文档库 最新最全的文档下载
当前位置:文档库 › 绿茵场上的流体力学原理

绿茵场上的流体力学原理

绿茵场上的流体力学原理
绿茵场上的流体力学原理

绿茵场上的流体力学原理

摘要:绿茵场上经典的任意球常常成为电视台反复播放的精彩瞬间。“香蕉球”以及解说员口中的反物理规律的“飘球”有着无穷的魅力,本文从香蕉球出发分析各种任意球中的物理学原理。

关键词:香蕉球,卡门涡街,空气动力学

引言:假使你是个足球迷的话,一定见到过这样的精彩场面:向对方球门发直接任意球时,守方球员五、六个人排成一字“人墙”,企图挡住攻入球门的路线,而攻方的主罚球员却不慌不忙,慢慢走上前去,把球放正位置,然后起脚一记猛射,只见球绕过“人墙”,眼看要偏离球门飞出界外,却又转过弯来直扑球门,守门员刚要起步扑球,却为时已晚,球早已应声入网了。这就是颇为神奇的“香蕉球”。因为球运动的路线是弧形的,像香蕉形状,因此以“香蕉球”得名(见图1)。另外还有落叶球、飘球等等在一般人眼中违反物理定律的球。运动员们是不是有什么神奇的魔法?不,他不是靠魔法,而是靠科学,用流体力学知识完全可以解开这个谜[1]。

1、名词解释

香蕉球是指当球在空中飞行时,并且不断地在旋转,由于空气具有一定的粘滞性,因此当球转动时,空气就与球面发生摩擦,旋转着的球就带动周围的空气层一起转动,从而形成足球在空中向前并作弧线飞行。由于球呈弧线形运行,与香蕉形状相似,故又俗称“香蕉球”。

落叶球指的是当用力踢皮球的中心部位时,它就会朝一个方向飞去,当靠近球门时会突然下沉,就如一片枯叶从树上落下,被人们称为“落叶球”。

飘球在实际比赛中首先在排球比赛中出现,飘球飘忽不定,路线难判飘球的特点是完全不旋转,需要击球时直线挥臂、骤打突停、让作用力通过球的重心。

马格努斯效应是流体力学当中的一个现象,是一个在流体中转动的物体(如圆柱体)受到的力。

在自然界中常可遇到,在一定条件下的定常来流绕过某些物体时,物体两侧会周期性地脱落出旋转方向相反、排列规则的双列线涡,经过非线

性作用后,形成涡街成为卡门涡街。

2 、运动足球的流体力学解释

2.1香蕉球

随着一记劲射,足球在绕过“人墙”眼看要飞出场外时却又魔幻般拐过弯来直扑球门,这就是神秘莫测、防不胜防的“香蕉球’。“香蕉球”如今是越来越多大牌球星们的基本功底和拿手好戏.被誉为“万人迷”和“英格兰圆月弯刀”的贝克汉姆一次次用最优雅的“贝氏弧线”博得世界的喝彩,“金左脚”卡洛斯的“炮打双灯”为足球史留下了一段佳话,而“绿茵拿破仑”普拉蒂尼踢出的“香蕉球”横向飘移量竟达5m之多,使他成了至今无人挑战的“任意球之王”。

(图1 比赛中的香蕉球路线)

“香蕉球’为什么会在飞行中拐弯?这里不妨先从流体的黏滞性说起。当我们把手伸进水中再拿出来,手的表面会粘上一层水。

同样,球的表面也附着一层薄薄的空气,当“香蕉球”一边飞行一边自转时,会带动表面的空气一起旋转,其中一侧转动的速度和球的前进速度相加,使得迎面气流受到较大阻力,另一侧情况则恰恰相反,自转速度和前进速度相减(图2)。于是带来了球的两侧气流速度不同.

根据伯努利原理

p1+1/2ρv1^2+ρgh1=p2+1/2ρv2^2+ρgh2

上式各项分别表示单位体积流体的压力能 p、重力势能ρg z和动能

(1/2)*ρv ^2,在沿流线运动过程中,总和保持不变,即总能量守恒。

(图2 香蕉球力学原理图解)

在球的飞行过程中我们可以假设流场是定常的,所以满足伯努利原理。由于沿着球表面的总能量守恒,速度大的一侧必然导致压强小,球的两侧压强有大有小,“香蕉球”便受到一个侧向的力,也称“马格努斯力”如图一,导致了飞行轨迹的弯曲。伸出右手,用食指表示球的飞行方向,蜷曲的三指表示球的旋转方向,与食指水平垂直的拇指则表示“马格努斯力”的方向[1]。

2.2落叶球

落叶球指的是当用力踢皮球的中心部位时,它就会朝一个方向飞去,当靠近球门时会突然下沉,就如一片枯叶从树上落下,被人们称为“落叶球”。我们有时也会听到解说员惊呼,这个球越过门将头顶后急剧下坠,然后又说,真精彩,某某某以一记不符合物理学规律的射门为球队打开了胜利之门。当然所谓不符合物理定律只是解说员的夸大其词,现在我来分析一下落叶球是不是不符合物理学规律。

目前还没有对落叶球的原理有一个系统的解释,起先人们以为落叶球是一种下旋球,但是当人们一次次的慢动作回放时却发现,提出的足球几乎是不旋转的,所以我们排除了由于旋转导致球侧压强不等的可能。

首先我只考虑球在垂直于水平方向的平面运动的情况,如果不计空气阻力,这种情况下,落叶球的运行轨迹事实上就是斜抛运动。而在垂直于

水平面的方向,它做的是竖直上抛运动,球在达到最高点时

H=V2/2g,V为斜抛初速度在垂直方向的分速度

便开始下坠,如果力量控制好的话,球员可以做到使球在守门员到球门这段水平距离达到最高点,这样就能使球在越过守门员头顶和飞入球门前实现下坠。

但是对于理想状态的斜抛,在球达到最高点前与后,球的飞行轨迹是一样的,它不可能带来迅速下坠的视觉感受。那么,为什么我们经常能看到球在越过守门员之后急剧下坠呢?

这就是因为空气的阻力的帮忙。球在达到最高点后,如果没有空气阻力,那么球事实上将做平抛运动,我们知道平抛运动中,初速度越小,球的运行轨迹就越接近自由落体。而一旦有了空气阻力,球在水平方向的运动速度会越来越小,由于任意时刻,球所受的空气阻力不可能一致,所以球越过最高点后(当然在最高点之前也是一样),在水平方向上,球事实上是在做加速度不断变化的减速运动。而随着水平速度不断减小,同时竖直方向速度的不断增加,这样在单位水平运行距离球下落的高度会越来越大,所以事实上是水平速度的急剧减低导致了它在垂直方向的迅速下坠。

从另一个角度看,当飘球的速度减小到一个临界值,阻力的突变性增大也会带来球的骤然失速而急剧

2.3飘球

飘球在实际比赛中首先在排球比赛中出现,飘球飘忽不定,路线难判。

飘球的特点是完全不旋转,需要击球时直线挥臂、骤打突停、让作用力通过球的重心。

谈到飘球的机制和原理,我们不妨讲一点别的故事,也许有助于打开思路.高耸的钢制烟囱在大风中会剧烈摆动、圆形截面的输电线会发出尖锐呼啸;发电厂热交换器排管在高速气流中会轰鸣震荡;潜水艇细长的潜望镜筒在波浪中前进时会扭动弯曲而影响观察,圆形桥墩在激流中则会受到严重破坏.著名的美籍匈牙利裔物理学家冯·卡门教授曾经深入研究过这一现象,发现流体绕过柱状物体时,尾流两侧会交替产生成对排列的、旋转方向相反的涡旋,对物体产生交变的横向作用力.这便是著名的“卡

门涡街”所揭示的原理。

而飘球的产生正是由于卡门涡街使然。

卡门涡街的典型特征是随着Re 的变化,流动呈现不同的状态。在很小Re下,流动定常,圆柱后有一对尾涡,随着Re的增加,尾迹出现振荡,继续增加Re,近尾迹中涡交替脱落,进入下游尾迹,形成能持续较长一段距离的稳定涡列,即卡门涡街。

(也即惯性力与粘性力之比)

其中d=非流线型物体的特征长度;V=物体上游流体的来流速度;ν=为流体的动粘滞率。

(图 fluent制作的卡门涡街模拟)

在Re数大约低于1时流场中的惯性力与粘性力相比居于次要地位,圆柱上下游的流线前后对称。

随着Re的加大,圆柱上下游的流线逐渐失去对称性,对下游的影响比上游深远,Re>4是,沿圆柱下游形成两个“附着涡”。

40

Re进一步增大,涡排列逐渐失去其周期性和规则性,流场中大部分惯性力远远大于粘性力,可以当作无粘性无旋流对待[2]。

(图不同雷诺数下的卡门涡街)

三维的排球虽然不同于二维的圆柱体,但尾部形成的“脱体涡’同样会引起“流固耦合振动”,飘球发生飘晃的原因盖出于此。

3.结束语

香蕉球、弧圈球、“麻脸”高尔夫和飘球都不过是空气动力学这个神奇的万花筒中展现的一个小小景观.时刻记住我们不是在虚无的真空中,而是在大气的怀抱中运动,就会加深对体育的认识和理解.生活中的点点滴滴都包含了科学,包含了流体力学的知识,只要我们细心观察,勤于思考,可以发现很多有趣的又对学习有帮助的实例。本文只是这方面的一些粗浅的体会。

参考文献

[1]程威、朱涛、沈文昊. 从香蕉球中看流体力学

[1]赵致真. 从香蕉球说开去

[2]周光坰、严宗毅、许世雄、章克本. 流体力学

2020-2021年中国科学院大学(中科院)计算数学考研招生情况、分数线、参考书目、经验指导

一、中国科学院数学与系统科学研究院简介 中国科学院数学与系统科学研究院由中科院数学研究所、应用数学研究所、系统科学研究所及计算数学与科学工程计算研究所四个研究所整合而成,此外还拥有科学与工程计算国家重点实验室、中科院管理决策与信息系统重点实验室、中科院系统控制重点实验室、中科院数学机械化重点实验室、华罗庚数学重点实验室、随机复杂结构与数据科学重点实验室,以及中科院晨兴数学中心和中科院预测科学研究中心等。2010年11月成立国家数学与交叉科学中心,旨在从国家层面搭建一个数学与其它学科交叉合作的高水平研究平台。数学与系统科学研究院拥有完整的学科布局,研究领域涵盖了数学与系统科学的主要研究方向。共有16个硕士点和13个博士点(二级学科),分布在经济学、数学、系统科学、统计学、计算机科学与技术、管理科学与工程六个一级学科中,可以在此范围内招收和培养硕士与博士研究生。在2006年全国学科评估中,我院数学学科的整体评估得分为本学科的最高分数。数学与系统科学研究院硕士招生类别为硕士研究生、硕博连读生和专业学位硕士研究生。2019年共计划招收122名。 二、中国科学院大学计算数学专业招生情况、考试科目

三、中国科学院大学计算数学专业分数线 2018年硕士研究生招生复试分数线 2017年硕士研究生招生复试分数线 四、中国科学院大学计算数学专业考研参考书目 616数学分析 现行(公开发行)综合性大学(师范大学)数学系用数学分析教程。 801高等代数 [1] 北京大学编《高等代数》,高等教育出版社,1978年3月第1版,2003年7月第3版,2003年9月第2次印刷. [2] 复旦大学蒋尔雄等编《线性代数》,人民教育出版社,1988. [3] 张禾瑞,郝鈵新,《高等代数》,高等教育出版社, 1997. 五、中国科学院大学计算数学专业复试原则 在中国科学院数学与系统科学研究院招生工作小组领导下,按研究所成立招收硕士研究生复试小组,设组长1人、秘书1人。 复试总成绩按百分制计算,其中专业知识成绩占60%,英语听力及口语测试成绩占20%,综合素质成绩占20%。 在面试环节,每位考生有5分钟自述,考查内容主要包括专业知识、外语(口语)水平

流体力学复习要点(计算公式)

D D y S x e P gh2 gh1 h2 h1 b L y C C D D y x P hc 第一章 绪论 单位质量力: m F f B m = 密度值: 3 m kg 1000=水ρ, 3 m kg 13600=水银ρ, 3 m kg 29.1=空气ρ 牛顿内摩擦定律:剪切力: dy du μ τ=, 内摩擦力:dy du A T μ= 动力粘度: ρυ μ= 完全气体状态方程:RT P =ρ 压缩系数: dp d 1dp dV 1ρρκ= -=V (N m 2 ) 膨胀系数:T T V V V d d 1d d 1ρρα - == (1/C ?或1/K) 第二章 流体静力学+ 流体平衡微分方程: 01;01;01=??-=??-=??- z p z y p Y x p X ρρρ 液体平衡全微分方程:)(zdz ydy xdx dp ++=ρ 液体静力学基本方程:C =+ +=g p z gh p p 0ρρ或 绝对压强、相对压强与真空度:a abs P P P +=;v a abs P P P P -=-= 压强单位换算:水银柱水柱mm 73610/9800012 ===m m N at 2/101325 1m N atm = 注: h g P P →→ρ ; P N at →→2m /98000乘以 2/98000m N P a = 平面上的静水总压力:(1)图算法 Sb P = 作用点e h y D +=α sin 1 ) () 2(32121h h h h L e ++= ρ 若01 =h ,则压强为三角形分布,3 2L e y D == ρ 注:①图算法适合于矩形平面;②计算静水压力首先绘制压强分布图, α 且用相对压强绘制。 (2)解析法 A gh A p P c c ρ== 作用点A y I y y C xc C D + = 矩形12 3 bL I xc = 圆形 64 4 d I xc π= 曲面上的静水总压力: x c x c x A gh A p P ρ==;gV P z ρ= 总压力z x P P P += 与水平面的夹角 x z P P arct an =θ 潜体和浮体的总压力: 0=x P 排浮gV F P z ρ== 第三章 流体动力学基础 质点加速度的表达式??? ? ? ? ??? ??+??+??+??=??+??+??+??=??+??+??+??=z u u y u u x u u t u a z u u y u u x u u t u a z u u y u u x u u t u a z z z y z x z z y z y y y x y y x z x y x x x x A Q V Q Q Q Q Q G A = === ? 断面平均流速重量流量质量流量体积流量g udA m ρρ 流体的运动微分方程: t z t y t x d du z p z d du y p Y d du x p X = ??-=??-=??- ρρρ1;1;1 不可压缩流体的连续性微分方程 : 0z u y u x u z y x =??+??+?? 恒定元流的连续性方程: dQ A A ==2211d u d u 恒定总流的连续性方程:Q A A ==2211νν 无粘性流体元流伯努利方程:g 2u g p z g 2u g p z 2 2 222 111++=++ρρ 粘性流体元流伯努利方程: w 2 2222111'h g 2u g p z g 2u g p z +++=++ρρ

流体力学的应用

重庆理工大学 关于流体力学应用的论文 重庆理工大学 2012年03月01日

流体力学的应用 【摘要】 流体力学是在人类同自然界作斗争和在生产实践中逐步发展起来的。古时中国有大禹治水疏通江河的传说;秦朝李冰父子带领劳动人民修建的都江堰,至今还在发挥着作用;大约与此同时,古罗马人建成了大规模的供水管道系统等等。对流体力学学科的形成作出第一个贡献的是古希腊的阿基米德,他建立了包括物理浮力定律和浮体稳定性在内的液体平衡理论,奠定了流体静力学的基础。 流体力学是力学的一个重要分支,它主要研究流体本身的静止状态和运动状态,以及流体和固体界壁间有相对运动时的相互作用和流动的规律。在生活、环保、科学技术及工程中具有重要的应用价值。 【关键词】流体力学流体阻力牛顿流体涡流 【正文】 流体是气体和液体的总称。在人们的生活和生产活动中随时随地都可遇到流体,所以流体力学是与人类日常生活和生产事业密切相关的。大气和水是最常见的两种流体,大气包围着整个地球,地球表面的70%是水面。大气运动、海水运动(包括波浪、潮汐、中尺度涡旋、环流等)乃至地球深处熔浆的流动都是流体力学的研究内容。 流体力学在生产生活中的应用很广泛,例如航空航天航海技术、

水利工程、环境保护以及生活中很多不起眼的小物件也利用了流体力学的基础知识。 例如生活中常见的高尔夫球,高尔夫球运动起源于15世纪的苏格兰,不知道大家有没有发现,高尔夫球的表面做成有凹点的粗糙表面,而不是平滑光趟的表面,就是利用粗糙度使层流转变为紊流的临界雷诺数减小,使流动变为紊流,以减小阻力的实际应用例子。最初,高尔夫球表面是做成光滑的,后来发现表面破损的旧球反而打的更远。原来是临界Re数不同的结果。高尔夫球的直径为41.1毫米,光滑球的临界RE数为3.85×E5,相当的自由来流空气的临界速度为135米/秒,实际上由于制造得不可能十分完善,速度要稍微低一些。 一般高尔夫球的速度达不到这么大,因此,空气绕流球的情况属于小于临界Re数的情况,阻力系数Cd较大。将球的表面做成粗糙面,促使流动提早转变为紊流,临界RE数降低到E5,相当的临界速度为35米/秒,一般高尔夫球的速度要大于这个速度。因此,流动属于大于临界Re数的情况,阻力系数Cd较小,球打得更远。 同样在游泳的时候,也受到流体的作用。游泳是在水中进行的周期性运动。人在水中的漂浮能力与身体所持姿势直接相关。身体保持

流体力学知识点总结55410

流体力学知识点总结 第一章 绪论 1 液体和气体统称为流体,流体的基本特性是具有流动性,只要剪应力存在流动就持续进行,流体在静止时不能承受剪应力。 2 流体连续介质假设:把流体当做是由密集质点构成的,内部无空隙的连续体来研究。 3 流体力学的研究方法:理论、数值、实验。 4 作用于流体上面的力 (1)表面力:通过直接接触,作用于所取流体表面的力。 作用于A 上的平均压应力 作用于A 上的平均剪应力 应力 法向应力 切向应力 (2)质量力:作用在所取流体体积内每个质点上的力,力的大小与流体的质量成比例。(常见的质量力:重力、惯性力、非惯性力、离心力) ΔF ΔP ΔT A ΔA V τ 法向应力 周围流体作用 的表面力 切向应力 A P p ??=A T ??=τA A ??=→?lim 0δA P p A A ??=→?lim 0为A 点压应力,即A 点的压强 A T A ??=→?lim 0τ 为A 点的剪应力 应力的单位是帕斯卡(pa ),1pa=1N/㎡,表面力具有传递性。 B F f m =2m s

单位为 5 流体的主要物理性质 (1) 惯性:物体保持原有运动状态的性质。质量越大,惯性越大,运动状态越难改变。 常见的密度(在一个标准大气压下): 4℃时的水 20℃时的空气 (2) 粘性 牛顿内摩擦定律: 流体运动时,相邻流层间所产生的切应力与剪切变形的速率成正比。即 以应力表示 τ—粘性切应力,是单位面积上的内摩擦力。由图可知 —— 速度梯度,剪切应变率(剪切变形速度) 粘度 μ是比例系数,称为动力黏度,单位“pa ·s ”。动力黏度是流体黏性大小的度量,μ值越大,流体越粘,流动性越差。 运动粘度 单位:m2/s 同加速度的单位 说明: 1)气体的粘度不受压强影响,液体的粘度受压强影响也很小。 2)液体 T ↑ μ↓ 气体 T ↑ μ↑ 3 /1000m kg =ρ3 /2 .1m kg =ρdu T A dy μ=? h u u+du U y dy x dt dr dy du ?=?=μμτdu u dy h =ρμ ν=

流体力学知识点大全

流体力学-笔记参考书籍: 《全美经典-流体动力学》 《流体力学》张兆顺、崔桂香 《流体力学》吴望一 《一维不定常流》 《流体力学》课件清华大学王亮主讲 目录: 第一章绪论 第二章流体静力学 第三章流体运动的数学模型 第四章量纲分析和相似性 第五章粘性流体和边界层流动 第六章不可压缩势流 第七章一维可压缩流动 第八章二维可压缩流动气体动力学 第九章不可压缩湍流流动 第十章高超声速边界层流动 第十一章磁流体动力学 第十二章非牛顿流体 第十三章波动和稳定性

第一章 绪论 1、牛顿流体: 剪应力和速度梯度之间的关系式称为牛顿关系式,遵守牛顿关系式的流体是牛顿流体。 2、理想流体:无粘流体,流体切应力为零,并且没有湍流?。此时,流体内部没有内摩擦,也就没有内耗散和损失。 层流:纯粘性流体,流体分层,流速比较小; 湍流:随着流速增加,流线摆动,称过渡流,流速再增加,出现漩涡,混合。因 为流速增加导致层流出现不稳定性。 定常流:在空间的任何点,流动中的速度分量和热力学参量都不随时间改变, 3、欧拉描述:空间点的坐标; 拉格朗日:质点的坐标; 4、流体的粘性引起剪切力,进而导致耗散。 5、无黏流体—无摩擦—流动不分离—无尾迹。 6、流体的特性:连续性、易流动性、压缩性 不可压缩流体:0D Dt ρ= const ρ=是针对流体中的同一质点在不同时刻保持不变,即不可压缩流体的密度在任何时刻都保持不变。是一个过程方程。 7、流体的几种线 流线:是速度场的向量线,是指在欧拉速度场的描述; 同一时刻、不同质点连接起来的速度场向量线; (),0dr U x t dr U ??=

迹线:流体质点的运动轨迹,是流体质点运动的几何描述; 同一质点在不同时刻的位移曲线; 涡线:涡量场的向量线,(),,0U dr x t dr ωωω=????= 涡线的切线和当地的涡量或准刚体角速度重合,所以,涡线是流体微团 准刚体转动方向的连线,形象的说:涡线像一根柔性轴把微团穿在一起。 第二章流体静力学 1、压强:0lim A F dF p A dA ?→?==? 静止流场中一点的应力状态只有压力。 2、流体的平衡状态: 1)、流体的每个质点都处于静止状态,==整个系统无加速度; 2)、质点相互之间都没有相对运动,==整个系统都可以有加速度; 由于流体质点之间都没有相对运动,导致剪应力处处为零,故只有: 体积力(重力、磁场力)和表面力(压强和剪切力)存在。 3、表面张力:两种不可混合的流体之间的分界面是曲面,则在曲面两边存在一 个压强差。 4、正压流场:流体中的密度只是压力(压强)的单值函数。() dp p ρ? 5、涡量不生不灭定理 拉格朗日定理:理想正压流体在势力场中运动时,如某一时刻连续流场无旋,则 流场始终无旋。0,,ndA U ωω?==??? 有斯托克斯公式得:00,A l U x ndA δωΓ=?=?=??

科学与工程计算国家重点实验室(中科院数学与系统科学研究所)

科学与工程计算国家重点实验室 简介 中国科学院科学与工程计算国家重点实验室(简称LSEC)是在已故著名数学家、中国计算数学的奠基人和开拓者冯康院士的倡导、并亲自筹备和组织下,由原中科院计算中心从事计算数学研究的部分课题组成的。实验室筹建于1990年,1993年10月经中科院验收后正式投入运行,1994年向国内外开放,1995年9月和 2005年3月两次通过国家验收。 实验室主要开展科学与工程计算中具有重要意义的基础理论研究,解决科学与工程领域中的重大计算问题,着重研究计算方法的构造、理论分析及实现。研究内容包括:动力系统与数值方法,研究各类保结构算法的理论、算法的构造和数值试验;有限元边界元方法,针对具有应用背景的椭圆边值问题及其它相关问题,提出适合于这些问题的有限元边界元新型高性能计算方法;非线性最优化,主要研究求解非线性规划的新算法以及算法的收敛性;计算流体力学,研究非定常不可压N-S方程和可压缩流的计算方法;并行计算方法和科学计算可视化;非均匀多孔介质中渗流问题的多尺度计算方法。 实验室主任是陈志明研究员。实验室学术委员会主任是中国工程院院士崔俊芝。 实验室建设以来在动力系统几何算法,非线性优化,有限元边界元,数理方程反问题,计算流体力学,并行算法,科学计算可视化等方面取得了大量的研究成果,十分突出的是关于哈密尔顿系统的辛几何算法的研究。其成果荣获“国家自然科学一等奖”。实验室在设备研制方面也取得了显著的成绩。 实验室现有科研人员19人,中科院院士2人(石钟慈、林群),中国工程院院士1人(崔俊芝),其中研究员16人,此外,实验室还获得多项其它重要奖项,其中石钟慈院士在 2000年获“何梁何利科学与技术进奖”,林群院士获2001年获捷克科学院“数学科学成就荣誉奖”、2004年获“何梁何利科学与技术进奖”。实验室十分重视队伍建设和人才培养工作,尤其注重青年学术骨干的培养和引进。目前通过中科院“百人计划”已引进3位年轻的学科带头人,其中实验室主任陈志明研究员被国家科技部任命为973计划项目“高性能科学计算研究”首席科学家,一批优秀青年学术骨干脱颖而出,他们在各自的研究领域取得了可喜的成果,并因此获得了荣誉。例如,袁亚湘研究员曾获1995年首届“冯康科学计算奖”、1996年度“中国青年科学家奖”、“国家杰出青年科学基金”、1998年度“全国十大杰出青年”称号;2005年度“北京市科学技术一等奖”;张林波研究员曾获1995年度“中科院青年科学家二等奖”、1997年度“中科院优秀青年”奖、2000年度“国家科技进步奖二等奖”;白中治研究员获得1998年度“中科院自然科学三等奖”、1999年度“中科院青年科学家二等奖”、“中科院优秀青年”称号、2005年度“国家杰出青年科学基金”;许学军研究员获2000年度“钟家庆数学奖”;陈志明研究员获2000年度“国家杰出青年科学基金”、2001年度“第四届冯康科学计算奖”、2003年度“第七届中科院杰出青年”称号、2004年度“新世纪百千万人才工程国家级人选”、2005年度“海外青年学者合作研究基金”;周爱辉研究员获2004年度“国家杰出青年科学基金”。

47全国自考流体力学知识点汇总

3347流体力学全国自考 第一章绪论 1、液体和气体统称流体,流体的基本特性是具有流动性。流动性是区别固体和流体的力学特性。 2、连续介质假设:把流体当作是由密集质点构成的、内部无空隙的连续踢来研究。 3、流体力学的研究方法:理论、数值和实验。 4、表面力:通过直接接触,作用在所取流体表面上的力。 5、质量力:作用在所取流体体积内每个质点上的力,因力的大小与流体的质量成比例,故称质量力。重力是最常见的质量力。 6、与流体运动有关的主要物理性质:惯性、粘性和压缩性。 7、惯性:物体保持原有运动状态的性质;改变物体的运功状态,都必须客服惯性的作用。 8、粘性:流体在运动过程中出现阻力,产生机械能损失的根源。粘性是流体的内摩擦特性。粘性又可定义为阻抗剪切变形速度的特性。 9、动力粘度:是流体粘性大小的度量,其值越大,流体越粘,流动性越差。 10、液体的粘度随温度的升高而减小,气体的粘度随温度的升高而增大。 11、压缩性:流体受压,分子间距离减小,体积缩小的性质。 12、膨胀性:流体受热,分子间距离增大,体积膨胀的性质。 13、不可压缩流体:流体的每个质点在运动过程中,密度不变化的流体。 14、气体的粘度不受压强影响,液体的粘度受压强影响也很小。 第二章流体静力学 1、精致流体中的应力具有一下两个特性: 应力的方向沿作用面的内法线方向。 静压强的大小与作用面方位无关。 2、等压面:流体中压强相等的空间点构成的面;等压面与质量力正交。 3、绝对压强是以没有气体分子存在的完全真空为基准起算的压强、 4、相对压强是以当地大气压强为基准起算的压强。 5、真空度:若绝对压强小于当地大气压,相对压强便是负值,有才呢个·又称负压,这种状态用真空度来度量。 6、工业用的各种压力表,因测量元件处于大气压作用之下,测得的压强是改点的绝对压强超过当地大气压的值,乃是相对压强。因此,先跪压强又称为表压强或计示压强。 7、z+p/ρg=C: z为某点在基准面以上的高度,可以直接测量,称为位置高度或位置水头.。 p/ρg=h p,称为测压管高度或压强水头,其物理意义是单位重量的液体具有的压强势能,简称压能。 z+p/ρg称为测压管水头,是单位重量液体具有的总势能,其物理意义是静止液体中各点单位重量液体具有的总势能相等。 第三章流体动力学基础 1、描述流体运动的两种方法:拉格朗日法和欧拉法。 2、拉格朗日法:从整个流体运动是无数个质点运动的综合出发,以个别质点为观察对象来描述,再讲每个质点的运动情况汇总起来,就描述了流体的整个流动。 3、欧拉法:以流体运动的空间点作为观察对象,观察不同时刻各空间点上流体质点的运动,再将每个时刻的情况汇总起来,就描述了整个运动。

流体力学学习心得

竭诚为您提供优质文档/双击可除 流体力学学习心得 篇一:我对流体力学的认识 我对流体力学的认识 摘要:通过对流体力学这门课程的学习,我了解了流体力学的相关知识,包括:概念,基本假设,研究方法,未来展望等。 关键字:流体力学概述基本假设研究方法 流体力学概述 流体力学是研究流体的平衡和流体的机械运动规律及 其在工程实际中应用的一门学科。是力学的一个重要分支,它主要研究流体本身的静止状态和运动状态,以及流体和固体界壁间有相对运动时的相互作用和流动的规律。在生活、环保、科学技术及工程中具有重要的应用价值。 流体力学中研究得最多的流体是水和空气。它的主要基础是牛顿运动定律和质量守恒定律,常常还要用到热力学知识,有时还用到宏观电动力学的基本定律、本构方程和物理学、化学的基础知识。1738年伯努利出版他的专著时,首先

采用了水动力学这个名词并作为书名;1880年前后出现了空气动力学这个名词;1935年以后,人们概括了这两方面的知识,建立了统一的体系,统称为流体力学。除水和空气以外,流体还指作为汽轮机工作介质的水蒸气、润滑油、地下石油、含泥沙的江水、血液、超高压作用下的金属和燃烧后产生成分复杂的气体、高温条件下的等离子体等等。 气象、水利的研究,船舶、飞行器、叶轮机械和核电站的设计及其运行,可燃气体或炸药的爆炸,以及天体物理的若干问题等等,都广泛地用到流体力学知识。许多现代科学技术所关心的问题既受流体 力学的指导,同时也促进了它不断地发展。1950年后,电子计算机的发展又给予流体力学以极大的推动。 流体力学的基本假设 流体力学有一些基本假设,基本假设以方程的形式表示。流体力学假设所有流体满足以下的假设: (1)质量守恒 (2)动量守恒 (3)连续体假设 在流体力学中常会假设流体是不可压缩流体,也就是流体的密度为一定值。液体可以算是不可压缩流体,气体则不是。有时也会假设流体的黏度为零,此时流体即为非粘性流体。气体常常可视为非粘性流体。若流体黏度不为零,而且

流体力学-中国科学院海洋研究所研究生部

中科院海洋研究所硕士研究生入学考试 《流体力学》考试大纲 本流体力学考试大纲适用于中国科学院研究生院力学专业的硕士研究生入学考试。流体力学是现代力学的重要分支,是许多学科专业的基础理论课程,本科目的考试内容主要包括流体的物理性质、流体运动学、动力学和静力学,无粘不可压缩、可压缩流动,粘性不可压缩流动及湍流、流体波动和漩涡理论等方面。要求考生对其基本概念有较深入的了解,能够熟练地掌握基本方程的推导,并具有综合运用所学知识分析问题和解决问题的能力。 一、考试内容: (一)流体的物理性质 固液气体的宏观性质与微观结构,连续介质假设及其适用条件,流体的物理性质(粘性、可压缩性与热膨胀性、输运性质、表面张力与毛细现象) ,质量力与表面力。 (二)流体运动学 流体运动的描述(拉格朗日描述与欧拉描述及其间的联系、物质导数与随体导数、迹线、流线及脉线),流场中的速度分解,涡量,涡量场,涡线、涡管、涡通量,涡管强度及守恒定理。 (三)流体动力学 连续性方程(雷诺输运定理),动量方程(流体的受力、应力张量),能量方程(热力学定律),本构关系,状态方程,流体力学方程组及定解条件,正交曲线坐标系,量纲分析与流动相似理论,流体力学中的无量纲量及其物理意义、相似原理的应用。 (四)流体静力学 控制方程,液体静力学规律,自由面的形状,非惯性坐标系中的静止液体。 (五)无粘流动的一般理论 无粘流动的控制方程,Bernoulli方程,Bernoulli方程和动量定理的应用。 (六)无粘不可压缩流体的无旋流动 控制方程及定解条件,势函数及无旋流动的性质,平面定常无旋流动(流函数、源汇、点涡、偶极子、镜像法、保角变换),无旋轴对称流动,非定常无旋流动。 (七)液体表面波 控制方程(小振幅水波) 及定解条件,平面单色波,水波的色散和群速度,水波的能量及其传输,速度与压力场特性,表面张力波及分层流体的重力内波,非线性水波理论。 (八)旋涡运动 涡量动力学方程和涡量的产生,涡量场(空间特性、时间特性),典型的涡模型。 (九)粘性不可压缩流动 控制方程及定解条件,定常的平行剪切流动(Couette流动、Poiseuille流动等),非定常的平行剪切流动(Stokes第一和第二问题、管道流动的起动问题),圆对称的平面粘性流动(圆柱Couette流及其起动过程),小雷诺数粘性流动。 (十)层流边界层和湍流 边界层的概念,层流边界层方程(Blasius平板边界层),边界层的分离,湍流的发生,层流到湍流的转捩,雷诺方程和雷诺应力。 (十一)无粘可压缩流动 声速和马赫数,膨胀波、弱压缩波的形成及其特点,一维等熵流(定常和非定常),激波(正激波和斜激波),拉瓦尔喷管流动的特征。 二、考试要求:

流体力学的应用

流体力学原理在煤矿通风系统分析与风机选择中的应用 院系安全工程学院 专业通风与安全 班级安全11-3班 姓名孟祥平 学号 22 号 指导教师韩建勇

流体力学原理在煤矿通风系统分析与风机选择中的应用 孟祥平 安全11-3班 22号 摘要矿井的通风就是流体在井下巷道中的流动,通过应用流体力学原理同时结合煤矿井下的环境。针对各巷道的特点对局部阻力成因进行分析,对各种参数进行计算,用科学的方式选择合理的通风方式和通风设备,同时得出解决井下通风过程中出现的一系列的问题的方法。 关键词流体力学参数计算通风设备涡漩 由于煤矿井下在生产的过程中会产生有毒、有害、有爆炸性的气体、粉尘等物质,但为了保证工作场所人员的安全、健康的工作《煤矿安全规程》规定这些气体、粉尘不得超过规定值。基于此就需要对井下各工作地点创造良好的通风环境,保证有足够的新鲜空气,使气温适宜。煤矿井下巷道风流运动过程中。由于巷道两帮条件的变化。均匀流在局部地区受到局部阻力物(如巷道断面突然变化、风流分叉与交汇、巷道转弯等)的影响而破坏,引起风流流速的大小、方向或分布的变化,产生涡漩等.造成风流的能量损失,同时又有可能引起瓦斯等有害气体的积聚,从而给安全带来隐患。为了解决这些问题就需要对矿井的通风过程中的一些参数进行计算选择合理的通风方式和通风设备就显得尤为重要。矿井局部通风机是煤矿采掘中不可缺少的通风安全设备,其性能特性的优劣直接与煤矿生产安全紧密相关。从流体力学原理出发.以风机为例,给出合理选择风机的科学依据和方法,这对实现节能、安全、高效生产具有积极意义。 1 煤矿井下风流流动状态 风流在同一巷道中,因流速的不同,形成质不同的流动状态。通过实验表明,流体在直巷内流动时,在一般情况下,当Re < 2000-3000流体状态为层流,当Re > 4000时流动状态为紊流,在Re = 2000-4000的区域内时,流动状态可能能是层流.也可能是紊流。随着巷道的粗糙程度,风流根据进入巷道的情况等外部条件而定。而层流流动时,只存在南黏性引起的各流层间的滑动摩擦力;紊流流动时,则有大小不同的涡体动荡于各流层之间,除了黏性阻力外,还存在由于质点掺混、互相碰撞所造成的惯性阻力。 巷道风流流态与巷道平均风速、断面及巷道周界长有关,具体表示为: 根据此公式可以计算出风流在巷道中的流动状态。 2 巷道通风阻力流体力学原理

《流体力学考》考点重点知识归纳(最全)

《流体力学考》考点重点知识归纳 1.流体元:就有线尺度的流体单元,称为流体“质元”,简称流体元。流体元可看做大量流体质点构成的微小单元。 2.流体质点:(流体力学研究流体在外力作用下的宏观运动规律) (1)流体质点无线尺度,只做平移运动 (2)流体质点不做随即热运动,只有在外力的作用下作宏观运动; (3)将以流体质点为中心的周围临街体积的范围内的流体相关特性统计的平均值作为流体质点的物理属性; 3.连续性介质模型的内容:根据流体指点概念和连续介质模型,每个流体质点具有确定的宏观物理量,当流体质点位于某空间点时,若将流体质点的物理量,可以建立物理的空间连续分布函数,根据物理学基本定律,可以建立物理量满足的微分方程,用数学连续函数理论求解这些方程,可获得该物理量随空间位置和时间的连续变化规律。 4.连续介质假设:假设流体是有连续分布的流体质点组成的介质。 5.牛顿的粘性定律表明:牛顿流体的粘性切应力与流体的切变率成正比,还表明对一定的流体,作用于流体上的粘性切应力由相邻两层流体之间的速度梯度决定的,而不是由速度决定的: 6.牛顿流体:动力粘度为常数的流体称为牛顿流体。 7.分子的内聚力:当两层液体做相对运动时,两层液体的分子的平均距离加大,分子间的作用力变现为吸引力,这就是分子的内聚力。 液体快速流层通过分子内聚力带动慢流层,漫流层通过分子的内聚力阻滞快流层的运动,表现为内摩擦力。、 流体在固体表面的不滑移条件:分子之间的内聚力将流体粘附在固体表面,随固体一起运动或静止。 8.温度对粘度的影响:温度对流体的粘度影响很大。液体的粘度随温度升高而减小,气体的粘度则相反,随温度的升高而增大。 压强对粘性的影响:压强的变化对粘度几乎没有什么影响,只有发生几百个大气压的变化时,粘度才有明显改变,高压时气体和液体的粘度增大。 9.描述流体运动的两种方法 拉格朗日法:拉格朗日法又称为随体法。它着眼于流体质点,跟随流体质点一起运动,记录流体质点在运动过程中会各种物理量随所到位置和时间的变化规律,跟中所有质点便可了解整个流体运动的全貌。 欧拉法:欧拉法又称当地法。它着眼于空间点,把流体的物理量表示为空间位置和时间的函数。空间点的物理量是指,某个时刻占据空间点的。 流体质点的物理量,不同时刻占据该空间点的流体质点不同。 10.速度场:速度场是由流体空间各个坐标点的速度矢量构成的场。速度场不仅描述速度矢量的空间分布,还可描述这种分布随时间的变化。 11.毛细现象:玻璃管内的液体在表面张力的作用下液面升高或降低的现象称为毛细现象; 12.迹线:流体质点运动的轨迹。在流场中对某一质点作标记,将其在不同时刻的所在位置点连成线就是该流体质点的迹线。 13.定常流动:流动参数不随时间变化的流动。反之,流体参数随时间变化的流动称为不定长流动。 14.流线:流线是指示某一时刻流场中各点速度矢量方向的假象曲线。

计算数学研究方向

计算数学研究方向 网上摘抄:计算数学研究方向及网上资料 计算数学目的为物理学和工程学作计算。主要研究方向包括: 数值泛函分析;连续计算复杂性理论;数值偏微与有限元;非线性数值代数及复动力系统; 非线性方程组的数值解法;数值逼近论;计算机模拟与信息处理等;工程问题数学建模与计算等等。 目前发展最好的方向已经与应用数学的CAGD 方向合二为一。现在最热的方向应该是微分方程的数值求解、数值代数和流形学习,数值计算名校:西安交通大学、北京大学、大连理工大学 从计算数学的字面来看,应该与计算机有密切的联系,也强调了实践对于计算数学的重要性。 也许Parlett 教授的一段话能最好地说明这个问题: How could someone as brilliant as von Neumann think hard about a subject as mundane as triangular factoriz-ation of an invertible matrix and not perceive that, with suitable pivoting, the results are impressively

good Partial answers can be suggested-lack of hands-on experience, concentration on the inverse rather than on the solution of Ax = b -but I do not find them adequate. Why did Wilkinson keep the QR algorithm as a backup to a Laguerre-based method for the unsymmetric eigenproblem for at least two years after the appearance of QR Why did more than 20 years pass before the properties of the Lanczos algorithm were understood I believe that the explanation must involve the impediments to comprehension of the effects of finite-precision arithmetic. ( 引自既然是计算数学专业的学生,就不能对自己领域内的专家不有所了解。早些年华人在计算数学领域里面占有一席之地是因为冯康院士独立于西方,创立了有限元方法,而后又提出辛算法。这里只是列出几位比较年轻的华人计算数学专家,因为他们代表了当前计算数学的研究热点,也反映华人对计算数学的发展的贡献。 侯一钊(加州理工) 研究方向:计算流体力学、多尺度计算与模拟、多相流 鄂维南(Princeton 大学) 北京大学长江学者,研究方向:多尺度计算与模拟 包刚(Michigan 州立大学) 吉林大学长江学者,研究方向:光学与电磁场中的计算等 金石(Wisconsin 大学)

流体力学的应用

流体力学在航空航天工程中的应用 (洪渊,西安科技大学,能源学院采矿工程卓越1301班,1303110113) 摘要:航天航空工程综合了最新最高的现代科学与技术,是一个国家科技实力和国防现代化的重要标志之一,更是目前世界各国之间争相研究发展的顶尖科技产业,它直接关系到国家的安全和经济的发展。随着科学技术的进步和航天器的发展,遥远而深邃的宇宙已不再可望而不可及,飞天早已不再是无稽之谈。在20世纪对人类影响最大的20项技术中就包括航空航天技术,流体力学的发展对航空航天科技的发展起到了关键性的作用,而这些看似离我们非常遥远的高薪技术其实其基本原理无时无刻不伴随我们。因为我们身边有各种流体的存在。 关键词:航空航天技术、流体、流体力学 Application of fluid mechanics in Aerospace Engineering (Hong Yuan, Xi'an University of Science And Technology, the Institute of mining engineering excellence 1301, 1303110113) Aerospace Engineering integrated the latest modern science and technology, is a national science and technology strength and the important symbol of the modernization of national defense, but also the world's top scientific and technological industry, which is directly related to the national security and economic development. With the development of science and technology and the progress of the spacecraft, as remote and profound universe is no longer inaccessible and, flying already no longer is nonsense. In twentieth Century the greatest impact on human beings in the 20 technologies, including aerospace technology, the development of fluid mechanics to the development of Aerospace Science and technology has played a key role, and these seemingly away from us very far from the high paying technology in fact its basic principles are not accompanied by us. Because we have all kinds of fluid in the presence of. Key words: aerospace technology, fluid, fluid mechanics

流体力学知识点总结

流体力学知识点总结 流体力学研究流体在外力作用下的宏观运动规律! 流体质点: 1.流体质点无线尺度,只做平移运动 2.流体质点不做随即热运动,只有在外力的作用下作宏观运动; 3.将以流体质点为中心的周围临街体积的范围内的流体相关特性统计的平均值作为流体质点的 物理属性; 流体元:就有线尺度的流体单元,称为流体“质元”,简称流体元。流体元可看做大量流体质点构 成的微小单元。 流体质点的物理量,不同时刻占据该空间点的流体质点不同。 速度场:速度场是由流体空间各个坐标点的速度矢量构成的场。速度场不仅描述速度矢量的空间 分布,还可描述这种分布随时间的变化。 定常流动:流动参数不随时间变化的流动。反之,流体参数随时间变化的流动称为不定长流动。迹线:流体质点运动的轨迹。在流场中对某一质点作标记,将其在不同时刻的所在位置点连成线 就是该流体质点的迹线。 流线:流线是指示某一时刻流场中各点速度矢量方向的假象曲线。 流面:经过一条非流线的曲线上各点的所有流线构成的面。 对于定常流场,流线也是迹线。 脉线:脉线是相继通过某固定点的流体质点连城的线。

流体线:在流场中某时刻标记的一串首尾相连接的流体质点的连线,称为该时刻的流体线。由于这一串流体质点由同一时刻的标记,每一个质点到达下一时刻的流体线位置时间相同,因此又称 为时间线。 流管:在流场中由通过任意非流线的封闭曲线上每一点流线所围成的管状面称为流管。 流束:流管内的流体称为流束。 总流:工程上还将管道和管道壁所围成的流体看做无数微元流束的总和,称为总流。 恒定流:以时间为标准,若各空间点上的流动参数(速度、压强、密度等)皆不随时间变化,这 样的流动是恒定流,反之为非恒定流。 均匀流:若质点的迁移加速度为零,即流动是均匀流,反之为非均匀流。 内流:被限制在固体避免之间的粘性流动称为内流。 (质 空蚀的两种破坏形式: 1.当空泡离壁面较近时,空泡在溃灭是形成的一股微射流连续打击壁面,造成直接损伤; 2.空泡溃灭形成冲击波的同时冲击壁面,无数空泡溃灭造成连续冲击将引起壁面材料的疲劳破 坏; 边界层:当Re》1时,粘性影响区域缩小到壁面区域狭窄的区域内称为边界层。 边界层特点:1.厚度很小;2.随着沿平板流的深入,边界层的厚度不断增长; 边界层分离:边界层分离又称流动分离,是指原来紧贴壁面流动的边界层脱离壁面的现象。 声速:声速是弹性介质中微弱扰动传播速度的总称。其传播速度金和仅和戒指的弹性和质量之比 有关。 激波:理论分析和实验都表明,当一个强烈的压缩扰动在超声速流场中传播是,在一定条件下降

化工原理知识点总结整理

化工原理知识点总结整理Newly compiled on November 23, 2020

一、流体力学及其输送 1.单元操作:物理化学变化的单个操作过程,如过滤、蒸馏、萃取。 2.四个基本概念:物料衡算、能量衡算、平衡关系、过程速率。 3.牛顿粘性定律:F=±τA=±μAdu/dy,(F:剪应力;A:面积;μ:粘度;du/dy:速度梯度)。 4.两种流动形态:层流和湍流。流动形态的判据雷诺数Re=duρ/μ;层流—2000—过渡—4000—湍流。当流体层流时,其平均速度是最大流速的1/2。 5.连续性方程:A1u1=A2u2;伯努力方程:gz+p/ρ+1/2u2=C。 6.流体阻力=沿程阻力+局部阻力;范宁公式:沿程压降:Δpf=λlρu2/2d,沿程阻力: Hf=Δpf/ρg=λl u2/2dg(λ:摩擦系数);层流时λ=64/Re,湍流时λ=F(Re,ε/d),(ε:管壁粗糙度);局部阻力hf=ξu2/2g,(ξ:局部阻力系数,情况不同计算方法不同) 7.流量计:变压头流量计(测速管、孔板流量计、文丘里流量计);变截面流量计。孔板流量计的特点;结构简单,制造容易,安装方便,得到广泛的使用。其不足之处在于局部阻力较大,孔口边缘容易被流体腐蚀或磨损,因此要定期进行校正,同时流量较小时难以测定。 转子流量计的特点——恒压差、变截面。 8.离心泵主要参数:流量、压头、效率(容积效率v:考虑流量泄漏所造成的能量损失;水力效率H:考虑流动阻力所造成的能量损失;机械效率m:考虑轴承、密封填料和轮盘的摩擦损失。)、轴功率;工作点(提供与所需水头一致);安装高度(气蚀现象,气蚀余量);泵的型号(泵口直径和扬程);气体输送机械:通风机、鼓风机、压缩机、真空泵。 9. 常温下水的密度1000kg/m3,标准状态下空气密度 kg/m3

化工原理知识点总结整理

一、流体力学及其输送 1.单元操作:物理化学变化的单个操作过程,如过滤、蒸馏、萃取。 2.四个基本概念:物料衡算、能量衡算、平衡关系、过程速率。 3.牛顿粘性定律:F=±τA=±μAdu/dy,(F:剪应力;A:面积;μ:粘度;du/dy:速度梯度)。 4.两种流动形态:层流和湍流。流动形态的判据雷诺数Re=duρ/μ;层流—2000—过渡—4000—湍流。当流体层流时,其平均速度是最大流速的1/2。 5.连续性方程:A1u1=A2u2;伯努力方程:gz+p/ρ+1/2u2=C。 6.流体阻力=沿程阻力+局部阻力;范宁公式:沿程压降:Δpf=λlρu2/2d,沿程阻力:Hf=Δpf/ρg=λl u2/2dg(λ:摩擦系数);层流时λ=64/Re,湍流时λ=F(Re,ε/d),(ε:管壁粗糙度);局部阻力hf=ξu2/2g,(ξ:局部阻力系数,情况不同计算方法不同) 7.流量计:变压头流量计(测速管、孔板流量计、文丘里流量计);变截面流量计。孔板流量计的特点;结构简单,制造容易,安装方便,得到广泛的使用。其不足之处在于局部阻力较大,孔口边缘容易被流体腐蚀或磨损,因此要定期进行校正,同时流量较小时难以测定。 转子流量计的特点——恒压差、变截面。 8.离心泵主要参数:流量、压头、效率(容积效率?v:考虑流量泄漏所造成的能量损失;水力效率?H:考虑流动阻力所造成的能量损失;机械效率?m:考虑轴承、密

封填料和轮盘的摩擦损失。)、轴功率;工作点(提供与所需水头一致);安装高度(气蚀现象,气蚀余量);泵的型号(泵口直径和扬程);气体输送机械:通风机、鼓风机、压缩机、真空泵。 9. 常温下水的密度1000kg/m3,标准状态下空气密度1.29 kg/m3 1atm =101325Pa=101.3kPa=0.1013MPa=10.33mH2O=760mmHg (1)被测流体的压力 > 大气压 表压 = 绝压-大气压 (2)被测流体的压力 < 大气压 真空度 = 大气压-绝压= -表压 10. 管路总阻力损失的计算 11. 离心泵的构件: 叶轮、泵壳(蜗壳形)和 轴封装置 离心泵的叶轮闭式效率最高,适用于输送洁净的液体。半闭式和开式效率较低,常用于输送浆料或悬浮液。 气缚现象:贮槽内的液体没有吸入泵内。汽蚀现象:泵的安装位置太高,叶轮中各处压强高于被输送液体的饱和蒸汽压。原因(①安装高度太高②被输送流体的温度太高,液体蒸汽压过高;③吸入管路阻力或压头损失太高)各种泵:耐腐蚀泵:输送酸、碱及浓氨水等腐蚀性液体 12. 往复泵的流量调节 ? (1)正位移泵 ? 流量只与泵的几何尺寸和转速有关,与管路特性无关,压头与流量无关,受管路的承压能力所限制,这种特性称为正位移性,这种泵称为正位移泵。 222'2e 2e 2u d l l u d l l u d l h h h f f f ??? ? ??++=???? ??+=??? ??+=+=∑∑∑∑∑∑ζλλζλ

相关文档