文档库 最新最全的文档下载
当前位置:文档库 › mirna qRT-PCR

mirna qRT-PCR

mirna qRT-PCR
mirna qRT-PCR

Chapter16 Monitoring MicroRNA Expression During Embryonic

Stem-Cell Differentiation Using Quantitative

Real-Time PCR(qRT-PCR)

Xiaoping Pan,Alexander K.Murashov,Edmund J.Stellwag,

and Baohong Zhang

Abstract

Quantitative real-time PCR(qRT-PCR)is a reliable method to determine and monitor microRNA (miRNA)expression pro?les in different cells,tissues,and organisms.Although there are several different strategies for performing qRT-PCR to determine miRNA expression,all of them have two steps in com-mon:reverse transcription for obtaining cDNA from mature miRNA sequence and standard real-time PCR for ampli?cation of cDNA.This chapter demonstrates the application of TaqMan-based real-time PCR for determining miRNA expression pro?les during mouse embryonic stem-cell differentiation.In this method,a mature miRNA sequence is?rst reverse transcribed into a long cDNA with a40-to50-nt miRNA-speci?c stem-loop primer;then,a standard real-time PCR reaction is performed for determin-ing miRNA expression using a forward miRNA-speci?c primer,a universal reverse primer,and FAM dye-labeled TaqMan probes.

Key words:Embryonic stem cell,microRNA,quantitative real-time PCR,qRT-PCR,differentia-tion,gene expression.

1.Introduction

MicroRNAs(miRNAs)are a newly discovered class of

endogenous small RNAs that inhibit gene expression by binding

to their mRNA targets through complementary base pairing and

activation of an RNA degrading system or blockage of the pro-

tein translation machinery.The most common target sequences

for miRNAs are located in the3 untranslated regions(UTR)of

the target mRNAs but target sequences have also been identi?ed B.Zhang,E.J.Stellwag(eds.),RNAi and MicroRNA-Mediated Gene Regulation in Stem Cells,Methods in Molecular Biology650, DOI10.1007/978-1-60761-769-3_16,?Springer Science+Business Media,LLC2010

213

214Pan et al.

in the5 UTR and in the protein-coding regions(1–3).Perfect

complementary base-pair annealing between an miRNA and its

mRNA target usually leads to the cleavage of the mRNA whereas

imperfect base pairing results in inhibition of protein translation.

Currently,a total of10,833miRNAs have been identi?ed

and deposited in the miRNA database,miRBase(Release14at

September2009)(4);these miRNAs were obtained from115

animal,plant,or virus species.Of them,721,579,and325miR-

NAs were obtained from human,mouse,and rat,respectively.

Computational studies have shown that miRNAs potentially reg-

ulate more than30%of the protein-coding genes in humans

(5,6).However,these estimates are based on limited data and as

more miRNA are identi?ed,this number will likely increase signif-

icantly.An increasing body of evidence suggests that miRNAs reg-

ulate gene expression as well as play important functions in almost

all biological and metabolic processes,including signal transduc-

tion,development,disease,and response to environmental biotic

and abiotic stresses(7–9).More pertinent to the theme of this

book,recent studies have shown that miRNAs control stem-cell

maintenance and differentiation(10–13).Several investigations

have shown that a set of miRNAs are differentially expressed

in stem cells compared to other tissues and that these miRNAs

are also differentially expressed during stem-cell differentiation

(10–30).Thus,investigating the expression pro?les of miRNAs

during stem-cell maintenance and differentiation are critical for

understanding miRNA function in stem cells.

There are several existing approaches for determining miRNA

expression from different tissues and species,including North-

ern blotting,microarray,quantitative real-time PCR(qRT-PCR),

and most recently next-generation high-throughput sequencing.

Each method has both advantages and disadvantages for deter-

mining the expression level of miRNAs.Currently,qRT-PCR

has become one of the most powerful methods for determining

miRNA expression in a variety of biological and metabolic pro-

cesses.In this chapter,we will focus on a qRT-PCR protocol for

monitoring miRNA expression during mouse embryonic stem-

cell differentiation.

There are slight differences among different qRT-PCR pro-

tocols,with special considerations for those used to quantify

miRNAs.Experimental analysis demonstrates that TaqMan-based

real-time PCR quantitation of miRNAs is a reliable method for

determining miRNA expression.In particular,the TaqMan-based

system can be used to distinguish mature miRNAs from their pre-

cursor sequences as well as distinguish miRNAs in which there

are only a single nucleotide differences between the miRNAs

being compared(31).TaqMan-based qRT-PCR quanti?cation

of miRNAs includes two important steps:a reverse transcrip-

tion reaction initiated by a miRNA-speci?c stem-loop structure,

Monitoring miRNA Expression215

reverse transcription primer,followed by real-time quantitative

PCR reaction(31).Because mature miRNA sequences are very

short,predominately only about20–24nt in length,it is very

critical to achieve complete and accurate ampli?cation of the

miRNA sequence,which is ensured by the miRNA-speci?c stem-

loop reverse transcription primer.Then,the regular standard real-

time PCR will be employed to amplify the cDNA and monitor

the expression level of a selected miRNA.This method has been

widely used by different laboratories,including ours for determin-

ing and monitoring miRNA expression in a variety of animal and

plant species.

2.Materials

2.1.Cell Culture and Differentiation 1.Undifferentiated,pluripotent mouse embryonic stem(ES)

D3cell line was purchased from the American Type Cul-ture Collection(Manassas,VA).This cell line can be cul-tured in nutrient medium or stored in liquid nitrogen. 2.Knock-Out Dulbecco’s Modi?ed Eagle’s Medium

(DMEM)(Invitrogen,Carlsbad,CA,Cat.No.10829-018),for culturing of undifferentiated embryonic stem cells,supplemented with15%fetal bovine serum(ES grade,Invitrogen,Carlsbad,CA,Cat.No.16141-061). 3.Iscove’s Modi?ed Dulbecco’s Medium(Invitrogen,Carls-

bad,CA,Cat.No.21056-023)supplemented with15% fetal bovine serum(Invitrogen,Carlsbad,CA,Cat.No.

16000-036),used for differentiation of ES cells.

4.Neurobasal medium(Invitrogen,Carlsbad,CA,Cat.No.

21103-049)for maintenance of neuronal culture,supple-mented with B27(Invitrogen,Carlsbad,CA,Cat.No.

17504-044).

5.Penicillin–Streptomycin,liquid(Invitrogen,Carlsbad,CA,

Cat.No.15140-122).Use at a concentration of100 U/mL of penicillin and100μg/mL of streptomycin.Store aliquoted at–20?C for indicated period of time.

6.L-glutamine,200mM(100X)(Invitrogen,Carlsbad,CA,

Cat.No.25030-081).Dilute1:100to a?nal concentration of2mM.Store aliquoted at–20?C for indicated period of time.

7.MEM nonessential amino acids,100X solution(Invitro-

gen,Carlsbad,CA,Cat.No.11140-050).Dilute1:100to a?nal concentration of0.1mM.Store at4?C for indicated period of time.

216Pan et al.

8.1400U/mL murine leukemia inhibitory factor(Millipore,

Billerica,MA,Cat.No.LIF1010).Dilute to a?nal concen-

tration1400U/mL.Store at4?C up to12months.

9.2-Mercaptoethanol,1000X,liquid(Invitrogen,Carlsbad,

CA,Cat.No.21985-023).Dilute1:1000to?nal concen-

tration55μM.

10.Trans retinoic acid(Sigma,St.Lois,MO,Cat.No.R2625).

Prepare concentrated stock solution as follows:dissolve

50mg of retinoic acid in78mL of100%ethanol and4

mL distilled sterile water,2×10–3M.Then dilute10

μL of that stock with190μL of50%ethanol/water to

1×10?4M.Dilute to?nal concentration of1×10?6M.

Store stock solutions in the dark at4?C.

11.Phosphate-buffered saline(PBS)(Invitrogen,Carlsbad,

CA,Cat.No.10010-023).

12.0.05%Trypsin/EDTA,liquid(Invitrogen,Carlsbad,CA,

Cat.No.25300-054).Ready to use.Store aliquoted at

?20?C for indicated period of time.

13.RNAlater(Ambion,Austin,TX).Store at room tempera-

ture.

2.2.MiRNA Isolation 1.mir Vana TM miRNA Isolation kit(Ambion,Austin,TX).

a.MiRNA Wash solution1.Before usage,add21mL of

100%ethanol.MiRNA Wash Solution1contains guani-

dinium thiocyanate,which is a potential biohazard and

should be handled with caution.

b.Wash solutions2and3.Before the?rst usage,add40

mL of100%ethanol.This solution can be left at room

temperature for up to1month.For longer storage peri-

ods,store at4?C;but warm chilled solution up to room

temperature before use.

c.Collection tubes.Store at room temperature.

d.Filter cartridges.Store at room temperatur

e.

e.Lysis/binding buffer.Store at4?C.

f.MiRNA homogenate additive.Store at4?C.

g.Acid-Phenol:Chloroform.Store at4?C.Phenol is a poi-

son and an irritant and therefore gloves or other protec-

tion should be worn when handling this reagent.Dispose

phenol waste appropriately.

h.Elution solution or nuclease-free water.Preheated to

95?C when used and stored at4?C or room temperature.

2.100%RNase-free ethanol stored at room temperature.

Ethanol is?ammable,so handle and dispose it accordingly.

3.RNase-free water.

Monitoring miRNA Expression217

2.3.Quantitative Real-Time PCR (qRT-PCR)Analysis 1.TaqMan R microRNA Reverse Transcription Kit(Applied

Biosystems,Foster City,CA).All components should be stored at?20?C.All contents should be thawed on ice and centrifuged brie?y at low speed before using.

a.10X RT Buffer:May cause eye,skin,and respiratory irri-

tation;handle carefully.

b.dNTP mix with dTTP(100mM).

c.RNase inhibitor(20U/μL).

d.Multiscribe TM RT enzyme(50U/μL).

2.Nuclease-free water.

3.Stem-loop reverse transcription(RT)primers miRNAs of

interest(Applied Biosystems,Foster City,CA).

4.TaqMan2X Universal PCR Master Mix,No AmpErase

UNG(Applied Biosystems,Foster City,CA).

5.qRT Primers(Applied Biosystems,Foster City,CA).

3.Methods

To investigate the change of miRNA expression pro?les during ES

cell differentiation into a tissue-speci?c cell type;it is important to

maintain ES cells in an undifferentiated state prior to incubation

under differentiation-promoting conditions.We have employed

a standard method for the induction of pluripotent mouse ES

D3cells into neuronal cells.We employ TaqMan-based qRT-PCR

to measure the expression of miRNAs in both differentiated and

undifferentiated cells.

3.1.Cell Culture and Differentiation 1.Undifferentiated,pluripotent mouse ES D3cells are cul-

tured in gelatinized25-cm?asks in a medium consisting of Knock-out DMEM,15%fetal bovine serum–ES grade, 100U/mL penicillin,100μg/mL streptomycin,2mM L-glutamine,0.1mM nonessential amino acids,1400 U/mL murine leukemia inhibitory factor,and55μM2-mercaptoethanol(see Note1).

2.To induce differentiation,the medium is changed to differ-

entiation medium(Iscove’s Modi?ed Dulbecco’s Medium, 15%FBS,L-glutamine(2mM),nonessential amino acids

(0.1mM),100units/mL penicillin,100μg/mL strep-

tomycin)when the cells begin to form embryoid bodies (EBs)after1–2days of culture(see Note2).

3.The medium is refreshed every2days.At that time,transfer

cells into a15-mL tube and let them settle to the bottom of

218Pan et al.

the tube for10min.Aspirate medium,add fresh medium,

and carefully return the cells into the dish.

4.At day?ve,all-trans retinoic acid(Sigma,St.Lois,MO)

(1×10?6M)is added to the culture.The medium is

changed and RA treatment is repeated on day seven.

5.At day9,EBs are collected and seeded on poly-

l-ornithine/?bronectin-coated?ask in differentia-

tion/Neurobasal plus B27supplement1:1medium.

6.The next day,the medium is replaced with Neurobasal

medium plus B27supplement.

7.The cells are cultured for another3days.

8.In order to harvest the differentiated cells,the medium

is aspirated,cells are washed with PBS,and0.05%

Trypsin/EDTA is added.Cells are incubated for5min at

37?C and5%CO2.The?ask is gently taped to dislodge

cells,and then10mL of differentiation medium is added

to neutralize the trypsin.

9.Cells are transferred to a15-mL tube and centrifuged for

5min at220×g.

10.After centrifugation,cells are resuspended in2mL of Neu-

robasal medium and counted using hemacytometer.

11.The suspended cells are transferred into an RNase-free

Eppendorf centrifuge tube,centrifuged,and medium is

aspirated.

12.Cells are immediately frozen in liquid nitrogen(see

Note3).

13.Store cells in?80?C until RNA extraction.

3.2.MiRNA Isolation Total RNAs are isolated from each cell sample using mirVana TM

miRNA Isolation Kit(Ambion,Austin,TX)according to the

manufacture’s protocol.

1.Fresh or frozen cells(105–107)are washed by resuspension

in~1mL PBS and repelleting.Place the washed cells on

ice(see Note4).

2.Remove the PBS wash or the RNAlater(if cells are stored

in RNAlater).

3.Add500μL lysis/binding solution.Cells lyse immediately

upon exposure to the lysis/binding solution.

4.Vortex or pipet vigorously for5–10s to completely lyse the

cells and obtain a homogenous lysate.

5.Add60μL(1/10the volume of lysis/binding buffer)

miRNA homogenate additive to the homogenate and mix

well by vortexing for5–10s or inverting the tube several

times.

Monitoring miRNA Expression219

6.Keep the homogenate on ice for10min.

7.Add600μL acid-phenol/chloroform to each tube.The

volume is equal to the lysis/binding buffer before miRNA homogenate additive addition(see Note5).

8.Mix thoroughly by inverting or vortex the mixtures for

approximately30–60s.

9.Centrifuge the tube at10,000×g at room temperature

for5min to separate the aqueous phase from the organic phase.If the interface between the aqueous and organic phases is not compact after the centrifugation,a second round of centrifugation at the same speed and temperature should be performed to form a sharp interface.

10.Carefully remove the upper aqueous phase,being careful

not to disturb the lower organic phase,and transfer to

a new1.5-mL tube.Write down the total volume of the

upper aqueous phase transferred to the new samples. 11.Preheat elution solution or nuclease-free water to95?C for

later use in eluting the RNA from the?lter at the end of the procedure.

12.Add1.25volumes of the aqueous phase of room tempera-

ture100%ethanol to the aqueous phase.For example,if a total of500μL aqueous phase is recovered from step10, then575μL ethanol should be added.

13.Mix well by vortexing or inverting several times.

14.For each sample,place a?lter cartridge into a new collec-

tion tube provided with the kit.Pipet the lysate/ethanol solution onto the?lter cartridge.A maximum of700μL of the lysate/ethanol solution can be loaded into the?lter cartridge at any one time.If you have more than700μL of the solution,you can repeat the additions followed by centrifugation multiple times.

15.Centrifuge at10,000×g for about15s.Discard the?ow-

through and place the?lter cartridge back into the same tube.Repeat this procedure until all of the lysate/ethanol solution has passed through the?lter.

https://www.wendangku.net/doc/a26639698.html,e washing solution1to wash the?lter cartridge.Apply

700μL of miRNA washing solution1to the?lter cartridge and centrifuge for approximately5–10s.Dispense of the ?ow-through and place the?lter cartridge back into the same tube.

17.Apply500μL of miRNA wash solution2/3and centrifuge

the solution through the?lter cartridge as detailed in the previous step.

18.Repeat step17with a second aliquot with a volume of

miRNA wash solution2/3used in step17.

220Pan et al.

19.After discarding the?ow-through from the previous step,

put the?lter cartridge back into the same collection tube

and centrifuge the assembly for1min at10,000×g at

room temperature.This removes residual?uid from the

?lter.

20.Transfer the?lter cartridge to a newly marked collection

tube.

21.Apply100μL of preheated95?C elution solution or

nuclease-free water to the center of the?lter.

22.Incubate at room temperature for30s to1min.

23.Centrifuge the tube for20–30s at10,000×g to elute the

total RNAs from the?lter.

24.Remove the?lter cartridge and mix the recovered RNAs

by gently?icking the tube.

25.Brie?y centrifuge again to collect the entire RNA-

containing solution at the bottom of the tube.

https://www.wendangku.net/doc/a26639698.html,e a NanoDrop ND-1000(NanoDrop Technologies,

Wilmington,DE)to determine the quality and quantity

of the total RNAs(see Note6).

27.RNA samples are stored in a?80?C freezer until qRT-PCR

analysis.

3.3.Quantitative Real-Time PCR (qRT-PCR)Analysis A two-step TaqMan-based real-time PCR quanti?cation is emp-loyed to determine and monitor miRNA expression during mouse ES cell differentiation.In the?rst step,an miRNA-speci?c stem-loop primer will be used to reverse transcribe mature miRNA to a cDNA sequence using Multiscribe TM reverse transcriptase.

A standard real-time PCR will be employed to perform the second step for determining miRNA expression using a for-ward miRNA-speci?c primer,a universal reversed primer,and FAM dye-labeled TaqMan probes(31).During this protocol, mouse small RNA snoRNA135serves as a reference gene for calculating the relative expression levels of each targeted miRNA.

1.Take the TaqMan microRNA Reverse Transcription Kit

reagents and Reverse Transcription Primers(RT primers) out of the?20?C freezer.

2.Allow the kits and primers to thaw on ice.After thawing,

brie?y centrifuge to collect the reagents and primers in the bottom of the tubes.

3.In a PCR tube(0.2-mL tube),add the following amount of

reagents into one reaction for preparing a RT master mix:

4.16μL nuclease-free water,0.19μL RNase inhibitor,1.5

μL10×RT buffer,0.15μL dNTP mix(100mM),and

1.00μL reverse transcriptase enzyme.

Monitoring miRNA Expression221

4.Gently mix the reagents by?icking the tube and brie?y

centrifuge.

5.Place the RT master mix back on ice while preparing the

miRNA reaction.

6.Add100–500ng of total RNAs into each RT master mix

and then add RNase-free water to a total of14μL.

7.Add1μL of RT primers to the appropriate tube bringing

the total volume per tube to15μL.Gently mix the tube

by?icking and centrifuge brie?y.

8.Incubate for5min on ice or until ready to load the thermal

cycler.

9.The reaction is incubated at16?C for30min followed by

42?C for30min and85?C for5min.Finally,the reverse

transcription reaction holds at4?C.

10.After completion of the reverse transcription,add80μL of

nuclease-free water to the RT-PCR products(see Note7).

11.Prepare a master mix in a new0.2-mL PCR tube for real-

time PCR.In a new PCR tube,add the following compo-

nents to make a total of20μL volume reaction:6μL of

nuclease-free water,10μL of2×PCR mixture,2μL of

RT-PCR products(after addition of water),and2μL RT

Primer.Three replicates need to be run for each sample.

12.Load the PCR solution into a96-well PCR plate.

13.Brie?y centrifuge the plate to collect the PCR solution in

the bottom of the sample well in the plate

14.The reactions are incubated in a96-well plate at95?C for

10min,followed by40cycles of95?C for15s and60?C

for60s.This should take approximately2h.

15.After reactions have been completed,the threshold is man-

ually set and the threshold cycle(C T)is automatically

recorded.The C T is de?ned as the fractional cycle number

at which the?uorescence signal passes the?xed threshold

(31).All reactions are conducted in triplicate.

16.Based on the qRT-PCR results,the relative miRNA expres-

sion data are analyzed using the C T method and the

differentially expressed miRNAs are identi?ed.

4.Notes

1.To gelatinize?asks,add0.1%gelatin to a25-cm2

Falcon Tissue Culture Flask(Fisher,Pittsburg,PA,Cat.No.

353014)and incubate at room temperature for15min.

222Pan et al.

After treatment,aspirate the gelatin solution and air-dry

treated?asks for30min in the hood.

2.For differentiation of ES cells to neuronal cells,use BD Fal-

con Standard Dishes(Fisher,Pittsburg,PA,Cat No.08-

757-100D).Cells usually do not adhere to the bottom of the

dish.Seed approximately500,000ES cells per10mL of dif-

ferentiation medium to achieve optimal amount of embryoid

bodies.Resuspend cells carefully but thoroughly to generate

single-cell suspensions and minimize clumps.

https://www.wendangku.net/doc/a26639698.html,ing fresh cells will produce better results.If it is necessary

to store cells prior to the preparation of RNA,cells can be

stored in RNAlater,or they can be pelleted and immediately

frozen in liquid nitrogen.Then,these cells can be stored at

?70?C or colder.

4.Cells always need to be incubated on ice to inhibit RNase

and prevent RNA degradation.

5.Make sure to withdraw Acid-Phenol:Chloroform from the

lower phase of the bottle because the upper phase consists

of an aqueous buffer.The erroneous use of the upper phase

will likely generate very poor RNA yield and quality.

6.The mirVana TM miRNA Isolation Kit can be used to extract

both total RNAs or small RNAs.Here,the protocol pre-

sented is for isolating total RNAs because total RNAs is of

suf?cient quality to be used for qRT-PCR analysis.If you

need to isolate and enrich small RNAs,please refer to the

manufacture’s protocol.

7.After RT-PCR,the reverse transcription products must be

diluted by5–10folds to avoid the potential interference

from the high concentration of the stem-loop primer. Acknowledgments

This work was partially supported by East Carolina University

New Faculty Research Startup Funds Program(to BZ and XP)

and a Science and Engineering Grant from DuPont(to BZ). References

1.Ambros,V.(2001)microRNAs:Tiny reg-

ulators with great potential.Cell107, 823–826.

2.Bartel,D.P.(2004)microRNAs:Genomics,

biogenesis,mechanism,and function.Cell 116,281–297.3.Zhang,B.H.,Pan,X.P.,Cobb,G.P.,and

Anderson,T.A.(2006)Plant microRNA:A small regulatory molecule with big impact.

Dev Biol289,3–16.

4.Grif?ths-Jones,S.,Saini,H.K.,van Dongen,

S.,and Enright,A.J.(2008)miRBase:Tools

Monitoring miRNA Expression223

for microRNA genomics.Nucleic Acid Res 36,D154–D158.

5.Lewis,B.P.,Burge,C.B.,and Bartel,D.P.

(2005)Conserved seed pairing,often?anked by adenosines,indicates that thousands of human genes are microRNA targets.Cell 120,15–20.

6.Xie,X.H.,Lu,J.,Kulbokas,E.J.,Golub,

T.R.,Mootha,V.,Lindblad-Toh,K.,Lan-der,E.S.,and Kellis,M.(2005)Systematic discovery of regulatory motifs in human pro-moters and3 UTRs by comparison of several mammals.Nature434,338–345.

7.Zhang,B.H.,Wang,Q.L.,and Pan,X.

P.(2007)microRNAs and their regulatory roles in animals and plants.J Cell Physiol210, 279–289.

8.Ambros,V.(2004)The functions of animal

microRNAs.Nature431,350–355.

9.Williams,A.E.(2008)Functional aspects of

animal microRNAs.Cell.Mol Life Sci65, 545–562.

10.Zhang,B.H.,Pan,X.P.,and Anderson,T.

A.(2006)microRNA:A new player in stem

cells.J Cell Physiol209,266–269.

11.Wang,Y.L.,Keys, D.N.,Au-Young,J.

K.,and Chen,C.F.(2009)microRNAs in embryonic stem cells.J Cell Physiol218, 251–255.

12.Li,Q.T.,and Gregory,R.I.(2008)

microRNA regulation of stem cell fate.Cell Stem Cell2,195–196.

13.Hat?eld,S.,and Ruohola-Baker,H.(2008)

microRNA and stem cell function.Cell Tis-sue Res331,57–66.

14.Houbaviy,H.B.,Murray,M.F.,and Sharp,

P. A.(2003)Embryonic stem cell-speci?c microRNAs.Devl Cell5,351–358.

15.Forstemann,K.,Tomari,Y.,Du,T.T.,Vagin,

V.V.,Denli,A.M.,Bratu,D.P.,Klatten-hoff, C.,Theurkauf,W. E.,and Zamore, P.D.(2005)Normal microRNA maturation and germ-line stem cell maintenance requires loquacious,a double-stranded RNA-binding domain protein.Plos Biology3,1187–1201.

16.Gangaraju,V.K.,and Lin,H. F.(2009)

microRNAs:Key regulators of stem cells.

Nat Rev Mol Cell Biol10,116–125.

17.Greco,S.J.,and Rameshwar,P.(2007)

microRNAs regulate synthesis of the neurotransmitter substance P in human mesenchymal stem cell-derived neuronal cells.Proc Nat Acad Sci USA104, 15484–15489.

18.Hammond,S.M.,and Sharpless,N. E.

(2008)HMGA2,microRNAs,and stem cell aging.Cell135,1013–1016.

19.Hat?eld,S.D.,Shcherbata,H.R.,Fischer,

K.A.,Nakahara,K.,Carthew,R.W.,and

Ruohola-Baker,H.(2005)Stem cell divi-sion is regulated by the microRNA pathway.

Nature435,974–978.

20.Ivey,K.N.,Muth,A.,Amold,J.,King,F.

W.,Yeh,R.F.,Fish,J.E.,Hsiao,E.C., Schwartz,R.J.,Conklin,B.R.,Bernstein,H.

S.,and Srivastava,D.(2008)MicroRNA reg-ulation of cell lineages in mouse and human embryonic stem cells.Cell Stem Cell2, 219–229.

21.Kanellopoulou,C.,Muljo,S.A.,Kung,A.

L.,Ganesan,S.,Drapkin,R.,Jenuwein, T.,Livingston, D.M.,and Rajewsky,K.

(2005)Dicer-de?cient mouse embryonic stem cells are defective in differentiation and centromeric silencing.Genes Dev19, 489–501.

22.Krichevsky, A.M.,Sonntag,K. C.,Isac-

son,O.,and Kosik,K.S.(2006)Spe-ci?c microRNAs modulate embryonic stem cell-derived neurogenesis.Stem Cells24, 857–864.

23.Kuwabara,T.,Hsieh,J.,Nakashima,K.,

Taira,K.,and Gage, F.H.(2004)A small modulatory dsRNA speci?es the fate of adult neural stem cells.Cell116, 779–793.

https://www.wendangku.net/doc/a26639698.html,kshmipathy,U.,Love, B.,Goff,L. A.,

Jornsten,R.,Graichen,R.,Hart,R.P.,and Chesnut,J.D.(2007)microRNA expression pattern of undifferentiated and differentiated human embryonic stem cells.Stem Cells Dev 16,1003–1016.

25.Murchison,E.P.,Partridge,J.F.,Tam,O.

H.,Chelou?,S.,and Hannon,G.J.(2005)

Characterization of dicer-de?cient murine embryonic stem cells.Proc Nat Acad Sci USA 102,12135–12140.

26.Park,J.K.,Liu,X.,Strauss,T.J.,McKearin,

D.M.,and Liu,Q.H.(2007)The miRNA

pathway intrinsically controls self-renewal of Drosophila germline stem cells.Curr Biol 17,533–538.

27.Suh,M.R.,Lee,Y.,Kim,J.Y.,Kim,S.K.,

Moon,S.H.,Lee,J.Y.,Cha,K.Y.,Chung,

H.M.,Yoon,H.S.,Moon,S.Y.,Kim,V.N.,

and Kim,K.S.(2004)Human embryonic stem cells express a unique set of microRNAs.

Dev Biol270,488–498.

28.Tang,F.C.,Hajkova,P.,Barton,S.C.,Lao,

K.Q.,and Surani,M.A.(2006)microRNA expression pro?ling of single whole embry-onic stem cells.Nucleic Acids Res34,e9. 29.Wang,Y.,Baskerville,S.,Shenoy,A.,Babi-

arz,J. E.,Baehner,L.,and Blelloch,R.

(2008)Embryonic stem cell-speci?c microR-NAs regulate the G1-S transition and pro-mote rapid proliferation.Nat Genet40, 1478–1483.

224Pan et al.

30.Zou,G.M.,and Yoder,M.C.(2005)Appli-

cation of RNA interference to study stem cell function:current status and future perspec-tives.Biol Cell97,211–219.

31.Chen,C.F.,Ridzon,D.A.,Broomer,A.J.,

Zhou,Z.H.,Lee,D.H.,Nguyen,J.T.,Barbisin,M.,Xu,N.L.,Mahuvakar,V.R., Andersen,M.R.,Lao,K.Q.,Livak,K.J., and Guegler,K.J.(2005)Real-time quanti?-cation of microRNAs by stem-loop RT-PCR. Nucleic Acids Res33,e179.

图解blast验证引物教程

图解blast验证引物教程 1、进入网页:https://www.wendangku.net/doc/a26639698.html,/BLAST/ 2、点击Search for short, nearly exact matches 3、在search栏中输入引物系列: 注:文献报道ABCG2的引物为5’-CTGAGATCCTGAGCCTTTGG-3’; 5’-TGCCCATCACAACATCATCT-3’ (1)输入方法可先输入上游引物,进行blast程序,同样方法在进行下游引物的blast程序。这种方法叫繁琐,而且在结果分析特异性时要看能与上游引物的匹配的系列,还要看与下游引物匹配的系列——之后看两者的交叉。 (2)简便的做法是同时输入上下游引物:有以下两种方法。输入上下游引物系列都从5’——3’。 A、输入上游引物空格输入下游引物

B、输入上游引物回车输入下游引物 4、在options for advanced blasting中: select from 栏通过菜单选择Homo sapiens【ORGN】Expect后面的数字改为10 5、在format中: select from 栏通过菜单选择Homo sapiens【ORGN】Expect后面的数字填上0 10

6、点击网页中最下面的“BLAST!” 7、出现新的网页,点击Format! 果。

(1)图形格式: 图中①代表这些序列与上游引物匹配、并与下游引物互补的得分值都位于40~50分 图中②代表这些序列与上游引物匹配的得分值位于40~50分,而与下游引物不互补 图中③代表这些序列与下游引物互补的得分值小于40分,而与上游引物不匹配 通过点击相应的bar可以得到匹配情况的详细信息。 (2)结果信息概要: 从左到右分别为: A、数据库系列的身份证:点击之后可以获得该序列的信息 B、系列的简单描述 C、高比值片段对(high-scoring segment pairs, HSP)的字符得分。按照得分的高低由大到小排列。得分的计算公式=匹配的碱基×2+0.1。举例:如果有20个碱基匹配,则其得分为40.1。 D、E值:代表被比对的两个序列不相关的可能性。【The E value decreases exponentially as the Score (S) that is assigned to a match between two sequences increases】。E值最低的最有意义,也就是说序列的相似性最大。设定的E值是我们限定的上限,E值太高的就不显示了 E、最后一栏有的有UEG的字样,其中: U代表:Unigene数据库 E代表:GEO profiles数据库 G代表:Gene数据库

引物设计步骤与要点

引物设计step by step 1、在NCBI上搜索到目的基因,找到该基因的mRNA,在CDS选项中,找到编码区所在位置,在下面的origin中,Copy该编码序列作为软件查询序列的候选对象。 2、用Primer Premier5搜索引物 ①打开Primer Premier5,点击File-New-DNA sequence, 出现输入序列窗口,Copy目的序列在输入框内(选择As),此窗口内,序列也可以直接翻译成蛋白。点击Primer,进入引物窗口。 ②此窗口可以链接到“引物搜索”、“引物编辑”以及“搜索结果”选项,点击Search按钮,进入引物搜索框,选择“PCR primers”,“Pairs”,设定搜索区域和引物长度和产物长度。在Search Parameters里面,可以设定相应参数。一般若无特殊需要,参数选择默认即可,但产物长度可以适当变化,因为100~200bp的产物电泳跑得较散,所以可以选择300~500bp. ③点击OK,软件即开始自动搜索引物,搜索完成后,会自动跳出结果窗口,搜索结果默认按照评分(Rating)排序,点击其中任一个搜索结果,可以在“引物窗口”中,显示出该引物的综合情况,包括上游引物和下游引物的序列和位置,引物的各种信息等。 ④对于引物的序列,可以简单查看一下,避免出现下列情况:3’不要出现连续的3个碱基相连的情况,比如GGG或CCC,否则容易引起错配。此窗口中需要着重查看的包括:Tm 应该在55~70度之间,GC%应该在45%~55%间,上游引物和下游引物的Tm值最好不要相差太多,大概在2度以下较好。该窗口的最下面列出了两条引物的二级结构信息,包括,发卡,二聚体,引物间交叉二聚体和错误引发位置。若按钮显示为红色,表示存在该二级结构,点击该红色按钮,即可看到相应二级结构位置图示。最理想的引物,应该都不存在这些二级结构,即这几个按钮都显示为“None”为好。但有时很难找到各个条件都满足的引物,所以要求可以适当放宽,比如引物存在错配的话,可以就具体情况考察该错配的效率如何,是否会明显影响产物。对于引物具体详细的评价需要借助于Oligo来完成,Oligo自身虽然带有引物搜索功能,但其搜索出的引物质量感觉不如Primer5. ⑤在Primer5窗口中,若觉得某一对引物合适,可以在搜索结果窗口中,点击该引物,然后在菜单栏,选择File-Print-Current pair,使用PDF虚拟打印机,即可转换为Pdf文档,里面有该引物的详细信息。 3、用Oligo验证评估引物 ①在Oligo软件界面,File菜单下,选择Open,定位到目的cDNA序列(在primer中,该序列已经被保存为Seq文件),会跳出来两个窗口,分别为Internal Stability(Delta G)窗口和Tm窗口。在Tm窗口中,点击最左下角的按钮,会出来引物定位对话框,输入候选的上游引物序列位置(Primer5已经给出)即可,而引物长度可以通过点击Change-Current oligo length来改变。定位后,点击Tm窗口的Upper按钮,确定上游引物,同样方法定位下游引物位置,点击Lower按钮,确定下游引物。引物确定后,即可以充分利用Analyze 菜单中各种强大的引物分析功能了。

]Oligo设计教程

Oligo 设计教程 在正式进行引物设计前,我们首先面临的一个任务就是向Oligo 程序导入模板序列,根据不同的实验情况,导入模板有三种方法:1,直接用键盘输入: a,点击file菜单中的New Sequence 浮动命令,或直接点击工具栏中的New Sequence命令,进入序列展示窗口; b,此时即可键入DNA序列; c,如果需要的话,Oligo提供碱基回放功能,在边键入时边读出碱基,防止输入错误。点击Edit菜单中的“Readback on”即可。 2,利用复制和粘贴:当我们序列已经作为TXT文件存在或其它oligo不能直接open的文件格式,如word文件.html格式,这个功能就显得很有用了。在相应文件中复制序列后在序列展示窗口粘贴,oligo会自动去除非碱基字符。当序列输入或粘贴完成后,点击Accept/Discard菜单中的Accept浮动命令,即可进入引物设计模式。 3,如果序列已经保存为Seq格式或者FASTA,GenBank格式时,oligo就可以直接打开序列文件。 点击File菜单中的“Open”浮动命令,找到所需文件,打开即可。

进入引物设计模式后,oligo一般会弹出三个窗口,分别是6-碱基频率窗口,碱基退火温度窗口以及序列内部碱基稳定性窗口,其中的退火温度窗口是我们引物设计的主窗口,其它的两个窗口则在设计过程中起辅助作用,比如6-碱基频率窗口可以使我们很直观地看到所设计引物在相应物种基因组中的出现频率,如果我们的模板是基因组DNA或混合DNA时,该信息就显得有用了,而内部稳定性窗口则可以显示引物的5’端稳定性是否稍高于3’端等。 一,普通引物对的搜索: 以Mouse 4E(cDNA序列)为例。我们的目的是以Mouse 4E (2361 bp)为模板,设计一对引物来扩增出600-800bp长的PCR产物。 1,点击“Search“菜单中的”For Primers and Probes“命令,进入引物搜索对话框; 2,由于我们要设计的是一对PCR引物,因此正、负链的复选框都要选上,同时选上Compatible pairs。 在Oligo默认的状态下,对此引物对的要求有:a,无二聚体;b,3’端高度特异,GC含量有限定,d,去除错误引发引物等。3,剩下的工作是确定上、下游引物的位置及PCR产物的长度以及引物设计参数。 ①单击:“search Ranges”按钮,弹出“Search Ranges”对

图解blast验证引物教程1

图解blast 验证引物教程 ——以文献报道的人类的ABCG2的引物为例 1、 进入网页:https://www.wendangku.net/doc/a26639698.html,/BLAST/ 2、 点击Basic BLAST 中的nucleotide blast 选项 3、 完成2操作后就进入了Basic Local Alignment Search Tool 界面 (1)在Enter Query Sequence 栏中输入引物序列: 注:文献报道ABCG2的引物为5’-CTGAGATCCTGAGCCTTTGG-3’; 5’-TGCCCATCACAACATCATCT-3’ 简便的做法是同时输入上下游引物。输入上下游引物系列都从5’— 3’。 输入上游引物后,加上≥20个字母n ,再输入下游引物,如下图: 生 物 秀

(2)在Choose Search Set 栏中: Database 根据预操作基因的种属定了,本引物可选Human genomic + transcript 或Others (nr etc.)。本人倾向于选后者,觉得此库信息更多。如下图: (3)在Program Selection 中:选择Somewhat similar sequences (blastn)项,如下图: (4)在此界面最下面:如下图 生物秀-专心做生物 w w w .b b i o o .c o m

Show results in a new window 项是显示界面的形式,可选可不选,在此我们选上了。关键要点击Algorithm parameters 参数设置,进入参数设置界面。 4. 参数设置: (1)在General Parameters 中:Expect thresshold 期望阈值须改为1000,大于1000也可以;在Word size 的下拉框将数字改为7。如下图: (2)Scoring Parameters 无须修改 (3)Filters and Masking 中,一般来说也没有必要改 5.点击最下面一栏的BLAST 按钮,如图: 6.点击BLAST 按钮后,跳转出现如下界面: 7. 等待若干秒之后,自动跳转出现显示BLAST 结果的网页。该网页用三种形式来显示blast 的结果。 生物秀-专心做生物 w w w .b b i o o .c o m

SnapGene中文使用教程

SnapGene使用教程 一、SnapGene中的几个View介绍 View1:Map 1.打开一个质粒图谱文件,在Topology option处选择circular。得如下界面: 显示质粒图谱的酶切位点。右侧箭头可显示不同厂家出售的酶。 显示质粒图谱的开放阅读框及转录方向。点击其显示的箭头可显示该 ORF的片段大小、GC%值等一些信息。 显示片段名称。 △给非编码序列命名:如多克隆位点。先找到质粒图谱中的多克隆位点的第一个酶切位点和最后一个酶切位点。点击左侧sequence ,找到两个酶切位点之间的序列。 View2:Sequence 点击Sequence,得到如下界面:

显示编码的氨基酸序列,有缩写和全写两种。 View3:Enzymes 点击Enzymes,得到如下界面: View4:Features 点击Features,得到如下界面: 显示各个已命名片段的一些特点。 二、对片段进行注释 1.给编码序列命名: 点击其中一个箭头,按Feature→Add Translated Feature,弹出以下窗口:

Feature:给该片段命名。 Type:选择该片段的类型,右侧箭头代表阅读方向。 Color:选择颜色。 2.给非编码序列命名: 如多克隆位点。先找到质粒图谱中的多克隆位点的第一个酶切位点和最后一个酶切位点。点击左侧sequence ,找到两个酶切位点之间的序列。 3.给质粒图谱增加引物序列: 按Edit→Find,输入引物序列,找到质粒序列对应位置,点击Primers→Add primer,弹出该界面: 按上下游引物选择Top Strand还是Bottom Strand,在Primer处可给该引物命名,随后即可显示该引物在图谱Map中的位置。 三、创建新DNA文件 1.打开SnapGene,点击New DNA File,弹出以下窗口:

CRISPR操作-在线设计gRNA教程

CRISPR操作-gRNA设计教程 我们都知道一个基因(一个基因ID)往往可以编码多个转录本(多个NM 号),相应的也对应多个蛋白质(多个NP号)。一条mRNA上编码蛋白质的区域称为CDS(coding sequence)。一个基因产生的多个mRNA往往有部分区域是重叠的(图4a红框内的区域),这部分重叠的区域叫做保守的CDS (consensus CDS),简称CCDS。我们通过基因组编辑破坏一个基因,往往需要破坏所有的mRNA编码的蛋白,因此,我们选择编辑的位点通常位于CCDS区域的上游位置(靠近起始密码子ATG的位置)。编辑的目的是在CDS区域随机引入碱基的缺失或插入(indels),如此可以破坏三联密码子的阅读框,产生移码突变(图4b)。 图4CCDS和移码突变示意图。a,方框代表外显子组织情况,黑色方框代表CDS区,红色框内是该基因对应的CCDS;b,移码突变。一个T碱基的插入改变了阅读框,最终导致终止密码子的提前出现,蛋白质翻译提前终止。移码突变往往导致蛋白质功能丧失。 SgRNA设计的站点介绍如下: 着重推荐Lei Stanley Qi Lab的 https://www.wendangku.net/doc/a26639698.html,/index.jsp (打不开请复制到浏览器地址栏) 这个在线站点功能比第一个丰富,可以选择基因编辑工具的其他用途

(激活,抑制基因表达等)(图5)。下一步就是选择物种(图6)。但只有常见的9种。再下一步就是直接输入基因的名称(或序列)即可(图7)。 图5选择编辑类型

图6选择物种 图7选择基因名称。 我们以人的LDLR基因作为例子说明,输入“LDLR“,然后点击“CRISPR-ERA search”,会出来很多设计好的sgRNA(图8),ID编号#1-N(紫色框),后面一系列参数代表sgRNA对应的mRNA、基因组位置等。绿色框里代表打分,简而言之是E+S分越高越好。但这个不是很直观,我们可以切换到图示模式,请点击红色框的链接查看排名前50位的sgRNA在基因组上对应的位置(图9)。图示模式是兼容在UCSC基因组浏览器中的,这一工具包含的信息特别丰富,大家可以自己探索探索其他好玩的功能。

图解blast验证引物教程

图解blast验证引物教程 ——以文献报道的人类的ABCG2的引物为例 1、进入网页:https://www.wendangku.net/doc/a26639698.html,/BLAST/ 2、点击Search for short, nearly exact matches 3、在search栏中输入引物系列: 注:文献报道ABCG2的引物为5’-C TGAGATCC TGAGCCTTTGG-3’; 5’-TGCCCATCACAAC ATCATC T-3’ (1)输入方法可先输入上游引物,进行blast程序,同样方法在进行下游引物的blast程序。这种方法叫繁琐,而且在结果分析特异性时要看能与上游引物的匹配的系列,还要看与下游引物匹配的系列——之后看两者的交叉。 (2)简便的做法是同时输入上下游引物:有以下两种方法。输入上下游引物系列都从5’——3’。

A、输入上游引物空格输入下游引物 B、输入上游引物回车输入下游引物 4、在options for advanced blasting中: select from 栏通过菜单选择Homo sapiens【ORGN】Expect后面的数字改为10

5、在format中: select from 栏通过菜单选择Homo sapiens【ORGN】Expect后面的数字填上0 10

6、点击网页中最下面的“BLAST!” 7、出现新的网页,点击Format! 8、等待若干秒之后,出现results of BLAST的网页。该网页用三种形式来显示blast的结果。(1)图形格式:

图中①代表这些序列与上游引物匹配、并与下游引物互补的得分值都位于40~50分 图中②代表这些序列与上游引物匹配的得分值位于40~50分,而与下游引物不互补 图中③代表这些序列与下游引物互补的得分值小于40分,而与上游引物不匹配 通过点击相应的bar可以得到匹配情况的详细信息。 (2)结果信息概要: 从左到右分别为: A、数据库系列的身份证:点击之后可以获得该序列的信息 B、系列的简单描述 C、高比值片段对(high-scoring segment pairs, HSP)的字符得分。按照得分的高低由大到小排列。得分的计算公式=匹配的碱基×2+0.1。举例:如果有20个碱基匹配,则其得分为40.1。 D、E值:代表被比对的两个序列不相关的可能性。【The E value decreases exponentially as the Score (S) that is assigned to a match between two sequences increases】。E值最低的最

oligo 使用教程及心得

在正式进行引物设计前,我们首先面临的一个任务就是向Oligo程序导入模板序列,根据不同的实验情况,导入模板有三种方法: 1,直接用键盘输入: a,点击file菜单中的New Sequence 浮动命令,或直接点击工具栏中的New Sequence 命令,进入序列展示窗口; b,此时即可键入DNA序列; c,如果需要的话,Oligo提供碱基回放功能,在边键入时边读出碱基,防止输入错误。点击Edit菜单中的“Readback on”即可。 2,利用复制和粘贴:当我们序列已经作为TXT文件存在或其它oligo不能直接open 的文件格式,如word文件.html格式,这个功能就显得很有用了。在相应文件中复制序列后在序列展示窗口粘贴,oligo会自动去除非碱基字符。当序列输入或粘贴完成后,点击Accept/Discard菜单中的Accept浮动命令,即可进入引物设计模式。 3,如果序列已经保存为Seq格式或者FASTA,GenBank格式时,oligo就可以直接打开序列文件。 点击File菜单中的“Open”浮动命令,找到所需文件,打开即可。 进入引物设计模式后,oligo一般会弹出三个窗口,分别是6-碱基频率窗口,碱基退火温度窗口,以及序列内部碱基稳定性窗口.其中的退火温度窗是我们引物设计的主窗,其它的两个窗口则在设计过程中起辅助作用,比如6-碱基频率窗口可以使我们很直观地看到所设计引物在相应物种基因组中的出现频率,如果我们的模板是基因组DNA或混合DNA时,该信息就显得有用了,而内部稳定性窗口则可以显示引物的5’端稳定性是否稍高于3’端等。 一,普通引物对的搜索: 以Mouse 4E(cDNA序列)为例。我们的目的是以Mouse 4E(2361 bp)为模板,设计一对引物来扩增出600-800bp长的PCR产物。 1,点击“Search“菜单中的”For Primers and Probes“命令,进入引物搜索对话框; 2,由于我们要设计的是一对PCR引物,因此正、负链的复选框都要选上,同时选上Compatible pairs. 在Oligo默认的状态下,对此引物对的要求有:a,无二聚体;b,3’端高度特异,GC 含量有限定,d,去除错误引发引物等。 3,剩下的工作是确定上、下游引物的位置及PCR产物的长度以及引物设计参数。 ①单击:“search Ranges”按钮,弹出“Search Ranges”对话框。输入上游引物的范围:1-2000,下游引物的位置:100-2300;PCR产物的长度600-800bp。 ②单击“Paramaters”按钮进入“Search Parameters”对话框,对话框种分三个活页,分别是:不同设定,参数以及更多参数。 ③在“普通设定”窗口,为我们提供了对引物非常直观的设定方法,从高到低分六个等级,最后还有一个用户定制选项。 ④当我们对引物的各种参数的含义及应该设定多大值并不是特别清楚时,就可以直接设定Very high/High等来完成对引物设计参数的设定。 ⑤当我们选中“Automatically Change String”后,Oligo会在引物搜索过程中:如果在高等级设定中无法找到引物对时自动降低一个定级来进行搜索,知道找到引物对。在设计反向PCR引物对时,就选中“Inverse PCR”复选框。 ⑥我们还可以让引物的长度可以改变,以适应设定的Tm值或PE?(Prime Effitions,

在线引物设计教程

在线引物设计 https://www.wendangku.net/doc/a26639698.html,/cgi-bin/web-primer (https://www.wendangku.net/doc/a26639698.html,/bbs/thread/8276490#8276490) The Saccharomyces Genome Database (SGD) provides comprehensive integrated biological information for the budding yeast Saccharomyces cerevisiae along with search and analysis tools to explore these data, enabling the discovery of functional relationships between sequence and gene products in fungi and higher organisms. 首先输入你想要p的片断,含有数字也无所谓,选择pcr选项。

点击“submit”进入下面的页面。 其中在Select YES to Amplify a region with EXACT endpoints of the DNA sequence entered NO YES这一项中,一定要选择yes,其他的各项目,大家可以点击查看说明,也都是非常的好理解。暂时,我们先不要改软件自设的默认值,直接submit

然后我们就得到了结果,它会把所有可能的引物都会列出来,而且会把最好的一对帮你挑选出来,of course,我们要选择最好的。 当然这是最顺利的情况,但是有时并不是这么简单,例如我前两天帮一个战友设计引物,他想要的序列: atcgat cagattatca aataatatac caaaattgat acatatgata catatgaatg 721 atatatgttt tggatatatt atttgttaaa attaattcat caggtgatga tgtgatgata 781 atcattgaaa aatgacaaaa atcccctgat taagtataat aaaaatagta agtaaaaaag 841 gcaaattttt acttacaaaa tattacatat tggaataaat aatttaatct ttcatatata 901 taactgtgat acatcataaa tatatatata gcaaaagaaa gatataaatt attatcattt 961 tttttgatca ttattgctat aattattatc ctgcttgttt aactataata atagcaatga 1021 atgaatcaaa atttaaatga tacgttaaaa tccaaccaat atgttataaa ttttctttca 1081 ttt

Oligo引物设计使用手册

引物分析著名软件,主要应用于核酸序列引物分析设计软件,同时计算核酸序列的杂交温度(Tm)和理论预测序列二级结构。 点击查看生.物.秀实验频道与引物设计相关的文章 Oligo使用方法介绍 作为目前最好、最专业的引物设计软件,Oligo的功能很强,在这里我们介绍它的一些主要功能:如:普通引物对的搜索、测序引物的设计、杂交探针的设计以及评估引物对质量等等。在正式进行引物设计前,我们首先面临的一个任务就是向Oligo程序导入模板序列,根据不同的实验情况,导入模板有三种方法: 1,直接用键盘输入: a,点击file菜单中的New Sequence 浮动命令,或直接点击工具栏中的New Sequence 命令,进入序列展示窗口; b,此时即可键入DNA序列; c,如果需要的话,Oligo提供碱基回放功能,在边键入时边读出碱基,防止输入错误。点击Edit菜单中的“Readback on”即可。 2,利用复制和粘贴:当我们序列已经作为TXT文件存在或其它oligo不能直接open的文件格式,如word文件.html格式,这个功能就显得很有用了。在相应文件中复制序列后在序列展示窗口粘贴,oligo会自动去除非碱基字符。当序列输入或粘贴完成后,点击Accept/Discard菜单中的Accept浮动命令,即可进入引物设计模式。 3,如果序列已经保存为Seq格式或者FASTA,GenBank格式时,oligo就可以直接打开序列文件。wpe.mB0A .

点击File菜单中的“Open”浮动命令,找到所需文件,打开即可。 进入引物设计模式后,oligo一般会弹出三个窗口,分别是6-碱基频率窗口,碱基退火温度窗口以及序列内部碱基稳定性窗口,其中的退火温度窗口是我们引物设计的主窗口,其它的两个窗口则在设计过程中起辅助作用,比如6-碱基频率窗口可以使我们很直观地看到所设计引物在相应物种基因组中的出现频率,如果我们的模板是基因组DNA或混合DNA时,该信息就显得有用了,而内部稳定性窗口则可以显示引物的5’端稳定性是否稍高于3’端等。一,普通引物对的搜索: 以Mouse 4E(cDNA序列)为例。我们的目的是以Mouse 4E(2361 bp)为模板,设计一对引物来扩增出600-800bp长的PCR产物。 1,点击“Search“菜单中的”For Primers and Probes“命令,进入引物搜索对话框; 2,由于我们要设计的是一对PCR引物,因此正、负链的复选框都要选上,同时选上Compatible pairs。 在Oligo默认的状态下,对此引物对的要求有:a,无二聚体;b,3’端高度特异,GC含量有限定,d,去除错误引发引物等。 3,剩下的工作是确定上、下游引物的位置及PCR产物的长度以及引物设计参数。n"\ 3i].x ①单击:“search Ranges”按钮,弹出“Search Ranges”对话框。输入上游引物的范围:1-2000,下游引物的位置:100-2300;PCR产物的长度600-800bp。 ②单击“Paramaters”按钮进入“Search Parameters”对话框,对话框种分三个活页,分别是:不同设定,参数以及更多参数。 ③在“普通设定”窗口,为我们提供了对引物非常直观的设定方法,从高到低分六个等级,最后还有一个用户定制选项。 ④当我们对引物的各种参数的含义及应该设定多大值并不是特别清楚时,就可以直接设定Very high/High等来完成对引物设计参数的设定。 ⑤当我们选中“Automatically Change String”后,Oligo会在引物搜索过程中:如果在高等级设定中无法找到引物对时自动降低一个定级来进行搜索,知道找到引物对。在设计反向PCR 引物对时,就选中“Inverse PCR”复选框。 ⑥我们还可以让引物的长度可以改变,以适应设定的Tm值或PE?(Prime Effitions,引发效率)。也可以限定所选引物对的最大数目。 ⑦在“Parameters”窗口中,实际上需要我们改动的只有引物的长度,根据试验的要求作相应

针对外显子设计PCR测序引物教程

针对外显子设计PCR测序引物教程 在园子搜索后,没有看到长基因(大与1000base)最简洁方法,而我现在欧洲实验室里从事这方面工作,作了大量这方面的工作。自乐不如同乐,愿将我们设计引物技巧与大家分享,敲字很辛苦,请斑竹给点分。可能有战友说了,我们的长基因都是交给测序公司用鸟枪法来测全基因的。当然,您有钱当然可以这样做。我们的方法适用于基因测序筛查突变,步骤相对简便,比较经济。另外,本实验室最近的一偏文章采用该法发在了NEMJ上,可见该法已经是经典成熟的。 (1)基础知识 我们知道gDNA由非编码区,外显子,内含子构成。我们关心的基因是否突变在非编码区,外显字以及临近外显子的一小段内含子上。至于其他的内含子(gDNA中的大头),发生突变与否并不是我们关心的,其临床意义也相当小。因此我们只要设计引物来PCR上面三个重点区域就可以了。 (2)设计软件 在线设计软件exon primer http://ihg2.helmholtz-muenchen.de/ihg/ExonPrimer.html 大家从上图可以看到,网页提示我们现在需要输入两个序列,一个是cDNA,一个是gDNA。 由于我们还要考虑非编码区,而CDNA是没有非编码区UTR的。因此,我们必须要用mRNA 输入网页中的cDNA栏。否则我们得到的引物不会包含UTR。要是有看官还看不懂的话,建议看下分子生物学教材关于cDNA和mRNA的区别。 下面我们以smurf2基因来说明如何设计针对外显子的测序引物。 (2)找到smurf2 mRNA 打开gene bank https://www.wendangku.net/doc/a26639698.html,/,注意要在database中选nucleotide

SnapGene中文使用教程

S n a p G e n e使用教程一、SnapGene中的几个View介绍 View1:Map 1.打开一个质粒图谱文件,在Topology option处选择circular。得如下界面: 显示质粒图谱的酶切位点。右侧箭头可显示不同厂家出售的酶。 显示质粒图谱的开放阅读框及转录方向。点击其显示的箭头可显示该ORF的片段大小、GC% 值等一些信息。 显示片段名称。 △给非编码序列命名:如多克隆位点。先找到质粒图谱中的多克隆位点的第一个酶切位点和最后一个酶切位点。点击左侧sequence ,找到两个酶切位点之间的序列。 View2:Sequence 点击Sequence,得到如下界面: 显示编码的氨基酸序列,有缩写和全写两种。 View3:Enzymes 点击Enzymes,得到如下界面: View4:Features 点击Features,得到如下界面: 显示各个已命名片段的一些特点。 二、对片段进行注释 1.给编码序列命名: 点击其中一个箭头,按Feature→Add Translated Feature,弹出以下窗口: Feature:给该片段命名。 Type:选择该片段的类型,右侧箭头代表阅读方向。 Color:选择颜色。 2.给非编码序列命名: 如多克隆位点。先找到质粒图谱中的多克隆位点的第一个酶切位点和最后一个酶切位点。 点击左侧sequence ,找到两个酶切位点之间的序列。 3.给质粒图谱增加引物序列: 按Edit→Find,输入引物序列,找到质粒序列对应位置,点击Primers→Add primer,弹出该界面: 按上下游引物选择Top Strand还是Bottom Strand,在Primer处可给该引物命名,随后即可显示该引物在图谱Map中的位置。 三、创建新DNA文件 1.打开SnapGene,点击New DNA File,弹出以下窗口: 在Create the following sequence窗口下输入DNA序列,并对该文件命名,点击OK。或是点击Import from Genebank,输入NCBI中某序列的access number,点击OK。 2.此时弹出如下窗口: 3.对该序列进行注释:点击Features→Add Feature,对该序列进行命名注释。 △创建质粒图谱文件方法相同。 四、处理序列翻译信息 1.创建一个DNA序列文件,点击 2.显示如下箭头:

Primer3在线引物设计攻略

Primer 3 在线引物设计攻略 开始之前:其实非常简单,不需要你下载任何软件,但是你得有一台电脑能上网。当然,最重要的是,你要很清楚用于做引物的模板序列,至于怎么找模板序列,不再本次讨论范围。另外,要先对PCR目的序列的长度有个大致估计,好了,马上开始吧: 第一步:找到Primer3的站点。你不用记住这个站点,但是要记住“Primer3”这个词,然后打开GOOGLE首页,输入Primer3,跳出来的第一个项目就是了“Primer3 Input 0.4.0”,网址是https://www.wendangku.net/doc/a26639698.html,/。 第二步:贴上模板序列。进入Primer3站点,可以看到一个引物设计的界面。(如下图)在“Paste source sequence below (5'->3'…”下面的大空框里面把你的模板序列粘帖进去。注意是5'->3'方向的,数字或者空格都没关系,软件会自动过滤的。 第三步:重要参数设定。首先是“Product Size Ranges ”,如果你不希望软件给你随便做的话,首先要调整的就是这个参数。默认的参数实际上是从100到1000,这个你得自己改,如果你希望产物的大小符合你的预期,尽可能把范围改小,比如480-500,具体看情况调整。第二个参数是“Primer Size”,默认值一般可以用,但是,当你用熟了这个软件,你自己就知道该怎么改了。第三个参数是“Primer Tm ”这个和Primer Size差不多。 第四步:Pick primers:点一下这个按钮,符合你大小预期的primer就出来了,看看Primer3 Output的界面,多么漂亮!你要的primer出来了,而且有primer 在序列上的位置比对图,还要primer本身的信息,包括位置,长度,Tm,GC含量,任何位置互补碱基数,3'端互补碱基数,以及引物序列,(注意,下游引物是5'->3'),还要产物大小,两引物间任意互补碱基数,两引物间3'端互补碱基数等。如果引物尚在参数设定的范围内,但还不是最佳,将会给出警告。 比如(随便举例,本人在做一个超长引物): WARNING: Left primer is unacceptable: High 3' stability OLIGO start len tm gc% any 3' seq LEFT PRIMER 1 33 69.02 45.45 6. 00 1.00 TAATACGACTCACTATAGGGGTGAAAGACTGCC RIGHT PRIMER 1388 34 67.86 29.41 6.00 2.00 AAAGGGTTAATTTGCATGCTTTATTTACACACAT

汉恒-无缝克隆引物快速设计教程

基于Gibson Assembly的无缝克隆快速设计教程 软件:Genome Compiler 设计举例:把LacZ克隆到pEGFP-N3中,得pLacZ-EGFP 难点:LacZ需要和EGFP融合表达,所以克隆位点的选择尤其关键! 注:Snapgene也可以设计,容后开篇介绍。 1、下载pEGFP-N3的载体文件。我们推荐从Snapgen网站下载。导入到Genome compiler 中(如图1)。LacZ序列软件本身就有,可以搜索得到。 图1

2、点击File-new construction project, 再点击下面的Gibson Assembly进入(图2)。 图2 3、把Backbone pEGFP-N3拖入,载体信息会完全展示出来,包括序列、图谱和各种注 释(图3-4)。点击sequence和circular可以在质粒的序列和图谱之间切换,方便查看。图4所示的是我们选中对多克隆位点MCS的序列展示。 图3

图4 1.图4之间有一些选项:快速克隆首先需要对载体进行线性化处理。通常有2种方法:双酶切线性化和PCR线性化。本次教程我们来讲双酶切线性化。 2.本例是做融合蛋白的克隆构建,所以必须考虑读码框的问题。简而言之,就是要融合表达的两个蛋白之间间隔的碱基数必需是3的倍数,比如9bp,15bp,21 bp这样子,而且不能含有终止密码子Stop Codon-TAA,TAG和TGA。 3.鉴于此,我们选择双酶切的时候一定要足够小心,确保满足第6条的标准。比如在本例中我们选择NheI和BamHI(如图5),BamHI识别序列为GGA TCC 6碱基限制性内切酶,编码两个氨基酸G和S,因此,可以作为读码框的一部分。而BamHI识别位点GGATCC距离下游GFP的举例为15bp,刚好包含5个氨基酸GSIAT(如图15)。如果不能完美对框,比如距离为14bp,则需要在引物合成的时候补上1个(非终止密码子)碱基,如果是13bp,则需要补2个(非终止密码子)碱基等。

Primer Premier5简单教程

事先说明: 该教程是本人通过网络上各种资料、信息等,加上自身使用之后,总结出来的简单教程,可能有部分文字重复,请原作者见谅! 此教程针对于第一次使用Primer Premier5设计引物的童鞋,高手可以不用看了,同时附上图片(图片均为原创),使大家更易学习,若有不对的地方,请指正,谢谢! 结尾部分提到的Oligo7软件是另一款强大的引物设计分析软件,在这里暂时不做介绍。 ——张小柯 引物设计步骤 1、搜索目的基因的CDS 在NCBI(https://www.wendangku.net/doc/a26639698.html,)上搜索到目的基因,找到该基因的mRNA,在CDS选项中,找到编码区所在位置并做记录备用,点击FASTA链接,复制编码序列,保存至文本文件备用。 2、用Primer Premier5设计引物 (1)打开Primer Premier5,点击File→New→DNA sequence,出现输入序列窗口,打开之前保存的文本文件,复制编码序列,粘贴至输入框内,选择As Is并点击OK,其他默认即可,点击Primer,进入引物设计窗口(如图1)。 图1引物设计窗口

(2)此窗口可以链接到“引物搜索”、“搜索结果”以及“引物编辑”选项,下面显示两条引物的信息概况,包括“Rating”(评分)、“Seq No”(序列编号)、“Length”(引物长度)、“Tm”(DNA 分子的熔点)、“GC%”(GC含量)等项目。最下面列出了两条引物的二级结构信息,包括,“Hairpin”(发卡)、“Dimer”(二聚体)、“False Priming”(错误引发位置)和“Cross Dimer”(引物间交叉二聚体)。若按钮显示为红色,表示存在该二级结构,点击该红色按钮,即可看到相应二级结构位置图示。最理想的引物,应该都不存在这些二级结构,即这几个按钮都显示为“None”为宜。 (3)点击Search按钮,进入引物搜索参数设定窗口(如图2),“Search For”项选择“PCR primers”,“Search Type”项选择“Pairs”,“Search Ranges”项里设定两条引物的搜索区域和PCR产物长度,“Primer Length”项里设定引物长度。“Search Mode”项选择“Manual”(手动),并点击“Search Parameters”按钮,进入Manul Search Parameters窗口,进行详细参数设置。 图2引物搜索参数设定窗口 (4)在Manul Search Parameters详细参数设定窗口中(如图3),Search Stringency项一般选择High,但要注意下面参数中的Tm值范围和GC含量范围,Tm应该在55~70度之间,GC含量范围应该在45%~55%间,其他默认即可。

NCBI工具_Primer-BLAST——NCBI的引物设计和特异性检验工具

引物(Primers) 如果你已经设计好了引物,要拿来验证引物的好坏。可以在Primer Parameters区填入你的一条或一对引物。并且选择好验证的目标数据库(在specificity check区选择)。根据需要可设置产物的大小,Tm值等。 特异性(Specificity) 在specificity check区,选择设计引物或验证引物时的目标数据库和物种。这一步是比较重要的。这里提供了4种数据库:RefSeq mRNA, Genome (selected reference assemblies), Genome (all chromosomes), and nr (the standard non-redundant database)。前两个数据库是经过专家注释的数据,这样可以给出更准确的结果。特别是,当你用NCBI的参考序列作为模板和参考序列数据库作为标准来设计引物时,Primer-

BLAST可以设计出只扩增某一特定剪接变异体基因的特异引物。selected reference assemblies 包括以下的物种: human, chimpanzee, mouse, rat, cow, dog, chicken, zebrafish, fruit fly, honeybee, Arabidopsis, 和rice。Nr数据库覆盖NCBI所有的物种。 实例分析 用人尿嘧啶DNA糖基化酶(uracil-DNA glycosylase genes, UNG, GeneID: 7374)的两个转录本序列作为一个例子来分析。UNG1的序列长一点(NM_003362),UNG2的序列短一点(NM_080911,注:拿这两个基因的序列ClustalW一下就可以了)。这里用UNG2的序列设计引物,选择RefSeq mRNA database,物种 是Human,其它默认。结果如下图A-B所示,设计的引物只能扩增出UNG2。看上面的图,把“Allow primer to amplify mRNA splice variants”这个选项给勾上,出现的结果如下图-C所示,新的引物也可以扩增 出UNG1(注:我试了一下,不能得到预期的结果,可能参数没设对)。 Figure. Primer-BLAST results for UNG transcript variant 2. The NCBI Reference sequence NM_080911 was used as a template. Top panel: Primers specific to the single splice variant are reported by default with the mRNA RefSeq database limited to human sequences. Bottom panel: Primers that amplify both splice variants are found with the option to allow splice variants.(点击看大图) 一些Tips 1,在任何时候都要优先使用参考序列的Gi号或Accession 号(尽量不要Fasta格式的序列)。另外,确保你的序列是最新版本的(在填Accession Number时后面不加版本号就会自动拿最新的序列) 2,就算你对整个序列的某部分感兴趣(如某条染色体上的某个区域),你也应该优化使用Gi号或Accession

相关文档