文档库 最新最全的文档下载
当前位置:文档库 › 一道求最值高考题的代数证明

一道求最值高考题的代数证明

一道求最值高考题的代数证明
一道求最值高考题的代数证明

代数证明与恒等变形

代数证明与恒等变形 代数证明主要是指证明代数中的一些相等关系或不等关系、 在初中阶段,要证的等式一般可分为恒等式的证明和条件等式的证明、 恒等式的证明常用的方法有: (1)由繁到简,从一边推向另一边; (2)从左右两边人手,相向推进; (3)作差或作商证明,即证明:左边一右边=0,)0(1≠=右边右边左边、 条件等式的证明实质是有根据、有目的的代数式恒等变换,证明的关键是寻找条件与结论的联系,既要注意条件的变换,使之有利于应用;又要考虑求证的需求情况,使之有利于与条件的沟通、 代数证明不同于几何证明,几何证明有直观的图形为依托,而代数证明却取决于代数式化简求值变形技巧、方法和思想的熟练运用、 例1:设A 、B 、C 、D 都是整数,且M =A2+B2,N =C2+D2,MN 也可以表示成两个整数的平方和,其形式是______. 解MN =(A2+B2)(C2+D2) =A2C2+2ABCD +B2D2+A2D2+B2C2-2ABCD =(AC +BD )2+(AD -BC )2 =(AC -BD )2+(AD +BC )2, 所以,MN 的形式为(AC +BD )2+(AD -BC )2或〔AC -BD 〕2+(AD +BC )2. 例2:设X 、Y 、Z 为实数,且 (Y -Z )2+(X -Y )2+(Z -X )2=(Y +Z -2X )2+(Z +X -2Y )2+(X +Y - 2Z )2.求 )1)(1)(1() 1)(1)(1(222++++++z y x xy zx yz 的值. 解将条件化简成 2X2+2Y2+2Z2-2XY -2XZ -2YZ =0 ∴(X -Y )2+(X -Z )2+(Y -Z )2=0 ∴X =Y =Z ,∴原式=1. 例3:设A +B +C =3M ,求证:(M -A )3+(M -B )3+(M -C )3-3(M -A )(M - B )(M - C )=0. 证明令P =M -A ,Q =M -B ,R =M -C ,那么 P +Q +R =0. P3+Q3+R3-3PQR =(P +Q +R )(P2+Q2+R2-PQ -QR -RP )=0 ∴P3+Q3+R3-3PQR =0 即(M -A )3+(M -B )3+(M -C )3-3(M -A )(M -B )(M -C )=0 例4:假设67890123475678901235,67890123455678901234==B A ,试比较A 、B 的大小. 解设,y x A =那么 ,21++=y x B

高等数学证明方法

(3)反证法 这种证法是从反面考虑问题。先假设在已知条件成立的情况下,要证的结论不成立,而后从已知条件出发,运用基本概念和基本定理,通过逻辑推理导出矛盾(或与已知条件矛盾;或与某一已知概念、公式、公理、定理等矛盾;或自相矛盾等),这样则否定假设,从而肯定原结论正确。 例如,证明不是的多项式. 事实上,利用反证法,设是的多项式,不妨记此多项式为次多项式,即,则有 于是次多项式有无穷多个不同实根,这与次多项式最多只有个不同实根相矛盾,由此证明了不是的多项式. 又如,证明不存在(为自然数). 事实上,利用反证法,假设存在且设,则有 又因为 所以有 故 这与产生矛盾,因此不存在. (2)分析法 这种方法基本思路是逆着想。先假设结论正确,运用已有的定义、定理、公式、性质,从后向前一步一步地分析,直至推出已知条件,即由结论找需知,再找需知,……,直至已知。这种“执果溯因”的方法,叫做分析法。 分析法是探求证题途径的重要方法之一。它的优点在于思考过程比较自然,目的明确,较为容易找到证明的思路,但缺点是分析的过程叙述起来往往比较繁琐,因而过程多在草稿纸上进行,不正式写出。在实际解题时,特别对于一些较难的问题,常常先用分析法寻找解题的途径,然后再用综合法叙述解题过程,这种方法也可叫做分析综合法。 例如,设在时连续,且;而在时有单调递增导数,试证在时是单调递增的。 事实上,欲证为单调递增,只需证明就行了,而由于 因此就归结为证明. 利用拉格朗日中值定理及已知条件,有 单调递增 因此在时是单调递增的. 又如,用极限定义证明一数列或函数有已知极限时,多采用分析综合法证明。比如证明,其方法如下: ,欲使不等式成立, 由 所以只需,即成立. 取,于是当时,就有,从而保证了希望的不等式成立. 综合以上分析,就有 ,当时,,根据极限定义,有

线性代数的一些证明题

线性代数一些证明题 1 题目 设n 阶可逆矩阵A 满足A 2=A ,求A 的特征值。 知识点 特征值与特征向量 矩阵的行列式 解题过程 解:因为A 2=A 所以A 2-A =0 所以det(A 2-A )=det[A (A -E )]=det(A )det(A -E )=0 A 为可逆矩阵,所以det(A )≠0 所以det(A -E )=0 所以A 的特征值为1. 常见错误 设存在λ,使Ax =λx 成立 则 det(Ax )=det(A )det(x ) =det(λx ) =n λdet(x ) (错误在于向量取行列式) 所以 有)det(A n =λ成立. 又因为A 2=A det(A )2=det(A), 即det(A )=0或det(A )=1.

由于A 为可逆矩阵,det(A)≠0. 所以 det(A )=1 1=n λ 当n 为奇数时,λ=1. 当n 为偶数时,λ=±1. 相关例题 设A 为n 阶矩阵,若A 2=E ,试证A 的特征值是1或-1. 2题目 设A 是奇数阶正交矩阵,且det(A )=1,证明det(E -A )=0. 知识点 ①正交矩阵的定义:A T A=E ②单位矩阵的性质:EA=AE=A E T =E ③矩阵运算规律 ④转置矩阵的性质:(A+B )T =A T +B T ⑤det(A )=det(A T ) ⑥det(AB )=det(A )det(B ) ⑦det(-A )=(-1)n det(A ) 解题过程 ∵A 是正交矩阵 ∴E -A= A T A -A= A T A -EA=( A T -E )A ∵det(A )=1

高考推理与证明真题汇编理科数学(解析版)

2012高考真题分类汇编:推理与证明 1. 【 2012 高 考 真 题 江 西 理 6 】 观 察 下 列 各 式 : 221,3,a b a b +=+=3344554,7,11,a b a b a b +=+=+=L 则1010a b += A .28 B .76 C .123 D .199 【答案】C 【命题立意】本题考查合情推理中的归纳推理以及递推数列的通项公式。 【解析】等式右面的数构成一个数列1,3,4,7,11,数列的前两项相加后面的项,即 21++=+n n n a a a ,所以可推出12310=a ,选C. 2.【2012高考真题全国卷理12】正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,AE =BF = 7 3 .动点P 从E 出发沿直线喜爱那个F 运动,每当碰到正方形的方向的边时反弹,反弹时反射等于入射角,当点P 第一次碰到E 时,P 与正方形的边碰撞的次数为 (A )16(B )14(C )12(D)10 【答案】B 【解析】结合已知中的点E,F 的位置,进行作图,推理可知,在反射的过程中,直线是平行的,那么利用平行关系,作图,可以得到回到EA 点时,需要碰撞14次即可. 3.【2012高考真题湖北理10】我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数, 以十六乘之,九而一,所得开立方除之,即立圆径. “开立圆术”相当于给出了已知球的体积V ,求其直径d 的一个近似公式d ≈ . 人们还用过一些类似的近似公式. 根据π =3.14159L 判断,下列近似公式中最精确的一个是 11.d ≈ B .d C .d D .d ≈ 【答案】D 【解析】 346b 69()d ,===3.37532b 16 616157611 ==3==3.14,==3.142857230021 d a V A a B D πππππππ?==???由,得设选项中常数为则;中代入得, 中代入得,C 中代入得中代入得,由于D 中值最接近的真实值,故选择D 。 4.【2012高考真题陕西理11】 观察下列不等式 213122+ < 231151233++<,

初中数学证明题

初中数学证明题Prepared on 21 November 2021

1.如图 1,△ABC 中,AB =AC ,∠BAC 和∠ACB 的平分线相交于点D ,∠ADC =130°,求∠BAC 的度数. 2.如图,△ABC 中,AD 平分∠CAB ,BD ⊥AD ,DE ∥AC 。求证:AE=BE 。 .3.如图,△ABC 中, AD 平分∠BAC ,BP ⊥AD 于P ,AB=5,BP=2,AC=9。求证:∠ABP=2∠ACB 。 4.如图1,△ABC 中,AB =AC ,∠BAC 和∠ACB 的平分线相交于点D ,∠ADC =130°,求∠BAC 的度数. 5.点D 、E 在△ABC 的边BC 上,AB =AC ,AD =AE 求证:BD =CE 6.△ABC 中,AB=AC,PB=PC .求证:AD⊥BC 7. 已知:如图,BE 和CF 是△ABC的高线,BE=CF,H 是CF 、BE 的交点.求证:HB=HC 8 如图,在△ABC 中,AB=AC,E 为CA 延长线上一点,ED⊥BC 于D 交AB 于F.求证:△AEF 为等腰三角形. 9.如图,点C 为线段AB 上一点,△ACM 、△CBN 是等边三角形,直线AN 、MC 交于点E ,直线BM 、CN 交于点F 。 (1)求证:AN=BM; (2)求证:△CEF 是等边三角形 10 如图,△ABC 中,D 在BC 延长线上,且AC=CD,CE 是△ACD 的中线,CF 平分∠ACB,交AB 于F,求证:(1)CE⊥CF;(2)CF∥AD. 11.如图:Rt△ABC中,∠C=90°,∠A=22.5°,DC=BC, DE⊥AB.求证:AE=BE . 12.已知:如图,△BDE 是等边三角形,A 在BE 延长线上,C 在BD 的延长线上,且AD=AC 。求证:DE+DC=AE 。 13.已知ΔACF ≌ΔDBE ,∠E =∠F ,AD = 9cm ,BC = 5cm ;求AB 的长. 图1 B E C D A A P D C B 图1 A B C D E

八年级数学竞赛讲座代数证明附答案

第二十三讲 代数证明 代数证明主要是指证明代数中的一些相等关系或不等关系. 在初中阶段,要证的等式一般可分为恒等式的证明和条件等式的证明. 恒等式的证明常用的方法有: (1)由繁到简,从一边推向另一边; (2)从左右两边人手,相向推进; (3)作差或作商证明,即证明:左边一右边=0,)0(1≠=右边右边 左边. 条件等式的证明实质是有根据、有目的的代数式恒等变换,证明的关键是寻找条件与结论的联系,既要注意已知条件的变换,使之有利于应用;又要考虑求证的需求情况,使之有利于与已知条件的沟通. 代数证明不同于几何证明,几何证明有直观的图形为依托,而代数证明却取决于代数式化简求值变形技巧、方法和思想的熟练运用. 例题求解 【例1】(1)求证:a a z a y a x a az z a ay y a ax x 3111222+-+-+-=-+-+- (2)求证:)1)(1)(1(4)1()1()1(222ab ab b b a a ab ab b b a a ++++=+++++. 思路点拨 (1)从较复杂的等式左边推向等式右边,注意左边每个分式分子与分母的联系;(2)等式两边都较复杂,对左、右两边都作变形或作差比较. 注 如果一个等式的字母在条件允许范围内的任意一个值,使得等式总能成立,那么这个等式叫做恒等式.把一个式子变形为与原式恒等的另一种不同形式的式子,这种变形叫做恒等变形,形变值不变是恒等变形的特点. 代数式的化简求值、代数证明其实质都是作恒等变形,分解、换元、引参、配方、分组、拆分,取倒数等是恒等变形常用的技巧与方法. 【例2】 已知b a y x +=+,且2222b a y x +=+. 求证:2001200120012001b a y x +=+. (黄冈市竞赛题) 思路点拨 从完全平方公式入手,推出 x 、y 与a 、b 间关系,寻找证题的突破口. 【例3】 有18支足球队进行单循环赛,每个参赛队同其他各队进行一场比赛,假设比赛的结果没有平局,如果用i a 和i b ,分别表示第i(I=1,2,3…18)支球队在整个赛程中胜与负的局数. 求证:21822212182221b b b a a a +++=+++ .

2017考研:高数常考的四大定理证明

2017考研:高数常考的四大定理证明 一、求导公式的证明 2015年真题考了一个证明题:证明两个函数乘积的导数公式。几乎每位同学都对这个公式怎么用比较熟悉,而对它怎么来的较为陌生。实际上,从授课的角度,这种在2015年前从未考过的基本公式的证明,一般只会在基础阶段讲到。如果这个阶段的考生带着急功近利的心态只关注结论怎么用,而不关心结论怎么来的,那很可能从未认真思考过该公式的证明过程,进而在考场上变得很被动。这里给2017考研学子提个醒:要重视基础阶段的复习,那些真题中未考过的重要结论的证明,有可能考到,不要放过。 当然,该公式的证明并不难。先考虑f(x)*g(x)在点x0处的导数。函数在一点的导数自然用导数定义考察,可以按照导数定义写出一个极限式子。该极限为“0分之0”型,但不能用洛必达法则,因为分子的导数不好算(乘积的导数公式恰好是要证的,不能用!)。利用数学上常用的拼凑之法,加一项,减一项。这个“无中生有”的项要和前后都有联系,便于提公因子。之后分子的四项两两配对,除以分母后考虑极限,不难得出结果。再由x0的任意性,便得到了f(x)*g(x)在任意点的导数公式。 类似可考虑f(x)+g(x),f(x)-g(x),f(x)/g(x)的导数公式的证明。 二、微分中值定理的证明 这一部分内容比较丰富,包括费马引理、罗尔定理、拉格朗日定理、柯西定理和泰勒中值定理。除泰勒中值定理外,其它定理要求会证。 费马引理的条件有两个:1.f'(x0)存在2. f(x0)为f(x)的极值,结论为f'(x0)=0。考虑函数在一点的导数,用什么方法?自然想到导数定义。我们可以按照导数定义写出f'(x0)的极限形式。往下如何推理?关键要看第二个条件怎么用。“f(x0)为f(x)的极值”翻译成数学语言即f(x) -f(x0)<0(或>0),对x0的某去心邻域成立。结合导数定义式中函数部分表达式,不难想到考虑函数部分的正负号。若能得出函数部分的符号,如何得到极限值的符号呢?极限的保号性是个桥梁。 费马引理中的“引理”包含着引出其它定理之意。那么它引出的定理就是我们下面要讨论的罗尔定理。若在微分中值定理这部分推举一个考频最高的,那罗尔定理当之无愧。该定理的条件和结论想必各位都比较熟悉。条件有三:“闭区间连续”、“开区间可导”和“端值相等”,结论是在开区间存在一点(即所谓的中值),使得函数在该点的导数为0。该定理的证明不好理解,需认真体会:条件怎么用?如何和结论建立联系?当然,我们现在讨论该定理的证明是“马后炮”式的:已经有了证明过程,我们看看怎么去理解掌握。如果在罗尔生活的时代,证出该定理,那可是十足的创新,是要流芳百世的。 闲言少叙,言归正传。既然我们讨论费马引理的作用是要引出罗尔定理,那么罗尔定理的证明过程中就要用到费马引理。我们对比这两个定理的结论,不难发现是一致的:都是函数在一点的导数为0。话说到这,可能有同

历年高考数学真题精选46 推理与证明

历年高考数学真题精选(按考点分类) 专题46 推理与证明(学生版) 一.选择题(共9小题) 1.(2019?新课标Ⅱ)在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高. 成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为() A.甲、乙、丙B.乙、甲、丙C.丙、乙、甲D.甲、丙、乙2.(2019?新课标Ⅰ)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的 长度之比是5151 (0.618 -- ≈,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此 外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是51 - .若某人满足上述两 个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是( ) A.165cm B.175cm C.185cm D.190cm 3.(2017?新课标Ⅱ)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则() A.乙可以知道四人的成绩B.丁可以知道四人的成绩 C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩4.(2016?新课标Ⅲ)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图,图中A点表示十月的平均最高气温约为15C ?,B点表示

四月的平均最低气温约为5C ?,下面叙述不正确的是( ) A .各月的平均最低气温都在0C ?以上 B .七月的平均温差比一月的平均温差大 C .三月和十一月的平均最高气温基本相同 D .平均最高气温高于20C ?的月份有5个 5.(2016?北京)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每 次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则( ) A .乙盒中黑球不多于丙盒中黑球 B .乙盒中红球与丙盒中黑球一样多 C .乙盒中红球不多于丙盒中红球 D .乙盒中黑球与丙盒中红球一样多 6.(2014?北京)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不 合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,则这一组学生最多有( ) A .2人 B .3人 C .4人 D .5人 7.(2013?广东)设整数4n ,集合{1X =,2,3,?,}n .令集合{(S x =,y ,)|z x ,y , z X ∈,且三条件x y z <<,y z x <<,z x y <<恰有一个成立}.若(x ,y ,)z 和(z ,w ,)x 都在S 中,则下列选项正确的是( )

初三数学几何证明题(经典)

如图;已知:在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O 交AB于点D,过点D作⊙O 的切线DE交BC于点E. 求证:BE=CE 证明:连接CD ∵AC是直径 ∴∠ADC=90° ∵∠ACB=90°,ED是切线 ∴CE=DE ∴∠ECD=∠EDC ∵∠ECD+∠B=90°,∠EDC+∠BDE=90° ∴∠B=∠BDE ∴BE=DE ∴BE=CE 如图,半圆O的直径DE=10cm,△ABC中,∠ABC=90°,∠BCA=30°,BC=10cm,半圆O 以2cm/s的速度从左向右运动,在运动过程中,D、E始终在直线BC上,设运动时间为t(s),当t=0(s)时,半圆O在△ABC的左侧且OB=9cm。(1)当t为何值时,△ABC的一边所在的直线与半圆O所在的圆相切; (2)当△ABC一边所在直线与半圆O所在的圆相切时,如果半圆O与直径DE围成的区域与△ABC的三边围成的区域有重叠部分,求重叠部分的面积。 (1)当t为何值时,△ABC的一边所在的直线与半圆O所在的圆相切; 相切分两种情况,如图, ①左图:当t=0时,原图中OB=9,此时圆移动了OB-OE=9-5=4cm 则:t=4/2=2s; --------------- ②右图:设圆O与边AC的切点为F,此问不用三角函数是无法求出的==>∵∠C=30==>∴OC=OF/sinC=5/sin30=10=BC ==>O与B重合,此时圆移动的长即为OB的长,即9cm ==>t=9/2; =========

(2)如右图:由②得:∠AOE=90 ==>S阴=(90*π*5^2)/360=6.25π 不明之处请指出~~

近世代数证明题

证明题 1、设G 是群,a ∈G ,令C G (a )= {x |x ∈G ,xa = ax },证明:C G (a )≤G 2、设G ~ G ,H ≤G ,H = {x | x ∈G ,f (x )∈ H }。证明:H /Kerf ≌H . 3、证明:模m 的剩余类环Zm 的每一个理想都是主理想。 4、设R = ???? ??c o b a ,a ,b ,c ∈Z ,I = ???? ??o o x o x ∈Z 。 (1)验证R 是矩阵环Z 2×2的一个子环。 (2)证明I 是R 的一个理想。 5、设G 是群,u 是G 的一个固定元,定义“o ”:aob = a u 2 b (a ,b ∈G ),证明 (G , o )构成一个群. 6、设R 为主理想整环,I 是R 的一个理想,证明R /I 是域?I 是由R 的一个素元生成 的主理想. 7、证明:模m 的剩余类环Zm 的每个子环都是理想. 8、设G 是群,H ≤G 。令N G (H ) = {x | x ∈G ,xH = Hx }.C G (H )= { x | x ∈G ,?h ∈ H ,hx = xh }.证明: (1)N G (H )≤G (2)C G (H )△N G (H ) 9、证明数域F = {a +b 7|a ,b ∈Q}的自同构群是一个2阶循环群. 10、设R 是主理想环,I = (a )是R 的极大理想,ε是R 的单位,证明:εa 是R 的 一个素元. 11、设G 与G 是两个群,G ~ G ,K = Kerf ,H ≤G ,令H = {x |x ∈G ,f (x ) ∈ H },证明:H ≤G 且H /K ≌H . 12、在多项式环Z [x ]中,证明: (1)(3,x )= {3a 0+a 1x +…+a n x n |a i ∈Z }. (2)Z [x ]/(3,x )含3个元素. 13、设H 是群G 的子群,令N G (H )={x |x G , xH =Hx },证明N G (H)是G 的子群. 14、在整数环Z 中, a, b Z,证明(a, b )是Z 的极大理想的充要条件是a , b 的最大公 因数是一个素数。 f f

最新高数期末考试题.

往届高等数学期终考题汇编 2009-01-12 一.解答下列各题(6*10分): 1.求极限)1ln(lim 1 x x e x ++ →. 2.设?? ? ??++++=22222ln a x x a a x x y ,求y d . 3.设?????-=-=3 232t t y t t x ,求22d d x y . 4.判定级数()()0!1 2≥-∑∞ =λλλn n n n n e 的敛散性. 5.求反常积分() ?-10 d 1arcsin x x x x . 6.求?x x x d arctan . 7.?-π 03d sin sin x x x . 8.将?????≤≤<=ππ πx x x x f 2,02,)(在[]ππ,-上展为以π2为周期的付里叶级数,并指出收敛于()x f 的区间. 9.求微分方程0d )4(d 2=-+y x x x y 的解. 10.求曲线1=xy 与直线0,2,1===y x x 所围平面图形绕y 轴旋转一周所得旋转体的体积. 二.(8分)将()()54ln -=x x f 展开为2-x 的幂级数,并指出其收敛域. 三.(9分)在曲线()10sin 2≤≤=x x y 上取点() ()10,sin ,2≤≤a a a A ,过点A 作平行于ox 轴的直线L ,由直线L ,oy 轴及曲线()a x x y ≤≤=0sin 2所围成的图形记为1S ,由直线L ,直线1=x 及曲线 ()1sin 2≤≤=x a x y 所围成的图形面积记为2S ,问a 为何值时,21S S S +=取得最小值. 四.(9分)冷却定律指出,物体在空气中冷却的速度与物体和空气温度之差成正比,已知空气温度为30℃时,物体由100℃经15分钟冷却至70℃,问该物体冷却至40℃需要多少时间? 五.(8分)(学习《工科数学分析》的做(1),其余的做(2)) (1)证明级数∑∞ =-02n nx e x 在[),0+∞上一致收敛. (2)求幂级数()∑ ∞ =-----1 221 21212)1(n n n n x n 的收敛域及和函数. 六.(6分)设()[]b a C x f ,2∈,试证存在[]b a ,∈ξ,使()()()()?''-+ ??? ??+-=b a f a b b a f a b dx x f ξ324 1 2

线性代数常见证明题型及常用思路

线性代数常见证明题型及 常用思路 The Standardization Office was revised on the afternoon of December 13, 2020

《线性代数》常见证明题型及常用思路 二、证明题 题型1.关于1, ,m αα线性相关性的证明中常用的结论 (1)设110m m λαλα++=,然后根据题设条件,通过解方程 组或其他手段:如果能证明1,,m λλ必全为零,则1,,m αα线性 无关;如果能得到不全为零的1, ,m λλ使得等式成立,则1,,m αα线性相关。 (2)1,,m αα线性相关当且仅当其中之一可用其他向量线性表 示。 (3)如果1, ,n m F αα∈,则可通过矩阵的秩等方面的结论证明。 (4)如果我们有两个线性无关组, 11,,,m W αα∈12,,,t W ββ∈且12,W W 是同一个线性空间的两 个子空间,要证11, ,,,,m t ααββ线性无关。这种情况下,有些时候我们设 111111110,,m m t t m m t t λαλαμβμβαλαλαβμβμβ+ ++++==++=++。 根据题设条件往往能得到0αβ==,进而由 11,,,m W αα∈12,,t W ββ∈的线性无关得到系数全为零。 题型2. 关于欧氏空间常用结论

(1)内积的定义 (2)单位正交基的定义 (3)设1{,,}n B αα=是单位正交基, 11(,,),(,,)B n B n u x x v y y ==。则 11(,)n n u v x y x y =++ 5 题型3. 关于矩阵的秩的证明中常用的结论 (1)初等变换不改变矩阵的秩 (2)乘可逆矩阵不改变矩阵的秩 (3)阶梯形的秩 (4)几个公式(最好知道如何证明):常用来证明关于秩的不等式 ()()(); ()min{(),()}; ()()(); max{(),()}(,)()();()();()()()()();0()()T T T T m n r A B r A r B r AB r A r B r A r A r A A A r A r B r A B r r A r B B A r r A r B B A r A r B r r A r B r C C B A B r A r B n ?+≤+≤==??≤=≤+ ??? ??=+ ??? ??+≤≤++ ??? =?+≤ (5)利用分块矩阵的初等变化不改变矩阵的秩(常用来证明关于秩的不等式) 例:证明:()()()m n r A r B n r AB ?+≤+。 证:

2020年高考理科数学《推理与证明》题型归纳与训练

1 2020年高考理科数学《推理与证明》题型归纳与训练 合情推理与演绎推理 题型一 归纳推理 1 与数字有关的等式的推理 【易错点】 例1观察下列等式: ????sin π3-2+????sin 2π3-2=43 ×1×2; ????sin π5-2+????sin 2π5-2+????sin 3π5-2+????sin 4π5-2=43×2×3; ????sin π7-2+????sin 2π7-2+????sin 3π7-2+…+????sin 6π7-2=43×3×4; ????sin π9-2+????sin 2π9-2+????sin 3π9-2+…+????sin 8π9-2=43 ×4×5; … 照此规律,????sin π2n +1-2+????sin 2π2n +1-2+????sin 3π2n +1-2+…+??? ?sin 2n π2n +1- 2=__________. 【答案】 4 3 ×n ×(n +1) 【解析】观察等式右边的规律:第1个数都是4 3,第2个数对应行数n ,第3个数为n +1. 2 与不等式有关的推理 例2已知a i >0(i =1,2,3,…,n ),观察下列不等式: a 1+a 2 2≥a 1a 2; a 1+a 2+a 33≥3 a 1a 2a 3; a 1+a 2+a 3+a 44≥4 a 1a 2a 3a 4; … 照此规律,当n ∈N *,n ≥2时,a 1+a 2+…+a n n ≥______. 【答案】 n a 1a 2…a n 【解析】 根据题意得a 1+a 2+…+a n n ≥n a 1a 2…a n (n ∈N *,n ≥2). 3 与数列有关的推理 例3观察下列等式:

近世代数证明

11.10 设G是群, 则G中阶大于2的元素有偶数个. 证: 11.10 设G是群, 则G中阶大于2的元素有偶数个. 证: 首先由定理11.4 , 对?a ∈G, 有 a &su; = e ? |a| = 1 或|a|=2 (1) 其次来证明a &su;= e ? a = (2) 事实上, 若a &su;= e. 则 反之, 若 a = , 则 a &su; = a a = a = e. 故(2)式得证。由(1)和(2)可知: a = ? |a| = 1 或|a|=2. 因此, G中阶大于2的任何元素a, 必有 a ≠. 又因|a|=||, 故G中阶大于2的元素必定成对出现, 从而G中阶大于2的元素必有偶数个(若G中无阶大于2的元素,则为0个, 也是偶数). 11.设G是非交换群,则G中存在非单位元a和b,a=!b且ab=ba’ 证明:设存在|b|=k k>1 b^k=a^-1 b^k a =(a^-1 b a)^k 当k>2时|b^-1|=|b|=k 且b^-1 =!b (否则b^2=b b^-1=e,k=2,矛盾),所以b^-1 b =b b^-1=e 否则所有k<=2,由例题可指G是交换群,矛盾,所以G中存在非单位元a和b,a=!b且ab=ba 由定理11.4 , 对?a ∈G, 有 a &su; = e ? |a| = 1 或|a|=2 (1) 其次来证明a &su;= e ? a = (2) 事实上, 若a &su;= e. 则 反之, 若 a = , 则 a &su; = a a = a = e. 故(2)式得证。由(1)和(2)可知: a = ? |a| = 1 或|a|=2. 因此, G中阶大于2的任何元素a, 必有 a ≠. 又因|a|=||, 故G中阶大于2的元素必定成对出现, 从而G中阶大于2的元素必有偶数个(若G中无阶大于2的元素,则为0个, 也是偶数). 11.设G是非交换群,则G中存在非单位元a和b,a=!b且ab=ba’ 证明:设存在|b|=k k>1 b^k=a^-1 b^k a =(a^-1 b a)^k 当k>2时|b^-1|=|b|=k 且b^-1 =!b (否则b^2=b b^-1=e,k=2,矛盾),所以b^-1 b =b b^-1=e 否则所有k<=2,由例题可指G是交换群,矛盾,所以G中存在非单位元a和b,a=!b且ab=ba

高等数学不等式的证明试题及答案

微积分中不等式的证明方法讨论 不等式的证明题经常出现在考研题中,虽然题目各种各样,但方法无非以下几种: 1.利用函数的单调性证明不等式 若在),(b a 上总有0)(>'x f ,则)(x f 在),(b a 单调增加;若在),(b a 上总有0)(<'x f ,则)(x f 在),(b a 单调减少。 注:考研题的难点是,构造恰当的辅助函数,有时需要两次利用函数的单调性证明不等式,有时需要对),(b a 进行分割,分别在小区间上讨论。 例1:证明:当0a b π<<<时, sin 2cos sin 2cos b b b b a a a a ππ++>++. 【分析】 利用“参数变易法”构造辅助函数,再利用函数的单调性证明. 【详解】 令()sin 2cos sin 2cos ,0f x x x x x a a a a a x b πππ=++---<≤≤<, 则 ()sin cos 2sin cos sin f x x x x x x x x ππ'=+-+=-+,且()0f π'=. 又 ()cos sin cos sin 0f x x x x x x x ''=--=-<,(0,s i n 0x x x π<<>时), 故当0a x b π<≤≤<时,()f x '单调减少,即()()0f x f π''>=,则()f x 单调增加,于是()()0f b f a >=,即 sin 2cos sin 2cos b b b b a a a a ππ++>++. 【评注】 证明数值不等式一般需构造辅助函数,辅助函数一般通过移项,使不等式一端为“0”,另一端即为所作辅助函数()f x ,然后求导验证()f x 的增减性,并求出区间端点的函数值(或极限值)。 例2:设2e b a e <<<, 证明)(4ln ln 2 22a b e a b ->-. 【分析】即证a e a b e b 2 222 4ln 4ln ->- 证明: 设x e x x 224ln )(-=?,则 24ln 2)(e x x x -='?, 2ln 12)(x x x -=''?, 所以当x>e 时,,0)(<''x ? 故)(x ?'单调减少,从而当2 e x e <<时,

代数系统证明题

问答题: 1:是一个代数系统,*是A 上的一个二元运算,如何根据运算表看出是否有①封闭性;②可交换性;③等幂元;④零元;⑤幺元。 )①封闭性:A 中的每个元素都在运算表中;②可交换性:运算表关于主对角线是对称的;③等幂性: 运算表中主对角线中的元素等于它所在行和列的表头元素;④零元:该元素所在行和所在列的元素值都与该元素相同;⑤幺元: 该元素所在的行和列依次与运算表中的行和列相同。 2:请叙述群的定义。 设是一个代数系统,其中G 是非空集合,*是G 上一个二元运算,如果 (1) 运算*是封闭的。 (2) 运算*是可结合的。 (3) 存在幺元e 。 (4) 对于每一个元素x ∈G,存在着它的逆元x-1。 则称是一个群。 证明题: 1: 在R 上定义运算:。证明是独异点。 证明过程: (1)∵对于任意a,b ∈R 显然a*b=a+b+ab ∈R , ∴*运算满足封闭性 (2)对于任意a,b,c ∈R 有 (a*b)*c=(a+b+ab)*c=a+b+ab+c+(a+b+ab)c =a+b+c+ab+ac+bc+abc 而a*(b*c)=a*(b+c+bc)=a+b+c+bc+a(b+c+bc) =a+b+c+bc+ac+ab+abc ∴(a*b)*c=a*(b*c) ∴*运算满足结合性 (3)设对任意元素a ∈R ,则有 a*0=a+0+a ×0=a 0*a=0+a+0×a=a 即有 a*0=0*a=a ∴0是幺元 由于中*运算封闭,满足结合律,有幺元,所以是独异点。 2: 设是一个群,证明是阿贝尔群的充要条件是对于任意的a ,b ∈G 有(a*b)*(a*b)=(a*a)*(b*b)。 证明过程: 证明:充分性证明: 设对任意,,a b G ∈有(*)*(*)(*)*(*)a b a b a a b b = 因为 ab b a b a ++=*

大一高数同济版期末考试题(精) - 副本

高等数学上(1) 一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )( 0),sin (cos )( 处有则在设=+=x x x x x f . (A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导. 2. ) 时( ,则当,设133)(11)(3→-=+-=x x x x x x βα. (A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小; (C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小. 3. 若 ()()()0 2x F x t x f t dt =-?,其中()f x 在区间上(1,1)-二阶可导且 '>()0f x ,则( ). (A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值; (C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。 4. ) ( )( , )(2)( )(1 =+=?x f dt t f x x f x f 则是连续函数,且设 (A )22x (B )2 2 2x +(C )1x - (D )2x +. 二、填空题(本大题有4小题,每小题4分,共16分) 5. = +→x x x sin 2 ) 31(l i m . 6. ,)(cos 的一个原函数是已知 x f x x =? ?x x x x f d cos )(则 . 7. lim (cos cos cos )→∞-+++=2 2 221 n n n n n n π π ππ . 8. = -+? 2 12 1 2 211 arcsin - dx x x x . 三、解答题(本大题有5小题,每小题8分,共40分) 9. 设函数=()y y x 由方程 sin()1x y e xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(17 7 x x x x ?+-求 11. .  求,, 设?--?????≤<-≤=1 32 )(1020 )(dx x f x x x x xe x f x

考研线性代数习题集(带答案)

第一部分 专项同步练习 第一章 行列式 一、单项选择题 1.下列排列是5阶偶排列的是 ( ). (A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C) k n -2 ! (D)k n n --2)1( 3. n 阶行列式的展开式中含1211a a 的项共有( )项. (A) 0 (B)2-n (C) )!2(-n (D) )!1(-n 4. =0 00100100 1001 000( ). (A) 0 (B)1- (C) 1 (D) 2 5. =0 00110000 0100 100( ). (A) 0 (B)1- (C) 1 (D) 2 6.在函数10 3 23211112)(x x x x x f ----=中3x 项的系数是( ). (A) 0 (B)1- (C) 1 (D) 2

7. 若2 1 33 32 31 232221 131211==a a a a a a a a a D ,则=---=32 3133 31 2221232112 111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若 a a a a a =22 2112 11,则 =21 11 2212ka a ka a ( ). (A)ka (B)ka - (C)a k 2 (D)a k 2- 9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为 x ,1,5,2-, 则=x ( ). (A) 0 (B)3- (C) 3 (D) 2 10. 若5 734111113263478 ----=D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)0 11. 若2 23 5 001 01 11 10 40 3 --= D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)0 12. k 等于下列选项中哪个值时,齐次线性方程组??? ??=++=++=++0 00321 321321x x kx x kx x kx x x 有非零解. ( ) (A)1- (B)2- (C)3- (D)0 二、填空题

2020年高考理科数学《推理与证明》题型归纳与训练

福利:本教程由捡漏优惠券(https://www.wendangku.net/doc/aa6818694.html, )整理提供 领红包:支付宝首页搜索“527608834”即可领取支付宝红包哟 领下面余额宝红包才是大红包,一般都是5-10元 支付的时候把选择余额宝就行呢 每天都可以领取早餐钱哟! 2020年高考理科数学《推理与证明》题型归纳与训练 合情推理与演绎推理 题型一 归纳推理 1 与数字有关的等式的推理 【易错点】 例1观察下列等式: ????sin π3-2+????sin 2π3-2=43 ×1×2; ????sin π5-2+????sin 2π5-2+????sin 3π5-2+????sin 4π5-2=43×2×3; ????sin π7-2+????sin 2π7-2+????sin 3π7-2+…+????sin 6π7-2=43×3×4; ????sin π9-2+????sin 2π9-2+????sin 3π9-2+…+????sin 8π9-2=43 ×4×5; … 照此规律,????sin π2n +1-2+????sin 2π2n +1-2+????sin 3π2n +1-2+…+??? ?sin 2n π2n +1- 2=__________. 【答案】 4 3 ×n ×(n +1) 【解析】观察等式右边的规律:第1个数都是4 3,第2个数对应行数n ,第3个数为n +1. 2 与不等式有关的推理 例2已知a i >0(i =1,2,3,…,n ),观察下列不等式: a 1+a 2 2≥a 1a 2; a 1+a 2+a 33≥3 a 1a 2a 3; a 1+a 2+a 3+a 44≥4 a 1a 2a 3a 4; … 照此规律,当n ∈N *,n ≥2时,a 1+a 2+…+a n n ≥______. 【答案】 n a 1a 2…a n

几何重数小于等于代数重数证明

几何重数小于等于代数重数证明及P190.3 设T是n维欧氏空间V上的一个线性变换, λ是T的一个特征值, 试证: λ的几何重数小于等于代数重数. 设ε1,ε2,ε3,ε4是线性空间ε的一组基,已知线性变换ε在这组基下的矩阵为 A=( 1021?1213 1255 2?21?2 ) 求 (1) ε在基ε1=ε1?2ε2+ε4;ε2=3ε2? ε3?ε4;ε3=ε3+ε4;ε4=2ε4下的矩阵; (2)ε的核与值域; (3)在ε的核中选取一组基,把它扩充为V的一组基,并求ε在这组基下的矩阵;(4)在ε的值域中选取一组基,把它扩充为V的一组基,并求ε在这组基下的矩阵。

解:(1) 因为(ε1,ε2,ε3, ε4)=(ε1,ε2,ε3, ε4)( 1 0 0 0 ?2 3 0 0 0 ?1 1 01 ?1 1 2)= (ε1,ε2,ε3, ε4)ε 所以 ε(ε1,ε2,ε3, ε4)=ε(ε1,ε2,ε3, ε4)ε=(ε1,ε2,ε3, ε4)εε=(ε1,ε2,η3, ε4)ε?1εε 故ε在基 ε1,ε2,ε3, ε4 下的矩阵为ε?1εε, 因此, ε?1εε= ( 1 0 0 0 23 13 0 0 23 13 1 0 ?12 0 ?12 12 ) ( 1 0 2 1?1 2 1 3 1 2 5 5 2 ?2 1 ?2)( 1 0 0 0 ?2 3 0 0 0 ?1 1 01 ?1 1 2) =13( 6 ?9 9 6 2 ?4 10 10 8 ?16 40 40 0 3 ?21 ?24 ) (2) 解:(2)设44332211εεεεαx x x x +++= ∈ε,则A α=0,故 A (ε1ε2 ε3ε4 )=0 计算知,2)(=A r 且上述齐次线性方程组的基础解系为T T )1,0,2,1(,)0,1,2 3 ,2(--- -,因而 421232112,2 3 2εεεαεεεα+--=+--= 是ker (ε)的一组基,ker (ε)=L (ε1,ε2). 显然,矩阵A 的前两列线性无关,构成矩阵A 的列向量组的一个极大无关组,因而 ε(ε)=εV =L (εε1,εε2,εε3,εε4)=L ( εε1,εε2) 其中εε1=ε1?ε2+ε3+2ε4,εε2=2ε2+2ε3?2ε4是εV的一组基. (3) 取ker (ε)的基21,αα把它扩充成V 的基2121,,,ααεε,

相关文档