文档库 最新最全的文档下载
当前位置:文档库 › 太阳能采暖的可行性分析

太阳能采暖的可行性分析

太阳能采暖的可行性分析
太阳能采暖的可行性分析

太阳能采暖的可行性分析

中国地暖网

随着人类生产及生活水平的提高,世界能源消耗量大幅度增长。根据有关记载,1965年能源消耗量比1900年增长了6倍,而2000年比1965年又增长了4.5倍。过去的能源主要来自矿物燃料,但矿物燃料的储量是有限的,世界石油的储量只能维持几十年,因此人们不得不逐渐把关注的重点转移到新能源的开发和利用上去。太阳能是无穷无尽的、可再生的清洁能源。我国太阳能资源十分丰富,可开发的太阳能资源折合标准煤每年可达1.43亿t,全国有2/3以上的地区,年辐照量大于5020MJ/m2,年日照时数在2000h以上,表1为我国太阳能热能等级表。

图i太阳能供热系统结构示意图采用热管集热器以防冻,集热器水箱中充满软化水以避免发生结垢或腐蚀现象,水箱的外面包聚氨酯以保温。所以,集热器实际上相当于一个蓄热7水箱夏季运行时,阀2开启,阀l关闭,除水泵1外其余部件均停止运行。集热器中的热水通过热交换器加热生活用水。冬季运行时,阀1开启,阀2关闭,热泵每天夜间(晚7:00~早7:0)运行,可以充分利用低谷电,将运行费用降低一半以上。白天,水泵1、水泵2停止运行,热管集热器吸收太阳能,到傍晚可将水箱中的水加热到20°C左右。在夜间,水泵1、水泵2起动,集热器中的温水经过热泵将另一侧的软化水加热到55C左右。热泵的两侧均采用软化水以避免热泵发生结垢或腐

蚀现象。由于集热器中的水温随季节变化较大,所以热泵应采用变频调速技术以保证2侧的出口水温始终保持在55C左右。2侧的蒸馏水经过蓄热器将热量储存起来供采暖设备使用。蓄热材料采用Na2S4°5H2,并加入4%的硼砂作为核生成物,其混合融点大约为46°C采暖水通过蓄热器一般可加热到40C左右,基本可以满足西北、华北地区各种采暖的需求,也可以满足东北地区无人变电站、办公室的采暖需求。水泵3集热器中的水温低于5C时电加热器l投入运行以避免发生冻结。当热泵发生故障时电加热器2投入运行以保障蓄热要求。当天气特殊寒冷时,电加热器3投入运行以保障室内温度的要求。热泵的供热系数至少可以达到3,也就是说耗费1kW电能可以产生3kW热量。再加上热泵是在夜间运行,其运行费用只表平价电的1半左右。所以fa这蓖供热系统的运行费用只是普通电米暖的1/6左右,也远低于燃煤的费用,而且没有环境污染,太阳能来源免费而且充足。所以,这种采暖系统应该具有良好的市场前景。在这套采暖系统中,热管集热器和蓄热器的设计是关键,下面分别进行详细介绍。

3热管集热器的结构设计普通真空玻璃管集热器有三大缺点:第一,抗冻性不好,不适用于严寒地区;第二,玻璃管强度不好,易碎;第三,管内容易沉积水垢,影响传热。而热管集热器采用碳钢一无水甲醇组成的热管,制作方便,造价低。甲醇的凝固点低,即使在一40C时也不会冻结,运行安全可靠。而且碳钢和无水甲醇完全相容,不会产生污染,寿命在20年以上。白天,热管接受阳光的辐射热,将热量传入水箱加热给水。到了夜间,由于热管逆向不工作,所以水

箱中的热量不会散失。水箱内部材料可用不锈钢,外材料为错,保温材料为100mm厚的聚氨酯以确保水箱在夜间不冻结。由于热管由碳钢管制成,所以强度高,彻底解决了因震动、碰撞、下冰雹等原因而导致的集热管破裂问题。

4蓄热器的结构设计砂作为核生成物,其混合融点大约为46C.由于Na2S4°5出0的融解热远高于水的比热(约为水的蓄热器的结构图减小蓄热装置的体积,节省大量的设备投资。来自热泵的高温水(5°C)通过热管1加热蓄热材料使其融化,蓄热材料通过热管2加热采暖水(40共用户使用。采用热管做传导元件与采用盘管相比不但可以减少阻力,提高传热效率,还可以降低造价可谓一举两得。

5和地热利用系统的比较太阳能采暖系统和地热采暖系统相比有许多优点:()不需要打井,节省大量初投资;(2)不需要复杂的水处理设备,节省投资且运行费用低;()不会造成地面下陷现象;6小结综上所述,太阳能采暖系统具有应用范围广、能量来源丰富、无污染、节能、省电、初投资小等多种优点,值得大力推广。

专业在读硕士研究生。

(上接第40页)出口温度在800°C左右。床下温度只有180~200°C.蒸发量可达到26~28t/h.蒸汽参数能达到设计值,可带动汽轮发电机发电。

燃煤通过炉前皮带机送入。纯烧煤时锅炉蒸发量为22t/h左右。床下温度为960C左右。燃烧室出口温度为400C左右。锅炉蒸汽参数达不到设计值,蒸汽只能用来供热和带动一台低参数的1500kW汽

轮发电机发电。

5锅炉运行中尚存在的几个问题锅炉改造总体上取得了成功,达到了设计指标,取得了较好的经济效益。但是目前尚存在两个问题有待解决。

纯烧甘蔗渣时,由于在燃烧室上部进料,燃烧主要在稀相区进行,浓相区温度只有180~200C致使锅炉蒸发量下降。解决此问题的可能办法是采取底饲供甘蔗渣,使甘蔗渣的燃烧在浓相区和稀相区同时进行。

从纯烧煤过渡到煤、甘蔗渣混烧或纯烧甘蔗渣较易。但反过来从纯烧甘蔗渣过渡到煤、甘蔗渣混烧或纯烧煤要启动点火预燃筒重新点火,耗时较长,影响供汽。此问题的解决也有待改变甘蔗渣的给料方式一采用底饲供给甘蔗渣。

6结论采用流化床燃烧技术改造25t/h燃煤粉锅炉成为煤、甘蔗渣混烧,蒸发量达到35t/h的循环流化床锅炉取得了成功。必要时,也可纯烧煤或纯烧甘蔗渣。纯烧煤或甘蔗渣时,蒸发量和锅炉热效率有所下降。

甘蔗渣的供给方式有待进一步研究改进。

(完)

太阳能供暖 系统说明以及安装图例

霍斯曼太阳能供暖系统 太阳光普照大地,没有地域的限制,无论陆地和海洋,无论高山或岛屿,都处处皆有,可直接开发和利用,无须开采和运输,开发利用太阳能不会污染环境,它是最清洁的能源之一,在环境污染越来越严 重的今天,这一点是极其宝贵的,到地球表面上的太阳辐射能约相当于130万亿吨标准煤热值,其总量数现今世界上可以开发的最大能源,据目前太阳产生的核能速率估算,氢的贮量足够维持上百亿年,而地球的寿命也约为几十亿年。从这个意义上讲,可以说太阳的能量是用之不竭的,太阳能供暖系统利用太阳能转化为热能,通过高效平板集热设备采集太阳光的热量,再通过热导循环系统统捋热量导入至换热中心然后将热水导入地板采暖系统,通过电子控制仪器控制室内水温。在阴雨雪天气系统自动切换至燃气锅炉辅助加热让冬天的太阳能供暖得以完美的实现,春夏秋冬可以利用太阳能集热装置生产大量的免费热水。 太阳能供暖工程的寿命可达20年以上,一般五年内就能收回成本,长达15年以上的免费享用尽显它的节能本色。

霍斯曼太阳能供暖产品优点介绍: 一、高效节能最大效率的利用太阳能量可节约能源成本40-60%以上,运 行成本大大降低。 二、安全可靠太阳能没有常规能源所存在的易燃易爆、中毒、锻炉、触电 等危险是安全可靠的热水系统。 三、绿色环保采用了太阳能洁净绿色能源,避免了矿物质燃料对环境的污 染。为用户提供干净舒适的生活空间。 四、智能控制系统采用了智能化控制技术,自行控制,最佳经济运行,可 设置全天候供应热水,使用非常方便。 五、使用寿命集热管道采用铜管激光焊接,聚氨酯发泡保温抗严寒,进口 面板钢化处理,可抗击自然灾害,使用寿命15年以上。 六、建筑一体化可安装在高层阳台、窗下等朝阳的墙面实现建筑一体化, 尽享舒适生活。 七、能源互补阴雨天气使用燃气壁挂炉通过太阳能换热器自动切换,无需 人工调节。 八、应用广泛可应用与高层及多层的住宅、独立别墅、中小型宾馆、洗浴 中心、学校等供暖、洗浴场所。 霍斯曼太阳能供暖组成结构: 1.太阳能集热器 2.辅助加热及循环控制 3.蓄热水箱 4.管道连接 霍斯曼太阳能供暖运行原理: 1加热方式: 晴天状态下,当太阳能循环控制系统检测到太阳能集热板热水温度超过高温储热水箱内5摄氏度时启动循环水泵进行循环,把太阳能集热板收集的热量带入高温蓄热水箱通过紫铜盘管进行加热,并保温储存,以备使用。 2运行方式: 冬天供暖模式下,当启动燃气壁挂炉时,燃气壁挂炉首先进行水路、风路安全检测,进行完检测达到运行条件后,启动热能转换器循环水泵提取高温水箱热水,当热能转换器

太阳能供热采暖系统方案

太阳能供热采暖系统 (方案二) 一、项目概况 1、项目名称:***生态蔬菜大棚太阳能采暖项目 2、项目业主单位 ***太阳能工程有限公司 3、承建单位:***太阳能工程部 4、项目建设时间:2011-9 5、项目规模:工程采暖面积范围300平方。 二、工程概况 1、太阳能供热采暖系统构成 太阳能热水采暖系统包括太阳能集热采暖热水系统、辅助加热保障供暖系统、低温热水暖气片辐射供暖系统、建筑外保温低热耗系统、免费生活热水供给系统,通过各系统的相互作用,自动运行,实现满足用户采暖温度不低于13℃,生活热水不低于50℃的条件下最低能耗的目的,原理见图 桑兰太 新型暖气 桑兰太阳能系统供热采暖系统原理图 系统具有以下特点:1采用三高紫金管,南北向竖置式真空管集热器与建筑坡屋面结合比横排真空管集热器美观,同时有利于防止积雪覆盖及减少真空管积尘影响;2电加热保障供暖系统串联于太阳能

采暖热水系统中,可根据用户需要决定启动、停止动作,可根据采暖供水回水温差自动运行;3采暖末端采用低温热水暖气辐射供暖系统,系统散热面积大、散热均匀,有很好的蓄热能力,采暖舒适感好、耗能低;4太阳能全年全天候提供用户生活热水的承压供给系统,在使用太阳能热水时无需担心上水问题、热水压力不足、跑水问题、集热管结水垢问题、冬季热水器防冻问题。太阳能集热系统采用循环系统设计,可以避免闭式系统由于过热而导致系统过压损坏。系统热水箱及地暖供水通过控制系统防高温过热温度设置功能避免供水超温。 2、系统参数 (1)采暖面积:300平方; (2)集热器面积:70平方(平均值); (3)集热器类型:三高紫金管 (4)集热器安装倾角:28°。 (5)采暖水箱:容积500L,开式不锈钢水箱; (6)生活热水:利用储热水箱的盘管换热器提供生活热水。 3、系统设计 (1)设计参数 安装地点:济南 集热器安装方位:南向,倾角28℃; 太阳辐照量:全年6257.81MJ/m2,采暖季2001.45 MJ/m2,采暖季日平均值20.11 MJ/m2?d; 采暖面积:300 m2; 平均人数:10人 平均日用水定额:70L/人 设计热水温度:45度; 设计冷水温度:10度。 (2)供热负荷 ①采暖负荷。按照单位面积热负荷 qH为24.6W计算,日平均采暖负荷QH: QH=qHA0=5166W ②热水负荷。按照平均每天5人,人均日用热水70L计算,自来水温度为10℃,贮水箱内水的终止设计温度为45℃。 日平均热水负荷Qd: Qd = mqrdρrc(tend-tL)/86400=334.4W (3)太阳能集热器 ①集热器选型。太阳能集热系统采用三高紫金管,南北向竖置真空管集热器与建筑坡屋面结合比横排真空管集热器美观,同时有利于防止积雪覆盖及减少真空管积尘影响。平板集热器在同样安装条件下易积雪、积尘,影响系统得热。金属-玻璃真空管集热器性能较好,但造价偏高。 结合本项目特点,系统选用竖置式三高紫金真空管集热器。

太阳能采暖技术现状分析

.技术现状分析 太阳能采暖技作为一项新技术,在国内的应用处于起步阶段。经过几年的工程示范应用,一批骨干太阳能企业进行了大量的技术研发,目前在集热器产品、系统设计等方面已有相对稳定的技术,针对于太阳能供热采暖工程的技术规范也已编写完成。 3.1 技术概况 从国内各厂家建设的太阳能采暖技术统计看,目前太阳能热水采暖技术以单体建筑太阳能采暖为主,绝大部分为短期蓄热的形式。太阳能区域供热采暖、跨季节蓄热供暖技术目前已列入“十一五”国家科技支撑计划项目中,中国建筑科学研究院科技园太阳能热水采暖和季节蓄热系统工程已基本完成示范项目建设。 3.2系统设计 运行原理:太阳能采暖系统中,集热器运行设计全部采用温差循环方式。其中绝大部分均采用直接循环、排空防冻的技术(典型的如“九阳”公司的太阳能采暖技术),也有与国外技术相类似的防冻液——水间接循环系统技术(如“新元”公司平谷区将军关村太阳能采暖项目)。 目前国内设计的太阳能系统中,储水箱的设计方案有两种:单水箱太阳能采暖系统及双水箱太阳能采暖系统;单水箱太阳能采暖系统是指在太阳能采暖热水系统中,采暖与热水功能水箱共用一台,采用夹套换热等形式实现功能的区分;双水箱太阳能采暖系统指采暖与热水水箱独立设置,通过系统的阀门切换实现供热功能的转换。

由于单水箱方案较之双水箱方案具有投资低、占用空间小、使用方便等特点,因此,北京地区工程应用中除早期实施工程(平谷区将军关村、玻璃台村)采用双水箱设计方案外,后期实施的工程全部采用了单水箱的太阳能系统设计方案。 3.3系统设备的技术现状 3.3.1集热器 作为太阳能热利用的一个组成部分,太阳能采暖系统采用的集热器类型主要三种:平板型太阳能集热器、全玻璃真空管太阳能集热器、热管真空管太阳能集热器。 平板集热器结构简单,抗压、抗外力冲击、抗冷热冲击能力强,故障率低,使用寿命长等优点,且易达到与建筑的结合。真空管及热管集热器则存在着故障率相对较高,使用寿命短,与建筑结合性能不佳等问题。由于太阳能采暖工程大部分为与建筑相结合的形式,因而对产品的与建筑结合、故障率、使用寿命等性能要求较高,相比于全玻璃真空管及热管真空管太阳能集热器,平板太阳能集热器在这一方面的性能更加优越。 在集热器的热性能方面,尽管平板集热器的保温性能劣于真空管集热器,但由于其有效采光面积要远大于真空管集器,因此,在产水温度与环境温度差值较小的情况下,其热效率要高于真空管集热器。实验数据表明,在北京地区环境温度0℃时,平板集热器的效率高出真空管集热器约15%。同时,针对太阳能采暖工程中“非季能源过剩”问题,真空管集热器易发生爆管、真空度降低等问题,而平板集热器则能较容易地解决这一问题。 因此,目前北京地区太阳能采暖工程中,除少部分工程中使用了真空管或热管太阳能集热器外,绝大部分均采用了平板型集热器。 3.3.2储水箱 目前,太阳能采暖系统中储水箱的结构形式不尽相同。

集中供暖可行性报告可行性报告

周边企业集中供热项目可行性研究报告 [] 临沂市工程咨询委员会 临沂市工程咨询院 二○一五年一月

周边企业集中供热项目可研报告编制单位负责人: 项目负责人: 报告编写人员: 目录

第一章概述 (1) 1.1 项目承办单位 (1) 1.2 可行性研究的依据 (1) 1.3 可行性研究的范围和内容 (2) 1.4 建设的背景和必要性 (3) 1.5 主要技术设计原则 (7) 第二章热负荷 (9) 2.1 现状热负荷 (9) 2.2 设计热负荷 (25) 第三章电力系统 (26) 第四章燃料供应 (29) 4.1 燃料来源 (29) 4.2 燃料消耗量 (30) 4.3 点火系统 (30) 第五章锅炉选型及供热方案 (31) 5.1 装机方案比较 (31) 5.2 锅炉选型 (33) 5.3 机、炉型号 (34) 第六章厂址条件 (36) 6.1 厂址概况 (36) 6.2 交通条件 (36) 6.3 电厂水源 (37)

6.4 灰渣利用 (37) 6.5 气候气象、工程地质 (38) 第七章热源厂工程建设方案 (40) 7.1 厂区平面布置 (40) 7.2 各生产系统工艺 (42) 7.3 各生产辅助工艺 (59) 7.4 土建及厂房建设 (70) 7.5 设备一览表 (76) 第八章热力管网建设方案 (83) 8.1 热水管网建设方案 (83) 8.2 蒸汽管网建设方案 (89) 8.3 管道附件及数量 (91) 8.4 结构设计 (92) 第九章环境保护分析 (93) 9.1 环境现状 (93) 9.2 环境保护标准 (94) 9.3 污染物排放分析 (95) 9.4 污染防治措施 (97) 9.5 环境效益分析 (101) 9.6 结论与建议 (101) 第十章节能方案分析 (102) 10.1 用能指标和节能规范 (102) 11.2 能耗情况 (103)

热泵可行性分析报告

热泵可行性分析报告

关于北方冬季采暖可行性分析报告 一、前言 环保、节能是当今世界各国政府普遍关注的两大问题,我们每个人都有责任减少污染,节约能源,保护好我们子孙后代赖以生存的家园。 推广清洁能源与超低温热泵采暖是一个崭新的理念。随着集中采暖体制改革的不断深入及建筑节能墙体的推广应用,低温热泵采暖系统已悄悄地进入中国城市的供暖领域。并逐步形成了除集体供热、燃气供暖之外的又一新的供暖方式,从能源消耗情况来看,煤、气作为不可再生性能源,在未来的使用中将逐步减少使用,并可能提高使用再生能源的价格,或被可再生能源取代。2009年,国家批准了21座核电站的计划,并在西部地区大力发展水电、风力发展技术,开展太阳能电力的相关应用、各地方火电的报批及建设,从种种迹象表明,中国已经重视能源消耗、并对可再生能源的利用空前重视。低温热泵取暖做为集中供暖中的佼佼者得到了消费者的逐步重视和认可。 二、常见的采暖方式及特点 1、集中供暖 a、热电厂集中供暖 冬季采暖是中国北方地区必不可少的,主要采用集体供暖。热源供给主体是热力公司或小区锅炉房。目前国内供暖系统绝大多数是以燃媒、燃气、燃油、大型电锅炉作为热源,通过外网或内网与室内系统连接。集体供暖必须建立一个局部或区域供暖系统网络,这包括锅炉、增压系统、供水管线、散热器以及锅炉房。若供暖是由市政热力公司来提供,热力公司也无法做到分户控制。所以这种传统的供暖方式已无法适应商品时代的特殊要求。传统的集中供热系统造成巨大的能源浪费,管路上的热量渗透流失。 b、地源热泵集中供暖 地源热泵中央空调的使用受到场地限制,热交换是在地下进行的,没有足够的场地满足不了能量交换,浅表地层热能也是来源于太阳; 如果使用地下水地源热泵,对地下水和地质有不好的影响,保护不好会污染地

太阳能供热采暖系统计算说明

1太阳能供热采暖系统综述 太阳能供热采暖系统将太阳能转化成热能,供应冬季采暖和全年生活热水。系统主要由集热系统、换热储热系统、辅助能源和控制系统等4大部分组成。 集热系统 根据使用区域和用户投资规模不同,使用相应的太阳能集热器组成集热系统。包括全玻璃真空管集热器、平板集热器、玻璃金属集热器(玻璃金属u 型管集热器、玻璃金属热管集热器)等,集热系统可以采用直接系统间接系统。长期运行过程中既要考虑太阳能集热系统的越冬保护问题,又要考虑集热器夏天过热问题。直接式系统既可以采用回流式排空防冻措施也可以采用电伴热或热循环防冻措施;由于间接式系统一般采用低冰点高沸点介质做导热液,因此不存在冬季越冬保护问题,但其夏季过热是主要问题。 换热储热系统 目前常用的太阳能采暖系统中多以热水显热的形式来完成供热和储热,随着技术的进步逐渐有以相变潜热供热的太阳能供热采暖系统面世。集热系统种类不同,换热设备和储热系统都不同,直接式系统把水作为集热的热媒和采暖供热的热媒;间接式系统一般用换能液(低冰点高沸点介质)通过换热器把集热器产生的热量储存到储热系统中;换热器可以是内置式也可以是外置式。储热水箱的容积和太阳能采暖保证率有关,所以同样集热面积的太阳能采暖系统,储热水箱容积可能不同,太阳能保证率越大,储热水箱的容积越大。

用热系统 太阳能采暖系统用热包括两部分:采暖用热、生活热水用热。生活热水要求水质新鲜、富含氧气、温度合适、带有一定压力、清洁、无病菌、无异味,因此不能和采暖系统共用一套水源,采用双水箱系统、单水箱加换热器系统。 对采暖系统来讲,末端散热器主要用热设备,通过热传导、辐射、对流把热量散发出来,让居室的气温得到提升。太阳能辅助采暖系统可以在地板底下敷设加热管、普通金属散热器、风机盘管散热器等多种形式末端散热器。目前市场上销售的采暖散热器从材质上分为铜管铝翅对流散热器、钢制散热器、铝制散热器、铜制散热器、不锈钢散热器、铜铝复合散热器以及老式铸铁散热器等。 辅助能源和控制系统 辅助能源和控制系统是保证太阳能采暖系统全天24h安全可靠运行的关键。控制系统控制策略的优劣决定系统运行过程是否节能,降低耗电输热比的关键措施。 2常见太阳能采暖系统组成方式 常见4种太阳能采暖和生活热水系统 由于集热器种类和运行方式有多种形式,储热水箱有开口式、封闭式及有无内置换热器式等种类,辅助能源安装在水箱内部的电加热器、通过内置或外置换热器进行加热的外部加热装置,如电锅炉、燃气炉、燃油炉、燃煤炉;外置辅助加热装置还可以直接给水箱中的水加热。因此太阳能供热采暖有多种组合方式,直接式太阳能集热系统

“太阳能光伏+”取暖技术方案

附件1:“太阳能光伏+”取暖技术方案 一、技术原理 “太阳能光伏+”取暖技术是一种利用太阳电池半导体材料(太阳能光 伏板)的光伏效应,将太阳辐射能直接转化为电能取暖的技术。采用 该技术的取暖系统一般由太阳能光伏板、逆变器、附件、控制系统、 辅助热源和散热部件等组成。根据辅助热源不同,可分为“太阳能光 伏+电储热装置”“太阳能光伏+电热装置”“太阳能光伏+空气源热泵”“太阳能光伏+地源热泵”“太阳能光伏+生物质能锅炉”“太阳能光 伏+燃气壁挂炉”等形式。 二、技术特点 系统运行有两种模式。第一种模式为全额发电上网,采用辅助热源取暖,目前已有项目普遍采用此种模式;第二种模式是用发出的电能直 接发热或驱动空气源、地源热泵进行取暖,此种模式需要增加储电装 置(如蓄电池),造价昂贵且经济性差(电网价格低,上网价格高, 即发电自用不如买电用),当前不宜采用。 “太阳能光伏+”取暖技术可在一定程度上解决农村电网容量不足问题,减轻农村高峰用电负荷。第一种运行模式,农户每年还可有一定收益, 即全年的全额上网电费减去取暖费用尚有剩余。如采用电储热装置利 用夜间谷电储热,还可享受国家低价谷电政策,同时对电网起到削峰 填谷作用。 三、投资和收益 以单户取暖面积100平方米为例,屋顶安装5千瓦分布式光伏发电系统,每年发电量约7000度(不同日照条件有差异),按照全额上网电 价补贴后平均0.9元/度(2018年上网电价)计算,每年上网电费收 益6300元。以直接电加热取暖用电每年11500度(房屋无保温措施,室内达到舒适条件,取暖期120天)为对比基准,取暖费用约4600元,则不同形式“太阳能光伏+”取暖技术的投资和收益对比见下表:

太阳能供热系统

一. 太阳能供热系统太阳能集中供热系统 1.1 概述 太阳能是一种清洁、高效和永不衰竭的新能源。目前,各国政府都将太阳能资源利用作为国家可持续发展战略的重要内容。太阳能热水器符合低碳经济的发展,是可持续的、节能减排产品,是太 阳能行业发展的机遇。太阳能产业规模巨大,市场发展具有极大的潜力。近几年政府大力支持太阳能行业的发展,2009年出台了针对太阳能的家电下乡政策,对太阳能家电下乡产品进行补贴,惠及亿万百姓,符合中央建设资源节约型、环境友好型社会,增强可持续发展能力的要求。太阳能行业的前景是光明的,但道路是曲折的。具体到每个企业,由于每个企业的技术、产品和水平等等不一,所以,能否到达行业光明的彼岸取决于企业的综合实力。目前,我国太阳能热水器行业产业发展不规范,企业自律性较弱。但是太阳能行业的发展必将会回归理性,企业需更加注重对产品品质的提升。希望行业内各大品牌联合起来,发挥各自企业优势,共同推进产业发展,维护市场秩序,营造和谐有序的行业发展环境。 1.2 太阳能新能源的发展趋势 太阳能热水系统是利用“温室效应”原理,将太阳辐射能转变为热 能,并将热量传递给工作介质从而获得热水的供热系统。太阳能热 水系统由太阳集热器、贮热水箱、循环泵、辅助热源、控制系统和 相关附件组成。太阳能热水系统的系统设计应遵循节水节能、经

济应用、安全简便的原则。从节水节能考虑,必须设置保温措施;从使用功能考虑,目前最应解决的是冷热是系统压力平衡的问题,优先选用承压式系统;从建筑美观考虑,优先选用分离式系统;从水质卫生考虑,优先选用间接式系统由于系统集热器和部分管道置 于室外,而赤峰市冬季环境温度较低,集热器、管道有可能结冰冻胀造成设备损害,影响整个热水系统的正常运行。 太阳能系统的防冻通常采用以下几种方式:①排空法防冻方式。 在结冰季节到来之前,将集热器排空,系统不运行。或者在集热器下集管进口处设置自动控制线路的温度触点,0℃以前即将集热器排水阀打开,排空集热器中的水。缺点是如果温控线路失灵,集热器即会冻裂。排空法是消极防冻方法,不仅浪费水源,而且降低了集热器的年集热效率,不能充分利用太阳能,除了受到工程造价低的限制,否则不宜采用。②保持集热系统中的水不断流动。这种方式要求集热系统不能有循环死角,否则该处管道等部件仍会冻裂。为维持水的流动,需启动水泵耗费常规能源,水在流动过程中会损失水箱中部分能量。这种方法浪费常规能源,而且系统热损失大,所以不宜使用。③排回法防冻方式。即水箱置于集热器的下方,根据储热水箱底部及集热器顶部的水温差控制水泵的运转或是停止。当集热系统当集热系统出口水温低于储热水箱水温是,循环泵关闭,集热系统停止工作,集热系统中的水依靠重力作用流回储热水箱。 当使用排回系统时,集热系统集热器和管路的安装坡度有严格要求,以保证集热系统中的水能完全排回。

电采暖可行性报告

电采暖可行性报告 篇一:新型建筑采暖加热系统可行性研究报告 新型建筑采暖加热系统 项目名称: 项目类别: 项目负责人: 联系电话: 项目实施单位: 编制日期:可性研究报告行 前言 在过去的四、五十年间,使用电作为居室的主要采暖能源是不可想象的,人们对电采暖还停留在电油汀、电热风扇、浴霸等局部小范围补充采暖的印象上,普遍认为电采暖不可能承担居室内独立采暖的任务,而且费用昂贵。那么我们究竟能不能使用电采暖?能不能达到满意的效果?能不能承受电采暖的使用费用呢?可以非常肯定地说:电采暖是我们能够采用而且应特别加以考虑的采暖方式之一。第一、从宏观来看 随着国民经济的不断发展、国家产业结构的调整,国家电力能源的供应己基本扭转了建国以来一直供不应求的局面,特别是近几年国家加大电力基础建设的投资,可以预期在今后相当长的一段时间内,我国的电力供应将是充沛的,相比其它不可再生的采暖能源如天然

气、石油、煤炭等,由于电力来源的多源性(水力势能、风能、太阳能、潮汐能、核能等)其价格将是相对稳定的。 第二、从政策来看 由于冬季和夏季存在着巨大的用电负荷差异,城市电力负荷的削峰填谷对于整个电的安全供电和良性运行是非常重要的,因此,全国众多地区(尤其是北方采暖区域)都相继推出了冬季使用电采暖的优惠政策,鼓励大家在冬季使 用电采暖。 第三、从产品可靠性来看 目前在国内市场上普遍采用的欧美进口电采暧设备,在西欧和北美等发达国家,作为独立采暖系统已经有六、七十年以上的历史了,所以电采暖并不是新兴技术,而是经过了长期实际使用的考验,在环保、舒适、安全、美观等各方面得到了广泛认可,是非常成熟可靠的。 第四、从产品安全性来看 经过几十年不断的总结和完善,欧美国家及我国都对电采暖设备制定了严格的检验和控制标准,从根本上杜绝各种安全事故的发生。在国外几十年和国内这几年的实际使用中,还没有发现由于电采暖设备的原因而引发的人身伤害事故,因此可放心使用。 (一)使用电采暖能否达到满意的使用效果 现代的电采暖技术已经日臻完善,采用高科技发热材料、利用现代热工和空气动力原理精心设计的电热设备与过去所谓的“电暖器”相比,无论是在制造材料上还是在工作原理上都不可同日而语,彻底

太阳能供暖系统设计

太阳能供暖系统设计 摘要:阐述了太阳能供暖系统的组成、运行原理、主要设计参数和经济效益等,并介绍了一个太阳能供暖系统的实测情况。 欧洲各国对太阳能供暖给予了较高的重视,已规模化推广,到2005年共安装1536万m2太阳能集热器,太阳能供暖系统使用集热器约占集热器总量的20%,每年新建太阳能供暖系统约12万个,可节约常规能源20%~60%。 在国外,太阳能供暖已成为太阳能热利用的主要发展方向,国际能源机构在2001年指出,全球的太阳能供暖系统每年提供的能量折合电力约为4.2万MWh。 太阳能供暖技术对我国建筑节能有着非常积极的作用,是今后太阳能光热利用的新方向。1太阳能供暖系统设计 1.1太阳能供暖系统简介 太阳能供暖系统主要由4部分组成:1)热量提供部分,太阳能集热器和辅助加热设备; 2)储热换热部分,储热水箱和换热设备;3)热量使用部分,供暖末端;4)控制部分,系统控制器。 太阳能供暖系统不同于太阳能热水系统,主要体现在以下几个方面:1)季节性使用明显,系统利用率低;2)供热需求量大,供暖季随时问变化明显;3)系统热媒温度根据不同的供暖形式而变化;4)冬、夏平衡问题,冬季需热量大,太阳能辐照量少,夏季需热量小,太阳能辐照量大。 1.2太阳能供暖系统运行原理 太阳能供暖系统在供暖季提供部分供暖热量,非供暖季提供足量生活热水,全年充分利用太阳能资源。因此,太阳能供暖系统也常称为太阳能联合系统(solarcombisystem)。系统运行原理如图1所示。 1)系统运行原理 太阳能集热循环:太阳能集热循环为温差控制、强制循环的落空系统。系统通过比较太阳能集热器和水箱的温度控制集热器循环泵启停,当集热器温度高于水箱温度设定值时,循环泵启动,太阳能集热器不断将水箱中的热水加热;当温差低于设定值时.循环泵停止,室外太阳能集热器和管路中的水受重力作用落回水箱(要求集热器比水箱位置高),防止反向散热,并达到冬季防冻的目的。 辅助加热循环:辅助加热为温度控制。系统通过检测水箱中的温度是否达到设定温度,确定辅助热源是否开启。 2)系统特点

太阳能采暖工作原理

太阳能供热采暖系统工作原理(参考北京地区的阳光指数) 系统包括太阳能集热系统、储热膨胀水箱,生活热水系统、辅助热源系统、末端供暖系统和控制系统。 太阳能集热系统采用多台供热采暖两用太阳热水器并联运行。太阳能可置于任何受光位置。以水为工质,温度控制运行状态。蓄热水箱同时具有膨胀水箱功能。太阳能水箱具有换热、供给热水、供暖和温差发电功能。辅助热源采用电采暖炉,整个系统运行状态无需人工操作。 太阳能供热采暖系统特点 ①采用高效供热采暖两用太阳热水器,使用寿命长,运行安全可靠,全年综合得热量高。 ②太阳能循环系统采用家用暖通循环系统,安装方法与土暖气相似。 ③太阳能的安装位置不受地理的限制,实现太阳能系统与建筑完美结合。 ④太阳能水箱具有常压承压两个压力状态,保证系统长寿命和在恶劣情况下无故障运行。 ⑤生活热水与采暖水相互隔离,保证了水质。 ⑥系统实现全自动运行,保证在停电、停水等意外工况的系统安全。 ⑦辅助热源用户可自选,利用电采暖炉作辅助热源有利于系统的全自动。

系统参数:(假设采暖面积为100平米的家用采暖) ①采暖面积:100㎡ ②集热面积45-50㎡,采暖面积选用58*1800真空管。 ③蓄热膨胀水箱0.5-1t ④电加热功率6KW 散热设备采用超导散热器或集成地暖。系统节能效益系统使用寿命15年以上。太阳能系统初投资400-600元/㎡左右。每年可节电2000KW·h,采暖季节煤3650kg. 系统运行情况地板采暖供水温度40-50℃,室内温度20℃以上。用户多采用经济运行方法,即调节散热器阀门或地暖分水器阀门,控制房间温度。达到最佳节能状态。 对于上述采暖技术描述,根据您所处的地域以及实际采暖现状要求(鉴于河北地区冬季阳光辐射量较少),600平米的采暖面积需要使用58*1800真空管集热面积在300平米左右,一吨集热器的采暖面积为16.2平米,所以为了保证使用效果需要采用集热器共20吨才能满足冬季采暖要求。

太阳能采暖、供热设计方案

青海25所学校 太阳能集中采暖、供水系统(以青海省同德民族中学为例) 设 计 方 案 方案设计单位:青海大唐世家新能源有限公司 日期:2009年5月6日

目录 一、工程设计 二、工程造价 三、施工方案及组织管理 四、系统投资经济评估 五、售后服务及承诺 六、企业简介 七,系统防雷及抗风措施 八、资质证书 附件一,近年来主要工程业绩 附件二,青海省25所所学校报价

一,工程设计 1、项目概况 项目名称:青海省同德民族中学太阳能集中采暖、供水系统; 用水类型:单位4200人生活热水和供暖 用水量:70吨生活用水,160吨为供暖用水 用水方式:采暖期内每周每人次40升洗浴(按700人计算)、每日每人次10升生活用水和提供45%采暖热能所需介质水。采暖期外,每日 每人次50升用水。 建筑类型:平顶集热器设计倾角45度 2、设计标准 GB50015-2003 《建筑给水排水设计规范》 GB50057-1994 《建筑物防雷设计规范》2000版 GB 50171-92 《电气装置安装工程盘、柜及二次回路结线施工及验收规范》 GB50242-2002 《建筑给水排水及采暖工程施工质量验收规范》 GB50303-2002 《建筑电气工程施工质量验收规范》 GB 50345-2004 《屋面工程技术规范》 GB/T12936-91 《太阳能热利用术语》 GB/T17581-1998 《真空管太阳集热器》 GB/T18713-2002 《太阳能热水系统设计、安装及工程验收技术规范》

GBJ17-88 《钢结构设计规范》 GB/T18708-2002 《家用太阳热水系统设计热性能试验方法》 NY/T513-2002 《家用太阳热水器电辅助热源》 NY/T514-2002 《家用太阳热水器储水箱》 GB4272-92 《设备及管道保温技术通则》 GBJ9-87 《建筑载荷规范》 DB63/743-2008 《青海省民用建筑太阳能热水系统应用技术规程》 3、设计气象参数依据 青海3000米以上的地区占全省总面积的90%以上。因海拔高,大气稀薄,加之气候干燥,少雨,大气透明度好,日照时间长,太阳能资源丰富。就全国说,仅次于西藏,属第二高值区。年日照平均时数为2350—2976小时,日照百分率为53—80%。太阳辐射强,多年太阳能总辐射量的年平均值为73万焦耳/平方厘米。按28个气象台站测定的辐射量计,全省年接受的太阳能辐射量为66万焦耳/平方厘米。年接受的太阳能折标煤1623亿吨合360万亿千瓦时,相当于龙羊峡电站年发电量的6万多倍 3.1 青海同德县在青海省东部,年平均日照时数为2610小时,年平均日照时数为7.15小时,年辐射总量为5850—6350 MJ/m2.a,日水平面辐射量高于1 4.5 MJ/(㎡﹒d)。 3.2 青海同德地区的地理纬度为35.15°,东经100.35°左右; 3.3 青海同德地区全年自来水水温在4-17℃之间。(设计取值5℃,春分时节);

供热采暖系统改造项目可行性研究报告

供热采暖系统改造项目可行性研究报告 核心提示:供热采暖系统改造项目投资环境分析,供热采暖系统改造项目背景和发展概况,供热采暖系统改造项目建设的必要性,供热采暖系统改造行业竞争格局分析,供热采暖系统改造行业财务指标分析参考,供热采暖系统改造行业市场分析与建设规模,供热采暖系统改造项目建设条件与选址方案,供热采暖系统改造项目不确定性及风险分析,供热采暖系统改造行业发展趋势分析 提供国家发改委甲级资质 专业编写: 供热采暖系统改造项目建议书 供热采暖系统改造项目申请报告 供热采暖系统改造项目环评报告 供热采暖系统改造项目商业计划书 供热采暖系统改造项目资金申请报告 供热采暖系统改造项目节能评估报告 供热采暖系统改造项目规划设计咨询 供热采暖系统改造项目可行性研究报告 【主要用途】发改委立项,政府批地,融资,贷款,申请国家补助资金等【关键词】供热采暖系统改造项目可行性研究报告、申请报告 【交付方式】特快专递、E-mail 【交付时间】2-3个工作日 【报告格式】Word格式;PDF格式 【报告价格】此报告为委托项目报告,具体价格根据具体的要求协商,欢迎进入公司网站,了解详情,工程师(高建先生)会给您满意的答复。 【报告说明】 本报告是针对行业投资可行性研究咨询服务的专项研究报告,此报告为个性化定制服务报告,我们将根据不同类型及不同行业的项目提出的具体要求,修订报告目录,并在此目录的基础上重新完善行业数据及分析内容,为企业项目立项、上马、融资提供全程指引服务。

可行性研究报告是在制定某一建设或科研项目之前,对该项目实施的可能性、有效性、技术方案及技术政策进行具体、深入、细致的技术论证和经济评价,以求确定一个在技术上合理、经济上合算的最优方案和最佳时机而写的书面报告。可行性研究报告主要内容是要求以全面、系统的分析为主要方法,经济效益为核心,围绕影响项目的各种因素,运用大量的数据资料论证拟建项目是否可行。对整个可行性研究提出综合分析评价,指出优缺点和建议。为了结论的需要,往往还需要加上一些附件,如试验数据、论证材料、计算图表、附图等,以增强可行性报告的说服力。 可行性研究是确定建设项目前具有决定性意义的工作,是在投资决策之前,对拟建项目进行全面技术经济分析论证的科学方法,在投资管理中,可行性研究是指对拟建项目有关的自然、社会、经济、技术等进行调研、分析比较以及预测建成后的社会经济效益。在此基础上,综合论证项目建设的必要性,财务的盈利性,经济上的合理性,技术上的先进性和适应性以及建设条件的可能性和可行性,从而为投资决策提供科学依据。 投资可行性报告咨询服务分为政府审批核准用可行性研究报告和融资用可 行性研究报告。审批核准用的可行性研究报告侧重关注项目的社会经济效益和影响;融资用报告侧重关注项目在经济上是否可行。具体概括为:政府立项审批,产业扶持,银行贷款,融资投资、投资建设、境外投资、上市融资、中外合作,股份合作、组建公司、征用土地、申请高新技术企业等各类可行性报告。 报告通过对项目的市场需求、资源供应、建设规模、工艺路线、设备选型、环境影响、资金筹措、盈利能力等方面的研究调查,在行业专家研究经验的基础上对项目经济效益及社会效益进行科学预测,从而为客户提供全面的、客观的、可靠的项目投资价值评估及项目建设进程等咨询意见。 可行性研究报告大纲(具体可根据客户要求进行调整) 为客户提供国家发委甲级资质 第一章供热采暖系统改造项目总论 第一节供热采暖系统改造项目背景 一、供热采暖系统改造项目名称 二、供热采暖系统改造项目承办单位 三、供热采暖系统改造项目主管部门 四、供热采暖系统改造项目拟建地区、地点 五、承担可行性研究工作的单位和法人代表

太阳能供暖系统方案

太阳能供暖系统方案集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

太阳能采暖系统 方 案 书 班级:电机二班 姓名:刘常斌 2、系统基本设计 2.1根据改地区全年气温温差大的特点,选用热效率高、经济实惠的玻璃-金属真空管式太阳集热器。 2.2采用太阳能与联合供采暖的系统方案,并优先利用太阳能。当阴雨天或太阳能不足时,用采暖系统辅助加热补充采暖,并充分利用太阳能,最大限度地减少用气量,降低运行费用。 2.3太阳能系统设计为直流式定温放水太阳采暖系统,达到充分利用太阳能。直流式系统分虹吸式和定温放水型。定温放水型特别适合大型太阳能采暖装置,布置也较为灵活,缺点是要求性能可靠的电磁阀和控制器,从而使系统较为复杂,在当前的技术条件下,值得推广。 直流式采暖系统按控制方式有3种:一是流量控制式,适用于大面积系统。当水压不足时为克服管道阻力可在系统中加入小型水泵。二是温控阀控制式(或膨胀阀控制式)适用于小面积

直流采暖系统。该系统因不用常规能源又获得较多的系统效率而得到用户的欢迎。三是电磁阀控制式,大小面积都适用,但还未有专用电磁阀。 2.4冬季管路防冻采用低温时水泵自动循环和自限温伴热带自动启动的双重防冻设计,防止管路结冰冻坏。 2.5采用工业级CPU 可编程电脑控制器,实现太阳能系统的全自动化、智能化,确保控制系统的可靠性,实现自动化运行,并可以根据用户的实际需要修改控制程序,使太阳能系统实现真正意义上的全自动控制和智能化管理。 2.6采暖供应采用变频增压循环供水方式,为了减少采暖循环的热损失,在采暖回水末端加装一个可根据管道水温自动控制的电磁阀。当管道温度低于40℃时,电磁阀自动打开;当采暖循环使管道水温达到水箱水温时,电磁阀自动关闭。 综上所述,不同类型的产品各有其优缺点。我们认为:选择全玻璃真空管太阳集热器比较合适,热效率高,经济实用,是目前国内市场普遍使用,生产成熟的产品。 3、系统运行原理 系统运行原理如上图所示。 3.1正常情况下,太阳能定温加热在光照条件下,当太阳集热器内水温达到设定水温时(可在0~100℃之间任意设定,一般设定在45~55℃之间),电脑控制器使供冷水电磁阀自动打开,自来水进入太阳集热器底部,同时将太阳集热器顶部达到设定温度的采暖顶入储采暖箱;当太阳

被动式太阳能采暖技术

被动式太阳能采暖技术是通过对建筑朝向和周围环境的合理布置、内部空间与外部形体的巧妙处理以及建筑材料和结构的恰当选择,无须使用机械动力,利用太阳能使建筑物具有一定的采暖功能的技术。截至2004 年底,中国北方农村地区被动式太阳房的建筑面积约为1800 万m2(罗云俊.中国《可再生能源法》出台的背景及影响, 第八届科博会中国能源战略高层论坛会刊,北京,2005),依据辽宁省大连农村被动式太阳房实测结果,即按每年可节省冬季采暖用煤50%、通常平均每户家庭冬季采暖用煤3吨左右进行推算的话,每年节约折合标准煤27万吨。据德国等欧洲国家的被动式太阳房的节能效果统计,相对于传统建筑,被动式太阳能建筑可节约冬季采暖能耗达90% 被动式太阳能采暖技术的3大要素为:集热、蓄热和保温。重质墙(混凝土、石块等)良好的蓄热性能,可以抑制夜间或阴雨天室温的波动。按太阳能利用的方式进行分类,其形式主要有以下几种:1)直接受益式;2)集热蓄热墙式;3)附加阳光间式;4)组合式等。 ①直接受益式 直接受益式太阳房是被动式采暖技术中最简单的一种形式,也是最接近普通房屋的形式,其示意图见图3-39。具有大面积玻璃窗的南向房间都可以看成是直接受益式太阳房。在冬季,太阳光通过大玻璃窗直接照射到室内的地面、墙壁和家具上,大部分太阳辐射能被其吸收并转换成热量,从而 使它们的温度升高;少部分太阳辐射能被反射到室内的其他 表面,再次进行太阳辐射能的吸收、反射过程。温度升高后 的地面、墙壁和家具,一部分热量以对流和辐射的方式加热 室内的空气,以达到采暖的目的;另一部分热量则储存在地 板和墙体内,到夜间再逐渐释放出来,使室内继续保持一定的温度。为了减小房

天然气供暖可行性报告

某某医院 天然气锅炉供暖 仃 r 行 性 报 告 口 淮北市淮孚能源有限公司编制

一、总则 近年来由于雾霾天气频频发生,空气质量已经成为百姓最 关注的民生问题之一,绿色环境备受关注。随着社会经济发展和环保要求的不断提高,国家也将在节能工作提升到了十分重要的地位,各行各业都在不断深入开展节能减排工作。随着我国医疗体制改革的不断深化,医疗市场竞争的逐渐加剧,医院的生存和发展正面临着前所未有的挑战。在医院业务量增长的同时,医院的成本也在不断上升,医院作为重点用能单位,日常的能源消耗量很大,如何长期经济运行,保障冬季供暖质量是确保医疗工作正常安全供热所必须,因此加强经济管理,合理利用能源,节约能源,降低能源消耗成本,将是医院管理部门今后发展面临的挑战之一。贵院作为二级甲等综合型医院有效进行节能降耗与医院的可持续发展息息相关。建设绿色、低碳医院促进医院的可持续发展。 二、燃煤燃气供热比较分析 1.无组织粉尘排放 燃煤锅炉房煤和灰渣的运输与存储可以采取封闭作业等措 施尽量降低无组织粉尘排放,但燃气锅炉基本不存在该问题。 2.噪声 燃煤锅炉房噪声源较多,特别是大型鼓引风机、循环水泵,以及煤、灰渣的运输等机械化设备等高噪声,虽可经过选用低噪声设备,采取减振、隔声措施、消声器、水泵减震基础

等措施达到国家噪声控制要求,但相对于燃气锅炉噪声来说还是普遍较高。 3.能源利用率分析 燃气热水锅炉的热效率高,除容量极小的锅炉采用大气式燃烧方式致使热效率低于85%以外,锅炉热效率基本能达到90 %左右。而且适度规模的燃气锅炉房可减少热网输送损失和输送动力消耗;燃气锅炉房还由于其自动化程度高、运行调节方便、灵活,可以大大提高供热系统的运行调节水平,降低能源消耗,提高能源利用率。 4.结论与建议 通过近年来工程实践和运行数据可以看出,在现行物价水平的条件下,燃煤锅炉房集中供热与燃气供热相比,锅炉房占地面积多约为50-100%;能耗高约67%烟尘排放量高约2.7 倍,SO2排放量高约80倍,氮氧化物排放量高约100%按目前燃料价格水平,燃料消耗成本略低,但考虑工资福利、维修、管理费用、固定资产折旧等因素后,燃煤供热总成本会高于燃气供热。 三、公司简介 淮北市淮孚能源有限公司作为一个新能源公司,有着完善的管理体系,响应国家号召。以科学的方法管理项目,达成高质高效的服务目标。特别注重政策法规的研究和学习,并协助

学校项目煤改电可行性实施方案实施计划书

校园采暖电能替代 解决方案 项目名称: 项目单位: 编制单位:天津万贸科技 咨询证书号: 2016年3月23日

一、绪言 随着新型供暖方式的异军突起、走俏市场,主要依靠燃煤锅炉与热网采暖这两种传统采暖方式的学校主管部门,开始转而思考并寻求最佳的供暖方式,电采暖供暖系统,就这样走进了他们的视野。多年的实践表明,电采暖供暖是学校冬季采暖的最佳方式。而为了治理大气污染,学校燃煤锅炉整改也是必然。 (一)、现状分析 目前我国供暖地区的学校主要采用以燃煤为热源,并以散热器加热室环境的传统供暖方式。学校的这种供暖系统导致了能源的巨大浪费。一方面,由于学生学习与生活的特点,学校建筑物在不同的时段对热能的需求有很大的差异,比如,上课期间,学生集中在教室学习,宿舍楼、餐厅基本处于无人状态;晚自习后,学生全部回到宿舍楼休息,教学楼、办公楼、图书馆也都处于无人状态。在寒假期间, 宿舍楼、教学楼也大都处于无人状态。可是目前学校供暖系统在上述各阶段又都是照常供暖,造成了资源的浪费。另一方面是校园的供暖主干线一般都是按照最初的整体规划一次性建成,而校园建筑却分成几个工期分批建成,供暖主干线的设计往往不能满足校园建筑的需求,导致供暖水力失调问题普遍存在,出现严重的“近热远冷”的现象,以及供暖系统“大流量、小温差”的运行特征。 现行采暖方式多以传统的集中供热方式为主,个别也有自己烧锅炉的,集中供热的按面积收费,不考虑教学单位上不上课,需要不需要采暖,故

教学单位需要多付很多采暖费;自己烧锅炉的,也不能很好地调整采暖时段,一是因为锅炉不好控制,二是温度过低管线会冻裂。 总之,现行的采暖方式,不能满足教学单位的需求,现行的收费方式,不能真实地反映教学单位实际的用暖量。 (二)、存在的问题 燃煤供暖,产生大量的二氧化碳、二氧化硫等排放物,严重污染环境;热能转换效率低;供热成本高;冷热不均匀,温度无保障;运行中存在跑、冒、滴、漏、冻现象,维修工作量大、维修费用高;设备平均使用寿命只有8-10年。总之,目前学校主流的燃煤锅炉集中供暖方式存在以下问题:(1)能耗高。燃煤热转换率低; (2)占用空间大。锅炉、燃料、管道、散热设备都需摆放或存储空间; (3)人员成本高。每个学校都配置5个以上锅炉工和维修人员,管理难度大; (4)污染环境。运行时排放大量烟尘、硫和氮的氧化物等有害气体,对生产、生活、健康以及环境和生态都会造成极大的危害。 总而言之,为了治理大气污染,学校燃煤锅炉整改是必然。 二、项目概况 根据某学校提供的资料和需求,某学校总建筑面积:7981平方米,其中教学楼建筑面积:3295平方米,宿舍建筑面积:3569平方米,食堂建筑面积:1117平方米。

燃气炉与太阳能联合采暖和制冷系统

燃气炉与太阳能联合采暖和制冷系统

作者: 日期:

二书 1 燃气炉与太阳能联合热水系统:不论是冬季采暖,夏季制冷,还是直接为用户提供热水,利用的都是燃气炉与太阳能联合系统生产的热水。 2 燃气炉与太阳能联合采暖系统,采暖系统设计的思路是:首先用太阳能集热器产生的热水来采暖,当水温不足(或者水量不够)时,再启动燃气炉,加热已经过太阳能集热器加热过的水,以满足采暖的要求。 太阳能部分的工作情况:当T b达到要求的温度,而且Ts超过了回流温度, 在采暖部分进行换热之前,太阳能部分的三通阀由底部盘管转向散热器, 了保证Tb要求之外,三通阀将优先考虑转向保证热水供应的方向。 燃气炉工作情况:在采暖完成以后,当温度计显示温度过低时,燃气炉开始工作,直到蓄热箱顶部的换热器的水温,Tt达到预定值为止。 3,燃气炉与太阳能联合制冷系统:制冷系统主要由燃气炉与太阳能联合(参照图1)热水系统,吸收式制冷机和中央空调系统组成。 燃气炉与太阳能联合采暖和制冷系统 技术领域背景技术发明内容 ㈠燃气炉与太阳能联合热水系统

不论是冬季采暖,夏季制冷,还是直接为用户提供热水,利用的都是燃气炉与太阳能联合系统生产的热水。联合热水系统如图1所示,其工作情况如下。 I' jl 1 ,|¥ 』1 11 1-I LI' 1-1太阳能加热系统的工作原理:太阳能加热系统可以直接给用户提供 热水。当太阳能加热系统提供热水的水量和水温能满足要求时,就不需要启动燃气炉加热系统。太阳能加热系统也可以加热蓄热箱里的水,当平板集热器探测器的温度T s高于蓄热箱底部探测器的温度T b时,太阳能系统循环泵被 打开,此时平板集热器的热水通过蓄热箱低部的盘管换热器给蓄热箱加热。 太阳能加热系统还能为燃气加热炉的进水加热,提高燃气加热炉的进水温度, 节省燃料。 1-2 燃气炉加热系统的工作原理:当位于蓄热箱顶部的温度计显示的温 度(T S )较低,不能满足用户的要求时,燃气炉的三通阀由供热水部分转向顶 部盘管,燃气炉水泵起动,燃烧器点燃,蓄热箱顶部的盘管换热器给蓄热箱加热,一旦蓄热箱中的热水温度达到了要求,温度控制器将把三通阀转向热水供应,另外,还可从蓄热箱取水,经燃气炉加热后直接供应给用户。 UI II 1 [| 'h |[1 1,|[-1'

相关文档
相关文档 最新文档