文档库 最新最全的文档下载
当前位置:文档库 › 射线检测技术介绍

射线检测技术介绍

射线检测技术介绍
射线检测技术介绍

.

射线检测技术介绍

射线检测技术是目前在锅炉压力容器及管道施工检测中应用最广泛

的一种检测方法。在各个行业由于检测对象的特点及要求质量等级的不同,执行的检测标准主要是GB332-3-2005《钢熔化焊对接接头射线照相和质量分级》;JB/T4730-2005《承压设备无损检测》;

SY/T4109-2005《石油天然气钢质管道无损检测》等标准,无论哪个标准都对射线检测提出的检测人员、检测设备、检测工艺、检测材料、检测环境等要求,现逐一分析:(以JB/T4730-2005《承压设备无损检测》为例)

一、射线检测技术等级

根据JB/T4730-2005《承压设备无损检测》规定,将射线检测技术等级分为3级,A级—低灵敏度技术;AB级—中灵敏度技术;B级—高灵敏度技术。明确承压设备对接焊接接头的制造、安装、在用时的射线检测,一般应采用AB级射线检测技术进行检测。对重要设备、结构、特殊材料和特殊焊接工艺制作的对接焊接接头,可采用B级技术进行检测。根据标准,对于石油石化管道焊接接头的射线检测应采用AB级。

二、对于不同管径拍片张数的确定

确定AB级射线检测技术等级后,就可以确定环焊缝检测的K值。K 值是反D o≤400mm映射线检测裂纹检测率要求,根据标准,对100mm

<的环向对接焊接接头K值等于1.2,拍片张数见表一:

.

.

D o≤400mm<管道环焊缝双壁单影透照次数计算表表一 100mm

从表一可以看出,决定拍片张数的是底片的有效检测长度,而有效检测长度是由标准的K值所确定的。根据标准确定K值后,查阅JB4730附录中的莫诺图(图一为K=1.2时的透照次数图),确定透照次数。

以φ114×20管线拍片为例:管径Do=114mm,壁厚T=20mm,焦距

F=264mm,则参数Do/F=114/264=0.43,T/Do=20/114=0.175,查莫诺图求两条线的交点,即得到拍片数量6张。

.

.

图一 K=1.2时的透照次数图

D K400mmo≥时,为,拍片张数见表二1.1

.

.

D o≥400mm管道环焊缝双壁单影透照次数计算表表二

D o<100mm当时,属于射线检测中的小径管,具体检测张数如表三

.

.

表三 Do<100mm小径管道环焊缝透照次数计算表

以上表格是根据JB4730标准的有关规定得出的不同管径和不同厚度根据标

准规定的要求,查阅相关表格技术得出所拍摄的底片张数,从表格的

数据上来.

.

分析,管线在管径不变的情况下,如果壁厚越厚,为了检测出在焊接接头中的裂纹缺陷,必须控制射线底片的一次透照长度.

三、检测设备的确定:

根据JB4730-2005标准的规定,拍摄好的射线底片保留7年。为了保证射线底片能够长时间的保存,标准规定的不同的壁厚许可的透照最高电压,

X射线最高透照管电压见图二:不同透照厚度允许的

1-铜及铜合金;2-钢;3-钛及钛合金;4-铝及铝合金

以注水管线?15912为例。由于射线检测时,透照是2个管壁,也就是26mm×的透照厚度,查表电压可选择250KV,需要使用2505的射线机。目前油田高压注水管线大多属于厚壁管线,检测管线壁厚超过15mm,双壁透照时需要使用3005的射线机。检测管线壁厚超过20mm,双壁透照时需要使用3505的射线机。

.

DR数字射线管道检测上的应用及质量控制

DR数字射线管道检测上的应用及质量控制在管道建设工程中,射线检测是确保焊接质量的主要无损检测手段,直接关系到工程建设质量、健康环境、施工效率、建设成本以及管线的安全运行。长期以来,射线检测主要采用X射线或γ射线的胶片成像技术,检测劳动强度大,工作效率较低,常常影响施工进度。 近年来随着计算机数字图像处理技术及数字平板射线探测技术的发展,X射线数字成像检测正逐渐运用于容器制造和管道建设工程中。数字图像便于储存,检索、统计快速方便,易于实现远程图像传输、专家评审,结合GPS系统可对每道焊口进行精确定位,便于工程质量监督。同时,由于没有了底片暗室处理环节,消除了化学药剂对环境以及人员健康的影响。 1、DR技术简介 1.1.原理 数字平板直接成像,(Director Digital Panel Radiography)是近几年才发展起来的全新的数字化成像技术。数字平板技术与胶片或CR的处理过程不同,在两次照射期间,不必更换胶片和存储荧光板,仅仅需要几秒钟的数据采集,就可以观察到图像,检测速度和效率大大高于胶片和CR技术。除了不能进行分割和弯曲外,数字平板与胶片和CR具有几乎相同的适应性和应用范围。 数字平板技术有非晶硅(a-Si)和非晶硒(a-Se)和CMOS三种。 非晶硅和非晶硒两种数字平板成像原理有所不用,非晶硅平板成像可称为间接成像:X 射线首先撞击板上的闪烁层,该闪烁层以与所撞击的射线能量成正比的关系发出光电子,这些光电子被下面的硅光电二极管阵列采集到,并且将它们转化成电荷,X射线转换为光线需要的中间媒体—闪烁层。而非晶硒平板成像可称为直接成像:X射线撞击硒层,硒层直接将X射线转化成电荷,如下图: 硒或硅元件按吸收射线量的多少产生正比例的正负电荷对,储存于薄膜晶体管内的电容器中,所存的电荷与其后产生的影像黑度成正比。扫描控制器读取电路将光电信号转换为数字信号,数据经处理后获得的数字化图像在影像监视其上显示。图像采集和处理包括图像的选择、图像校正、噪声处理、动态范围,灰阶重建,输出匹配的过程,在计算机控制下完全自动化,上述过程完成后,扫描控制器自动对平板内的感应介质进行恢复。上述曝光和获取图像整个过程一般仅需几秒钟至十几秒。

射线数字成像技术的应用

射线数字成像技术的应用 在管道建设工程中,射线检测是确保焊接质量的主要无损检测手段,直接关系到工程建设质量、健康环境、施工效率、建设成本以及管线的安全运行。长期以来,射线检测主要采用X射线或γ射线的胶片成像技术,检测劳动强度大,工作效率较低,常常影响施工进度。 近年来随着计算机数字图像处理技术及数字平板射线探测技术的发展,X射线数字成像检测正逐渐运用于容器制造和管道建设工程中。数字图像便于储存,检索、统计快速方便,易于实现远程图像传输、专家评审,结合GPS系统可对每道焊口进行精确定位,便于工程质量监督。同时,由于没有了底片暗室处理环节,消除了化学药剂对环境以及人员健康的影响。 过大量的工程实践与应用,对管道焊缝射线数字化检测与评估系统进行了应用研究分析探索。 1 射线数字成像技术的应用背景 随着我国经济的快速发展,对能源的需求越来越大,输油输气管道建设工程也越来越多,众多的能源基础设施建设促进了金属材料焊接技术及检测技术的进步。 目前,在管道建设工程中,管道焊接基本实现了自动化和半自动化,而与之配套的射线检测主要采用胶片成像技

术,检测周期长、效率低下。“十二五”期间,将有更多的油气管道建设工程相继启动,如何将一种可靠的、快速的、“绿色”的射线数字检测技术应用于工程建设中,以替代传统射线胶片检测技术已成为目前管道焊缝射线检测领域亟需解决的问题。 2 国内外管道焊缝数字化检测的现状 2.1 几种主要的射线数字检测技术 1)CCD型射线成像(影像增强器) 2)光激励磷光体型射线成像(CR) 3)线阵探测器(LDA)成像系统 4)平板探测器(FPD)成像系统 几种技术各有特点,目前适用于管道工程检测的是CR 和FPD,但CR不能实时出具检测结果,且操作环节较繁琐、成本较高,因此平板探测器成像系统成为射线数字检测的主要发展方向。 2.2 国内研发情况 国内目前从事管道焊缝射线数字化检测系统研发的机构主要有几家射线仪器公司,但其产品主要用于钢管生产厂的螺旋焊缝检测。通过实践应用比较,研究应用电子学研究所研发的基于平板探测器的管道焊接射线数字化检测与评估系统已能够满足管道工程检测需要,并通过了科技成果鉴

射线检测技术介绍

射线检测技术介绍 射线检测技术是目前在锅炉压力容器及管道施工检测中应用最广泛的一种检测方法。在各个行业由于检测对象的特点及要求质量等级的不同,执行的检测标准主要是GB332-3-2005《钢熔化焊对接接头射线照相和质量分级》;JB/T4730-2005《承压设备无损检测》;SY/T4109-2005《石油天然气钢质管道无损检测》等标准,无论哪个标准都对射线检测提出的检测人员、检测设备、检测工艺、检测材料、检测环境等要求,现逐一分析:(以JB/T4730-2005《承压设备无损检测》为例) 一、射线检测技术等级 根据JB/T4730-2005《承压设备无损检测》规定,将射线检测技术等级分为3级,A级—低灵敏度技术;AB级—中灵敏度技术;B级—高灵敏度技术。明确承压设备对接焊接接头的制造、安装、在用时的射线检测,一般应采用AB级射线检测技术进行检测。对重要设备、结构、特殊材料和特殊焊接工艺制作的对接焊接接头,可采用B级技术进行检测。根据标准,对于石油石化管道焊接接头的射线检测应采用AB级。 二、对于不同管径拍片张数的确定 确定AB级射线检测技术等级后,就可以确定环焊缝检测的K值。K值是反映射线检测裂纹检测率要求,根据标准,对100mm<D o≤400mm的环向对接焊接接头K值等于1.2,拍片张数见表一:

表一100mm<D o≤400mm管道环焊缝双壁单影透照次数计算表 从表一可以看出,决定拍片张数的是底片的有效检测长度,而有效检测长度是由标准的K值所确定的。根据标准确定K值后,查阅JB4730附录中的莫诺图(图一为K=1.2时的透照次数图),确定透照次数。 以φ114×20管线拍片为例:管径Do=114mm,壁厚T=20mm,焦距F=264mm,则参数Do/F=114/264=0.43,T/Do=20/114=0.175,查莫诺图求两条线的交点,即得到拍片数量6张。

过程装备 第四章作业

第三章 过程检测技术 4.DDZ-III 型电动差压变送器是按什么原理工作的?它是由哪几部分组成的?试简述其工作过程。 答:DDZ-III 型电动差压变送器是按力矩平衡原理工作的。 它电磁反馈装置、矢量机构、低频位移检测放大器、输入转换部分等组成。工作过程:利用输入转换部分将被测压差i p ?转换成作用于主杠杆下端的输 入力i F ,使杠杆以轴封膜片为支点而偏转,并以力1F 沿水平方向推动矢量 结构,矢量结构将1F 分解成2F 和3F 。在力2F 的带动下使副杠杆以支点M 逆时针偏转,从而使衔铁靠近差动变送器,并通过低频位移检测放大器转换放大为直流电流0I ,作为变送器的输出信息;同时该电流通过电磁反馈装 置产生反馈力f F 及反馈力矩f M ,当i M 、f M 平衡时,低频位移检测放大器 的输出电流0I 便反映了差压i p ?的大小。

6.试分析电动差压变送器如何实现量程迁移(零点迁移)的。 答:电动差压变送器的零点迁移是通过调整零点迁移弹簧进行的。当调整零点迁移弹簧时,由主杠杆的力矩平衡,可知在被测差压信号不变的情况下,作用于矢量结构的力 F变化,从而改变差压变送器的输出电流的,即 1 改变了仪表的使用范围,实现了量程迁移(零点迁移)。 11.PID调节器由哪些基本部分组成的?试分析各部分所完成的功能。答:基本部分及各部分的功能如下:①输入电路——接受来自变送器的电流输出信号;②PID运算电路——根据整定好的参数用以对偏差信号进行比例、微分和积分的运算;③输出电路——将运算电路的输出信号做最后一次放大,提供调节器的输出信号。

19.气动执行器主要由哪些部分组成的?各部分的作用是什么。 答:气动执行器由气动执行机构和调节机构两部分组成。执行结构是执行器的推动装置,它按调节器输出气压信号(20~100kPa)的大小产生相应的推力,使执行机构推杆产生相应位移,推动调节机构动作。调节机构是执行器的调节部分,其内腔直接与被控介质接触,调节流体的流量。

在役高温管道的数字射线检测

在役高温管道的数字射线检测 顾军 (上海石化设备检验检测有限公司,上海金山200540) 摘要:针对在役高温管道,提出利用X射线数字成像的方法解决其缺陷在线检测的问题,通过试验及工程应用,数字射线检测结果直观,能够客观地根据缺陷图像特点判定缺陷,有助于管道安全运行的评价和隐患问题的及时发现。 关键词:在役高温管道;数字射线;在线检测;缺陷 在石油化工行业,部分管道长期高温运行,引起了组织性能的劣化,使用过程中会发生减薄以及产生裂纹等危害缺陷导致管道泄漏甚至引起爆炸,为了保证在检验周期内安、稳、长、满、优运行,迫切需要实现管道缺陷隐患的在线检测,常规检测方法受到保温层的影响以及拆除保温层后的表面温度影响无法实施检测。随着计算机及电子技术的快速发展[1],射线数字成像检测技术得到了飞速发展,其优势不仅表现在无胶片的图像存储和传输,丰富的图像处理技术拓展了射线数字成像的应用范围以及可以根据实际情况及时改变透照参数以取得最佳的检测图像。数字射线检测技术(Digital Radiographic Testing)是能够获得数字化图像的检测技术[2],检测结果直观。2015年国家能源局发布了NB/T47013.11-2015《承压设备无损检测》,这是X射线数字成像的行业标准,法规标准的实施为数字射线(DR)检测技术的应用提供了依据。 1.数字射线检测技术 1.1基本原理 DR检测原理见图1,由X射线源产生X射线,射线穿过被检测的工件后携带有工件内部的组成信息,并被成像板接收X射线光子转换为电信号再经模数转换为数字图像,最终在计算机上显示出来,由显示图像从而判断工件内部缺陷。 → → → 图 1 DR 检测原理示意 1.2DR检测系统 DR检测系统一般由射线机,非晶硅成像板,成像及显示控制单元、计算机

x射线探伤方法

第三章射线探伤 教学目标: 一、了解射线的的产生、性质及其衰减,了解各种射线检测方法的基本 原理; 二、熟悉常见射线探伤设备及器材,能正确选择X射线照相法设备参数; 三、掌握X射线照相法检测工艺,熟悉底片评定的方法,并能根据相关 标准对焊缝质量进行评级; 四、了解射线探伤防护常识。 一、任务导入: 射线探伤是利用射线可以穿透物质和在物质中有衰减的特性来发现其中缺陷的一种无损探伤方法。它可以检查金属和非金属材料及其制品的内部缺陷,如焊缝中的气孔、夹渣、未焊透等体积性缺陷。这种无损探伤方法有独特的优越性,即检验缺陷的直观性、准确性和可靠性,而且,得到的射线底片可用于缺陷的分析和作为质量凭证存档。但此法也存在着设备较复杂、成本较高的缺点,并需要对射线进行防护。 二、相关知识 知识点一:射线的产生、性质及其衰减 1.X射线的产生 用来产生X射线的装置是X射线管。它由阴极、阳极和真空玻璃(或金属陶瓷)外壳组成,其简单结构和工作原理如图3-1所示。阴极通以电流加热至白炽状态时,其阳极周围形成电子云,当在阳极与阴极间施加高压时,电子加速穿过真空空间,高速运动的电子束集中轰击阳极靶子的一个面积(几平方毫米左右、称实际焦点),电子被阻挡减速和吸收,其部分动能(约1%)转换为X射线, 其余99%以上的能量变成热能。

图3-1 X射线的产生示意图 2.X射线的主要性质 (1)不可见,以光速直线传播。 (2)具有可穿透可见光不能穿透的物质如骨骼、金属等的能力,并且在物质中有衰减的特性。 (3)可以使物质电离,能使胶片感光,亦能使某些物质产生荧光。 3.γ射线的产生及性质 γ射线是由放射性物质(60Co、192Ir等)内部原子核的衰变过程产生的。 γ射线的性质与X射线相似,由于其波长比X射线短,因而射线能量高,具有更大的穿透力。例如,目前广泛使用的γ射线源60Co,它可以检查250mm厚的铜质工件、350mm厚的铝制工件和300mm厚的钢制工件。 4.射线 当射线穿透物质时,由于物质对射线有吸收和散射作用,从而引起射线能量的衰减。 射线在物质中的衰减是按照射线强度的衰减是呈负指数规律变化的,以强度的一束平行射线束穿过厚度为δ的物质为例,穿过物质后的射线强度为:为I I=I0e-μδ 式中I—-射线透过厚度δ的物质的射线强度; I0—-射线的初始强度; e—-自然对数的底;

射线检测技术综述

《现代无损检测技术》 作业:射线检测技术综述 姓名:马丰年 学号:SY1207205 班级:SY12072 2013-1-3

射线检测技术综述 什么是射线检测技术 它是利用射线(X 射线、γ射线、中子射线等)穿过材料或工件时的强度衰减,检测其内部结构不连续性的技术。穿过材料或工件的射线由于强度不同,在x 射线胶片上的感光程度也不同,由此生成内部不连续的图像。 X 射线的产生 X-射线是在电场中被加速的高速电子,撞击到高原子序数材料的靶上,由于电子急速减速而辐射(靭致辐射)的电磁波。在真空管两阴极和阳极之间加高压,阳极选用不同的重金属材料制成,电子打在阳极上便可得到X 射线,其能量与加在两端的电压和通过的电流的乘积成正比,电流决定了射线的密度。 图1 射线管产生X 射线 X 射线的性质与构成 X 射线的特征是波长非常短,比紫外线波长更短,4110λ-=-nm ,因此具有 很高的能。X 射线在电场磁场中不偏转。这说明X 射线是不带电的粒子流。X 射线有很大的贯穿本领并能使照相底片感光,基于这个原理,由x 射线穿过物体,

便得到了物体内部的信息,通过在荧光屏上成像,就能反引出内部可能存在的缺陷。X射线本质上是一种电磁波,同此它具有反射、折射、衍射、偏振等性质。 图2 X射线的谱范围 X射线由两部分构成,一部分波长连续变化,称为连续谱;另一部分波长是分立的,与靶材料有关,成为某种材料的标识,所以称为标识谱,又叫特征谱--它迭加在连续谱上。连续谱是电子在靶上减速而产生的。可以想象到,被高压加速后的电子进入靶内,可以到达不同的深度,其速率从v骤减为0,有很大的加速度,而伴随着带电粒子的加速运动,必然有电磁辐射产生,这便是产生X射线连续谱的原因。当外界提供足够大的能量时,使原子内层电子电离,从而使原子内层出现空位,外层电子向内层补充,放出的能量便形成了X射线的标识谱 射线成像的系统构成与分类 X 射线无损检测系统的构成:射线源,控制物体运动的机械装置,X 射线接收器。 射线检测的分类 射线检测是一种重要的的无损检测方法,它主要由腔片射线照相技术、射线实时成像技术、计算机断层扫描成像技术、康普顿背散射成像技术等射线检测技术组成。 1、胶片射线照相技术 胶片射线照相无损检测技术是射线源发出的射线透过被检物体,利用被检物体与其内部缺陷介质对射线强度衰减的程度不同来携带被检物体内部信息,并用射线胶片记录下来,经显影、定影等处理,在胶片上形成透视投影影像,通过对影像的识别来评定被检物体内部是否存在不连续性的一种射线无损检测方法,是其它射线检测技术的基础,也是应用最广泛的射线检测技术。 但是胶片成像技术存在着效率低下,不能数字化,难于存储的缺点,尽管可以利用光胶片数字化扫描仪进行数字化,但是其地下的效率仍无法解决。

自动控制原理第三章复习总结(第二版)

第三章过程检测技术 目的:为了实现对生产过程的自动控制,首先必须对生产过程的各参数进行可靠地测量。 要点:学习和掌握过程测试及应用;正确地选择测试原理和方法;组成合适的测试系统。 第一节测量与误差基本知识 测量基本知识 一.测量的概念 1.概念测量是人类对自然界的客观事物取得数量概念的一种认识过程。或者说测量就是为取得任一未知参数而做的全部工作。 4.测量的基本方程式u x/ X 5.测量过程三要素 (1)测量单位; (2)测量方法; (3)测量仪器与设备。 二.测量单位 1.概念数值为1的某量,称为该量的测量单位或计量单位。 三.测量方法 (一)测量方法的分类 1.直接测量与间接测量 2.等精度测量和不等精度测量

3.接触测量与非接触测量 4.静态测量与动态测量 (二)直接测量法有以下几种常用方法: 1.直接比较测量法 2.微差测量法 3.零位测量法(又称补偿测量法或平衡测量法) (三)间接测量法 1.定义通过对与被测量有函数关系的其它量进行测量,才能得到被测量值的测量方法。 4.组合测量法 四.测量仪器与设备 (一)感受件(传感器) (二)中间件(变送器或变换器) (三)显示件(显示器) 误差基本知识 一.误差基础 (一)测量误差及分类 1.系统误差 2.随机误差(又称偶然误差) 3.粗大误差 (二)测量的精密度、准确度和精确度 1.精密度

2.准确度 3.精确度 (三)不确定度 概念用测量值代表被测量真值的不肯定程度。是测量精确度的定量表示。(四)仪表的基本误差限 1.绝对误差 2.相对误差 3.引用误差 二.误差分析与处理 (一)随机误差的分析与处理 1.统计特性(随机过程) 2.算术平均值原理 (1)真值的最佳估计值(最佳信赖值)。 (2)剩余误差 3.随机误差的标准误差估计(贝塞尔公式) 4.置信概率与置信区间 (二)系统误差的分析与处理 1.系统误差的估计 (1)恒定系统误差指误差大小和符号在测量过程中不变的误差。 (2)变值系统误差它是一种按照一定规律变化的系统误差。可分为 a.累积性系统误差随着时间的增长,误差逐渐增大或减少的系统误差。 b.周期性系统误差误差大小和符号均按一定周期变化的系统误差。 2.系统误差的消除 校准法、零示法、替代法、交换法、还有对称法、微差法、比较法等。

无损检测新技术-数字X射线检测技术简介

无损检测新技术-数字X射线检测技术简介 夏纪真 无损检测资讯网 https://www.wendangku.net/doc/ad7089217.html, 广州市番禺区南村镇恒生花园14梯701 邮编:511442 摘要:本文简单介绍了数字X射线检测技术的种类、基本原理与应用 关键词:无损检测数字X射线检测 1 综述 数字X射线检测(Digital Radiography,简称DR)可以分为:以图像增强器为基础的X 射线实时成像(Real-time Radiography Testing Image,缩写RRTI)、采用成像板(IP板)的模拟数字照相成像(Computed Radiography,简称CR)、采用电子成像技术的直接数字化X射线成像(DirectDigit Radiography,简称DR)以及将X射线照相胶片经扫描转为数字图像(FDR)。 2 以图像增强器为基础的X射线实时成像(RRTI) 以图像增强器为基础的X射线实时成像系统采用图像增强器代替射线照相的胶片或者旧式工业电视的简单荧光屏来实现图像转换,可以实现实时检测。系统主要由用于产生X 射线的X射线机系统(包括高压发生器、微焦点或小焦点的恒电位X射线机、电动光栏、循环水冷却器等,以投影放大方式进行射线透照)、图像增强器系统(X射线接收转换装置,将隐含的透过金属材料的X射线检测信号转换为可见的模拟图像)、进行信号处理及重构数字化图像的图像处理工作站(包括计算机、图像采集板卡、图像处理软件及系统软件与控制软件等,同时集成了整机控制,包括射线控制面板在内的所有控制面板和操作面板,射线透视的结果在显示器屏幕上显示,检测图像可以按照一定的格式储存在计算机硬盘、移动硬盘、U盘内或刻录到光盘上而长期保存)、检测机械工装、PLC电气控制系统、现场监视系统等六大部分组成。 典型的工业X射线实时成像检测系统结构原理示意图 图像增强器是X射线实时成像检测系统中除X射线源 外最关键的元件。图象增强器由外壳、射线窗口、输入屏 (包括输入转换屏和光电层,目前常用碘化铯晶体或三硫 化二锑、碲化锌镉、硒化镉、氧化铅、硫化镉、硅等对X 射线敏感的光电材料制作)、聚焦电极和输出屏组成。输入 转换屏吸收入射的射线,将其能量转换为可见光发射,光 图像增强器结构示意图 电层将可见光发射能量转换为电子发射,通过加有 25~30KV高压的聚焦电极加速电子并将其聚集到输出屏, 再由输出屏将电子能量转换为光发射,大大提高了输出光强,得到大大增强的图像亮度、动态范围以及分辨力。亦即在图像增强器内实现的转换过程是:射线→可见光→电子→可见光。 图像增强器输出屏后面是光学聚焦镜头等组成的光路系统,再由CCD(Charge Coupled Device的缩写,电荷耦合器件)或CMOS(Complementary Metal Oxide Silicon的缩写,互

《过程控制原理及应用》阶段练习题—3答案

《过程控制原理及应用》阶段练习题—3答案 第三章 过程检测技术 3.1 解:(1)取ΔI 为绝对误差, δI 为相对误差, δIr 为示值相对误差,q 为引用误差。相 应各值如下表所示: (2)由于 q max =q 1=2.0 因此该仪表的精度等级为2。 3.2 解:该仪表的最大引用误差为: 国家规定的精度等级中没有0.6级仪表,而该仪表的最大引用误差超过了0.5级仪表的允许误差,故该台仪表的精度等级应为1.0级。 3.3 解 : 测量所允许的最大误差为 Δt max =500×2.5%=12.5℃ 1.5级仪表测量范围上限只有100 ℃,直接排除之。 2.0级仪表所允许的最大误差为 Δt max,2=(550+50)×2.0%=12℃ 2.5级仪表所允许的最大误差为 Δt max,3=(500+100)×2.5%=15℃ 故只有2.0级满足Δt max,2<Δt max 的情况。因此,测量500℃左右的温度, 应选2.0级量程是-50~550 ℃的仪表。 3.4 解:因为压力有波动,故仪表上限应大于最大工作压力的3/2,即 MPa N 5.1)2/3(1=?> %6.0500 3%100max max ±=±=??=N x δ

为了满足测量精度的要求,被测压力的最小值不应低于满量程的1/3,即 MPa N 1.237.0=?< 故应选择量程范围为0~1.6MPa 的压力表。 工艺允许的引用误差最大值为: %25.1%1006 .102.0=?=允δ 故应选择精度等级为1.5级的压力计。 3.5 答:弹簧管式压力计主要是由压力感受元件和放大指示机构构成,其中压力感受元件是一根弯曲成约270°圆弧的扁圆形或椭圆形截面的空心金属管;放大指示机构是由拉杆、齿轮以及指针组成。当通入被测压力后,扁圆或椭圆形截面的弹簧管有变圆的趋势,并迫使弹簧管的自由端发生相应的弹性变形,这个变形借助于拉杆,经齿轮传动机构予以放大,最终由固定于小齿轮上的指针将被测值在刻度盘上指示出来。在弹性范围内,弹簧管自由端的位移与被测压力近似成线性关系,因此通过测量自由端的位移可直接测得相应的被测压力的大小。 3.6 答:压力测量仪表的选用主要考虑以下三个方面:仪表类型、仪表量程范围和仪表精度。仪表类型的选择主要考虑被测介质的性质、现场工作环境以及是否有特殊要求(如是否需要信号远传,自动记录或报警);仪表量程是根据被测压力的大小来确定;仪表精度根据生产上所允许的最大测量误差来确定。 3.7 答:热电偶测温仪表是利用热电效应原理来测温的。由两种不同的导体组成闭合回路时,如果两接触点的温度不同,回路中将产生热电动势,该热电动势与导体材料和两接触点的温度有关。当两种导体材料固定以后,如果一个接触点的温度为已知,另一接触点的温度即可由热电动势算出。因此,测出回路的热电动势,即可得到另一接触点的温度,即待测温度。 热电偶测温是将一端温度,即冷端温度作为恒定值。在实际应用过程中,冷端温度大多是变化的,从而给测量带来误差。为了保证测量的准确性,就需要对冷端温度进行补偿,使热电偶的冷端温度保持恒定。常用的冷端温度补偿的方法有恒温法、示值修正法、补偿电桥法等。 3.8 答:热电阻测温仪表是利用金属导体或半导体的电阻值随温度变化而变化的性质来测量温度的。

X射线数字成像检测系统

X射线数字成像检测系统

X射线数字成像检测系统 (XYG-3205/2型) 一、设备基本说明 X射线数字成像系统主要是由高频移动式(固定式)X射线探伤机、数字平板成像系统、计算机图像处理系统、机械电气系统、射线防护系统等几部分组成的高科技产品。它主要是依靠X射线可以穿透物体,并可以储存影像的特性,进而对物体部进行无损评价,是进行产品研究、失效分析、高可靠筛选、质量评价、改进工艺等工作的有效手段。 探伤机中高压部分采用高频高压发生器,主机频率40KHz为国际先进的技术指标。连续工作的高可靠性,透照清晰度高,穿透能力强,寿命长,故障率低等特点。X光机通过恒功率控制持续输出稳定的X射线,波动小,保证了优质的图像质量。高频技术缩短了开关机时间,有助于缩短检测期,提高工作效率。 数字平板成像采用美国VEREX公司生产的Paxscan2530 HE型平板探测器,成像效果清晰。该产品已经在我公司生产的多套实时成像产品中使用,性能稳定可靠。 计算机图像处理系统是我公司独立自主研制开发的、是迄今为止国同行业技术水平最高的同类产品。主要特点是可以根据不同行业用户的需求,编程不同的应用界面及图像处理程序,利用高性能的编程技术,使操作界面简单易懂,最大限度的减少操作步骤,最快速度的达到操作人员的最终需求。 机械传动采用电动控制、无极变速,电气控制采用国际上流行的钢琴式多功能操作台,将本系统中的X射线机控制、工业电视监视、机械操作等集中到一起,操作简单、便。 该系统的自动化程度高, 检测速度快,极大地提高了射线探伤的效率,降

低了检验成本,检测数据易于保存和查询等优点,其实时动态效果更是传统拍片法所无法实现的,多年来该系统已成功应用于航空航天、军事工业、兵器工业、油化工、压力容器、汽车工业、造船工业、锅炉制造、制管行业、耐火材料、低压铸造、瓷行业、环氧树脂材料等诸多行业的无损检测中。 本系统的技术、质量、性能都居于国领先水平。 2004年由于在成像应用技术面取得的成绩,被确定为X射线实时成像检测系统高技术产业化示工程基地。 二、系统适用围及主要技术参数 1.主要用途:本设备壳体焊接、金属铸造质量检测。 2.被检工件外形尺寸:直径φ300-φ2500mm,长度1000-8000mm,壁厚≤12mm 3.X射线探伤机容量:320KV,5.6mA(大焦点)/2.5mA(小焦点) 4.冷却式:油冷(循环制冷),具有流量、温度设定、显示、保护功能。5.PaxScan2530 HE型数字平板成像系统 6.系统灵敏度:静态灵敏度优于1.25%~1.6%(在图像处理上测试) 7.系统分辨率:≤36LP/cm 三、设备基本配置及构成明细 (一)高频X射线探伤机主要配置 1.金属瓷X射线管MXR-320HP/11 1支瑞士COMET 2.高压电缆225KV 7m 2根瑞士COMET 3.高频高压发生器H160 2台射线 4.控制器T7000型1台射线 5.油冷却器AL-YLB-4500型1台射线

过程装备 第三章作业

第三章过程检测技术 2.测量仪表的主要性能指标有哪些?传感器的主要特性有哪些? 答:测量仪表主要性能指标有: 量程:仪表在保证规定精确度的前提下所能测量的被测量的区域称为仪表的量程。一般,在仪表的工作量程内的相对误差不超过某个设定值。 精度等级:可以用仪表的最大引用误差描述仪表的测量精度。 灵敏度:指仪表或装置在达到稳态后,输入量变化引起的输出量变化的比值。 线性度:用实际标定曲线与拟合直线之间的最大偏差与满量程之比值的百分数来表征线性度。 迟滞误差:在输入量增加和减少的过程中,对于同一输入量会得出大小不同的输出量,在全部测量范围内,这个差别的最大值与仪表的满量程之比值称为迟滞误差。 漂移:指输入量不变时,经过一定时间后输出量产生的变化,有温漂和零漂之分。漂移是衡量仪表稳定性的重要指标。 重复性:仪表的重复性用全测量范围内的各输入值所测得的最大重复性误差来确定。 传感器的主要特性有:准确性、稳定性、灵敏性、经济性、耐腐蚀和低能耗等。

6. 对某物理量经过20次测量,得到如下数据: 324.08 324.03 324.02 324.11 324.14 324.07 324.11 324.14 324.19 324.23 324.18 324.03 324.01 324.12 324.08 324.16 324.12 324.06 324.21 324.14 分别用3σ准则和肖维奈准则判断有无粗差,并求该测量列的算术平均值x 、标准差σ和极限误差△,写出测量结果表达式。 解:n=20,平均值为11.32411 ==∑=n i i x n x 剩余误差: x x V i i -=为 -0.03,-0.08,-0.09,0.0,0.03,-0.04,0.0,0.03,0.08,0.12,0.07,-0.08,-0.10, 0. 01,-0.03,0.05,0.01,-0.05,0.1,0.03。 按贝塞尔方程计算标准差06.0111 2 =-=∑=n i i V n σ (1)按3σ准则表示 3σ=0.18 σ312.010max <==V V 因而10x 不属于粗差,该数组中无坏值。 极限误差18.03±=±=?σ 测量结果18.011.324±=?+=x x (2)按肖维奈法 查表得 n=20时,k=2.24 则k σ=0.13 σk V V <==12.010max 因而10x 不属于粗差,该数组中无坏值。 极限误差13.0±=±=?σk 测量结果13.011.324±=?+=x x

3第三章红外检测技术

红外检测技术
红外技术的基本概念 红外线是一种电磁波。因此具有电磁辐射的 特点: 波动性 传输不需要介质 红外辐射就是热辐射 红外线也是一种光线。但是人眼看不见的光 线,具有粒子性,对红外线的研究也属于光学 范畴。
机械工程学院 机械装备及控制系
1

红外的历史
1800年,赫胥耳利用太阳光谱色散实 验发现了红外光。 验发现了红外光。 1835年,安培宣告了光和热射线的同 一性。 一性。 1870年,兰利制成了面积只有针孔那 样大小的探测器, 样大小的探测器,并用凹面反射光栅、 并用凹面反射光栅、 岩盐及氟化物棱镜来提高测量色散的能 力,这为红外应用的重要方面——航空 摄影奠定了基础
通常取可见光谱中红光末端为780 通常取可见光谱中红光末端为780nm, 780 ,比它长的光 就是红外光, 就是红外光,或称为热射线。 或称为热射线。
机械工程学院 机械装备及控制系 2

红外的历史
1880年,“红外”一词出现在阿贝尼的文章中( 一词出现在阿贝尼的文章中(最 早)。 1888年,麦洛尼用比较灵敏的热电堆改进了赫胥耳的 探测和测量方法, 探测和测量方法,为红外技术奠定了基础。 为红外技术奠定了基础。 1904年,开始采用近红外进行摄影。 开始采用近红外进行摄影。 1929年,科勒发明了银氧铯( 科勒发明了银氧铯(Ag-o-Cs)光阴极, 光阴极,开 创了红外成像器件的先河。 创了红外成像器件的先河。 二十世纪30年代中期, 年代中期,荷兰、 荷兰、德国、 德国、美国各自独立研制 成红外变像管, 成红外变像管,红外夜视系统应用于实战。 红外夜视系统应用于实战。 1952年,美国陆军制成第一台热像记录仪
热电堆:由两个或多个热电偶串接组成,各热电偶输出 的热电势是互相叠加的。
机械工程学院 机械装备及控制系 3

第三章 过检测技术

第三章过程检测技术 1.简述直接测量法与间接测量法的定义,指出它们的异同及使用场合? 答:直接测量法—指被测量与单位能直接比较得出比值,或者仪表能直接显示出被测参数值的测量方法;间接测量法—通过测量与被测量有一定函数关系的其他物理量,然后根据函数关系计算出被测量的数值,称为间接测量法。相同之处在于都是对工业生产中一些物理量的测量,都包含测量三要素。不同之处在于直接测量测量过程简单方便,应用广泛;间接测量过程较复杂,只有在误差较大或缺乏直接测量仪表时才采用。 2.测量仪表的主要性能指标有哪些?传感器的主要特性有哪些? 答:测量仪表的主要性能指标有技术,经济及使用三方面的指标,其中技术方面的有:误差,精度等级,灵敏度,变差,量程,响应时间,漂移等;经济方面的有:使用寿命,功耗,价格等;使用方面的有:操作维修是否方便,运行是否可靠安全,以及抗干扰与防护能的强弱,重量体积的大小,自动化程度的高低等。传感器的主要特性有:准确性,稳定性,灵敏性。 3.举例说明系统误差,随机误差和粗大误差的含义及减小误差的方法。 答:系统误差是由于测量工具本身的不准确或安装调整得不正确,测试人员的分辨能力或固有的读数习惯,测量方法的理论根据有缺陷或采用了近似公式等原因产生的测量值与真值的偏差。系统误差的绝对值和符号或者保持不变,或者在条件变化时按某一规律变化。如仪表零位未调整好会引起恒值系统误差。随即误差是由于测量过程中大量彼此独立的微小因素对被测值的综合影响而产生的测量值与真值的偏差,其绝对值和符号以不可预料的方式变化。如气温的变化。粗大误差—是由于测量操作者的粗心,不正确地操作,实验条件的突变或实验状况未达到预想的要求而匆忙实验等原因造成的明显地歪曲测量结果的误差。减小误差的方法:①系统误差:应尽量减少或消除系统误差的来源。首先检查仪表本身的性能是否符号要求;其次仔细检查仪器是否处于正常工作条件,如环境条件及安装位置等是否符合技术要求,零位是否正确;此外还应检查测量系统和测量方法本身是否正确。②随即误差:由于摩擦,间隙,噪声等都会产生随机误差,因此首先从结构,原理上尽量避免采用存在摩擦的可动部分;采用减小噪声的装置,

射线的无损检测技术

X射线得无损检测技术 一前言 无损检测方法就是利用声、光、电、热、磁及射线等与被测物质得相互作用,在不破坏与损伤被测物质得结构与性能得前提下,检测材料、构件或设备中存在得内外部缺陷,并能确定缺陷得大小、形状与位置。 无损检测得技术有很多,包括:染料渗透检测法、超声波检测法、强型光学检测法、渗透检测法﹑声发射检测法,以及本文介绍得x射线检测法。 X射线无损探伤就是工业无损检测得主要方法之一,就是保证焊接质量得重要技术,其检测结果己作为焊缝缺陷分析与质量评定得重要判定依据,应用十分广泛。胶片照相法就是早期X射线无损探伤中常用得方法。X射线胶片得成像质量较高,能够准确地提供焊 缝中缺陷真实信息,但就是,该方法具有操作过程复杂、运行成本高、结果不易存放且查询携带不方便等缺点。 由于电子技术得飞速发展,一种新型得X射线无损检测方法“X 射线工业电视”已应运而生,并开始应用到焊缝质量得无损检测当中。X射线工业电视己经发展到由工业CCD摄像机取代原始X 射线无损探伤中得胶片,并用监视器(工业电视)实时显示探伤图

像,这样不仅可以节省大量得X射线胶片,而且还可以在线实时检测,提高了X射线无损检测得检测效率。但现在得X射线工业电视大多还都采用人工方式进行在线检测与分析,而人工检测本身存在几个不可避免得缺点,如主观标准不一致、劳动强度大、检测效率低等等。 x射线无损探伤计算机辅助评判系统得原理可以用两个“转换”来概述:首先X射线穿透金属材料及焊缝区域后被图像增强器所接收,图像增强器把不可见得X射线检测信息转换为可视图像,并被CCD摄像机所摄取,这个过程称为“光电转换”;就信息量得性质而言,可视图像就是模拟量,它不能被计算机所识别,如果要输入计算机进行处理,则需要将模拟量转换为数字量,进行“模/数转换”,即经过计算机处理后将可视图像转换为数字图像。其方法就是用高清晰度工业CCD摄像机摄取可视图像,输入到视频采集卡当中,并将其转换为数字图像,再经过计算机处理后,在显示器屏幕上显示出材料内部缺陷得性质、大小与位置等信息,再按照有关标准对检测结果进行等级评定,从而达到焊缝焊接质量得检测与分析。 二 X射线无损检测系统结构与原理 射线无损探伤缺陷自动检测系统得硬件组成与结构如图1所示。系统主要由三个部分组成:信号转换部分、图像处理部分及缺陷位置得获取与传输部分。

射线数字成像检测技术

射线数字成像检测技术 韩焱 (华北工学院现代元损检测技术工程中心,太原030051) 摘要:介绍多种射线数字成像(DR)系统的组成及成像机理,分析其性能指标、优缺点及应用领域。光子放大的DR系统(如图像增强器DR系统)实时性好,但适应的射线能量低,检测灵敏度相对较低;其它系统的检测灵敏度较高但成像时间较长。DR系统成像方式的主要区别在于射线探测器,除射线转换方式外,影响系统检测灵敏度的主要因素是散射噪声和量子噪声;可采用加准直器和光量子积分降噪的方法提高检测灵敏度。 关键词:射线检验;数字成像系统;综述 中图分类号:TGll5.28 文献标识码:A 文章编号:1000-6656(2003109-0468-04 DIGITAL RADIOGRAPHIC TECHNOLOGY HAN Yan (Center of Modern NDT &E, North China Institute of Technology, Taiyuan 030051, China) Abstract: The structure and imaging principle of digital radiographic (DR) systems are introduced. And thecharacteristics, performances, advantages, disadvantages and applications of the systems are analyzed. The DR sys-tern with photon amplification such as the DR system with intensifier can get real-time imaging, but it fits for lowerenergy and its inspection sensitivity is lower. The systems working with high energy can obtain higher sensitivity,while is time-eonsurning. The imaging way of a DR system depends on the detector used, and the factors influencinginspection sensitivity are the quantum noise from ray source and scatter noise besides the transform way of rays.Quantum integration noise reducer and collimator can be used to improve the inspection sensitivity of the system. Keywords:Radiography; Digital imaging system; Survey 射线检测技术作为产品质量检测的重要手段,经过百年的历史,已由简单的胶片和荧屏射线照相发展到了数字成像检测。随着信息技术、计算机技术和光电技术等的发展,射线数字成像检测技术也得到了飞速的发展,新的射线数字成像方法不断涌现,给射线探伤赋予了更广泛的内涵,同时也使利用先进网络技术进行远程评片和诊断成为可能。 目前工业中使用的射线数字成像检测技术主要包括射线数字直接成像检测技术(Digital Radio—graphy,简称DR)和射线数字重建成像检测技术,如工业CT(Industry Computed Tomography,简称ICT)。以下将在介绍DR检测系统组成的基础上,重点分析系统的成像原理、特点、特性及应用场合。 1 DR检测系统简介 DR检测系统组成见图1。按照图像的成像方式分为线扫描成像和面扫描成像;根据成像过程可分为直接和间接式DR系统。以下重点介绍直接DR系统。 图1 DR检测系统组成框图 1.1 直接式DR系统 直接DR成像系统主要分为图像增强器成像系统、平板型成像系统和线阵扫描成像系统等。 图2为图像增强器式DR系统,主要通过射线视频系统与数字图像处理系统集成实现。系统采用射线--可见光--电子--电子放大--可见光的光放大技术,是将射线光子由转换效率较高的主射线转换屏转换为可见光图像,可见光光子经光电转换变为电子,而后对电子进行放大,放大后的电子聚集在小屏上再次

X射线数字成像检测系统

X射线数字成像检测系统X射线数字成像检测系统

(XYG-3205/2型) 一、设备基本说明 X射线数字成像系统主要是由高频移动式(固定式)X射线探伤机、数字平板成像系统、计算机图像处理系统、机械电气系统、射线防护系统等几部分组成的高科技产品。它主要是依靠X射线可以穿透物体,并可以储存影像的特性,进而对物体部进行无损评价,是进行产品研究、失效分析、高可靠筛选、质量评价、改进工艺等工作的有效手段。 探伤机中高压部分采用高频高压发生器,主机频率40KHz为国际先进的技术指标。连续工作的高可靠性,透照清晰度高,穿透能力强,寿命长,故障率低等特点。X光机通过恒功率控制持续输出稳定的X射线,波动小,保证了优质的图像质量。高频技术缩短了开关机时间,有助于缩短检测周期,提高工作效率。 数字平板成像采用美国VEREX公司生产的Paxscan2530 HE型平板探测器,成像效果清晰。该产品已经在我公司生产的多套实时成像产品中使用,性能稳定可靠。 计算机图像处理系统是我公司独立自主研制开发的、是迄今为止国同行业技术水平最高的同类产品。主要特点是可以根据不同行业用户的需求,编程不同的应用界面及图像处理程序,利用高性能的编程技术,使操作界面简单易懂,最大限度的减少操作步骤,最快速度的达到操作人员的最终需求。 机械传动采用电动控制、无极变速,电气控制采用国际上流行的钢琴式多功能操作台,将本系统中的X射线机控制、工业电视监视、机械操作等集中到一起,操作简单、方便。 该系统的自动化程度高, 检测速度快,极大地提高了射线探伤的效率,降低了检验成本,检测数据易于保存和查询等优点,其实时动态效果更是传统拍片

X射线数字成像检测系统郑金泉.doc

实用标准文档 X射线数字成像检测系统

目录 一、目的意义 (3) 二、系统介绍 (3) 2.1 CR 技术与 DR技术的共同点 (4) 2.2 CR 技术与 DR技术的不同点 (4) 2.3 对比分析 (5) 2.4 系统组成 (5) 2.5 X 射线数字平板探测器 (6) 2.6 X 射线源 (7) 2.7 图像处理系统 (8) 2.8 成像板扫描仪 (9) 2.9IP 成像板 (9) 三、 DR检测案例 (10) 3.1 广西 220kV 振林变 (10) 3.2 广西 220kV 水南变 (11) 3.3 温州 220kV 白沙变 (13) 3.4 广西 110kV 城东变 (15) 3.5 广西乐滩水电站 (16) 四、 CR检测案例 (18) 4.1 百色茗雅 220kV变电站 (18)

一、目的意义 气体绝缘全封闭组合电器(GIS)设备结构复杂,由断路器、隔离开关、接 地开关、互感器、避雷器、母线、连接件和出线终端等组成,内部充有SF6绝缘气体,给解体检修工作带来很大的困难,且检修工作技术含量高,耗时长,停电 所造成的损失大。通过对 GIS 设备事故的分析发现,大部分严重事故,未能通过现有的检测手段在缺陷发展初期被发现,导致击穿、烧损等严重事故的发生。 通过 GIS 设备局放监测,结合专家数据库和现场经验,可大致判断 GIS 设备局放类型,进行大致的定位,但无法明确GIS 设备内部的具体故障。结合X 射线数字成像检测系统,对 GIS 设备进行多方位透视成像,配合专用的图像处理与 判读技术,实现其内部结构的“可视化”与质量状态快速诊断,极大地提高 GIS 设备故障定位与判别的准确性,提高故障诊断效率,为整个设备的运行安全与质量监控提供一种全新的检测手段。对 GIS 设备局放可能造成的危害及其影响范围和程度,提出相应策略,采取相应的措施,对电网的安全、稳定、经济运行具有重要意义。 二、系统介绍 按照读出方式(即X 射线曝光到图像显示过程)不同,可分为: 数字射线成像( DR-Digital Radiography) 计算机射线成像( CR-Computed Radiography) 图 1-1 检测原理图

相关文档
相关文档 最新文档