文档库 最新最全的文档下载
当前位置:文档库 › 水源热泵应用现状及技术分析_王生软

水源热泵应用现状及技术分析_王生软

水源热泵应用现状及技术分析_王生软
水源热泵应用现状及技术分析_王生软

水源热泵应用现状及技术分析

王生软

(黄冈职业技术学院机电学院能源系,湖北

黄冈438002)

摘要:水源热泵具有高效、环保、节能,经济效益显著,初投资少、用途多、运行可靠等优点。基于此,介绍水源热泵的国内外应用现状、工作特点、应用前景,分析制约水源热泵应用的因素,为水源热泵的应用奠定基础。关键词:水源热泵;应用现状;工作特点;应用前景中图分类号:TU831

文献标识码:A

文章编号:1003-5168(2016)08-0057-02

Application Status and Technical Analysis of Water-source Heat Pump

Wang Shengruan

(Energy Department of Mechanical and Electrical School ,Huanggang Polytechnic College ,Huanggang Hubei 438002)

Abstract:Water source heat pump has the advantages of high efficiency,environmental protection,energy saving,ob?vious economic benefit,less investment,more use,reliable operation and so on.Based on this,this paper introduced the domestic and foreign application status,work characteristics and application prospect of water source heat pump,analyzed the factors that restrict the application of water source heat pump,to lay a foundation for the application of water source heat pump.

Keywords:water-source heat pump system ;application status ;job characteristics ;application prospect 水源热泵根据逆卡诺循环原理,采用电能驱动,通过制冷剂把地下水、湖水、江水、城市污水、海水和工业废水等低品位热能予以吸收,提升为可用的高品位热能对水进行加热的设备,从而达到节约部分高位能的目的。其包括地下水水源热泵、地热水水源热泵和其他类型的水源热泵[1-3]。

1水源热泵应用现状1.1

国外水源热泵应用现状

1948年,世界上第一台水源热泵系统在俄勒冈州运

行,掀起了20世纪四五十年代欧洲和美国水源热泵研究的高潮,随后华盛顿成为美国安装水源热泵的领头

羊[4]。在之后的5~15a 内,这些直接式水源热泵因系统的严重腐蚀而被淘汰[5],因此水源热泵应用陷入了低谷。直到世界石油危机的出现、能源的紧张,水源热泵作为一种节能环保的系统重新进入了人们的视线,板式换热器在水源热泵中的应用使得机组的性价比提高[6],而

且它的使用使得换热温差减小,适合低温低热的应用[5]。

据美国能源信息部的调查表明:美国水源热泵的应用呈逐年直线上升趋势[7,8]

,目前美国水源热泵在公共建

筑应用的较多[9]。

在欧洲的中部和北部,水源热泵主要用于采暖。德国计划到1990年生产热泵350万台,其中水源热泵占14%,制热量为400~600kW 。瑞典在20世纪90年代,地源热泵累计安装23万套,仅开放式循环系统就有18万套。

截至2008年底,法国和美国水源热泵市场增长率近

50%。在瑞典,虽有900万人,但是2002年热泵达到了3.9万套。在挪威,2002年也达到了1.5万套。

1.2

国内水源热泵应用现状

天津大学在我国较早地对热泵进行了研究,吕灿仁教授在1965年研制出国内第一台水冷式热泵机组。

而真正意义上水源热泵的研究在20世纪90年代初开始,后来也有国内水源热泵的制造厂商,如山东海阳富尔达、清华同方人工环境设备公司、山东荏原等。水源热泵到了90年代末开始转入实际应用阶段,从1997年开始,我国出现了大规模的水源热泵采暖工程项目,到1999年底,全国大约有100套水源热泵系统。

1997年11月,我国科技部和美国能源部签署了中美

收稿日期:2016-07-13

作者简介:王生软(1981-),男,硕士,研究方向:制冷与低温设备。

57

河南科技·创新驱动

能源效率及可再生能源协议书,里面包括了地源热泵开

发。两国又在1998年10月在北京、杭州和广州各选一家

单位与美国推荐的生厂商建立地源热泵示范工程,其中

两个分别为地下水源热泵和复合地下水源热泵。

2水源热泵的工作特点

2.1属于可再生能源利用技术

利用了地球地下水所储藏的太阳能资源作为冷热源,

地表的土壤和水体自然地进行能量的吸收和发散,这使得

利用储存于其中的近乎无限的太阳能或地能成为可能。

2.2高效、环保、节能

水源热泵机组利用地下8~18℃的水作为冷热源,省

去了燃煤、燃气、燃油带来的污染;省去了锅炉房和冷却

塔,节约占地,同时也避免了冷却塔的噪声和霉菌污染,

符合环保要求。

2.3环境效益显著

水源热泵机组的运行对所在区域环境无任何影响。

没有燃烧,没有排烟,也没有废弃物,不需要堆放燃料废

物的场地,且不用远距离输送热量。

2.4初投资少

仅为其他中央空调的1/2~2/3,省去了锅炉房和冷却

塔费用,但增加了打井费用。

2.5用途多,应用广泛

机组可以供冷、供热,提供生活热水,取代了传统的

锅炉和制冷装置,而且机组可以灵活安置在任何地方,节

约空间。

2.6运行可靠

机组工作稳定,系统运动部件少,维护费用少。随着

自动化技术的发展,控制程度越来越高,1台机组有15a

以上的使用期。

3应用前景

能源是现代社会生活的物质基础。据资料显示[1],

能源已成为制约我国经济发展的重要因素。近年来,国

家提出了节能减排的号召,热泵空调能源消耗占我国能

源消耗的一大部分,怎样减少空调的能源消耗已成为该

领域的重要课题,而水源热泵空调和其他空调相比有许

多优点,随着科技的发展,水源热泵技术将更加成熟。随

着经济的增长,水源热泵初投资对其影响也将减小,因

此,依靠其显著的节能环保特性及初投资经济性的优势,

水源热泵将具有相当大的市场潜力。

4存在问题

4.1水源的使用政策

我国目前为了保护有限的水资源,制订了《中华人民

共和国水法》,各个城市也纷纷制订了自己的《城市用水

管理条例》。这些政策均强调用水审批、用水收费。而审

批的标准中对类似水源热泵技术的要求没有规定,所以

水源热泵很容易被用水指标所限制。

4.2水源勘测技术

我国水源热泵技术起步晚,水源勘测技术落后,影响

到该技术的使用,若要利用该技术,则必须在使用前期对

水源进行勘察,选择适合的回灌方式。

4.3缺乏整体结构设计

作为节能系统的水源热泵,要全方面衡量,系统匹配

非常重要,若设备选型不合理或者运行过程中操作不当,

系统的节能效果将大大降低。所以,整个系统需要各个

专业人员进行合作,从国家政策、设备的设计制造、后期

的运行管理来对系统进行整体考虑。

5结语

目前国内水源热泵机组的设计、安装、运行、维护还

不够成熟,作为一门新技术,水源热泵以耗能少、利用可

再生能源、不污染环境、符合可持续化发展的要求等诸多

优势正受到社会各界的广泛关注。在不远的将来,随着

国富民强,经济实力的提高,节水、高能效比的水源热泵

机组将具有很好的市场应用前景。

参考文献:

[1]张嘉辉,马一太,苏维诚,等.一种热泵节能的新设备

——浅水池热源热泵[J].制冷技术,1999(1):21-25.

[2]马最良,杨辉.太阳能开式环路水源热泵空调系统[J].

应用能源技术,1997(3):41-44.

[3]李先瑞,刘笑.水源热泵与未利用能[A]//全国暖通空调

制冷2000年学术年会,2000:122-126.

[4]龚宇烈,赵军,李新国,等.地源热泵在美国工程应用

及其发展[A].2001年全国热泵和空调技术交流会议论文集[C].

北京:中国建筑工业出版社,2001:249-253.

[5]EC Knipe,KD affray.Corrosion in low temperature geo?

thermal application[J].ASHRAE Transaction,1985(2B-1):91.

[6]PJ Hughes.Survey of water-source heat pump system con?

figurations in current practice[J].ASHRAE Transactions,1990

(1):1021-1028.

[7]Peter Holihan.Analysis of geothermal heat pump survey

data[J].Energy Information Administration/Renewable Energy:Is?

sues and Trends,1998:59-66.

[8]John WLund.International course on geothermal heat

pumps.Chapter2.4-Design of closed-loop geothermal heat ex?

changers in the U.S.[M].International summer school on direct im?

plication geothermal energy,2002:134-146.

[9]Carl D.Orio A new England school&climate master geo?

thermal heat pumps[C]//Hastings School Westborough MA,First

Successful100%Geothermal School in New England,1997:1-16. 58

水源热泵设计方案

水源热泵热水机组 设 计 方 案 方案目录 方案概述................................ 第一章水源热泵中央空调介绍........................ 第二章水源热泵中央空调相关政策依据................ 第三章方案设计.................................... 第四章工程概算.................................... 第五章水源热泵系统技术特点........................ 第六章公司简介.................................... 第七章工程清单目录................................

方案概述 本方案采用水源热泵中央空调新技术,水源热泵中央空调是二十世纪七十年代以来欧美发达国家大力推广的空调新技术。它是利用地下浅层水中低品位能源制冷和制热,空调运行成本比传统电制冷空调节约50%以上。 第一章水源热泵中央空调介绍 一、水源热泵现状及政策依据 水源热泵最早源于1912年瑞士的一项发明专利,二十世纪七十年代能源危机以后,这一节能、环保的空调技术受到西方国家的重视。水源热泵技术在美国、加拿大和北欧国家和地区已得到广泛地应用。瑞士的普及率达到50%以上,美国推广速度以每年20%的速度递增。 1995年中美签署了《中华人民共和国国家科学委员会和美利坚合众国能源部效率和再生能源技术的发展与利用领域合作协议书》,并与1997年又签署了该合作协议书的附件六——《中华人民共和国国家科学技术委员会与美利坚合众国能源部地能开发利用的合作协议》。其中,两国政府将地源热泵空调技术列为能源效率和再生能源的合作项目。建设部2000年第76号令也将地热、可再生能源以及空调节能技术列入建设部推广项目。2004年9月14日国家发改委高技术处颁发了《关于组织实施“节能和新能源关键技术”的通知》,将地热、热泵列为重点开发内容。2005年2月28日第十届全国人民代表大会常务委员会第十届会议通过了《中华人民共和国可再生能源法》鼓励大力推广应用太阳能、地热能、水能等可再生能源。 与此同时,适合推广水源热泵的北京市、山东、河南、辽宁、河北等地政府对推广水源热泵空调制定了优惠政策。这一举措极大的促进了我国地源热泵技术的发展。 北京市第一个地温空调工程——蓟门饭店(两会代表驻地)已运行七年。运行成本低于原燃煤锅炉和单冷机组,比改造前每年可节约数十万运行费用。 二、水源热泵工作原理 水源热泵技术利用地球表面浅层水源(如地下水、河流和湖泊)中低品位热能资源,通过逆卡诺循环实现低品位热能向高品位热能转移的一种技术。它以水为工作介质将地下土壤中的低品位热能提取出来,经高效的热泵机组,利用少量的高品位电能,将水中的低品位能量输送到空调场所,完成热交换的地下水又重新回灌到地下去。井水是在金属管路中闭路循环的,水不与大气接触,不消耗水,也不污染水,只提取水中的热能。地温空调

污水源热泵在污水处理厂中的应用

污水源热泵在污水处理厂的应用 [摘要] 伴随着污水处理行业在我国的飞速发展和广泛重视,污水源热泵技术的发展更形成了一个新的高潮,目前面临着全球性质的能源危机,多项节能环保的技术及措施得到了各国的认可与推崇,水源热泵技术占有着一席之地,其中在全国范围内,污水源热泵技术已广泛的应用在各大污水处理厂之中。 [关键词] 污水源热泵;污水处理厂;热泵技术的应用 伴随着污水处理行业在我国的飞速发展和广泛重视,污水源热泵技术的发展更形成了一个新的高潮,目前面临着全球性质的能源危机,多项节能环保的技术及措施得到了各国的认可与推崇,水源热泵技术占有着一席之地,其中在全国范围内,污水源热泵技术已广泛的应用在各大污水处理厂之中。 污水源热泵系统利用污水中的能量,以污水作为热源,通过热泵机组将低品位水中难以直接利用的能源提取出来,供冬季供暖或夏季制冷使用。按照其使用的污水的状态可分为以原生水或二级出水或中水作为热源,一般污水处理厂采用二级出水作为热源。 一、污水源热泵技术的特点 (1)使用污水源热泵技术供热采暖或制冷对大气及环境无任何污染,而且高效节能,属于绿色环保技术和装置,符合目前我国能源、环保的基本政策,对用户本身也无形中起到自我宣传的作用。以周边供暖面积157万平方米的沈阳北部污水处理厂为例,按冬季供暖室内温度达到16℃、以每平方米平均耗煤45公斤的经验值估算,仅这157万平方米的供暖面积改用污水源热泵供暖后,一个采暖期就可以减少使用燃冬季供暖室内温度达到16℃、以每平方米平均耗煤45公斤的经验值估算,仅这157万平方米的供暖面积改用污水源热泵供暖后,一个采暖期就可以减少使用燃煤7万吨,减排二氧化硫700吨、烟尘500吨、二氧化碳14万吨。 (2)热泵机组可以达到一机两用的效果,即冬季利用热泵采暖,夏季进行制冷。既节约了制冷机组的费用,有节省了锅炉房的占地面积,同时达到了环保。污水源热泵比燃煤锅炉环保,污染物的排放比空气源热泵减少40%以上,比电供热减少70%以上。它节省能源,比电锅炉加热节省2/3以上的电能,比燃煤锅炉节省1/2以上的燃料。由于污水源热泵的热源温度全年较为稳定,其制冷、制热系数比传统的空气源热泵高出40%左右,运行费用仅为普通中央空调的30%~55%。(3)污水源热泵具有热量输出稳定、COP值高、换热效果好、环保效益显著,水源热泵机组供热时省去了燃煤、燃气、然油等锅炉房系统,无燃烧过程,避免了排烟、排污等污染;供冷时省去了冷却水塔,避免了冷却塔的噪音、霉菌污染及水耗。所以,水源热泵机组运行无任何污染,无燃烧、无排烟,不产生废渣、废水、废气和烟尘,不会产生城市热岛效应,对环境非常友好,是理想的绿色环保产品。 二、热泵技术在污水处理厂中的应用 (1)污水源热泵系统的工作原理 污水源热泵系统,是利用其压缩机的作用,通过消耗一定的辅助能量(如电能),在污水中吸取较低温热能,然后转换为较高温热能释放至循环介质(如水、空气)中成为高温热源输出。在此因压缩机的运转做工而消耗了电能,压缩机的运转使不断循环的制冷剂在不同的系统中产生的不同的变化状态和不同的效果

污水源热泵系统工程实例

呼和浩特市是个缺水的城市,过量抽取地下水,造成地下水位下降,水质恶化,局部地区已出现疏干或半疏干的严峻局面,地下水的可持续利用采补平衡 条件受到破坏。根据呼和浩特市的水资源现状,污水源热泵项目与地下水源热泵项目相比,不仅将城市污水变废为宝,同时有效的保护了地下水资源。伟业大厦作为第一个污水热泵系统在宾馆中的应用实例,从设计到运行都秉承了适宜于该地区特点的优化设计及运行方案。 呼和浩特市伟业大厦可再生能源示范工程项目,位于呼和浩特市赛罕区乌兰察布东路80号。建筑类型为新建公共建筑,该大厦是集商业、酒店、客房、办公、公寓为一体的综合性商厦,其占地面积3931.2 m2,总建筑面积3.53万m2。示范工程在示范面积3.53万m2的新建公建中采用原生污水源热泵技术,进行冬季供热,夏季供冷。示范目标为利用城市污水,完成污水源热泵供暖面积3.53万m2,制冷面积1.9万m2,并通过采用围护结构节能技术,使示范项目的建筑节能目标达到 50%要求。 本方案利用污水中所蕴含的大量低位热能,冬季污水温度高于大气温度,相当于一个低温热源,将污水中低位能量转化为高位能量,供给末端采暖使用;公寓侧一层、五层至十六层末端采用地板辐射采暖,地板辐射采暖面积1.45万m2;酒店侧及公寓侧办公区为中央空调供热,空调末端为风机盘管+新风系统,空调面积1.9万m2。冬季设计污水温度11℃,设计污水温差5.5℃。夏季制冷与冬季制热使用同一套设备,只是将蒸发器与冷凝器的制冷剂段进行了切换,原蒸发器改为冷凝器,冷凝器改为蒸发器;空调末端为风机盘管+新风系统,空调面积 1.9万m2。夏季设计污水温度:24℃,设计污水温差6℃。过度季节对污水源热泵系统进行检修,保证系统的良好运行。

海水源热泵空调工程应用实例

1工程概况 该工程位于青岛发电厂内,建筑共2层,一层为职工食 堂,二层为工会办公楼,层高均为4.5m,建筑面积2400m2,空调总面积为1871.5m2(不计算浴室面积)。此热泵空调系 统同时供应洗澡热水,按100m2 /d计。 一层为职工食堂,分就餐区和厨房灶间两部分,24h正常营业。厨房灶间由于有蒸汽锅等散热量较大的设施、设 备,冬季白天温度大约在26! ̄28!,需要制冷运行;晚上需要制热运行。二层为工会办公室、歌舞厅、健身活动室以及会议室,各自冷热温度需求不同,使用时间分散且不固定。 2空调设计参数 2.1室内空气设计参数 室内空气设计参数按照采暖通风与空调设计规范选 取,其参数见表1。 表1室内空气设计参数表 2.2海水设计温度 青岛沿海海水温度水下5m处,冬夏海水温度变化不 大,因此本设计海水温度按照最低水位水下5m计算,其数 值夏季(7月"9月)25.2!;冬季(12月)6.39!,冬季(1月"2月) 3.74!。2.3空调负荷 1)夏季冷负荷:!L=231.5kW;冬季热负荷:!R=187.2kW。2)浴室热负荷: !R=273.5kW。3海水源热泵系统 3.1海水处理 海水中含有一些生物活性和高含量的固体粒子(砂子、 有机物质等),含盐量也很高。这些颗粒可能会在表面形成沉淀物,结果会增加生物活性以及微生物腐蚀的可能性。为了避免这些,在海水引入口安装一个机械过滤器来过滤掉这些颗粒,还要通过杀死细菌的方法减少生物活性。 3.2蒸发器 为了避免海水直接进入热泵机组,而对蒸发器产生腐蚀,该系统设计中我们引入了抗海水腐蚀的二级换热器,换热器采用钛板制作,其示意图如图1所示。 图1二级闭式循环换热器设计 3.3海水管道设计 海水管道采用硬聚氯乙烯给水管材(U—PVC),海面下管道在海底开槽挖沟安装,陆地上管道直埋敷设。 4空调系统设计 为满足不同区域在同一时间对冷热的不同需求,该工程中在室内采用水—空气热泵机组,保证机组可以随时冷热切换,用“二管制”替代了“四管制”,从而节省了水管路的费用,而且方便运行管理。 每台热泵机组根据室内新风需求,在回风管道上引入适量的新风,新风入口装有电动调节阀,风阀的开启与关闭与热泵机组的风机连锁。 每台机组具有制冷、制热与通风功能,并且均配有室内控制器。过度季节,可根据实际需要制冷、制热或通风运行。 水系统为异程设计,每台水—— —空气机组进水管上装有过滤器,回水管上装有自动排气阀。每层水管路连接的第 二次网循环系统 蒸发器 二级闭式循环换热器 海水 ?¢ ?¢ ?¢ ?¢ ?¢ ?¢/? ?¢£¤/(%) ?¢/? ?¢£¤/?%? NC ?¢ 23~26 55~60 21~23 20~30 ? ?¢ 26~28 ? 21~23 ? ? ?¢£ 24~26 40~50 20~22 20~30 33~35 ?¢£ 25~27 40~50 18~20 20~30 34~36 工程建设与设计#$$%年第&期地源热泵专题 [作者简介]祁俊山(1972"),男,山东陵县人,助理工程师,从事海水源热泵的研究与推广应用. 海水源热泵空调工程应用实例 祁俊山1,薛越霞2 (1.青岛新天地环境保护有限公司,山东青岛266003; 2.青岛市环境监察支队,山东青岛266003) [摘要]通过目前国内建成的海水源热泵空调系统示范工程的实施,介绍海水源热泵空调系统工作原理、工程设计、运行参数、节能效益分析,为实施大型海水源热泵区域供热供冷提供理论和实践样板。 [关键词]海水源热泵;示范工程;系统设计;节能环保 [中图分类号]TU833.+3[文献标识码]A[文章编号]1007-9467(2005) 09-0012-02’#

水源热泵方案及节能说明

水源热泵设计方案说明 一、工程概况: 本项目位于江苏省无锡市,建筑面积23729平方米,总空调面积约14290M2,其中一至二层为超市;三至四层为餐饮部,五到十层全部为客房,有热水需求。根据客户提供情况,从节能环保角度考虑,采用中央空调提供制冷,主机采用水源热泵机组。 二、设计依据 1、甲方提供的相关图纸及文件; 2、《采暖通风与空气调节设计规范》; 3、《通风与空调工程施工及验收规范》; 4、《实用供热空调设计手册》及国家其它有关规范。 三、设计参数 1、室外主要气象参数:夏季计算干球温度T g= 33.4 ℃,湿球温度T S= 28.4 ℃。 2、室内空气设计参数:夏季温度为:T=24-28℃,冬季16-20℃ 四、设备选型与计算 主要技术指标

1、总冷负荷为:Q = 2186KW ,考虑将来同时最大使用系数和适应无锡夏季空调负荷日变化较大等因素。故选用“宏星”牌水冷螺杆式水源热泵机组40STD-E645HS 1 台和“宏星”水冷螺杆式热回收水源热泵机组:40STD-E540HSB 2台(用于制取热水);40STD-E645HS制冷量:645.4KW 双压缩机,输入功率105.8 KW;40STD-E540HSB制热量:542.9KW热回收量:162.9Kw,输入功率89 KW; 五、能量调节与控制 主要控制设备 1、空调主机:采用40STD-E645HS 40STD-E540HSB的“宏星”牌主机,该系列的机组为我司最成熟的机种之一,机组配备微电脑控制系统,具有故障显示、运行情况显示;装配缺相逆相保护、电机过载保护、防冻保护、高低压压力保护等多项保护措施;压缩机共有6级能量卸载,0%、

污水源热泵文献综述

城市污水源热泵的探析 摘 要:随着全球气候变化、不可再生能源的日益枯竭问题的日益凸显,节能与环保重要性更加突出。城市污水作为一种清洁能源,对其所携带的废热的利用的研究受到国内外专家的关注。污水源热泵技术作为一种新型能源技术,可充分利用污水中得废热,实现污水的资源化。本文简要介绍了我国污水资源的现状,污水源热泵的工作原理、分类,污水源热泵系统在国内外研究现状,分析了污水热泵节能环保方面的优势,以及污水源热泵当前遇到的难题及解决方法。 关键词:节能环保; 污水源热泵; 废热利用; 经济 0、前言 随着经济的迅速发展、人口的增加、常规能源的大量消耗,能源供需形式日趋紧张。能源资源短缺对世界经济发展的约束性日益突出。据世界能源年鉴数据统计,截止到2010年,中国石油可采储量为148亿吨,占世界总量的1.1%,世界排名第14;天然气可采储量为2.8万亿立方米,占世界总量的1.5%,世界排名第14;煤炭储量为1145万吨,占世界总量的66.8%,世界排名第3。可见中国能源储量在总量十分丰富。但是人均水平却只相当于世界人均水平的 6.4%、5.6%、66.8%,人均资源储量非常,远远低于世界水平。 20世纪50年代以来,中国的能源工业开始发展,特别是改革开放以后,能源的开采和供给能力不断的增强,促进经济的快速发展;20世纪90年代末,能源对外开放和投入的增加缓解了能源对经济发展的制约。1993年,中国成为石油净进口国,1996年中国成为原油净进口国;21世纪以来,能源供需形势又日趋紧张,中国经济面临着能源的严重挑战 [1]。中国能源的开采和供需面临着资源约束,特别石油是对外依存度的提高[2]。 能源的短缺严重制约着中国经济的发展,开发洁净能源和可再生能源越来越受到国内外专家学者的关注。高污染、高耗能、低效益的发展模式不仅极大的浪费了一次性资源,对环境的污染也非常严重,因而改善能源结构、提高能源利用率尤为重要。对开发地热能、太阳能等新能源、煤炭净化、余热回收等研究的推广称为如今的热点。 一.余热利用 余热利用是指回收生产工艺过程中排出的具有高于环境温度的气态(如高温废气)、液态(如冷却水、生活废水)、固态(如各种高温钢材)物质所载有的热能,并加以重复利用的过程。余热是能源利用过程中没有被利用的、废弃的能源,它包括高温废气余热、冷却介质余热、废水余热、高温产品和炉渣余热、化学反应余热、可燃废气废液和废料余热以及高压流体余热等七种。 我国余热普遍存在,特别冶金、化工、纺织等行业的生产过程中、城市排放生活污水中存着这丰富的余热资源。这些余热余压以及其它没有得到利用的余能不仅造成能源的浪费,而且还污染了环境。 1.1工业余热 统计数据表明,我国工业余热资源的回收率仅为33.5% [3]。回收利用潜力巨大。城市消耗了全球近60% 的水资源,它排放的污水中的余热巨大,回收价值高。 工业余热按照能量形态分为三大类,即载热性余热、可燃性余热和有压性余热。 (1)载热性余热 载热性余热指的是工业生产过程中排出的废气和物料、产物等所带走得高温热以及化学反应热等。例如:燃气轮机、内燃机等动力机械的排气,钢厂产品所携带的热,钢厂厂冷却水、凝结水所携带的显热,炉窑产生的高温烟气、高温炉渣、高温产品等。 (2)可燃性余热

某大型间接式污水源热泵工程案例

污水源热泵技术:经济效益显著应用前景广阔 污水源热泵技术是一种成熟的技术,以城市污水作为热源为建筑物供热制冷。在我国大多数城市都具有应用的自然条件,安装污水源热泵,安装成本,运行费用都是比较低的。污水源热泵具有热量输出稳定、COP值高、换热效果好、机组结构紧凑等优点,是实现污水资源化的有效途径。 污水源热泵比燃煤锅炉环保,比电供热减少80%以上。污水源热泵节省能源,比燃煤锅炉节省1/2以上的燃料。由于污水源热泵的热源温度全年较为稳定,制热系数比传统的空气源热泵高出50%左右,其运行费用仅为普通中央空调的50%~60%。因此,污水源热泵有着广阔的应用前景。 污水源热泵目前这项技术已是成熟的技术。我们先后学习考察了沈阳、太原等到城市污水源热泵系统在供热上的应用。重点了解污水源热泵系统的技术性能与初投资、运行和维护费用等方面的情况,以及建筑应用中存在的问题。在借鉴成功经验基础上,经过调查研究,发现城市使用污水源热泵得天独厚的自然条件。 总体运行费用污水源热泵系统大约是地下水水源热泵系统的70%左右,是燃气+空冷空调系统运行费用的50%左右。通过比较,污水源热泵系统比其它方案更具经济性。污水源热泵利用系统的经济效益是十分显著的。 实践证明,污水源热泵技术是太阳能、地表水能、地下水能、土壤热能及海水能源等所有环保能源中最经济实用的,且易于操作的环保能源技术。 某大型间接式污水源热泵工程案例 摘要:本文从工程及水源条件、关键参数与设备设计、系统方案等三个方面介绍了我国某个大型间接式污水源热泵工程案例的主要特点,该工程采用远距离输送中介水,并在用户侧建设分散的热泵站。 关键词:污水源热泵、间接式、半集中、案例 本文介绍的某大型污水热泵工程地处我国北方,其工程特点为:(1)冬季有采暖要求、夏季有空调要求,两种负荷相差不大;(2)工程规模较大,而且污水源距离用户较远,用户分布较为分散;(3)建筑类型为高层住宅;(4)污水源充分,水温合适。采用重力引水、退水,并加设粗效过滤格栅;(5)采用燃气锅炉调峰并分担风险。 、设计条件与要求1 1.1负荷要求 22.5MW,平均单位面积热负荷指标45W/m,总热负荷m 整体工程:50万26(65% 22,制冷负 的标准。建筑层高76M荷为19.2MW,均为新建建筑,满足国家、自治区建筑节能层以上为高区。13层以下为低区,14层),水源条件 1.2 尺寸条件 1.2.1 依据当地水务集团排水公司相关资料和测量数据,所选水源污水管线为城市主干地 。1.8m×1.8m4m,监测点检查井井深5.2m,全长9.8km,其截面为下排水箱涵管道,埋深),平均水0.25m(2010-1-28 22:00监测最小水深0.13m(2009-12-19 4:00),最大水深的圆形150m 处,另有一条DN1200深0.2m,平均流速3.5m/s。在设计换热站的选址下游约主干污水管道。

水冷螺杆机组与水源热泵机组工程应用实例比较.

水冷螺杆机组与水源热泵机组工程应用实例比较 以下是某单位发电站办公楼中央空调的冷水螺杆机组与节能水源热泵冷热水机组的设计实例与应用上的理论对比: 广州惠州抽水蓄能电站指挥部大楼总建筑面积11000m2,建筑高度为6层,其功能分别为:宾馆、办公楼、会议中心。发电站稍低于建筑,可以利用自然高差供水或使用水泵直接从发电站中引用水源进能冷热源交换。 该项目设计空调冷负荷1800kW,空调热负荷600kW,同时使用系统数为0.9,选主机制冷量为810kw*2= 1620kw,选用电热锅炉480kw,宾馆部分生活热水负荷400kW。空调冷热负荷采用水冷螺杆机组两台/电热锅炉一台,冷冻水泵三台(两用一备),冷却水泵三台(两用一备),冷却塔一台,风柜21台,风机盘管180台。生活热水采用太阳能热水器一批。供冷运行能耗为:主机179*2kw+冷冻水泵22kw*2+冷却水泵30kw*2+冷却塔4kw+风柜21*2.2+风机盘管180*0.08kw=526.6kw。 供热运行能耗为:电锅炉480kw+冷冻水泵22kw*1+风柜21*2.2+风机盘管约180*0.08kw=562.6kw。 计算结果如下: ① 制冷工况:系统总制冷量:Q0=1620kW;系统总功率:Pi=526.6kW;系统制冷系数:Cop=3.08。 ② 热泵工况:系统总制热量:Qk=480kW;系统总功率:Pi=562.6kW;系统制热系数:Cop=0.85。 如果选用水源热泵机组,则选用水源热泵水机组wps230.1A,制冷量为861.5kw,输入功率116.2 kw, 制热量为880.9 kw,输入功率161.9 kw;冷冻冷却水泵均按螺杆机组方按选型。那么计算结果为供冷运行能耗为:主机116.2*2kw+冷冻水泵22kw*2+冷却水泵30kw*2+风柜21*2.2kw+风机盘管180*0.08kw=397kw。 供热运行能耗为(一台主机就可以提供热源):161.9*1kw+冷冻水泵22kw*2+冷却水泵30kw*2+风柜21*2.2kw+风机盘管180*0.08kw=326.5kw① 制冷工况:系统总制冷量:Q0=861.5*2=1723kW;系统总功率:Pi=397kW;系统制冷系数:Cop=4.34。 ② 热泵工况:系统总制热量:Qk=880.9kW;系统总功率:Pi=326.5kW;系统制热系数:Cop=2.69。 如果冷却水泵直接采用发电站的高位差做动力,那么就省去冷却水泵的输入功率,这时运行能耗比为: ① 制冷工况:系统总制冷量:Q0=861.5*2=1723kW;系统总功率:Pi=397kW-30*2kw=337kw;系统制冷系数:Cop=5.11。 ② 热泵工况:系统总制热量:Qk=880.9kW;系统总功率:Pi=326.5kW-30*2kw=266.5kw;系统制热系数:Cop=3.31。 同时,如果系统采用水源热水机组,还能为生活用热水提供足量的水源。节省了太阳能的初投初,又节省了大量的电能浪费。 水源热泵式中央空调是市场上最节能环保的中央空调系统之一。它具有供热、制冷、生活热水三联供的作用、无视觉污染、减少配电容量,减少资源浪费等特点,适用地区比较广[9]。近几年,水源热泵空调系统已经在我国得到了

江水源热泵的应用及设计研究现状

江水源热泵的应用与研究现状 1前言 江水具有很好的宏观热能特征,将其作为热泵冷热源为建筑物供暖供冷前景巨大,在国内引起了广泛关注,目前也有一些应用案例。相比各类空气源热泵,江水源热泵能够获得更高的能效,并能缓解城市热岛效应。 长江流域处于夏热冬冷地区[1],冬夏季空调负荷较大。随着经济的增长、人民生活水平的提高,空调系统必将普及,空调负荷必将大幅增长。水源热泵机组在冬季采集来自湖水、河水、地下水及地热尾水,甚至工业废水污水中的低品位热能供给室内取暖;在夏季则把室内的热量取山,释放到水中,制取冷水达到夏季空调供冷的目的。江水源热泵利用长江水作为系统的冷热源,效率高,且不需冷却塔和锅炉等设备,机房占用面积小,不向大气排放污染物及热量,改善室内环境及城市环境。充分利用长江水资源不仪能够人幅度降低冬夏季空调能耗,而且降低电网及燃气的供应尖峰,达到高效、节能、环保的目的。本文还综述了该领域目前的应用与研究现状。 2对江水作为冷热源的分析 由于江河水年四季温度变化较小,水量丰富稳定,是水源热泵良好的低位能源。长江、嘉陵江流经整个重庆主城区,常年年均水流量长江为8500m3/s,嘉陵江为2430m3/s,两江合流后为10930m3/s;冬(12-2月)夏(6-9月)季平均江水温度(水下0.5m处),冬季12.8℃,夏季23.5℃;冬夏季平均含砂量,夏季745mg/l,冬季30.6mg/l;嘉陵江夏季504mg/l,冬季5.34mg/l。 以嘉陵江冬季江水温度和大气温度的测量分析结果为例,见表1,得出冬季嘉陵江水温分布稳定,平均在9.2~13.1℃之间,且变化非常平稳,没有大的波动,最冷月平均水温8.8℃;而空气温度则存在较大的波动,月平均气温波动范围虽不大,在8.6~12.8℃,但日平均温度波动频繁,最低只有6.6℃,最高达17.7℃,分布极不稳定。通过测量得知,冬季水温沿深度方向呈递增的趋势,经分析,水面以下2~3m处水温已很接近。因此,江水用作空调冷热源在温度和稳定性方面都较空气有明显的优势。

第六章 水源热泵 技术规格及要求

第六章技术规格及要求 1、技术规格 1.1供暖工程建筑面积123000㎡; 1.2符合国家规范的满液式“半封闭或全封闭双螺杆”水源热泵设备系统一套(含机房内整体配套设备安装); 1.3据相关标准,建筑面积热指标为65 w/㎡,建筑热负荷为123000*65=7999KW。 2、投标商资格要求 2.1具有合法经营资格,须提供合法有效的工商营业执照、税务登记证、组织机构代码证。 2.2投标人非制造厂家的(或制造厂家分公司),提供所投产品的生产厂家提供对本项目的经销授权书; 2. 3其它证明文件。 3、货物招标要求 3.1机组性能及特点: 1)单机制热量2117kw; 2)制冷剂选用R22; 3)单台机组能量调节范围:无级能量控制; 4)电源380V-3Ph-50Hz,星—三角启动; 5)名义工况: 制热工况、机组冷冻水(深井水)进水温度为15℃,热却水出水温度为46℃; 3.2 机组要求: 1)控制:机组带有微电脑控制柜,运行时可显示运行参数,可根据末端负荷的变化自动进行能量调节。 2)机组可选配RS485通讯端口,并可与任何通讯协议公开的设备、控制器进

行通讯。 3)机组具有下列自动保护功能,并提供故障报警: 压缩机过热保护、排气压力过高、吸气压力过低、防结冰保护、电源异常保护、掉电、冷冻水断流、传感器故障保护、压缩机防止频繁启动保护、压缩机电机过载保护、冷却水断流保护。 4)具有较小的外形尺寸和重量,节省空间 3.3机组零部件特点: 1)压缩机:选用半封闭或全封闭双螺杆压缩机:双机头设计,内置油分离器,效率可达99.7%;内设压差式供油系统,具有高可靠性;吸气冷却电机;用冷却机油和冷媒液体密封转子。 2)冷凝器采用双面强化高效换热管。 3)蒸发器采用内螺纹强化高效换热管,优化换热管齿形,高品位的换热性能,干式蒸发器制冷剂充注少,回油良好。 4)无油冷却和油泵设计(压差式供油)。

温泉供暖项目案例

工程案例 居住小区地热采暖 工程设计方案 编制方:天津世纪天源地热环保设计有限公司 2012-04

目录一.工程简介·3 二.方案设计依据·3 三.方案设计技术原则·3 (一) 设计指导思想·3 (二) 主要技术原则·4 四.方案设计相关参数·4 五.系统设计·5 (一) 地热介绍·5 (二) 工艺流程·5 (三) 针对招标文件说明,我司有一下几点意见·10 (1)招标文件部分设计要求·10 (2)我司针对上述设计要求有以下几点建议·10 (四) 泵站供热自控系统设计系统优点·11 六.供热泵站设计·13 (一) 地热站设备布置图·13 (二) 地热站管道简单布置图·14 (三)地热站布置原则·15 (四)泵站主要设备·16 (五)设备运行费用分析·17 (六)设备介绍·18 七.外管网管材推荐·20 (一)管材选型·20 (二)玻璃钢管材特点·21 (三)推荐结论·21 (四)工艺措施·21

(五)玻璃钢保温管道报价·22 一.工程简介 受建设单位委托,我公司为小区建筑的采暖及生活热水处理提供方案,拟以地热水结合水源热泵为建筑冬季采暖,方案包括地热水处理工艺及设备选型;提供换热站内系统工艺和设备的选型;根据工艺要求,相关工艺配电系统的设计,并能达到全程自动化运行、监控、管理;地热水加热、恒温系统工艺设计;地热水系统设备。 小区建筑采暖面积约为15万㎡,住户数为1288,供热负荷60W/㎡,末端均为地板采暖;地热井热源出水量80m3/h,温度70℃。 二.方案设计依据 建设方提供的相关数据资料 《采暖通风与空气调节设计规范》(GB50019-2003) 《建筑给排水设计规范》(50015-2003) 《城镇供热系统安全运行技术规程》(CJJ/T88-2000) 《低压配电设计规范》(GB50054-95) 《泵站电器设计规范》(GB/T50265-97) 《地下工程防水技术规范》(GB50108—2001) 《城镇地热供热工程技术规范》(GJJ138—2010) 《地热资源地质勘查规范》(GB11615—89) 其它国家有关规定及规范 三.方案设计技术原则 (一)设计指导思想

浅谈通信工程中如何应用软交换技术

浅谈通信工程中如何应用软交换技术 摘要:通信工程的发展促进了整个社会的进步,随着通信及信息网络技术的不 断发展,通信工程也将面临着系统的升级换代问题。鉴于通信工程在我国信息技术 时代的重要性,所以加大对软交换技本在通信系统中的应用将成为今后工作的重点。本文从四个方面探讨了软交换技术,特别是软交换技术的核心、软交换技术 的网络构架、软交换技术在通信工程中的应用以及应用前景,同时,也需要新技 术的革新来促进通信工程的发展。 关键词:通信工程;应用;软交换技术 前言:如今,随着科技的飞速发展,通信网络技术也在逐步革新,随之而来 的人们对宽带业务的需也明显提升。为了满足人们日益增长的需求,且能够向用 户提供灵活性、多样性的业务以及个性化的服务,软交换技术是通信工程中的核 心技术之一,不仅能够提供全面完善的连接控制、网关管理以及呼叫控制等功能,还能够有效提升通信系统资源管理与分配能力,增强系统的可靠性和实时性。软 交换技术就是下一代网络的关键部分,已经成为了现今业界关注的焦点。下面就 对软交换技术的原理和其主要特点以及软交换技术在通信工程中的应用。 1、软交换网络的核心 软交换的基本含义就是将呼叫控制功能从媒体网关(传输层)中分离出来, 通过软件实现基本呼叫控制功能,从而实现呼叫传输与呼叫控制的分离,为控制、交换和软件可编程功能建立分离的平面。软交换主要提供连接控制、翻译和选路、网关管理、呼叫控制、带宽管理、信令、安全性和呼叫详细记录等功能。采用软 交换技术可以有效实现信息交换与同步通信,是目前影响人们生产、生活方方面 面的现代通信技术,可方便地在网络上快速提供新的业务。 传统的通信网络是将各种模块都集中起来,通过一台硬件设施实现各个模块 之间的连接。交换机提供的服务与硬件、软件及业务应用绑定在一起,使得开放性差。软交换网络将传统交换机的功能模块分离了出来,分别形成接入网关、中继网关、分组承载网、软交换设备等独立的网络部件和单元,各部件独立发展构成开放 的网络架构,实现了业务与呼叫分离、控制与承载分离,这种结构使业务独立于网络,业务的提供更加灵活。 2、软交换技术的网络构架 网络构架主要是软交换技术与传统技术不同的地方,它的特点主要有两点, 一是分层化,另一个特点是构件化。软交换技术的网络构架分为四层,分别是接 入层、承载层、控制层和业务层。接入层的工作主要是提供接入手段,并进行信 息转码,保证网络传递;承载层完成的是承载工作,通过分组将信息传递到目的地;控制层的功能是软交换技术的核心部分;业务层主要提供业务和应用。 3、在通信工程中软交换技术的应用 软交换技术目前是广泛应用于通信工程的技术,接入能力提升,可以同时完 成多种设备的接入,实现开放性的通信过程,并且能够保证设备整体运行,实现 通信的高效率。软交换技术在通信工程中的应用主要体现在固定电话和移动电话中,本文以各电信运营商为例,今后电信发展中应用软交换技术将是必然发展趋势。 3.1软交换技术在固定电话网的应用 1)端局先行的软交换改造:这种方式对本地网络形态没有特殊要求,由于演进速度较缓,带来的改造风险也不高;但工程实施难度较高,对支撑系统的影响

海水源热泵工程案例

海水源热泵的现状及工程案例 1、国内外研究现状和发展趋势 国外有很多应用海水做热泵冷热源的实例。如20世纪70年代初建成的悉尼歌剧院,日本20世纪90年代初建成的大阪南港宇宙广场区域供热供冷工程,利用海水为23300kW的热泵提供冷热源。北欧诸国在利用海水热源方面具有丰富的实践经验,其中瑞典就是一个典型应用海水源热泵集中供冷/暖的国家。瑞典首都斯德哥尔摩建设了总能力为180MW的世界上最大的海水热泵站,用于区域供热,占城市中心网输送总量的60%。热泵站由6台供热能力为30MW/台热泵机组组成,1984-1986年调试完成,投入运行。 我国第一个海水源热泵项目于2004年在青岛发电厂建成使用。该厂总面积达1871平方米的职工食堂,成为我国第一个供热不需要煤炭、油料,只使用海水提供采暖的建筑。此外,大连市星海假日酒店海水源热泵中央空调工程也已正式启动,此次海水源热泵中央空调将为4万平方米的建筑提供制冷和采暖。 日前,经过申报和专家评审等程序,大连市被国家选为全国唯一的水源热泵技术规模化应用示范城市,这标志着大连市今后将有望以海水为能源,进行室内空气的冷热调节。 日照港青岛千禧龙花园居民小区7.2万平米,冬夏收费标准22元/平方米,青岛的采暖标准30.4元/平方米;青岛海天大酒店周围海水源热泵区域供热供冷站。和瑞典AF公司合作,承担山东路以西约100万平方米的区域供热供冷站作更深一步的可研。小港湾和记黄埔93万平方米已确定用海水源热泵。 2、政策支持 按照国家《建筑节能实施方案》要求,“十一五”期间,示范城市的水源热泵供热、制冷面积要达到500万平方米以上。示范内容包括水源热泵供热、供冷和相关的技术研发集成及产业化。对示范城市的示范项目,国家将提供专项资金,用于补贴70%的增量成本。目前,大连市正积极推进小平岛新区、星海湾商务区、软件产业带等区域实施海水热泵技术的前期工作。以水源热泵技术供热(制冷)主要是利用大型热泵对事先抽取的海水进行处理,将其中的热量提取出来,用于供热和制冷,并将能量通过城市原有的供热(制冷)系统输送到户,这就完

软交换技术

《软交换技术与NGN》练习题 一、简答题 1.简要说明NGN的定义。 从广义来讲,下一代网络泛指一个不同于现有网络,大量采用当前业界公认的新技术,可以提供语音、数据及多媒体业务,能够实现各网络终端用户之间的业务互通及共享的融合网络。下一代网络包含下一代传送网、下一接入网、下一代交换网、下一代互联网和下一代移动网。从狭义来讲,下一代网络特指以软交换设备为控制核心,能够实现语音、数据和多媒体业务的开放的分层体系架构。在这种分层体系架构下,能够实现业务控制与呼叫控制分离,呼叫控制与接入和承载彼此分离,各功能部件之间采用标准的协议进行互通,能够兼容各业务网(PSTN、IP网、移动网等)技术,提供丰富的用户接入手段,支持标准的业务开发接口,并采用统一的分组网络进行传送。 2.简要说明NGN的特点。 下一代网络是可以提供包括话音,数据和多媒体等各种业务的综合开放的网络构架,有三大特征。其特点如下:(1)将传统交换机的功能模块分离成为独立的网络部件,各个部件可以按相应的功能划分各自独立发展。部件间的协议接口基于相应的标准。部件化使得原有的电信网络逐步走向开放,运营商可以根据业务的需要自由组合各部分的功能产品来组建网络。部件间协议接口的标准化可以实现各种异构网的互通。(2)下一代网络是业务驱动的网络,应实现业务控制与呼叫控制分离、呼叫控制与承载分离。分离的目标是使业务真正独立于网络,以便灵活有效的实现各种业务。用户可以自行配置和定义自己的业务特征和接入方式,不必关心承载业务的网络形式以及终端类型。同时能够支持固定用户和移动用户,使得业务和应用的提供有较大的灵活性。(3)下一代网络是基于统一协议的分组的网络。能利用多种宽带能力和有QoS保证的传送技术,使NGN能够提供通信的安全性、可靠性和保证服务质量。 3.简要说明以软交换为中心的下一代网络的分层结构。 4.简要说明下一代网络的各部件之间采用标准协议。 5.简要说明固定电话网向NGN的演进步骤。 6.说明移动通信系统基于R4的核心网的结构。 7.简要说明RTP协议的功能。 8.简要说明SIP协议的功能。 9.简要说明SIP系统中各种服务器的功能。 10.SIP消息有哪两大类?分别说明这两大类消息的发送方向。

地源热泵工程实例

地源热泵工程实例 土壤源热泵系统的设计法 摘要:本文主要介绍了土壤源热泵系统的设计法和步骤,重点论述了地下热交换器的设计过程。并举例加以说明。 关键词:土壤源热泵热交换器设计 The Design Ways of Ground-coupled Heat Pump System By Hu Jianping☆ Abstract: In this paper the design ways and steps of ground-coupled heat pump system have been introduced. The design of the underground heat exchanger has been discussed in details, and an example has been taken to illustrate the process of the design. Keywords: Ground-coupled heat pump Heat exchanger Design ☆Shanghai University of Engineering Science,China 0 引言 随着我国建筑业持续发展,对建筑节能的要求越来越高,而供热系统和空调系统是建筑能耗的主要组成部分,因此,设法减小这两部分能耗意义非常显著。地源热泵供热空调系统是一种使用可再生能源的高效节能、环保型的系统[1]。冬季通过吸收大地的能量,包括土壤、井水、湖泊等天然能源,向建筑物供热;

夏季向大地释放热量,给建筑物供冷。相应地,地源热泵系统分土壤源热泵系统、地下水热泵系统和地表水热泵系统3种形式。 土壤源热泵系统的核心是土壤耦合地热交换器。 地下水热泵系统分为开式、闭式两种:开式是将地下水直接供到热泵机组,再将井水回灌到地下;闭式是将地下水连接到板式换热器,需要二次换热。 地表水热泵系统与土壤源热泵系统相似,用潜在水下并联的塑料管组成的地下水热交换器替代土壤热交换器。 虽然采用地下水、地表水的热泵系统的换热性能好,能耗低,性能系数高于土壤源热泵,但由于地下水、地表水并非到处可得,且水质也不一定能满足要求,所以其使用围受到一定限制。国外(如美国、欧洲)主要研究和应用的地源热泵系统以及我国理论研究和实验研究的重点均是土壤源热泵系统。目前缺乏系统设计数据以及较具体的设计指导,本文进行了初步探讨,以供参考。 1 土壤源热泵系统设计的主要步骤 (1)建筑物冷热负荷及冬夏季地下换热量计算 建筑物冷热负荷计算与常规空调系统冷热负荷计算法相同,可参考有关空调

水源热泵空调系统可行性分析

水源热泵技术应用于商住项目 可行性分析报告

目录 一、水源热泵的概念 二、水源热泵的原理 三、水源热泵空调的优点 四、与锅炉(电、燃料)和空气源热泵的供热系统相比的优势体现 五、水源热泵的应用 六、水源热泵对水源系统的要求 七、水源热泵空调与其他空调形式的费用比较 八、可再生能源建筑应用专项资金管理暂行办法 九、水源热泵相关政策 十、河水源热泵设计方案

水源热泵空调系统可行性分析 一、水源热泵的概念: 水源热泵是利用地球水所储藏的太阳能资源作为冷、热源,进行转换的空调技术。水源热泵又称地源热泵,包括地下水热泵、地表水(江、河、湖、海)热泵、土壤源热泵。 二、水源热泵的原理:地球表面浅层水源(一般在1000 米以内),如地下水、地表的河流、湖泊和海洋,吸收了太阳进入地球的相当的辐射能量,并且水源的温度一般都十分稳定。水源热泵技术的工作原理就是:通过输入少量高品位能源(如电能),实现低温位热能向高温位转移。水体分别作为冬季热泵供暖的热源和夏季空调的冷源,即在夏季将建筑物中的热量“取”出来,释放到水体中去,由于水源温度低,所以可以高效

地带走热量,以达到夏季给建筑物室内制冷的目的;而冬季,则是通过水源热泵机组,从水源中“提取”热能,送到建筑物中采暖。 三、 水源热泵空调的优点: 水源热泵与常规空调技术相比,有以下优点: 1 、高效节能 水源热泵是目前空调系统中能效比(COP 值)最高的制冷、制热方式,理论计算可达到7,实际运行为4~6。 水源热泵机组可利用的水体温度冬季为12~22℃,水体温度比环境空气温度高,所以热泵循环的蒸发温度提高,能效比也提高。而夏季水体温度为18~35℃,水体温度比环境空气温度低,所以制冷的冷凝温度降低,使得冷却效果好于风冷式和冷却塔式,从而提高机组运行效率。水源热泵消耗1kW.h 的电量,用户可以得到4.3~5.0kW.h 的热图1-1制冷工况示意图 图1-2制热工况示意图

(完整版)水源热泵节能技术标准

《水源热泵机组节能产品认证技术要求》 (申请备案稿) 编制说明 中标认证中心 2006年10 月

1.背景 今年上半年全国单位GDP能耗同比上升0.8%,全年实现4%的节能目标形势严峻。为了贯彻党的十六届五中全会精神,落实科学发展观,建设资源节约型社会,通 过政府机构率先节能的表率作用,充分发挥政府采购制度的政策功能,极大的推进了节能产品的广泛使用。据悉国家将出台节能产品政府采购强制措施,使整个社会逐步 形成节能、节水等节约的消费模式。为了规范市场、引导企业技术进步,提高产品的 市场竞争力,鼓励消费者选择高效产品,实施节能产品认证制度,是一条有效的途径。 水源热泵机组是一种采用循环流动于共用管路中的水、从水井、湖泊或河流中抽取的水或在地下盘管中循环流动的水为源,制取冷(热)风或冷(热)水的设备;包 括一个使用侧换热设备、压缩机、热源侧换热设备,具有单制冷或制冷和制热功能。 水源热泵机组按使用侧换热设备的形式分为冷热风型水源热泵机组和冷热水型水源 热泵机组。按冷(热)源类型分为水环式水源热泵机组、地下水式水源热泵机组和地 下环路水源热泵机组。 为了规范水源热泵机组的安全性能和质量性能,国家对水源热泵机组实施了CCC 认证制度和生产许可证制度,但在能效方面尚未出台标准。然而随着近几年水源热泵 行业的高速发展,社会及消费者对水源热泵机组的能效性能的关注度大大提高,而且我们国家的水源热泵机组也存在着巨大的节能潜力,因此制定水源热泵机组的节能认 证技术要求、尽快开展水源热泵机组节能产品认证成为贯彻我国的节能中长期规划和 适应市场需求重要工作,2005年中标认证中心正式将其列入新项目计划。 2.工作过程综述 2.1成立工作组 2006年初项目正式启动,2006年3月正式组成技术要求起草小组,负责技术要 求的具体编写工作。 技术要求起草单位: 组长单位:中标认证中心 组员单位: 1、合肥通用机械产品检测所 2、美意(浙江)空调设备有限公司 2.2技术要求制定原则 为使技术要求能够满足科学、规范地开展认证工作的需要,客观反映我国水源热

相关文档
相关文档 最新文档