,而空间向量在解决立体几何的探索性问题中扮演着举足轻重的角色,它是研究立体几何中的探索性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探索性问题提供了新的视角、新的方法. 【例1】(2018?全国三模)如图,在三棱柱111ABC A B C -中,侧面11ABB A 是矩形,90BAC ∠=?,1AA BC ⊥, 124AA AC AB ===,且11BC AC ⊥. (1)求证:平面1ABC ⊥平面11A ACC ; (2)设D 是11A C 的中点,判断并证明在线段1BB 上是否存在点E ,使得//DE 平面1ABC .若存在,求二面角1E AC B --的余弦值. 【解答】证明:(1)在三棱柱111ABC A B C -中,侧面11ABB A 是矩形,1AA AB ∴⊥, 又1AA BC ⊥,AB BC B =,1AA ∴⊥平面ABC ,1A A AC ∴⊥. 又1A A AC =,11AC AC ∴⊥.又11 BC AC ⊥,111BC AC C =,1 AC ∴⊥平面1ABC , 又1A C ?平面11A ACC ,∴平面1ABC ⊥平面11A ACC . (2)当E 为1B B 的中点时,连接AE ,1EC ,DE ,如图,取1A A 的中点F ,连接EF ,FD , //EF AB ,1//DF AC ,又EF DF F =,1AB AC A =, ∴平面//EFD 平面1ABC ,则有//DE 平面1ABC . 设点E 到平面1ABC 的距离为d , AB AC ⊥,且1AA AB ⊥,AB ∴⊥平面11A ACC ,1AB AC ∴⊥, ∴1 1 22 BAC S =?= 1A A AC ⊥,AB AC ⊥,AC ∴⊥平面11A ABB , 11//AC AC ,11AC ∴⊥平面11ABB , ∴111 1118 2243323 C ABE ABE V S AC -?=??=????=, 由118 3 E ABC C ABE V V --== ,解得1 88 3 33ABC d S =? == 以A 为原点,AB 为x 轴,AC 为y 轴,1AA 为z 轴,建立空间直角坐标系,

2021新高考数学二轮总复习专题突破练18 立体几何中的翻折问题及探索性问题含解析

专题突破练18立体几何中的翻折问题及探索性问 题 1.(2020河北石家庄5月检测,18)如图1,在Rt△ABC中,∠C=90°,BC=AC=4,D,E分别是AC,AB边上的中点,将△ADE沿DE折起到△A1DE的位置,使A1C=A1D,如图 2. (1)求证:平面A1CD⊥平面A1BC; (2)求直线A1C与平面A1BE所成角的正弦值. 2. (2020贵州贵阳适应性训练,19)如图,在四棱锥P-ABCD中,四边形ABCD为正方形,且平面PAD⊥平面ABCD,F为棱PD的中点. (1)在棱BC上是否存在一点E,使得CF∥平面PAE?并说明理由; (2)若PA=PD=AB,求直线AF与平面PBC所成角的正弦值.

3.(2020浙江台州模拟,19)如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=3,AA1=2.以AB,BC 为邻边作平行四边形ABCD,连接DA1和DC1. (1)求证:A1D∥平面BCC1B1; (2)在线段BC上是否存在点F,使平面DA1C1与平面A1C1F垂直?若存在,求出BF的长;若不存在,请说明理由. 4.(2020云南昆明一中模拟,19)图1是由边长为4的正六边形AEFBCD,矩形DCGH组成的一个平面图形,将其沿AB,DC折起得几何体ABCD-EFGH,使得CG⊥AD,且平面EFGH∥平面ABCD,如图2.

(1)证明:在图2中,平面ACG⊥平面BCG; (2)设M为图2中线段CG上一点,且CM=1,若直线AG∥平面BMD,求图2中的直线BM与平面AHB 所成角的正弦值. 5.(2020北京通州一模,18)如图1,已知四边形ABCD为菱形,且∠A=60°,取AD中点为E.现将四边形EBCD沿BE折起至EBHG,使得∠AEG=90°,如图2. (1)求证:AE⊥平面EBHG; (2)求二面角A-GH-B的余弦值; (3)若点F满足=λ,当EF∥平面AGH时,求λ的值.

立体几何存在性问题解析

A B C D , AB DC , AB AD ⊥, 1AD =, AB , E 是PA 的中点, F 在线段AB 上, 且满足0CF BD ?=. 平面PBC PC B --的余弦值;)在线段PA 上是否存在点与平面PFC 所成角的余弦. 2.如图,已知长方形ABCD 中,, M 为DC 的中点。将ADM ? 沿AM 折起,使得平面ADM ⊥平面ABCM 。 (1)求证: ; (2是线段上的一动点,问点E 在何位置时,二面角的余弦值为55 。 3.如图,在四棱锥P —ABCD 中,底面ABCD 为菱形且∠DAB =60°,O 为AD 中点. (Ⅰ)若P A =PD ,求证:平面POB ⊥平面P AD ; (Ⅱ)若平面P AD ⊥平面ABCD ,且P A =PD =AD =2,试问在线段PC 上是否存在点M , 使二面角M —BO —C 的大小为60°,如存在,求 的值,如不存在,说明理由. 4.如图,在四棱锥 中,底面ABCD 是直角梯形,侧棱 底面ABCD ,AB 垂直于AD 和BC ,M 为棱SB 上的点, , . (1)若M 为棱SB 的中点,求证: 平面SCD ; (2)当 时,求平面AMC 与平面SAB 所成的锐二面角的余弦值; (3)在第(2)问条件下,设点N 是线段CD 上的动点,MN 与平面SAB 所成的角为θ,求当 取最大值时点N 的位置.

5.如图,在直三棱柱中,平面平面,且. (1)求证:; (2)若直线与平面所成的角为,求锐二面角的大小. 6.如图,在平行四边形中,,,,四边形为矩形,平面平面,,点在线段上运动,且. (1)当时,求异面直线与所成角的大小; (2)设平面与平面所成二面角的大小为(),求的取值范围. 7.如图,在四棱锥中,平面,四边形是菱形,,,是上任意一点。 (1)求证:; (2)当面积的最小值是9时,在线段上是否存在点,使与平面所成角的正切值为2?若存在?求出的值,若不存在,请说明理由

第九讲-立体几何中探索性问题的向量解法

立体几何中探索性问题的向量解法 高考中立体几何试题不断出现了一些具有探索性、开放性的试题。对于这类问题一般可用综合推理的方法、分析法、特殊化法和向量法来解决。立体几何引入空间向量后,可以借助向量工具,使几何问题代数化,降低思维的难度.尤其是在解决一些立体几何中的探索性问题时,更可以发挥这一优势. 本节课主要研究:立体几何中的存在判断型和位置探究型问题等探索性问题。 一、存在判断型 1、已知空间三点A (-2,0,2),B (-2,1,2),C (-3,0,3).设a =AB ,b =AC ,是否存在存在实数k ,使向量k a +b 与k a -2b 互相垂直,若存在,求k 的值;若不存在,说明理由。 解∵k a +b =k (0,1,0)+(-1,0,1)=(-1,k ,1),k a -2b =(2,k ,-2), 且(k a +b )⊥(k a -2b ), ∴(-1,k ,1)·(2,k ,-2)=k 2 -4=0. 则k=-2或k=2. 点拨:第(2)问在解答时也可以按运算律做. (k a +b )(k a -2b )=k 2a 2-k a ·b -2b 2= k 2 -4=0,解得k=-2或k=2. 2、 如图,已知矩形ABCD ,PA ⊥平面ABCD ,M 、N 分别是AB 、PC 的中点,∠PDA 为θ,能否确定θ,使直线MN 是直线AB 与PC 的公垂线?若能确定,求出θ的值;若不能确定,说明理由. 解:以点A 为原点建立空间直角坐标系A -xyz.设|AD|=2a ,|AB|=2b , ∠PDA=θ.则A(0,0,0)、B(0,2b ,0)、C(2a ,2b ,0)、D(2a ,0,0)、P(0, 0,2atan θ)、M(0,b ,0)、N(a ,b ,atan θ). ∴=(0,2b ,0),=(2a ,2b ,-2atan θ),=(a ,0,atan θ). ∵AB ·MN =(0,2b ,0)·(a ,0,atan θ)=0, ∴⊥.即AB ⊥MN. 若MN ⊥PC , 则·=(a ,0,atan θ)·(2a ,2b ,-2atan θ) =2a 2-2a 2tan 2θ=0. ∴tan 2θ=1,而θ是锐角. ∴tan θ=1,θ=45°. 即当θ=45°时,直线MN 是直线AB 与PC 的公垂线. 【方法归纳】对于存在判断型问题,解题的策略一般为先假设存在,然后转化为“封闭型”问题求解判断,若不出现矛盾,则肯定存在;若出现矛盾,则否定存在。这是一种最常用也是最基本的方法.

立体几何专题突破之《探究性问题》

《探究性问题》 考点动向 立体几何中的探究性问题既能够考查学生的空间想象能力,又可以考查学生的意志力及探究的能力.探究是一种科学的精神,因此,也是命题的热点.一般此类立体几何问题描述的是动态的过程,结果具有不唯一性或者隐藏性,往往需要耐心尝试及等价转化,因此,对于常见的探究方法的总结和探究能力的锻炼是必不可少的. 方法范例 例1 如图8-1,在棱长为1的正方体1111ABCD A BC D -中, P 是侧棱1CC 上的一点,CP m =. (1)试确定m ,使直线AP 与平面11BDD B 所 成角的正切值为 (2)在线段11AC 上是否存在一个定点Q ,使得对任意的m ,1D Q 在平面1APD 上的射影垂直于 AP ,并证明你的结论. 解析 本题的两问都充满了探究性,问题的情景具有运动变化的特点,此时,只需要确定某一个位置进行推理,其它作类似推理即可.即所谓的化动为静. 解法1 (1)连AC ,设A C B D O A P =,与面11BDD B 交于点G ,连OG .因为PC ∥面 11BDD B ,面11 BDD B 面APC OG =,故 O G P C ∥.所以122 m OG PC ==.又 1A O D B A O B B ,⊥ ⊥,所以AO ⊥面11BDD B .故AGO ∠即为AP 与面11BDD B 所成 A 1 D 图8-1 P 1A D 1 图8-2

的角.在Rt AOG △ 中,2tan 2 AGO m ∠==,即13m =.故当1 3m =时,直线AP 与 平面11BDD B 所成角的正切值为 (2)依题意,要在11AC 上找一点Q ,使得1D Q AP ⊥.可推测11AC 的中点1O 即为所 求的Q 点.因为1111111DO AC DO AA ,⊥⊥,所以11DO ⊥面11ACC A .又AP ?面11ACC A ,故11D O AP ⊥.从而11D O 在平面1AD P 上的射影与AP 垂直. 解法2(1)建立如图8-3所示的空间直角坐标系,则(100)(110)(01)A B P m ,,,,,,,,, 11(010)(000)(111)(001)C D B D ,,,,,,,,,,,. 所以1(110)(001)(11)(110)BD BB AP m AC =--==-=-,,,,,,,,,,,. 又由100AC BD AC BB ==,知,AC 为平面11BB D D 的一个法向量.设AP 与平面11BB D D 所成的角为θ,则 s i n c o s θθπ?? = - ?2?? 2 22AP AC AP AC m = = +. 2 2 2m = +,解得 13m = .故当1 3 m =时,直线AP 与平面11BDD B 所成角的正切值为 (2)若在11AC 上存在这样的点Q ,设此点的横坐标为 x ,则 1(11)(10)Q x x D Q x x -= -,,,,,.依题意,对任意的m 要使1D Q 在平面1APD 上的射影垂直于AP ,等价于111 0(1)02 D Q AP AP D Q x x x ?=?-+-=?=⊥.即Q 为11AC 的中点时,满足题设要求.

立体几何中的存在性问题

立体几何中的存在性问题 1、如图,在直四棱柱ABCD -A 1B 1C 1D 1中,已知DC =DD 1=2AD =2AB ,AD ⊥DC ,AB ∥DC . (1)求证:D 1C ⊥AC 1; (2)问在棱CD 上是否存在点E ,使D 1E ∥平面A 1BD .若存在,确定点E 位置;若不存在,说明理由. 2.如图所示,平面ABDE ⊥平面ABC ,△ABC 是等腰直角三角形,AC =BC =4,四边形ABDE 是直角梯 形,BD ∥AE ,BD ⊥BA ,BD =1 2AE =2,O ,M 分别为CE ,AB 的中点. (1)求证:OD ∥平面ABC ; (2)求直线CD 和平面ODM 所成角的正弦值; (3)能否在EM 上找一点N ,使得ON ⊥平面ABDE ?若能,请指出点N 的位置,并加以证明;若不能,请说明理由. 3、在如图所示的几何体中,底面ABCD 为菱形,∠BAD =60°,AA 1∥DD 1∥CC 1∥BE ,且AA 1=AB ,D 1E ⊥平面D 1AC ,AA 1⊥底面ABCD . (1)求二面角D 1-AC -E 的大小; (2)在D 1E 上是否存在点P ,使得A 1P ∥平面EAC ,若存在,求D 1P PE 的值,若不存在,说明理由. 立体几何中的存在性问题 1、如图,在直四棱柱ABCD -A 1B 1C 1D 1中,已知DC =DD 1=2AD =2AB ,AD ⊥DC ,AB ∥DC . (1)求证:D 1C ⊥AC 1; (2)问在棱CD 上是否存在点E ,使D 1E ∥平面A 1BD .若存在,确定点E 位置;若不存在,说明理由. 2.如图所示,平面ABDE ⊥平面ABC ,△ABC 是等腰直角三角形,AC =BC =4,四边形ABDE 是直角梯形,BD ∥AE ,BD ⊥BA ,BD =1 2AE =2,O ,M 分别为CE ,AB 的中点. (1)求证:OD ∥平面ABC ; (2)求直线CD 和平面ODM 所成角的正弦值; (3)能否在EM 上找一点N ,使得ON ⊥平面ABDE ?若能,请指出点N 的位置,并加以证明;若不能,请说明理由. 3、在如图所示的几何体中,底面ABCD 为菱形,∠BAD =60°,AA 1∥DD 1∥CC 1∥BE ,且AA 1=AB ,D 1E ⊥平面D 1AC ,AA 1⊥底面ABCD . (1)求二面角D 1-AC -E 的大小; (2)在D 1E 上是否存在点P ,使得A 1P ∥平面EAC ,若存在,求D 1P PE 的值,若不存在,说明理由.

高考数学专题04 立体几何的探索性问题(第三篇)(原卷版)

备战2020年高考数学大题精做之解答题题型全覆盖高端精品 第三篇 立体几何 专题04 立体几何的探索性问题 【典例1】【2020届江苏巅峰冲刺卷】 如图,在四棱锥P ABCD 中,P A ⊥平面ABCD ,∠ABC =∠BAD =90°,AD =AP =4,AB =BC =2,M 为PC 的中点. (1)求异面直线AP ,BM 所成角的余弦值; (2)点N 在线段AD 上,且AN =λ,若直线MN 与平面PBC 所成角的正弦值为4 5 ,求λ的值. 【典例2】【2020届江西省赣州市高三上学期期末考试】 如图,在平行四边形ABCD 中,2,4,60AB AD BAD ?==∠=,平面EBD ⊥平面ABD ,且 ,EB CB ED CD ==.

(1)在线段EA 上是否存在一点F ,使//EC 平面FBD ,证明你的结论; (2)求二面角A EC D --的余弦值. 【典例3】【北京市昌平区2020届高三期末】 如图,在四棱锥P ABCD -中,P A ⊥平面ABCD ,CD ⊥AD ,BC ∥AD ,1 2 BC CD AD == . (Ⅰ)求证:CD ⊥PD ; (Ⅰ)求证:BD ⊥平面P AB ; (Ⅰ)在棱PD 上是否存在点M ,使CM ∥平面P AB ,若存在,确定点M 的位置,若不存在,请说明理由. 【典例4】【2019届陕西省西安中学高三下学期第十二次重点考试】 在三棱锥P—ABC 中,PB ⊥平面ABC ,AB ⊥BC ,AB=PB =2,BC E 、G 分别为PC 、P A 的中点.

(1)求证:平面BCG ⊥平面P AC ; (2)假设在线段AC 上存在一点N ,使PN ⊥BE ,求 AN NC 的值; (3)在(2)的条件下,求直线BE 与平面PBN 所成角的正弦值 【典例5】【浙江省丽水市2020届模拟】 如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,AD BC ∥,90ABC ∠=?,1AB BC ==,2PA AD ==. (1)求证:CD ⊥平面PAC ; (2)在棱PC 上是否存在点H ,使得AH ⊥平面PCD ?若存在,确定点H 的位置;若不存在,说明理由. 【典例6】【江苏省苏州市实验中学2020届高三月考】 直四棱柱1111ABCD A B C D -中,2AB BC ==,90ABC ∠=?, E 、 F 分别为棱AB 、11B C 上的点,2AE EB =,112C F FB =.求证: (1)//EF 平面11AAC C ; (2)线段AC 上是否存在一点G ,使面EFG ⊥面11AAC C .若存在,求出AG 的长;若不存在,请说明理由. 【典例7】【山东省临沂市2019年普通高考模拟】 如图,底面ABCD 是边长为3的正方形,平面ADEF ⊥平面ABCD ,AF ∥DE ,AD ⊥DE ,AF =DE =

立体几何专题突破之《探究性问题》

立体几何专题突破之《探究性问题》 考点动向 立体几何中的探究性问题既能够考查学生的空间想象能力,又可以考查学生的意志力及探究的能力.探究是一种科学的精神,因此,也是命题的热点.一般此类立体几何问题描述的是动态的过程,结果具有不唯一性或者隐藏性,往往需要耐心尝试及等价转化,因此,对于常见的探究方法的总结和探究能力的锻炼是必不可少的. 方法范例 例1 如图8-1,在棱长为1的正方体1111ABCD A B C D -中,P 是侧棱1CC 上的一点,CP m =. (1)试确定m ,使直线AP 与平面11BDD B 所 成角的正切值为 (2)在线段11A C 上是否存在一个定点Q ,使得对任意的m ,1D Q 在平面1APD 上的射影垂直于 AP ,并证明你的结论. 解析 本题的两问都充满了探究性,问题的情景具有运动变化的特点,此时,只需要确定某一个位置进行推理,其它作类似推理即可.即所谓的化动为静. 解法1 (1)连AC ,设A C B D O A P =,与面11BDD B 交于点G ,连OG .因为PC ∥面 11BDD B ,面11 BDD B 面APC OG =,故 O G P C ∥.所以122m OG PC == .又1AO DB AO BB ,⊥⊥,所以AO ⊥面11BDD B .故AGO ∠即为AP 与面11BDD B 所成 A 1 图8-1 P 1A D 1 图8-2

的角.在Rt AOG △ 中,2tan 2 AGO m ∠==,即13m =.故当1 3m =时,直线AP 与 平面11BDD B 所成角的正切值为 (2)依题意,要在11A C 上找一点Q ,使得1D Q AP ⊥.可推测11A C 的中点1O 即为所 求的Q 点.因为1111111D O AC D O AA ,⊥⊥,所以11D O ⊥面11ACC A .又AP ?面11ACC A ,故11D O AP ⊥.从而11D O 在平面1AD P 上的射影与AP 垂直. 解法2(1)建立如图8-3所示的空间直角坐标系,则(100)(110)(01)A B P m ,,,,,,,,, 11(010)(000)(111)(001)C D B D ,,,,,,,,,,,. 所以1(110)(001)(11)(110)BD BB AP m AC =--==-=-,,,,,,,,,,,. 又由100AC BD AC BB ==,知,AC 为平面11BB D D 的一个法向量.设AP 与平面11BB D D 所成的角为 θ,则 s i n c o s θθπ?? = - ?2?? 2 2 2AP AC AP AC m = = +. 2 2 2m = +,解得 13m = .故当1 3 m =时,直线AP 与平面11BDD B 所成角的正切值为 (2)若在11A C 上存在这样的点Q ,设此点的横坐标为x ,则 1(11)(10) Q x x D Q x x -=-,,,,,.依题意,对任意的m 要使1D Q 在平面1APD 上的射影垂直于AP ,等价于111 0(1)02 D Q AP AP D Q x x x ?=?-+-=?=⊥.即Q 为11A C 的中点时,满足题设要求.

2020-2021学年高考数学二轮复习:第2部分_八大难点突破_难点2_立体几何中的探索性与存在性问题_有答案

难点二 立体几何中的探索性与存在性问题 (对应学生用书第65页) 数学科考试大纲指出,通过考试,让学生提高多种能力,其中空间想象能力是对空间形式的观察、分析、抽象的能力.要在立体几何学习中形成.立体几何中的探索性与存在性问题实质是对线面平行与垂直性质定理的考查. 探究性与存在性问题常常是条件不完备的情况下探讨某些结论能否成立,立体几何中的探究性与存在性问题既能够考查学生的空间想象能力,又可以考查学生的意志力及探究的能力. 1.对命题条件的探索 探索条件,即探索能使结论成立的条件是什么.对命题条件的探索常采用以下三种方法: (1)先猜后证,即先观察与尝试给出条件再给出证明; (2)先通过命题成立的必要条件探索出命题成立的条件,再证明充分性; (3)把几何问题转化为代数问题,探索出命题成立的条件. 【例1】 如图1,在四棱锥P -ABCD 中,AD ∥BC ,∠ADC =∠PAB =90°,BC =CD =12 AD ,E 为棱AD 的中点,异面直线PA 与CD 所成的角为90°. 在平面PAB 内找一点M ,使得直线CM ∥平面PBE ,并说明理由. 【导学号:56394092】

图1 [解] 在梯形ABCD中,AB与CD不平行.如图,延长AB,DC,相交于点M(M∈平面PAB),点M即为所求的一个点. 理由如下: 由已知,知BC∥ED,且BC=ED, 所以四边形BCDE是平行四边形, 从而CM∥EB. 又EB?平面PBE,CM?平面PBE, 所以CM∥平面PBE. (说明:延长AP至点N,使得AP=PN,则所找的点可以是直线MN上任意一点) [思路分析] 证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中的一条垂直于这个平面,则另一条也垂直于这个平面.解

立体几何存在性问题

立体几何存在性问题
未命名
一、解答题 1.在多面体
中,底面
是梯形,四边形
形,

,面
面,
.
.
(1)求证:平面
平面 ;
是正方
(2)设 为线段 上一点,
,试问在线段 上是否存在一点 ,使得
平面 ,若存在,试指出点 的位置;若不存在,说明理由?
(3)在(2)的条件下,求点 到平面 的距离.
2.如图,四棱锥
中,底面
是直角梯形,


,侧面 是等腰直角三角形,
,平面
平面
,点 分别是棱
上的点,平面 平面
(Ⅰ)确定点 的位置,并说明理由;
(Ⅱ)求三棱锥
的体积.
3.如图,在长方体
中,
,点 在棱 上,


点 为棱 的中点,过 的平面 与棱 为菱形.
交于 ,与棱 交于 ,且四边形
(1)证明:平面
平面

(2)确定点 的具体位置(不需说明理由),并求四棱锥
的体积.
4.如图 2,已知在四棱锥
中,平面
平面 ,底面 为矩形.
(1)求证:平面
平面 ;
(2)若 5.如图,三棱锥 点.
的三条侧棱两两垂直,
,试求点 到平面 的距离. , , 分别是棱 , 的中
(1)证明:平面
平面 ;
(2)若四面体 的体积为 ,求线段 的长.
6.如图,在四棱锥
中,



.

立体几何中的探索性问题-存在型问题配套练习

立体几何中的探索性问题-存在型问题配套练习 福州第三中学陈增 1. 如图,在三棱锥P?ABC中,PA⊥底面ABC,△ABC为正三角形,D、E分别是BC、CA的中点. (1)证明:平面PBE⊥平面PAC. (2)在BC上是否存在一点F,使AD//平面PEF?说明理由. 2. 如图,在三棱锥V?ABC中,VC⊥底面ABC,AC⊥BC,D是AB的中点,且AC=BC=a,∠VDC=θ(0<θ<π 2 ). (1)求证:平面VAB⊥平面VCD; (2)当角θ在(0,π 2)上变化时,求直线BC与平面VAB所成的角的取值范围. P C B A

立体几何中的探索性问题-存在型问题配套练习参考答案 福州第三中学陈增 1.解:(1)证明:∵PA⊥底面ABC,BE?平面ABC, ∴PA⊥BE. 又△ABC是正三角形,E是AC的中点, ∴BE⊥AC,又PA∩AC=A. ∴BE⊥平面PAC. 又BE?平面PBE,∴平面PBE⊥平面PAC. (2)存在满足条件的点F,且F是CD的中点. 理由:∵E、F分别是AC、CD的中点, ∴EF//AD. 而EF?平面PEF,AD?平面PEF, ∴AD//平面PEF. 2.解:(1)证明:因为AC=BC=a,所以△ACB是等腰三角形.又D是AB的中点,所以CD⊥AB. 又VC⊥底面ABC,所以VC⊥AB. 于是AB⊥平面VCD.又AB?平面VAB, 所以平面VAB⊥平面VCD. (2)在平面VCD内过点C作CH⊥VD于H,则由(1)知CH⊥平面VAB.连接BH, 于是∠CBH就是直线BC与平面VAB所成的角. 在Rt△CHD中,易知CH=√2 2 asinθ. 设∠CBH=φ,在Rt△BHC中,CH=asinφ, 所以√2 2 sinθ=sinφ. 因为0<θ<π 2,所以0

立体几何中的向量方法探究性问题

1.(湖北高考)如图,在四棱锥P—ABCD中, 底面ABCD为矩形,侧棱PA⊥底面ABCD, AB=3,BC=1,PA=2,E为PD的中点. (Ⅰ)求直线AC与PB所成角的余弦值;(Ⅱ)在侧面PAB内找一点N,使NE⊥面PAC,并求出N点到AB和AP的距离.

本小题主要考查线面关系和四棱锥等基础知识,同时考查空间想象能力和推理运算能力. 解法1:(Ⅰ)建立如图所示的空间直角坐标系, 则A 、B 、C 、D 、P 、E 的坐标为A (0,0,0)、 B ( 3,0,0)、C (3,1,0)、D (0,1,0)、 P (0,0,2)、E (0,2 1,1), 从而).2,0,3(),0,1,3( -== 设PB AC 与的夹角为θ,则 ,14 7 37 23cos == = θ ∴AC 与PB 所成角的余弦值为14 73 . (Ⅱ)由于N 点在侧面PAB 内,故可设N 点坐标为(x ,O ,z ),则 )1,2 1 ,(z x --=,由 NE ⊥面PAC 可得, ?????=+-=-??? ????=?--=?--?????=?=?.021 3,01.0)0,1,3()1,21,(,0)2,0,0()1,21,(. 0,0x z z x z x AC NE AP NE 化简得即 ∴?? ???==16 3 z x 即N 点的坐标为)1,0,6 3 (,从而N 点到AB 、AP 的距离分 别为1,6 3.

2.(湖北高考)如图1,45ACB ∠= ,3BC =,过动点A 作AD BC ⊥,垂足D 在线段BC 上且异于点B ,连接AB ,沿AD 将△ABD 折起,使90BDC ∠= (1)当BD 的长为多少时,三棱锥A BCD -的体积最大; (2)当三棱锥A BCD -的体积最大时,设点E , M 分别为棱BC ,AC 的中点,试在棱CD 上确 定一点N ,使得EN ⊥BM ,并求EN 与平面 BMN 所成角的大小. D A B C A D B 图 图1

立体几何中的存在性问题

立体几何中的存在性问题

————————————————————————————————作者:————————————————————————————————日期: ?

高中数学 立体几何 存在性问题专题 1.(天津理17) 如图,在三棱柱中, 是正方形的中心, ,平面,且 (Ⅰ)求异面直线AC 与A1B1所成角的余弦值; (Ⅱ)求二面角的正弦值; (Ⅲ)设为棱的中点,点在平面内,且平面,求线段的 长. 本小题主要考查异面直线所成的角、直线与平面垂直、二面角等基础知识,考查用空间向量解决立体几何问题的方法,考查空间想象能力、运算能力和推理论证能力.满分13分. 方法一:如图所示,建立空间直角坐标系,点B为坐标原点. 依题意得 (I)解:易得, 于是 所以异面直线AC 与A1B1所成角的余弦值为 (II)解:易知 设平面AA1C1的法向量, 则即 不妨令可得, 同样地,设平面A1B1C1的法向量, 111ABC A B C -H 11AA B B 122AA =1C H ⊥11AA B B 1 5.C H =111A AC B --N 11B C M 11AA B B MN ⊥11A B C BM (22,0,0),(0,0,0),(2,2,5)A B C -111(22,22,0),(0,22,0),(2,2,5)A B C 11(2,2,5),(22,0,0)AC A B =--=-11111142cos ,,3||||322AC A B AC A B AC A B ?= ==??2.3111(0,22,0),(2,2,5).AA AC ==--(,,)m x y z =11100m A C m AA ??=???=??2250,220.x y z y ?--+=??=??5,x =(5,0,2)m =(,,)n x y z =

立体几何中的开放探索性问题(教师版)教师版)2014.10.06

立体几何中的开放探索性问题 数学开放性题是近年高考命题的一个新的亮点,其解法灵活且具有一定的探索性,这类题型按解题目标的操作模式分为:规律探索型,问题探究型,数学建模型,操作设计型,情景研究型.如果是未知的是解题假设,那么就称为条件开放型;如果是未知的是解题目标,那么就称为结论开放型;如果是未知的是解题推理,那么就称为策略开放型.当然,作为数学高考试题中开放题其"开放度"是比较弱的,如何解答立体几何中的这类问题,还是通过实际例子加以说明. 一、 规律探索型 例1.1111ABCD A BC D - 是单位正方体,黑白两个蚂蚁从点A 出发沿棱向前爬行,每走完一条棱称为”走完一段”. 白蚂蚁的爬行路线是111AA A D →→ , 黑蚂蚁的爬行路线是 1AB BB →→ ,它们都依照如下规则:所爬行的第n+2段与第n 段所在直线必须是异面直线, 设黑白两个蚂蚁都走完2005段后各停止在正方体的某个顶点处,这时黑白两个蚂蚁的距离是多少? D 1C 1 规则黑蚂蚁的爬行路线是11D D D DA →→,走6段又回到出发点A 。故而它们的周期为6。20052005段后停止在正方体的B 顶点处,白蚂蚁走完2005 这类题为操 二、 操作设计型 例2.(Ⅰ)给出两块面积相同的正三角形纸片(如图1,图2),要求用其中一块剪拼成一个正三棱锥模型,另一块剪拼成一个正三棱柱模型,使它们的全面积都与原三角形的面积相等,请设计一种剪拼方法,分别用虚线标示在图1、图2中,并作简要说明; (Ⅱ)试比较你剪拼的正三棱锥与正三棱柱的体积的大小; (Ⅲ)(附加题)如果给出的是一块任意三角形的纸片(如图3),要求剪拼成一个直三棱柱模型,使它的全面积与给出的三角形的面积相等,请设计一种剪拼方法,用虚线标示在图3中,并作简要说明. 【分析】 本题主要考查空间想象能力、动手操作能力、探究能力和灵活运用所学知识解决现实问题的能力. 通过数学科的高考,倡导重视数学应用,是从1993年开始的,已经经历了十个年头.这些年来,尽管数学科高考中有关数学应用的试题存在这样那样的缺陷,但是它所倡导的加强数学学科与社会实际和生产实际的联系,引导考生置身于现实社会大环境中,关心身边的数学问题,具有良好的导向,也促进了中学数学教学加强数学应用的研究,推动数学教学改革.这种命题方向得到数学教育界的普遍肯定.回顾这些年来高考中有关数学应用的问题,所涉及的知识面上还存在

立体几何存在性问题

立体几何中的存在性问题 1、如图,已知直三棱柱111ABC A B C -,90ACB ∠=o ,E 是棱1CC 上动点,F 是AB 中点 ,2==BC AC ,41=AA . (Ⅰ)求证:CF ⊥平面1ABB ; (Ⅱ)当E 是棱1CC 中点时,求证:CF ∥平面1AEB ; (Ⅲ)在棱1CC 上是否存在点E ,使得二面角1A EB B -- 的大小是45o ,若存在,求CE 的长,若不存在,请 说明理由. 2、如图,在底面是正方形的四棱锥P-ABCD 中,PA ⊥面ABCD ,BD 交AC 于点E ,F 是PC 中点,G 为AC 上一点。 (Ⅰ)求证:BD ⊥FG ; (Ⅱ)确定点G 在线段AC 上的位置,使FG//平面PBD ,并说明理由; (Ⅲ)当二面角B-PC-D 的大小为 23 π 时,求PC 与底面ABCD 所成角的正切值。 G F E A P

3、在四棱锥P ABCD -中,侧面PCD ⊥底面ABCD ,PD CD ⊥,E 为PC 中点,底面ABCD 是直角梯形,//AB CD ,90ADC ∠=o ,1AB AD PD ===,2CD =. (Ⅰ)求证://BE 平面PAD ; (Ⅱ)求证:BC ⊥平面PBD ; (Ⅲ)设Q 为侧棱PC 上一点,PQ PC λ=u u u r u u u r ,试确定λ的值,使得二面角 Q BD P --为45o 4、如图,三棱柱111ABC A B C -中,侧面11AA C C ⊥底面ABC ,11 2,AA AC AC AB BC ====, 且AB BC ⊥,O 为AC 中点. (Ⅰ)证明:1A O ⊥平面ABC ; (Ⅱ)求直线1A C 与平面1A AB 所成角的正弦值; (Ⅲ)在1BC 上是否存在一点E ,使得//OE 平面1A AB ,若不存在,说明理由;若 存在,确定点E 的位置. A B C D E P 1 A B C O A 1 B 1

相关文档
相关文档 最新文档