文档库 最新最全的文档下载
当前位置:文档库 › 很不错的汇编语言超浓缩教程

很不错的汇编语言超浓缩教程

很不错的汇编语言超浓缩教程
很不错的汇编语言超浓缩教程

用户名:@https://www.wendangku.net/doc/a37301756.html,密码:

【设为首页】【加入收藏】

首页┊新闻中心┊菜鸟乐园┊黑客攻防┊人物故事┊黑客工具┊安全软件┊论坛

社区┊高级会员

黑客基地 > 编程开发

很不错的汇编语言超浓缩教程

https://www.wendangku.net/doc/a37301756.html, 阅读:293 时间:2004-4-24 3:34:27 编辑:黑客基地

汇编语言超浓缩教程

“哎哟,哥们儿,还捣鼓汇编呢?那东西没用,兄弟用VB"钓"一个API就够你忙活个十天半月的,还不一定搞出来。”此君之言倒也不虚,那吾等还有无必要研他一究呢?(废话,当然有啦!要不然你写这篇文章干嘛。)别急,别急,让我把这个中原委慢慢道来:一、所有电脑语言写出的程序运行时在内存中都以机器码方式存储,机器码可以被比较准确的翻译成汇编语言,这是因为汇编语言兼容性最好,故几乎所有跟踪、调试工具(包括WIN95/98下)都是以汇编示人的,如果阁下对CRACK 颇感兴趣……;二、汇编直接与硬件打交道,如果你想搞通程序在执行时在电脑中的来龙去脉,也就是搞清电脑每个组成部分究竟在干什么、究竟怎么干?一个真正的硬件发烧友,不懂这些可不行。

三、如今玩DOS的多是“高手”,如能像吾一样混入(我不是高手)“高手”内部,不仅可以从“高手”朋友那儿套些黑客级“机密”,还可以自诩“高手”尽情享受强烈的虚荣感--#$%& “醒醒!”

对初学者而言,汇编的许多命令太复杂,往往学习很长时间也写不出一个漂漂亮亮的程序,以致妨碍了我们学习汇编的兴趣,不少人就此放弃。所以我个人看法学汇编,不一定要写程序,写程序确实不是汇编的强项,大家不妨玩玩DEBUG,有时CRACK出一个小软件比完成一个程序更有成就感(就像学电脑先玩游戏一样)。某些高深的指令事实上只对有经验的汇编程序员有用,对我们而言,太过高深了。为了使学习汇编语言有个好的开始,你必须要先排除那些华丽复杂的命令,将注意力集中在最重要的几个指令上(CMP LOOP MOV JNZ……)。但是想在啰里吧嗦的教科书中完成上述目标,谈何容易,所以本人整理了这篇超浓缩(用WINZIP、WINRAR…依次压迫,嘿嘿!)教程。大言不惭的说,看通本文,你完全可以“不经意”间在前辈或是后生卖弄一下DEBUG,很有成就感的,试试看!那么――这个接下来呢?―― Here we go!(阅读时看不懂不要紧,下文必有分解)

因为汇编是通过CPU和内存跟硬件对话的,所以我们不得不先了解一下CPU和内存:(关于数的进制问题在此不提)

CPU是可以执行电脑所有算术╱逻辑运算与基本 I/O 控制功能的一块芯片。一种汇编语言只能用于特定的CPU。也就是说,不同的CPU其汇编语言的指令语法亦不相同。个人电脑由1981年推出至今,其CPU发展过程为:8086→80286→80386→80486→PENTIUM →……,还有AMD、CYRIX等旁支。后面兼容前面CPU的功能,只不过多了些指令(如多能奔腾的MMX指令集)、增大了寄存器(如386

的32位EAX)、增多了寄存器(如486的FS)。为确保汇编程序可以适用于各种机型,所以推荐使用8086汇编语言,其兼容性最佳。本文所提均为8086汇编语言。寄存器(Register)是CPU内部的元件,所以在寄存器之间的数据传送非常快。用途:1.可将寄存器内的数据执行算术及逻辑运算。2.存于寄存器内的地址可用来指向内存的某个位置,即寻址。3.可以用来读写数据到电脑的周边设备。8086 有8个8位数据寄存器,这些8位寄存器可分别组成16位寄存器:AH&AL=AX:累加寄存器,常用于运算;BH&BL=BX:基址寄存器,常用于地址索引;CH&CL=CX:计数寄存器,常

用于计数;DH&DL=DX:数据寄存器,常用于数据传递。为了运用所有的内存空间,8086设定了四个段寄存器,专门用来保存段地址:CS(Code Segment):代码段寄存器;DS(Data Segment):数据段寄存器;SS(Stack Segment):堆栈段寄存器;ES(Extra Segment):附加段寄存器。当一个程序要执行时,就要决定程序代码、数据和堆栈各要用到内存的哪些位置,通过设定段寄存器 CS,DS,SS 来指向这些起始位置。通常是将DS固定,而根据需要修改CS。所以,程序可以在可寻址空间小于64K的情况下被写成任意大小。所以,程序和其数据组合起来的大小,限制在DS 所指的64K内,这就是COM文件不得大于64K的原因。8086以内存做为战场,用寄存器做为军事基地,以加速工作。除了前面所提的寄存器外,还有一些特殊功能的寄存器:IP(Intruction Pointer):指令指针寄存器,与CS配合使用,可跟踪程序的执行过程;SP(Stack Pointer):堆栈指针,与SS

配合使用,可指向目前的堆栈位置。BP(Base Pointer):基址指针寄存器,可用作SS的一个相对基址位置;SI(Source Index):源变址寄存器可用来存放相对于DS段之源变址指针;DI(Destination Index):目的变址寄存器,可用来存放相对于 ES 段之目的变址指针。还有一个标志寄存器FR(Flag Register),有九个有意义的标志,将在下文用到时详细说明。

内存是电脑运作中的关键部分,也是电脑在工作中储存信息的地方。内存组织有许多可存放数值的储存位置,叫“地址”。8086地址总线有20位,所以CPU拥有达1M的寻址空间,这也是DOS的有效控制范围,而8086能做的运算仅限于处理16位数据,即只有0到64K,所以,必须用分段寻址才能控制整个内存地址。完整的20位地址可分成两部份:1.段基址(Segment):16位二进制数后面加上四个二进制0,即一个16进制0,变成20位二进制数,可设定1M中任何一个64K段,通常记做16位二进制数;2.偏移量(Offset):直接使用16位二进制数,指向段基址中的任何一个地址。如:2222(段基址):3333(偏移量),其实际的20位地址值为:25553。除了上述营养要充分吸收外,你还要知道什么是DOS、BIOS功能调用,简单的说,功能调用类似于WIN95 API,相当于子程序。汇编写程序已经够要命了,如果不用MS、IBM的子程序,这日子真是没法过了(关于功能调用详见《电脑爱好者》98年11期)。

编写汇编语言有两种主要的方法:1.使用MASM或TASM等编译器;2.使用除错程序https://www.wendangku.net/doc/a37301756.html,。DEBUG其实并不能算是一个编译器,它的主要用途在于除错,即修正汇编程序中的错误。不过,也可以用来写短的汇编程序,尤其对初学者而言,DEBUG 更是最佳的入门工具。因为DEBUG操作容易:只要键入DEBUG回车,A回车即可进行汇编,过程简单,而使用编译器时,必须用到文本编辑器、编译器本身、LINK以及EXE2BIN等程序,其中每一个程序都必须用到一系列相当复杂的命令才能工作,而且用编译器处理源程序,必须加入许多与指令语句无关的指示性语句,以供编译器识别,使用 DEBUG 可以避免一开始就碰到许多难以理解的程序行。DEBUG 除了能够汇编程序之外,还可用来检查和修改内存位置、载入储存和执行程序、以及检查和修改寄存器,换句话说,DEBUG是为了让我们接触硬件而设计的。(8086常用指令用法将在每个汇编程序中讲解,限于篇幅,不可能将所有指令列出)。

DEBUG的的A命令可以汇编出简单的COM文件,所以DEBUG编写的程序一定要由地址 100h(COM文件要求)开始才合法。FOLLOW ME,SETP BY SETP(步步回车):

输入 A100 ;从DS:100开始汇编

2.输入 MOV DL,1 ;将数值 01h 装入 DL 寄存器

3.输入 MOV AH,2 ;将数值 02h 装入 DL 寄存器

4.输入 INT 21 ;调用DOS 21号中断2号功能,用来逐个显示装入DL的字符

5.输入 INT 20 ;调用DOS 20号中断,终止程序,将控制权交回给 DEBUG

6.请按 Enter 键

7.现在已将汇编语言程序放入内存中了,输入 G(运行)

8.出现结果:输出一个符号。

ㄖ←输出结果其实不是它,因WORD97无法显示原结果,故找一赝品将就着。

Program terminated normally

我们可以用U命令将十六进制的机器码反汇编(Unassemble)成汇编指令。你将发现每一行右边的汇编指令就是被汇编成相应的机器码,而8086实际上就是以机器码来执行程序。

1.输入 U100,106

1FED:0100 B201 MOV DL,01

1FED:0102 B402 MOV AH,02

1FED:0104 CD21 INT 21

1FED:0106 CD20 INT 20

DEBUG可以用R命令来查看、改变寄存器内容。CS:IP寄存器,保存了将执行指令地址。

1.输入R

AX=0000 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000

DS=1FED ES=1FED SS=1FED CS=1FED IP=0100 NV UP EI PL NZ NA PO NC

1FED:0100 B201 MOV DL,01

当程序由DS:100开始执行,那么终止程序时,DEBUG会自动将IP内容重新设定为100。当你要将此程序做成一个独立的可执行文件,则可以用N命令对该程序命名。但一定要为COM文件,否则无法以DEBUG载入。

输入N https://www.wendangku.net/doc/a37301756.html, ;我们得告诉DEBUG程序长度:程序从100开始到106,故占用7

;字节。我们利用BX存放长度值高位部分,而以CX存放低位部分。

2.输入RBX ;查看 BX 寄存器的内容,本程序只有7个字节,故本步可省略

3.输入 RCX ;查看 CX 寄存器的内容

4.输入 7 ;程序的字节数

5.输入 W ;用W命令将该程序写入(Write)磁盘中

修行至此,我们便可以真正接触8086汇编指令了。当我们写汇编语言程序的时候,通常不会直接将机器码放入内存中,而是打入一串助记符号(Mnemonic Symbols),这些符号比十六进制机器码更容易记住,此之谓汇编指令。助记符号,告诉CPU应执行何种运算。也就是说,助忆符号所构成的汇编语言是为人设计的,而机器语言是对PC设计的。

现在,我们再来剖析一个可以将所有ASCII码显示出来的程序。

1. 输入 DEBUG

2. 输入 A100

3.输入 MOV CX,0100 ;装入循环次数

MOV DL,00 ;装入第一个ASCII码,随后每次循环装入新码

MOV AH,02

INT 21

INC DL ;INC:递增指令,每次将数据寄存器 DL 内的数值加 1

LOOP 0105 ;LOOP:循环指令,每执行一次LOOP,CX值减1,并跳

;到循环的起始地址105,直到CX为0,循环停止

INT 20

4.输入 G即可显示所有ASCII码

当我们想任意显示字符串,如:UNDERSTAND?,则可以使用DOS21H号中断9H号功能。输入下行程序,存盘并执行看看:

1.输入 A100

MOV DX,109 ;DS:DX =字符串的起始地址

MOV AH,9 ;DOS的09h功能调用

INT 21 ;字符串输出

INT 20

DB 'UNDERSTAND?

【发表评论】【推荐】【大中小】【打印】【关闭】

精彩评论:

【发表评论】【推荐】【大中小】【打印】【关闭】

相关资源:

黑基站长QQ:961028 Email:写信热线电话:(010)86636627

关于我们 | 广告服务 | 加盟合作 | 联系方式 | 隐私声明

Copyright ?2003 - 2004 https://www.wendangku.net/doc/a37301756.html, 黑客基地 All Rights Reserved

;定义字符串

在汇编语言中,有两种不同的指令:1.正规指令:如 MOV 等,是属于CPU的指令,用来告诉CPU 在程序执行时应做些什么,所以它会以运算码(OP-code)的方式存入内存中;2.伪指令:如DB等,是属于DEBUG等编译器的指令,用来告诉编译器在编译时应做些什么。DB(Define Byte)指令用来告诉DEBUG 将单引号内的所有ASCII 码放入内存中。使用 9H 功能的字符串必须以$结尾。用D命令可用来查看DB伪指令将那些内容放入内存。

6.输入 D100

1975:0100 BA 09 01 B4 09 CD 21 CD-20 75 6E 64 65 72 73 74 ......!. underst

1975:0110 61 6E 64 24 8B 46 F8 89-45 04 8B 46 34 00 64 19 and$.F..E..F4.d.

1975:0120 89 45 02 33 C0 5E 5F C9-C3 00 C8 04 00 00 57 56 .E.3.^_.......WV

1975:0130 6B F8 0E 81 C7 FE 53 8B-DF 8B C2 E8 32 FE 0B C0 k.....S.....2...

1975:0140 74 05 33 C0 99 EB 17 8B-45 0C E8 D4 97 8B F0 89 t.3.....E.......

1975:0150 56 FE 0B D0 74 EC 8B 45-08 03 C6 8B 56 FE 5E 5F V...t..E....V.^_

1975:0160 C9 C3 C8 02 00 00 6B D8-0E 81 C3 FE 53 89 5E FE ......k.....S.^.

1975:0170 8B C2 E8 FB FD 0B C0 75-09 8B 5E FE 8B 47 0C E8 .......u..^..G..

现在,我们来剖析另一个程序:由键盘输入任意字符串,然后显示出来。db 20指示DEBUG保留20h个未用的内存空间供缓冲区使用。

输入A100

MOV DX,0116 ;DS:DX =缓冲区地址,由DB伪指令确定缓冲区地址

MOV AH,0A ;0Ah 号功能调用

INT 21 ;键盘输入缓冲区

MOV DL,0A ;由于功能Ah在每个字符串最后加一个归位码(0Dh由 Enter

MOV AH,02 ;产生),使光标自动回到输入行的最前端,为了使新输出的

INT 21 ;字符串不会盖掉原来输入的字符串,所以利用功能2h加一

;个换行码(OAh),使得光标移到下一行的的最前端。

MOV DX,0118 ;装入字符串的起始位置

MOV AH,09 ;9h功能遇到$符号才会停止输出,故字符串最后必须加上

INT 21 ;$,否则9h功能会继续将内存中的无用数据胡乱显示出来

INT 20

DB 20 ;定义缓冲区

送你一句话:学汇编切忌心浮气燥。

客套话就不讲了。工欲善其事,必先利其器。与其说DEBUG 是编译器,倒不如说它是“直译器”,DEBUG的A命令只可将一行汇编指令转成机器语言,且立刻执行。真正编译器(MASM)的运作是利用文本编辑器(EDIT等)将汇编指令建成一个独立且附加名为.ASM的文本文件,称源程序。它是MASM 程序的输入部分。MASM将输入的ASM文件,编译成.OBJ文件,称为目标程序。OBJ文件仅包含有关程序各部份要载入何处及如何与其他程序合并的信息,无法直接载入内存执行。链结程序LINK则可将OBJ 文件转换成可载入内存执行(EXEcute)的EXE文件。还可以用EXE2BIN,将符合条件的EXE文件转成COM文件(COM 文件不但占用的内存最少,而且运行速度最快)。

下面我们用MASM写一个与用DEBUG写的第一个程序功能一样的程序。

用EDIT编辑一个SMILE.ASM的源程序文件。

源程序 DEBUG 程序

prognam segment

assume cs:prognam

org 100h A100

mov dl,1 mov dl,1

mov ah,2 mov ah,2

int 21h int 21

int 20h int 20

prognam ends

end

比较一下:1.因为MASM会将所有的数值假设为十进制,而DEBUG则只使用十六进制,所以在源程序中,我们必须在有关数字后加上代表进制的字母,如H代表十六进制,D代表十进制。若是以字母开头的十六进制数字,还必须在字母前加个0,以表示它是数,如0AH。2.源程序增加五行叙述:prognam segment 与 prognam ends 是成对的,用来告诉 MASM 及LINK,此程序将放在一个称为PROGNAM(PROGram NAMe)的程序段内,其中段名(PROGNAM)可以任取,但其位置必须固定。assume cs:prognam 必须在程序的开头,用来告诉编译器此程序所在段的位置放在CS寄存器中。end用来告诉MASM,程序到此结束, ORG 100H作用相当于DEBUG的A100,从偏移量100开始汇编。COM 文件的所有源程序都必须包含这五行,且必须依相同的次序及位置出现,这点东西记下就行,千篇一律。接着,我们用MASM编译SMILE.ASM。

输入 MASM SMILE ←不用打入附加名.ASM。

Microsoft (R) Macro Assembler Version 5.10

Copyright (C) Microsoft Corp 1981, 1988. All rights reserved.

Object filename [SMILE.OBJ]: ←是否改动输出OBJ文件名,如不改就ENTER

Source listing [NUL.LST]: ←是否需要列表文件(LST),不需要就ENTER

Cross-reference [NUL.CRF]: ←是否需要对照文件(CRF),不需要则ENTER

50162 + 403867 Bytes symbol space free

0 Warning Errors ←警告错误,表示编译器对某些语句不理解,通常是输入错误。

0 Severe Errors ←严重错误,会造成程序无法执行,通常是语法结构错误。

如果没有一个错误存在,即可生成OBJ文件。OBJ中包含的是编译后的二进制结果,它还无法被DOS载入内存中加以执行,必须加以链结(Linking)。以LINK将OBJ文件(SMILE.OBJ)链结成 EXE 文件(SMILE.EXE)时,。

1.输入 LINK SMILE ←不用附加名OBJ

Microsoft (R) Overlay Linker Version 3.64

Copyright (C) Microsoft Corp 1981, 1988. All rights reserved.

Run File [SMILE.EXE]: ←是否改动输出EXE文件名,如不改就ENTER

List File [NUL.MAP]: ←是否需要列表文件(MAP),不需要则ENTER

Libraries [.LIB]: ←是否需要库文件,要就键入文件名,不要则ENTER

LINK : warning L4021: no stack segment←由于COM文件不使用堆栈段,所以错误信息

←"no stack segment"并不影响程序正常执行

至此已经生成EXE文件,我们还须使用EXE2BIN 将EXE文件(SMILE.EXE),转换成COM文件(https://www.wendangku.net/doc/a37301756.html,)。输入EXE2BIN SMILE产生 BIN 文件(SMILE.BIN)。其实 BIN 文件与 COM 文件是完全相同的,但由于DOS只认COM、EXE及BAT文件,所以BIN文件无法被正确执行,改名或直接输入EXE2BIN SMILE https://www.wendangku.net/doc/a37301756.html,即可。现在,磁盘上应该有 https://www.wendangku.net/doc/a37301756.html, 文件了,你只要在提示符号C:>下,直接输入文件名称 SMILE ,就可以执行这个程序了。

你是否觉得用编译器产生程序的方法,比 DEBUG 麻烦多了!以小程序而言,的确是如此,但对于较大的程序,你就会发现其优点了。我们再将ASCII程序以编译器方式再做一次,看看有无差异。首先,用https://www.wendangku.net/doc/a37301756.html,建立 ASCII.ASM 文件。

prognam segment ;定义段

assume cs:prognam ;把上面定义段的段基址放入 CS

mov cx,100h ; 装入循环次数

mov dl,0 ; 装入第一个ASCII码,随后每次循环装入新码

next: mov ah,2

int 21h

inc dl ;INC:递增指令,每次将数据寄存器 DL 内的数值加 1

loop next ; 循环指令,执行一次,CX减1,直到CX为0,循环停止

int 20h

prognam ends ;段终止

end ;汇编终止

在汇编语言的源程序中,每一个程序行都包含三项元素:

start: mov dl,1 ;装入第一个ASCII码,随后每次循环装入新码

标识符表达式注解

在原始文件中加上注解可使程序更易理解,便于以后参考。每行注解以“;”与程序行分离。编译器对注解不予理会,注解的数据不会出现在OBJ、EXE或COM文件中。由于我们在写源程序时,并不知道每一程序行的地址,所以必须以符号名称来代表相对地址,称为“标识符”。我们通常在适当行的适当位置上,键入标识符。标识符(label)最长可达31 个字节,因此我们在程序中,尽量以简洁的文字做为标识符。现在,你可以将此ASCII.ASM 文件编译成 https://www.wendangku.net/doc/a37301756.html, 了。1.MASM ASCII,2.LINK ASCII,3.EXE2BIN ASCII https://www.wendangku.net/doc/a37301756.html,。

注意:当你以编译器汇编你设计的程序时,常会发生打字错误、标识符名称拼错、十六进制数

少了h、逻辑错误等。汇编老手常给新人的忠告是:最好料到自己所写的程序一定会有些错误(别人告诉我的);如果第一次执行程序后,就得到期望的结果,你最好还是在检查一遍,因为它可能是错的。原则上,只要大体的逻辑架构正确,查找程序中错误的过程,与写程序本身相比甚至更有意思。写大程序时,最好能分成许多模块,如此可使程序本身的目的较单纯,易于撰写与查错,另外也可让程序中不同部份之间的界限较清楚,节省编译的时间。如果读程序有读不懂的地方最好用纸笔记下有关寄存器、内存等内容,在纸上慢慢比划,就豁然开朗了。

下面我们将写一个能从键盘取得一个十进制的数值,并将其转换成十六进制数值而显示于屏幕上的“大程序”。前言:要让8086执行这样的功能,我们必须先将此问题分解成一连串的步骤,称为程序规划。首先,以流程图的方式,来确保整个程序在逻辑上没有问题(不用说了吧!什么语言都要有此步骤)。这种模块化的规划方式,称之为“由上而下的程序规划”。而在真正写程序时,却是从最小的单位模块(子程序)开始,当每个模块都完成之后,再合并成大程序;这种大处著眼,小处著手的方式称为“由下而上的程序设计”。

我们的第一个模块是BINIHEX,其主要用途是从8086的BX寄存器中取出二进制数,并以十六进制方式显示在屏幕上。注意:子程序如不能独立运行,实属正常。

binihex segment

assume cs:binihex

mov ch,4 ;记录转换后的十六进制位数(四位)

rotate: mov cl,4 ;利用CL当计数器,记录寄存器数位移动次数

rol bx,cl ;循环寄存器BX的内容,以便依序处理4个十六进制数

mov al,bl ;把bx低八位bl内数据转移至al

and al,0fh ;把无用位清零

add al,30h ;把AL内数据加30H,并存入al

cmp al,3ah ;与3ah比较

jl printit ;小于3ah则转移

add al,7h ;把AL内数据加30H,并存入al

printit:mov dl,al ;把ASCII码装入DL

mov ah,2

int 21h

dec ch ;ch减一,减到零时,零标志置1

jnz rotate ;JNZ:当零标志未置1,则跳到指定地址。即:不等,则转移

int 20h ;从子程序退回主程序

binihex ends

end

利用循环左移指令ROL循环寄存器BX(BX内容将由第二个子程序提供)的内容,以便依序处理4个十六进制数:1. 利用CL当计数器,记录寄存器移位的次数。2.将BX的第一个十六进制值移到最右边。利用 AND (逻辑“与”运算:对应位都为1时,其结果为1,其余情况为零)把不要的部份清零,得到结果:先将BL值存入AL中,再利用AND以0Fh(00001111)将AL的左边四位清零。由于0到9的ASCII 码为30h到39h,而A到F之ASCII码为41h到46h,间断了7h,所以得到结果:若AL之内容小于3Ah,则AL值只加30h,否则AL再加7h。ADD指令会将两个表达式相加,其结果存于左边表达式内。标志寄存器(Flag Register)是一个单独的十六位寄存器,有9个标志位,某些汇编指令(大部份是涉及比较、算术或逻辑运算的指令)执行时,会将相关标志位置1或清0,常碰到的标志位有零标志(ZF)、符号标志(SF)、溢出标志(OF)和进位标志(CF)。标志位保存了某个指令执行后对它的影响,可用其他相关指令,查出标志的状态,根据状态产生动作。CMP指令很像减法,是将两个表达式的值相减,但寄存器或内存的内容并未改变,只是相对的标志位发生改变而已:若 AL 值小于 3Ah,则正负号标志位会置0,反之则置1。 JL指令可解释为:小于就转移到指定位置,大于、等于则向下执行。CMP和JG 、JL等条件转移指令一起使用,可以形成程序的分支结构,是写汇编程序常用技巧。

第二个模块DECIBIN 用来接收键盘打入的十进制数,并将它转换成二进制数放于BX 寄存器中,供模块1 BINIHEX使用。

decibin segment

assume cs:decibin

mov bx,0 ;BX清零

newchar:mov ah,1 ;

int 21h ;读一个键盘输入符号入al,并显示

sub al,30h ;al减去30H,结果存于al中,完成ASCII码转二进制码

jl exit ;小于零则转移

cmp al,9d

jg exit ;左>右则转移

cbw ;8位al转换成16位ax

xchg ax,bx ;互换ax和bx内数据

mov cx,10d ;十进制数10入cx

mul cx ;表达式的值与ax内容相乘,并将结果存于ax

xchg ax,bx

add bx,ax

jmp newchar ;无条件转移

exit: int 20 ;回主程序

decibin ends

end

CBW 实际结果是:若AL中的值为正,则AH填入00h;反之,则AH填入FFh。XCHG常用于需要暂时保留某个寄存器中的内容时。

当然,还得一个子程序(CRLF)使后显示的十六进制数不会盖掉先输入的十进制数。

crlf segment

assume cs:crlf

mov dl,0dh ;回车的ASCII码0DH入DL

mov ah,2

int 21h

mov dl,0ah ;换行的ASSII码0AH入AH

mov ah,2

int 21h

int 20 ;回主程序

crlf ends

end

现在我们就可以将BINIHEX、DECIBIN及CRLF等模块合并成一个大程序了。首先,我们要将这三个模块子程序略加改动。然后,再写一段程序来调用每一个子程序。

crlf proc near;

mov dl,0dh

mov ah,2

int 21h

mov dl,0ah

mov ah,2

int 21h

ret

crlf endp

类似SEGMENT与ENDS的伪指令,PROC与ENDP也是成对出现,用来识别并定义一个程序。其实,PROC 真正的作用只是告诉编译器:所调用的程序是属于近程(NEAR)或远程(FAR)。一般的程序是由 DEBUG 直接调用的,所以用 INT 20 返回,用 CALL 指令所调用的程序则改用返回指令RET,RET会把控制权转移到栈顶所指的地址,而该地址是由调用此程序的 CALL指令所放入的。

各模块都搞定了,然后我们把子程序组合起来就大功告成

decihex segment ;主程序

assume cs:decihex

org 100h

mov cx,4 ;循环次数入cx;由于子程序要用到cx,故子程序要将cx入栈

repeat: call decibin;调用十进制转二进制子程序

call crlf ;调用添加回、换行符子程序

call binihex ;调用二进制转十六进制并显示子程序

call crlf

loop repeat ;循环4次,可连续运算4次

mov ah,4ch ; 调用DOS21号中断4c号功能,退出程序,作用跟INT 20H

int 21H ; 一样,但适用面更广,INT20H退不出时,试一下它

decibin proc near push cx ;将cx压入堆栈,;

┇ exit: pop cx ;将cx还原; retdecibin endp binihex proc near push cx

┇ pop cx retbinihex endp crlf proc near

push cx

┇ pop cx retcrlf endpdecihex ends end

CALL指令用来调用子程序,并将控制权转移到子程序地址,同时将CALL的下行一指令地址定为返回地址,并压入堆栈中。CALL 可分为近程(NEAR)及远程(FAR)两种:1.NEAR:IP的内容被压入堆栈中,用于程序与程序在同一段中。2.FAR:CS 、IP寄存器的内容依次压入堆栈中,用于程序与程序在不同段中。PUSH、POP又是一对指令用于将寄存器内容压入、弹出,用来保护寄存器数据,子程序调用中运用较多。堆栈指针有个“后进先出”原则,像PUSH AX,PUSH BX…POP BX,POP AX这样才能作到保护数据丝毫不差。

汇编语言超浓缩教程到这要告一段落了,希望能奠定你独立设计的基础。而更多更好的技巧则全依赖你平时的积累了。祝你成功!

我们在这一节将要讨论linux下文件操作的各个函数.

文件的创建和读写

文件的各个属性

目录文件的操作

管道文件

----------------------------------------------------------------

1。文件的创建和读写

我假设你已经知道了标准级的文件操作的各个函数(fopen,fread,fwrite等等).当然如果你不清楚

的话也不要着急.我们讨论的系统级的文件操作实际上是为标准级文件操作服务的.

当我们需要打开一个文件进行读写操作的时候,我们可以使用系统调用函数open.使用完成以后我们调用另外一个close函数进行关闭操作.

#include

#include

#include

#include

int open(const char *pathname,int flags);

int open(const char *pathname,int flags,mode_t mode);

int close(int fd);

open函数有两个形式.其中pathname是我们要打开的文件名(包含路径名称,缺省是认为在当前路径下面).flags可以去下面的一个值或者是几个值的组合.

O_RDONLY:以只读的方式打开文件.

O_WRONLY:以只写的方式打开文件.

O_RDWR:以读写的方式打开文件.

O_APPEND:以追加的方式打开文件.

O_CREAT:创建一个文件.

O_EXEC:如果使用了O_CREAT而且文件已经存在,就会发生一个错误.

O_NOBLOCK:以非阻塞的方式打开一个文件.

O_TRUNC:如果文件已经存在,则删除文件的内容.

前面三个标志只能使用任意的一个.如果使用了O_CREATE标志,那么我们要使用open的第二种形式.还要指定mode标志,用来表示文件的访问权限.mode可以是以下情况的组合.

-----------------------------------------------------------------

S_IRUSR 用户可以读 S_IWUSR 用户可以写

S_IXUSR 用户可以执行 S_IRWXU 用户可以读写执行

-----------------------------------------------------------------

S_IRGRP 组可以读 S_IWGRP 组可以写

S_IXGRP 组可以执行 S_IRWXG 组可以读写执行

-----------------------------------------------------------------

S_IROTH 其他人可以读 S_IWOTH 其他人可以写

S_IXOTH 其他人可以执行 S_IRWXO 其他人可以读写执行

-----------------------------------------------------------------

S_ISUID 设置用户执行ID S_ISGID 设置组的执行ID

-----------------------------------------------------------------

我们也可以用数字来代表各个位的标志.Linux总共用5个数字来表示文件的各种权限.

00000.第一位表示设置用户ID.第二位表示设置组ID,第三位表示用户自己的权限位,第四位表示组的权限,最后一位表示其他人的权限.

每个数字可以取1(执行权限),2(写权限),4(读权限),0(什么也没有)或者是这几个值的和.

比如我们要创建一个用户读写执行,组没有权限,其他人读执行的文件.设置用户ID位那么我们可以使用的模式是--1(设置用户ID)0(组没有设置)7(1+2+4)0(没有权限,使用缺省)5(1+4)即10705: open("temp",O_CREAT,10705);

如果我们打开文件成功,open会返回一个文件描述符.我们以后对文件的所有操作就可以对这个文件描述符进行操作了.

当我们操作完成以后,我们要关闭文件了,只要调用close就可以了,其中fd是我们要关闭的文件描述符.

文件打开了以后,我们就要对文件进行读写了.我们可以调用函数read和write进行文件的读写. #include

ssize_t read(int fd, void *buffer,size_t count);

ssize_t write(int fd, const void *buffer,size_t count);

fd是我们要进行读写操作的文件描述符,buffer是我们要写入文件内容或读出文件内容的内存地址.count是我们要读写的字节数.

对于普通的文件read从指定的文件(fd)中读取count字节到buffer缓冲区中(记住我们必须提供一个足够大的缓冲区),同时返回count.

如果read读到了文件的结尾或者被一个信号所中断,返回值会小于count.如果是由信号中断引起返回,而且没有返回数据,read会返回-1,且设置errno为EINTR.当程序读到了文件结尾的时候,read会返回0.

write从buffer中写count字节到文件fd中,成功时返回实际所写的字节数.

下面我们学习一个实例,这个实例用来拷贝文件.

#include

#include

#include

#include

#include

#include

#include

#define BUFFER_SIZE 1024

int main(int argc,char **argv)

{

int from_fd,to_fd;

int bytes_read,bytes_write;

char buffer[BUFFER_SIZE];

char *ptr;

if(argc!=3)

{

fprintf(stderr,"Usage:%s fromfile tofile\n\a",argv[0]);

exit(1);

}

/* 打开源文件 */

if((from_fd=open(argv[1],O_RDONLY))==-1)

{

fprintf(stderr,"Open %s Error:%s\n",argv[1],strerror(errno));

exit(1);

}

/* 创建目的文件 */

if((to_fd=open(argv[2],O_WRONLY|O_CREAT,S_IRUSR|S_IWUSR))==-1)

{

fprintf(stderr,"Open %s Error:%s\n",argv[2],strerror(errno));

exit(1);

}

/* 以下代码是一个经典的拷贝文件的代码 */

while(bytes_read=read(from_fd,buffer,BUFFER_SIZE))

{

/* 一个致命的错误发生了 */

if((bytes_read==-1)&&(errno!=EINTR)) break;

else if(bytes_read>0)

{

ptr=buffer;

while(bytes_write=write(to_fd,ptr,bytes_read))

{

/* 一个致命错误发生了 */

if((bytes_write==-1)&&(errno!=EINTR))break;

/* 写完了所有读的字节 */

else if(bytes_write==bytes_read) break;

/* 只写了一部分,继续写 */

else if(bytes_write>0)

{

ptr+=bytes_write;

bytes_read-=bytes_write;

}

}

/* 写的时候发生的致命错误 */

if(bytes_write==-1)break;

}

}

close(from_fd);

close(to_fd);

exit(0);

}

2。文件的各个属性

文件具有各种各样的属性,除了我们上面所知道的文件权限以外,文件还有创建时间,大小等等属性. 有时侯我们要判断文件是否可以进行某种操作(读,写等等).这个时候我们可以使用access函数.

#include

int access(const char *pathname,int mode);

pathname:是文件名称,mode是我们要判断的属性.可以取以下值或者是他们的组合.

R_OK文件可以读,W_OK文件可以写,X_OK文件可以执行,F_OK文件存在.当我们测试成功时,函数返回0,否则如果有一个条件不符时,返回-1.

如果我们要获得文件的其他属性,我们可以使用函数stat或者fstat.

#include

#include

int stat(const char *file_name,struct stat *buf);

int fstat(int filedes,struct stat *buf);

struct stat {

dev_t st_dev; /* 设备 */

ino_t st_ino; /* 节点 */

mode_t st_mode; /* 模式 */

nlink_t st_nlink; /* 硬连接 */

uid_t st_uid; /* 用户ID */

gid_t st_gid; /* 组ID */

dev_t st_rdev; /* 设备类型 */

off_t st_off; /* 文件字节数 */

unsigned long st_blksize; /* 块大小 */

unsigned long st_blocks; /* 块数 */

time_t st_atime; /* 最后一次访问时间 */

time_t st_mtime; /* 最后一次修改时间 */

time_t st_ctime; /* 最后一次改变时间(指属性) */

};

stat用来判断没有打开的文件,而fstat用来判断打开的文件.我们使用最多的属性是st_mode.通过着属性我们可以判断给定的文件是一个普通文件还是一个目录,连接等等.可以使用下面几个宏来判断.

S_ISLNK(st_mode):是否是一个连接.S_ISREG是否是一个常规文件.S_ISDIR是否是一个目录S_ISCHR 是否是一个字符设备.S_ISBLK是否是一个块设备S_ISFIFO是否是一个FIFO文件.S_ISSOCK是否是一个SOCKET文件. 我们会在下面说明如何使用这几个宏的.

3。目录文件的操作

在我们编写程序的时候,有时候会要得到我们当前的工作路径。C库函数提供了getcwd来解决这个问题。

#include

char *getcwd(char *buffer,size_t size);

我们提供一个size大小的buffer,getcwd会把我们当前的路径考到buffer中.如果buffer太小,函数会返回-1和一个错误号.

Linux提供了大量的目录操作函数,我们学习几个比较简单和常用的函数.

#include

#include

#include

#include

#include

int mkdir(const char *path,mode_t mode);

DIR *opendir(const char *path);

struct dirent *readdir(DIR *dir);

void rewinddir(DIR *dir);

off_t telldir(DIR *dir);

void seekdir(DIR *dir,off_t off);

int closedir(DIR *dir);

struct dirent {

long d_ino;

off_t d_off;

unsigned short d_reclen;

char d_name[NAME_MAX+1]; /* 文件名称 */

mkdir很容易就是我们创建一个目录,opendir打开一个目录为以后读做准备.readdir读一个打开的目录.rewinddir是用来重读目录的和我们学的rewind函数一样.closedir是关闭一个目录.telldir 和seekdir类似与ftee和fseek函数.

下面我们开发一个小程序,这个程序有一个参数.如果这个参数是一个文件名,我们输出这个文件的大小和最后修改的时间,如果是一个目录我们输出这个目录下所有文件的大小和修改时间.

#include

#include

#include

#include

#include

#include

#include

static int get_file_size_time(const char *filename)

{

struct stat statbuf;

if(stat(filename,&statbuf)==-1)

{

printf("Get stat on %s Error:%s\n",

filename,strerror(errno));

return(-1);

}

if(S_ISDIR(statbuf.st_mode))return(1);

if(S_ISREG(statbuf.st_mode))

printf("%s size:%ld bytes\tmodified at %s",

filename,statbuf.st_size,ctime(&statbuf.st_mtime));

return(0);

}

int main(int argc,char **argv)

{

DIR *dirp;

struct dirent *direntp;

int stats;

if(argc!=2)

{

printf("Usage:%s filename\n\a",argv[0]);

exit(1);

}

if(((stats=get_file_size_time(argv[1]))==0)||(stats==-1))exit(1);

if((dirp=opendir(argv[1]))==NULL)

{

printf("Open Directory %s Error:%s\n",

argv[1],strerror(errno));

exit(1);

}

while((direntp=readdir(dirp))!=NULL)

if(get_file_size_time(direntp- closedir(dirp);

exit(1);

}

4。管道文件

Linux提供了许多的过滤和重定向程序,比如more cat

等等.还提供了< > | <<等等重定向操作符.在这些过滤和重定向程序当中,都用到了管道这种特殊的文件.系统调用pipe可以创建一个管道.

#include

int pipe(int fildes[2]);

pipe调用可以创建一个管道(通信缓冲区).当调用成功时,我们可以访问文件描述符

fildes[0],fildes[1].其中fildes[0]是用来读的文件描述符,而fildes[1]是用来写的文件描述符. 在实际使用中我们是通过创建一个子进程,然后一个进程写,一个进程读来使用的.

关于进程通信的详细情况请查看进程通信

#include

#include

#include

#include

#include

#include

#include

#define BUFFER 255

int main(int argc,char **argv)

{

char buffer[BUFFER+1];

int fd[2];

if(argc!=2)

{

fprintf(stderr,"Usage:%s string\n\a",argv[0]);

exit(1);

}

if(pipe(fd)!=0)

{

fprintf(stderr,"Pipe Error:%s\n\a",strerror(errno));

exit(1);

}

if(fork()==0)

{

close(fd[0]);

printf("Child[%d] Write to pipe\n\a",getpid());

snprintf(buffer,BUFFER,"%s",argv[1]);

write(fd[1],buffer,strlen(buffer));

printf("Child[%d] Quit\n\a",getpid());

exit(0);

}

else

{

close(fd[1]);

printf("Parent[%d] Read from pipe\n\a",getpid());

memset(buffer,\,BUFFER+1);

read(fd[0],buffer,BUFFER);

printf("Parent[%d] Read:%s\n",getpid(),buffer);

exit(1);

}

}

为了实现重定向操作,我们需要调用另外一个函数dup2.

#include

int dup2(int oldfd,int newfd);

dup2将用oldfd文件描述符来代替newfd文件描述符,同时关闭newfd文件描述符.也就是说,

所有向newfd操作都转到oldfd上面.下面我们学习一个例子,这个例子将标准输出重定向到一个文件.

#include

#include

#include

#include

#include

#include

#include

#define BUFFER_SIZE 1024

int main(int argc,char **argv)

{

int fd;

char buffer[BUFFER_SIZE];

if(argc!=2)

{

fprintf(stderr,"Usage:%s outfilename\n\a",argv[0]);

exit(1);

}

第三章 8086汇编语言程序格式

第三章8086汇编语言程序格式 练习题 3.4.1 单项选择题 1.下列选项中不能作为名字项的是()。 A.FH B.A3 C.3B D.FADC 2.下列指令不正确的是()。 A.MOV AL,123 B.MOV AL,123Q C.MOV AL,123D D.MOV AL,123H 3.下列指令不正确的是()。 A.MOV BL,OFFSET A B.LEA BX,A C.MOV BX,OFFSET A D.MOV BX,A 4.若定义“BUF DB 1,2,3,4”,执行MOV AL,TYPE BUF 后AL=()。 A.0 B.1 C.2 D.3 5.若定义“A EQU 100”,执行“MOV AX,A”后,AX=()。 A.A的偏移地址B.A单元中的内容 C.100 D.A的段地址 6.若定义“B DW 1,2,10 DUP(0)”,则该伪指令分配()字节单元。 A.10 B.20 C.22 D.24 7.若定义“C DD 2,4”,则该伪指令分配()个字节单元。 A.2 B.4 C.6 D.8 8、伪指令是()规定的汇编说明符,它在源程序汇编时进行说明。 A、DEBUG B、LINK C、MASM D、EDIT 9.在上机操作过程中,MASM命令执行后,除了生成一个目标文件外,根据选择还可以生成一个()文件。 A..LST B..EXE C..MAP D..ASM 10.LINK命令执行后可以生成一个以()为扩展名的文件。 A.ASM B.EXE C.OBJ D.COM 11.一个段最大可定义()字节。 A.1M B.64K C.32K D.16K 12.若要求一个段的起始位置能被256整除的单元开始,在定位方式选项中应选()。 A.BYTE B.WORD C.PARA D.PAGE 13.宏指令与子程序相比,在多次调用时,宏指令调用的目标程序长度比子程序调用的()。 A.相同B.长C.短D.不定 14.宏指令与子程序相比,子程序调用的执行速度比宏指令的()。 A.相同B.快C.慢D.不定 15.ASSUME伪指令说明了汇编程序所定义段与段寄存器的关系,它只影响()的设定。 A.源程序B.目标程序C.汇编程序D.连接程序

汇编语言 快速入门

“哎哟,哥们儿,还捣鼓汇编呢?那东西没用,兄弟用VB"钓"一个API就够你忙活个十天半月的,还不一定搞出来。”此君之言倒也不虚,那吾等还有无必要研他一究呢?(废话,当然有啦!要不然你写这篇文章干嘛。)别急,别急,让我把这个中原委慢慢道来:一、所有电脑语言写出的程序运行时在内存中都以机器码方式存储,机器码可以被比较准确的翻译成汇编语言,这是因为汇编语言兼容性最好,故几乎所有跟踪、调试工具(包括WIN95/98下)都是以汇编示人的,如果阁下对CRACK颇感兴趣……;二、汇编直接与硬件打交道,如果你想搞通程序在执行时在电脑中的来龙去脉,也就是搞清电脑每个组成部分究竟在干什么、究竟怎么干?一个真正的硬件发烧友,不懂这些可不行。三、如今玩DOS的多是“高手”,如能像吾一样混入(我不是高手)“高手”内部,不仅可以从“高手”朋友那儿套些黑客级“机密”,还可以自诩“高手”尽情享受强烈的虚荣感--#$%&“醒醒!” 对初学者而言,汇编的许多命令太复杂,往往学习很长时间也写不出一个漂漂亮亮的程序,以致妨碍了我们学习汇编的兴趣,不少人就此放弃。所以我个人看法学汇编,不一定要写程序,写程序确实不是汇编的强项,大家不妨玩玩DEBUG,有时CRACK出一个小软件比完成一个程序更有成就感(就像学电脑先玩游戏一样)。某些高深的指令事实上只对有经验的汇编程序员有用,对我们而言,太过高深了。为了使学习汇编语言有个好的开始,你必须要先排除那些华丽复杂的命令,将注意力集中在最重要的几个指令上(CMP LOOP MOV JNZ……)。但是想在啰里吧嗦的教科书中完成上述目标,谈何容易,所以本人整理了这篇超浓缩(用WINZIP、WINRAR…依次压迫,嘿嘿!)教程。大言不惭的说,看通本文,你完全可以“不经意”间在前辈或是后生卖弄一下DEBUG,很有成就感的,试试看!那么――这个接下来呢?――Here we go!(阅读时看不懂不要紧,下文必有分解) 因为汇编是通过CPU和内存跟硬件对话的,所以我们不得不先了解一下CPU和内存:(关于数的进制问题在此不提) CPU是可以执行电脑所有算术╱逻辑运算与基本I/O控制功能的一块芯片。一种汇编语言只能用于特定的CPU。也就是说,不同的CPU其汇编语言的指令语法亦不相同。个人电脑由1981年推出至今,其CPU发展过程为:8086→80286→80386→80486→PENTIUM →……,还有AMD、CYRIX等旁支。后面兼容前面CPU的功能,只不过多了些指令(如多能奔腾的MMX指令集)、增大了寄存器(如386的32位EAX)、增多了寄存器(如486的FS)。为确保汇编程序可以适用于各种机型,所以推荐使用8086汇编语言,其兼容性最佳。本文所提均为8086汇编语言。寄存器(Register)是CPU内部的元件,所以在寄存器之间的数据传送非常快。用途:1.可将寄存器内的数据执行算术及逻辑运算。2.存于寄存器内的地址可用来指向内存的某个位置,即寻址。3.可以用来读写数据到电脑的周边设备。8086有8个8位数据寄存器,这些8位寄存器可分别组成16位寄存器:AH&AL=AX:累加寄存器,常用于运算;BH&BL=BX:基址寄存器,常用于地址索引;CH&CL=CX:计数寄存器,常用于计数;DH&DL=DX:数据寄存器,常用于数据传递。为了运用所有的内存空间,8086设定了四个段寄存器,专门用来保存段地址:CS(Code Segment):代码段寄存器;DS(Data Segment):数据段寄存器;SS(Stack Segment):堆栈段寄存器;ES(Extra Segment):附加段寄存器。当一个程序要执行时,就要决定程序代码、数据和堆栈各要用到内存的哪些位置,通过设定段寄存器CS,DS,SS来指向这些起始位置。通常是将DS固定,而根据需要修改CS。所以,程序可以在可寻址空间小于64K的情况下被写成任意大小。所以,程序和其数据组合起来的大小,限制在DS所指的64K内,这就是COM文件不得大于64K的原因。8086以内存做为战场,用寄存器做为军事基地,以加速工作。除了前面所提的寄存器外,还有一些特殊功能的寄存器:IP(Intruction Pointer):指

汇编语言知识大全

第一章基础知识: 一.机器码:1.计算机只认识0,1两种状态。而机器码只能由0,1组成。故机器码相当难认,故产生了汇编语言。 2.其中汇编由三类指令形成:汇编指令(有机器码对应),伪指令,其他符号(编译的时候有用)。 每一总CPU都有自己的指令集;注意学习的侧重点。 二.存储器:1.存储单元中数据和指令没任何差别。 2.存储单元:Eg:128个储存单元(0~127)128byte。 线: 1.地址总线:寻址用,参数(宽度)为N根,则可以寻到2^N个内存单元。 据总线:传送数据用,参数为N根,一次可以传送N/8个存储单元。 3.控制总线:cpu对元器件的控制能力。越多控制力越强。 四.内存地址空间:1.由地址总线决定大小。 2.主板:cpu和核心器件(或接口卡)用地址总线,数据总线,控制总 线连接起来。 3.接口卡:由于cpu不能直接控制外设,需通过接口卡间接控制。

4.各类存储器芯片:RAM,BIOS(主板,各芯片)的ROM,接卡槽的 RAM CPU在操控他们的时候,把他们都当作内存来对待,把他们总的看作一个由 若干个存储单元组成的逻辑存储器,即我们所说的内存地址空间。 自己的一点理解:CPU对内存的操作是一样的,但是在cpu,内存,芯片之间的硬件本身所牵扯的线是不同的。所以一些地址的功能是对应一些芯片的。 第二章寄存器 引入:CPU中含有运算器,寄存器,控制器(由内部总线连接)。而寄存器是可以用来指令读写的部件。8086有14个寄存器(都是16位,2个存储空间)。 一.通用寄存器(ax,bx,cx,dx),16位,可以分为高低位 注意1.范围:16位的2^16-1,8位的2^8-1 2.进行数据传送或运算时要注意位数对应,否则会报错 二.字:1. 1个字==2个字节。 2. 在寄存器中的存储:0x高位字节低位字节;单元认定的是低单元 数制,16进制h,2进制b

嵌入式简单汇编程序实例

ARM实验报告 姓名:郭健傧学号:L2101898 1.实验目的 (1)了解ADS1.2集成开发环境及ARMulator软件仿真; (2)熟悉ARM的乘法指令和逻辑指令; (3)结合ARM处理器硬件特性,比较处理函数的特性; 2.实验设备 硬件:pc机一台; 软件:Windowsxp系统,ADS1.2集成开发环境; 3.实验内容 (1)建立一个新的工程; (2)建立一个汇编文件,并添加到工程; (3)根据所给的两个C语言函数编写相应的汇编程序,并比较一下代码中fact1和fact2两个函数的特性; 4.实验步骤 (1)启动ADS1.2IDE集成开发环境,使用ARM Executable Image 工程模块建立一个工程heiye。 (2)建立汇编源文件test.s,编写程序实验,并添加到工程heiye中。 (3)设置工程连接地址Ro Base为0x40000000,RWBase为0x40003000。设置调试入口地址Image entry point为0x40000000。 (4)编译链接工程,并启动AXD进行软件仿真调试。 5.编写程序如下: C程序源代码: int fact1(int limit) { int fact=1; for(i=1;i

ARM经典汇编程序

1冒泡排序的ARM汇编程序ORG 09B0H QUE:MOV R3,#50H QUE1:MOV A,R3 MOV R0,A MOV R7,#0AH CLR 00H MOV A,@R0 Q12:INC R0 MOV R2,A CLR C MOV 22H,@R0 CJNE A,22H,Q13 SETB C Q13:MOV A,R2 JC Q11 SETB 00H XCH A,@R0 DEC R0 XCH A,@R0 INC R0 Q11:MOV A,@R0 DJNZ R7,Q12 JB 00H,QUE1 SJMP $ END

2 ARM汇编希尔排序法对10个带符号数进行排序Code: void shell(int src[],int l,int r){ int ih; r++; for(ih=1;ih<(r-l)/9;ih=ih*3+1); //eax,ih //ebx,il //ecx,ir //edx,cmps _asm{ push eax push ebx push ecx push edx push esi push edi;貌似这堆进栈用处不大哎 mov edi,src mov eax,dword ptr [ih] LIH: cmp eax,0 jna EXIH mov ebx,eax dec ebx LLH: cmp ebx,dword ptr [r] jnb EXLLH mov ecx,ebx mov edx,dword ptr [edi+ecx*4]

LCMP: mov esi,eax dec esi cmp ecx,esi jna EXCMP push ecx sub ecx,eax cmp edx,dword ptr [edi+ecx*4] pop ecx jnb EXCMP push ebx push ecx sub ecx,eax mov ebx,dword ptr [edi+ecx*4] pop ecx mov dword ptr [edi+ecx*4],ebx pop ebx sub ecx,eax jmp LCMP EXCMP: mov dword ptr [edi+ecx*4],edx inc ebx jmp LLH EXLLH: push ecx mov ecx,3 push edx cdq

6、汇编学习从入门到精通(荐书)

汇编学习从入门到精通Step By Step 2007年12月15日星期六00:34 信息来源:https://www.wendangku.net/doc/a37301756.html,/hkbyest/archive/2007/07/22/1702065.aspx Cracker,一个充满诱惑的词。别误会,我这里说的是软件破解,想做骇客的一边去,这年头没人说骇客,都是“黑客”了,嘎嘎~ 公元1999年的炎热夏季,我捧起我哥留在家的清华黄皮本《IBM-PC汇编语言程序设计》,苦读。一个星期后我那脆弱的小心灵如玻璃般碎裂了,为了弥补伤痛我哭爹求妈弄了8k大洋配了台当时算是主流的PC,要知道那是64M内存!8.4G硬盘啊!还有传说中的Celeon 300A CPU。不过很可惜的是在当时那32k小猫当道的时代,没有宽带网络,没有软件,没有资料,没有论坛,理所当然我对伟大的计算机科学体系的第一步探索就此夭折,此时陪伴我的是那些盗版光盘中的游戏,把CRACK_XXX文件从光盘复制到硬盘成了时常的工作,偶尔看到光盘中的nfo 文件,心里也闪过一丝对破解的憧憬。 上了大学后有网可用了,慢慢地接触到了一些黑客入侵的知识,想当黑客是每一个充满好奇的小青年的神圣愿望,整天看这看那,偷偷改了下别人的网页就欢喜得好像第一次偷到鸡的黄鼠狼。 大一开设的汇编教材就是那不知版了多少次的《IBM-PC汇编语言程序设计》,凭着之前的那星期苦读,考试混了个80分。可惜当时头脑发热,大学60分万岁思想无疑更为主流,现在想想真是可惜了宝贵的学习时间。 不知不觉快毕业了,这时手头上的《黑客防线》,《黑客X档案》积了一大摞,整天注来注去的也厌烦了,校园网上的肉鸡一打一打更不知道拿来干什么。这时兴趣自然转向了crack,看着杂志上天书般的汇编代码,望望手头还算崭新的汇编课本,叹了口气,重新学那已经忘光了的汇编语言吧。咬牙再咬牙,看完寻址方式那章后我还是认输,不认不行啊,头快裂了,第三次努力终告失败。虽然此时也可以爆破一些简单的软件,虽然也知道搞破解不需要很多的汇编知识,但我还是固执地希望能学好这门基础中的基础课程。 毕业了,进入社会了,找工作,上班,换工作成了主流旋律,每天精疲力尽的哪有时间呢?在最初的中国移动到考公务员再到深圳再到家里希望的金融机构,一系列的曲折失败等待耗光了我的热情,我失业了,赋闲在家无所事事,唯一陪伴我的是那些杂志,课本,以及过时的第二台电脑。我不想工作,我对找工作有一种恐惧,我靠酒精麻醉自己,颓废一段日子后也觉得生活太过无聊了,努力看书考了个CCNA想出去,结果还是被现实的就业环境所打败。三年时间,一无所获。 再之后来到女朋友处陪伴她度过刚毕业踏入社会工作的适应时期,这段时间随便找了个电脑技术工作,每月赚那么个几百块做生活费。不过这半年让我收获比较大的就是时间充裕,接触到了不少新东西,我下定决心要把汇编学好,这时我在网上看到了别人推荐的王爽《汇编语言》,没抱什么希望在当当网购了人生中的第一次物,19块6毛,我记得很清楚,呵呵。 废话终于完了,感谢各位能看到这里,下面进入正题吧。

Windows X86-64位汇编语言入门

Windows X86-64位汇编语言入门 Windows X64汇编入门(1) 最近断断续续接触了些64位汇编的知识,这里小结一下,一是阶段学习的回顾,二是希望对64位汇编新手有所帮助。我也是刚接触这方面知识,文中肯定有错误之处,大家多指正。 文章的标题包含了本文的四方面主要内容: (1)Windows:本文是在windows环境下的汇编程序设计,调试环境为Windows Vista 64位版,调用的均为windows API。 (2)X64:本文讨论的是x64汇编,这里的x64表示AMD64和Intel的EM64T,而不包括IA64。至于三者间的区别,可自行搜索。 (3)汇编:顾名思义,本文讨论的编程语言是汇编,其它高级语言的64位编程均不属于讨论范畴。 (4)入门:既是入门,便不会很全。其一,文中有很多知识仅仅点到为止,更深入的学习留待日后努力。其二,便于类似我这样刚接触x64汇编的新手入门。 本文所有代码的调试环境:Windows Vista x64,Intel Core 2 Duo。 1. 建立开发环境 1.1 编译器的选择 对应于不同的x64汇编工具,开发环境也有所不同。最普遍的要算微软的MASM,在x64环境中,相应的编译器已经更名为ml64.exe,随Visual Studio 2005一起发布。因此,如果你是微软的忠实fans,直接安装VS2005既可。运行时,只需打开相应的64位命令行窗口(图1),便可以用ml64进行编译了。

第二个推荐的编译器是GoASM,共包含三个文件:GoASM编译器、GoLINK链接器和GoRC 资源编译器,且自带了Include目录。它的最大好外是小,不用为了学习64位汇编安装几个G 的VS。因此,本文的代码就在GoASM下编译。 第三个Yasm,因为不熟,所以不再赘述,感兴趣的朋友自行测试吧。 不同的编译器,语法会有一定差别,这在下面再说。 1.2 IDE的选择 搜遍了Internet也没有找到支持asm64的IDE,甚至连个Editor都没有。因此,最简单的方法是自行修改EditPlus的masm语法文件,这也是我采用的方法,至少可以得到语法高亮。当然,如果你懒得动手,那就用notepad吧。 没有IDE,每次编译时都要手动输入不少参数和选项,做个批处理就行了。 1.3 硬件与操作系统 硬件要求就是64位的CPU。操作系统也必须是64位的,如果在64位的CPU上安装了

汇编语言入门

汇编语言入门教程 对初学者而言,汇编的许多命令太复杂,往往学习很长时间也写不出一个漂漂亮亮的程序,以致妨碍了我们学习汇编的兴趣,不少人就此放弃。所以我个人看法学汇编,不一定要写程序,写程序确实不是汇编的强项,大家不妨玩玩DEBUG,有时CRACK出一个小软件比完成一个程序更有成就感(就像学电脑先玩游戏一样)。某些高深的指令事实上只对有经验的汇编程序员有用,对我们而言,太过高深了。为了使学习汇编语言有个好的开始,你必须要先排除那些华丽复杂的命令,将注意力集中在最重要的几个指令上(CMP LOOP MOV JNZ……)。但是想在啰里吧嗦的教科书中完成上述目标,谈何容易,所以本人整理了这篇超浓缩(用WINZIP、WINRAR…依次压迫,嘿嘿!)教程。大言不惭的说,看通本文,你完全可以“不经意”间在前辈或是后生卖弄一下DEBUG,很有成就感的,试试看!那么――这个接下来呢?――Here we go!(阅读时看不懂不要紧,下文必有分解) 因为汇编是通过CPU和内存跟硬件对话的,所以我们不得不先了解一下CPU和内存:(关于数的进制问题在此不提) CPU是可以执行电脑所有算术╱逻辑运算与基本I/O 控制功能的一块芯片。一种汇编语言只能用于特定的CPU。也就是说,不同的CPU其汇编语言的指令语法亦不相同。个人电脑由1981年推出至今,其CPU发展过程为:8086→80286→80386→80486→PENTIUM →……,还有AMD、CYRIX等旁支。后面兼容前面CPU的功能,只不过多了些指令(如多能奔腾的MMX指令集)、增大了寄存器(如386的32位EAX)、增多了寄存器(如486的FS)。为确保汇编程序可以适用于各种机型,所以推荐使用8086汇编语言,其兼容性最佳。本文所提均为8086汇编语言。寄存器(Register)是CPU内部的元件,所以在寄存器之间的数据传送非常快。用途:1.可将寄存器内的数据执行算术及逻辑运算。2.存于寄存器内的地址可用来指向内存的某个位置,即寻址。3.可以用来读写数据到电脑的周边设备。8086 有8个8位数据寄存器,这些8位寄存器可分别组成16位寄存器:AH&AL=AX:累加寄存器,常用于运算;BH&BL=BX:基址寄存器,常用于地址索引;CH&CL=CX:计数寄存器,常用于计数;DH&DL=DX:数据寄存器,常用于数据传递。为了运用所有的内存空间,8086设定了四个段寄存器,专门用来保存段地址:CS(Code Segment):代码段寄存器;DS(Data Segment):数据段寄存器;SS(Stack Segment):堆栈段寄存器;ES(Extra Segment):附加段寄存器。当一个程序要执行时,就要决定程序代码、数据和堆栈各要用到内存的哪些位置,通过设定段寄存器CS,DS,SS 来指向这些起始位置。通常是将DS固定,而根据需要修改CS。所以,程序可以在可寻址空间小于64K的情况下被写成任意大小。所以,程序和其数据组合起来的大小,限制在DS 所指的64K内,这就是COM文件不得大于64K的原因。8086以内存做为战场,用寄存器做为军事基地,以加速工作。除了前面所提的寄存器外,还有一些特殊功能的寄存器:IP(Intruction Pointer):指令指针寄存器,与CS配合使用,可跟踪程序的执行过程;SP(Stack Pointer):堆栈指针,与SS配合使用,可指向目前的堆栈位置。BP(Base Pointer):基址指针寄存器,可用作SS 的一个相对基址位置;SI(Source Index):源变址寄存器可用来存放相对于DS段之源变址指针;DI(Destination Index):目的变址寄存器,可用来存放相对于ES 段之目的变址指针。还有一个标志寄存器FR(Flag Register),有九个有意义的标志,将在下文用到时详细说明。 内存是电脑运作中的关键部分,也是电脑在工作中储存信息的地方。内存组织有许多可存放

汇编语言例子

实验三: 1)题目:在内存中从ARRAY开始的连续三个字节单元存放着30H,40H,50H。编制程序将这三个连续的数据传送到内存TABLE开始的单元。 DATA SEGMENT ARRAY DB 30H,40H,50H 定义数据段 TABLE DB 3 DUP (?) DATA ENDS CODE SEGMENT ASSUME CS:CODE,DS:DATA START: MOV AX,DATA MOV DS,AX MOV ES,AX LEA SI,ARRAY LEA DI,TABLE MOV CX,3 REP MOVSB JMP $ CODE ENDS END START (2)题目:把内存2000H和3000H字单元的内容相加,结果存入4000H单元。(不考虑溢出) DATA SEGMENT ORG 2000H DW 1234H ORG 3000H DW 5678H ORG 4000H DW ? DATA ENDS CODE SEGMENT ASSUME CS:CODE,DS:DATA START: MOV AX,DATA MOV DS,AX MOV AX,[2000H] ADD AX,[3000H] MOV [4000H],AX JMP $ CODE ENDS END START 实验四 1、数据传送指令和算术运算指令完成NUM1和NUM2相加,结果放入SUM中。

DATA SEGMENT NUM1 DW 0012H,0030H,0FC21H ; 数1 NUM2 DW 3E81H,44E9H,6D70H ; 数2 SUM D W 3 DUP(?) ; 结果单元 DATA ENDS CODE SEGMENT ASSUME CS: CODE, DS: DATA START: MOV AX, DATA MOV DS, AX MOV CX,3 LEA SI,NUM1 LEA DI,NUM2 LEA AX,SUM HE: MOV BX,[SI] ADD BX,[DI] MOV [AX],BX INC SI INC DI INC AX LOOP HE MOV AH, 4CH ; 返回DOS INT 21H CODE ENDS END START 2、内存中自TABLE开始的七个单元连续存放着自然数0至6的立方值(称作立方表)。;任给一数X(0≤X≤6)在XX单元,查表求X的立方值,并把结果存入YY单元中。;提示用XLAT指令 DATA SEGMENT TABLE DB 0H,1H,2H,3H,4H,5H,6H XX DB 1 DATA ENDS CODE SEGMENT ASSUME CS:CODE,DS:DATA START: MOV AX,DATA MOV DS,AX LEA BX,TABLE MOV AL,[XX] XLAT MOV DL,AL MOV AH,02H INT 21H JMP $

最经典的51单片机经典流水灯汇编程序

单片机流水灯汇编程序设计 开发板上的8只LED为共阳极连接,即单片机输出端为低电平时即可点亮LED。 程序A: ;用最直接的方式实现流水灯 ORG 0000H START:MOV P1,#01111111B ;最下面的LED点亮 LCALL DELAY;延时1秒 MOV P1,#10111111B ;最下面第二个的LED点亮 LCALL DELAY;延时1秒 MOV P1,#11011111B ;最下面第三个的LED点亮(以下省略) LCALL DELAY MOV P1,#11101111B LCALL DELAY MOV P1,#11110111B LCALL DELAY MOV P1,#11111011B LCALL DELAY MOV P1,#11111101B LCALL DELAY MOV P1,#11111110B LCALL DELAY MOV P1,#11111111B ;完成第一次循环点亮,延时约0.25秒 AJMP START ;反复循环 ;延时子程序,12M晶振延时约250毫秒 DELAY: MOV R4,#2 L3: MOV R2 ,#250 L1: MOV R3 ,#250 L2: DJNZ R3 ,L2 DJNZ R2 ,L1 DJNZ R4 ,L3 RET END 程序B: ;用移位方式实现流水灯

ajmp main ;跳转到主程序 org 0030h ;主程序起始地址 main: mov a,#0feh ;给A赋值成11111110 loop: mov p1,a ;将A送到P1口,发光二极管低电平点亮 lcall delay ;调用延时子程序 rl a ;累加器A循环左移一位 ajmp loop ;重新送P1显示 delay: mov r3,#20 ;最外层循环二十次 d1: mov r4,#80 ;次外层循环八十次 d2: mov r5,#250 ;最内层循环250次 djnz r5,$ ;总共延时2us*250*80*20=0.8S djnz r4,d2 djnz r3,d1 ret end 51单片机经典流水灯程序,在51单片机的P2口接上8个发光二极管,产生流水灯的移动效果。 ORG 0 ;程序从0地址开始 START: MOV A,#0FEH ;让ACC的内容为11111110 LOOP: MOV P2,A ;让P2口输出ACC的内容 RR A ;让ACC的内容左移 CALL DELAY ;调用延时子程序 LJMP LOOP ;跳到LOOP处执行 ;0.1秒延时子程序(12MHz晶振)=================== DELAY: MOV R7,#200 ;R7寄存器加载200次数 D1: MOV R6,#250 ;R6寄存器加载250次数 DJNZ R6,$ ;本行执行R6次 DJNZ R7,D1 ;D1循环执行R7次 RET ;返回主程序

汇编语言基础知识

汇编语言基础知识 汇编语言是直接在硬件之上工作的编程语言,首先要了解硬件系统的结构,才能有 效地应用汇编语言对其编程,因此,本章对硬件系统结构的问题进行部分探讨,首先介绍了计算机的基本结构、Intel 公司微处理器的发展、计算机的语言以及汇编语言的特点,在此基础上重点介绍寄存器、内存组织等汇编语言所涉及到的基本知识。 1.1 微型计算机概述 微型计算机由中央处理器(Central Processing Unit ,CPU )、存储器、输入输出接口电路和总线构成。CPU 如同微型计算机的心脏,它的性能决定了整个微型计算机的各项关键指标。存储器包括随机存储器(Random Access Memory ,RAM )和只读存储器(Read Only Memory ,ROM )。输入输出接口电路用来连接外部设备和微型计算机。总线为CPU 和其他部件之间提供数据、地址和控制信息的传输通道。如图1.1所示为微型计算机的基本结构。 外部设备存储器输入输出接口电路中央处理器 CPU 地址总线 数据总线 控制总线 图1.1 微型计算机基本结构 特别要提到的是微型计算机的总线结构,它使系统中各功能部件之间的相互关系变 为各个部件面向总线的单一关系。一个部件只要符合总线结构标准, 就可以连接到采用这种总线结构的系统中,使系统功能得到扩展。 数据总线用来在CPU 与内存或其他部件之间进行数据传送。它是双向的,数据总线 的位宽决定了CPU 和外界的数据传送速度,8位数据总线一次可传送一个8位二进制数据(即一个字节),16位数据总线一次可传送两个字节。在微型计算机中,数据的含义是广义的,数据总线上传送的不一定是真正的数据,而可能是指令代码、状态量或控制量。 地址总线专门用来传送地址信息,它是单向的,地址总线的位数决定了 CPU 可以直接寻址的内存范围。如 CPU 的地址总线的宽度为N ,则CPU 最多可以寻找2N 个内存单 元。

单片机汇编语言经典一百例

51单片机实用程序库 4.1 流水灯 程序介绍:利用P1 口通过一定延时轮流产生低电平 输出,以达到发光二极管轮流亮的效果。实际应用中例如:广告灯箱彩灯、霓虹灯闪烁。 程序实例(LAMP.ASM) ORG 0000H AJMP MAIN ORG 0030H MAIN: 9 MOV A,#00H MOV P1,A ;灭所有的灯 MOV A,#11111110B MAIN1: MOV P1,A ;开最左边的灯 ACALL DELAY ;延时 RL A ;将开的灯向右边移 AJMP MAIN ;循环 DELAY:

MOV 30H,#0FFH D1: MOV 31H,#0FFH D2: DJNZ 31H,D2 DJNZ 30H,D1 RET END 4.2 方波输出 程序介绍:P1.0 口输出高电平,延时后再输出低电 平,循环输出产生方波。实际应用中例如:波形发生器。 程序实例(FAN.ASM): ORG 0000H MAIN: ;直接利用P1.0口产生高低电平地形成方波////////////// ACALL DELAY SETB P1.0 ACALL DELAY 10 CLR P1.0 AJMP MAIN ;////////////////////////////////////////////////// DELAY: MOV R1,#0FFH

DJNZ R1,$ RET END 五、定时器功能实例 5.1 定时1秒报警 程序介绍:定时器1每隔1秒钟将p1.o的输出状态改变1 次,以达到定时报警的目的。实际应用例如:定时报警器。程序实例(DIN1.ASM): ORG 0000H AJMP MAIN ORG 000BH AJMP DIN0 ;定时器0入口 MAIN: TFLA G EQU 34H ;时间秒标志,判是否到50个 0.2秒,即50*0.2=1秒 MOV TMOD,#00000001B;定时器0工作于方式 1 MOV TL0,#0AFH MOV TH0,#3CH ;设定时时间为0.05秒,定时 20次则一秒 11 SETB EA ;开总中断

汇编经典代码

1.顺序程序设计 将两个多位十进制数相加,要求被加数、加数均以ASCⅡ码形式各自顺序存放在以DATA1和DATA2为首的五个内存单元中(低位在前),结果送回DATA1处。 DATA SEGMENT DATA1 DB 34H,35H,39H,38H,36H,' ' ;被加数 DATA2 DB 37H,34H,33H,36H,32H,' ' ;加数 DATA ENDS CODE SEGMENT MAIN PROC FAR ASSUME CS:CODE,DS:DATA START: MOV AX,DATA MOV DS,AX LEA SI,DATA1 ;有效地址送SI,为调用显示子程序做准备 CALL DISPLAY ;调用显示子程序 CALL CRLF ;调用回车换行子程序 LEA SI,DATA2 ;有效地址送SI,为调用显示子程序做准备,同时为加法运算做准备 CALL DISPLAY ;调用显示子程序 CALL CRLF ;调用回车换行子程序 LEA DI,DATA1 ;有效抵制送DI,为加法运算做准备 MOV AX,0 MOV BX,0 MOV CL,05H ;记录循环次数 ADDS: MOV AL,[SI] ;将加数送往AL SUB AL,30H ADD AL,BL ;加上进位 MOV BL,[DI] ;将被加数送往BL SUB BL,30H ADD AL,BL ;加法运算 ADD AL,30H CMP AL,3AH JA SUBA ;结果>=10,跳到SUBA JB NSUBA SUBA: SUB AL,0AH ;减去10的值,并置BL为1 MOV BL,01H JMP CONTINUE NSUBA: MOV BL,00H ;置BL为0 CONTINUE:MOV [DI],AL ;将相加的结果从AL送往DI的地址,即DATA1的地址INC DI ;地址加1 INC SI ;地址加1 LOOP ADDS ;循环 JC SHUCHU JNC SHUCHU2 SHUCHU2: MOV AL,31H ;CF为1设置结果最高位为1 JMP CONTINUE2 SHUCHU:MOV AL,30H ;CF为0设置结果最高位为0

汇编语言入门教程

汇编语言入门教程 2007-04-29 22:04对初学者而言,汇编的许多命令太复杂,往往学习很长时间也写不出一个漂漂亮亮的程序,以致妨碍了我们学习汇编的兴趣,不少人就此放弃。所以我个人看法学汇编,不一定要写程序,写程序确实不是汇编的强项,大家不妨玩玩DEBUG,有时CRACK 出一个小软件比完成一个程序更有成就感(就像学电脑先玩游戏一样)。某些高深的指令事实上只对有经验的汇编程序员有用,对我们而言,太过高深了。为了使学习汇编语言有个好的开始,你必须要先排除那些华丽复杂的命令,将注意力集中在最重要的几个指令上(CMP LOOP MOV JNZ……)。但是想在啰里吧嗦的教科书中完成上述目标,谈何容易,所以本人整理了这篇超浓缩(用WINZIP、WINRAR…依次压迫,嘿嘿!)教程。大言不惭的说,看通本文,你完全可以“不经意”间在前辈或是后生卖弄一下DEBUG,很有成就感的,试试看!那么――这个接下来呢?――Here we go!(阅读时看不懂不要紧,下文必有分解) 因为汇编是通过CPU和内存跟硬件对话的,所以我们不得不先了解一下CPU和内存:(关于数的进制问题在此不提) CPU是可以执行电脑所有算术╱逻辑运算与基本I/O 控制功能的一块芯片。一种汇编语言只能用于特定的CPU。也就是说,不同的CPU其汇编语言的指令语法亦不相同。个人电脑由1981年推出至今,其CPU发展过程为:8086→80286→80386→80486→PENTIUM →……,还有AMD、CYRIX等旁支。后面兼容前面CPU的功能,只不过多了些指令(如多能奔腾的MMX指令集)、增大了寄存器(如386的32位EAX)、增多了寄存器(如486的FS)。为确保汇编程序可以适用于各种机型,所以推荐使用8086汇编语言,其兼容性最佳。本文所提均为8086汇编语言。寄存器(Register)是CPU内部的元件,所以在寄存器之间的数据传送非常快。用途:1.可将寄存器内的数据执行算术及逻辑运算。2.存于寄存器内的地址可用来指向内存的某个位置,即寻址。3.可以用来读写数据到电脑的周边设备。8086 有8个8位数据寄存器,这些8位寄存器可分别组成16位寄存器:AH&AL=AX:累加寄存器,常用于运算;BH&BL=BX:基址寄存器,常用于地址索引;CH&CL=CX:计数寄存器,常用于计数;DH&DL=DX:数据寄存器,常用于数据传递。为了运用所有的内存空间,8086设定了四个段寄存器,专门用来保存段地址:CS(Code Segment):代码段寄存器;DS(Data Segment):数据段寄存器;SS(Stack Segment):堆栈段寄存器;ES(Extra Segment):附加段寄存器。当一个程序要执行时,就要决定程序代码、数据和堆栈各要用到内存的哪些位置,通过设定段寄存器CS,DS,SS 来指向这些起始位置。通常是将DS固定,而根据需要修改CS。所以,程序可以在可寻址空间小于64K的情况下被写成任意大小。所以,程序和其数据组合起来的大小,限制在DS 所指的64K内,这就是COM文件不得大于64K的原因。8086以内存做为战场,用寄存器做为军事基地,以加速工作。除了前面所提的寄存器外,还有一些特殊功能的寄存器:IP(Intruction Pointer):指令指针寄存器,与CS配合使用,可跟踪程序的执行过程;SP(Stack Pointer):堆栈指针,与SS配合使用,可指向目前的堆栈位置。BP(Base Pointer):基址指针寄存器,可用作SS的一个相对基址位置;SI(Source Index):源变址寄存器可用来存放相对于DS 段之源变址指针;DI(Destination Index):目的变址寄存器,可用来存放相对于ES 段之目的变址指针。还有一个标志寄存器FR(Flag Register),有九个有意义的标志,将在下文用到时详细说明。

汇编语言的编程步骤与调试方法

汇编语言的编程步骤与调试方法 一、汇编源程序的建立 1. 使用工具 (1)EDIT,记事本等文本编辑软件,编辑源程序,保存为.asm文 件; (2)ASM,MASM汇编程序,对源程序进行汇编,生成.obj文件- 目标文件,以及调试用.LST-列表文件和.CRF-交叉引用表; (3)Link连接程序,对使用的目标文件和库文件进行连接,生 成.exe文件,同时调试用.map-地址映像文件; 如果源程序无语法错误,上述三步将生成可运行的.exe文件, 如果运行结果无误,则完成对汇编程序的编程,如果运行后结果存 在错误,需要进行调试。 (4)Debug调试程序,对.exe文件进行调试,修改,直到程序正 确。 图3 目标程序生成步骤图2. 编程过程 (1)用文本编辑软件,编写扩展名为.asm的源文程序文件。 (2)用汇编程序对编好的源文件进行汇编。 命令行:masm [*.asm] ↙ 如果源文件中存在语法错误,则汇编程序将指出错误类型及位置,可根据这些信息重新编辑源文件,直至无语法错误,汇编后,将生成指定名称的目标文件.obj。 使用MASM50汇编程序进行汇编,输入命令行masm或者masm *.asm后,根据提示,输入文件名,在汇编没有错误的情况下,如屏幕所示:汇编程序可生成三个文件,*.obj,*.lst和*.crf。 *.obj-目标文件,用于连接生成可执行文件; *.lst-列表文件(可选),汇编语言汇编的机器语言与汇编语言对照表,可用于

调试; *.crf-交叉引用文件(可选),给出了用户定义的所有符号和对每个符号定义、引用的行号。 (3)目标文件的连接 命令行:link [*.obj] [*.obj] [*.lib] ↙ 连接程序,将多个目标程序及库文件,连接生成可执行的*.exe文件,同时可选择生成*.map文件。 *.map-地址映像文件,给出内存地址分配的有关信息。 下图所示屏幕,为Link连接两个目标文件,没有错误的情况下,生成*.exe 文件。 (4)执行程序 执行*.exe文件,观察程序运行结果,如果存在错误,需要进行调试。调试工具DEBUG是针对汇编语言程序设计的一种调试工具,熟练使用DEBUG有助于汇编语言程序员对于逻辑错误的调试。 二、汇编程序的调试

单片机汇编语言经典一百例

51单片机实用程序库 流水灯 程序介绍:利用P1 口通过一定延时轮流产生低电平 输出,以达到发光二极管轮流亮的效果。实际应用中例如:广告灯箱彩灯、霓虹灯闪烁。 程序实例() ORG 0000H AJMP MAIN ORG 0030H MAIN: 9 MOV A,#00H MOV P1,A ;灭所有的灯 MOV A,#B

MAIN1: MOV P1,A ;开最左边的灯 ACALL DELAY ;延时 RL A ;将开的灯向右边移 AJMP MAIN ;循环 DELAY: MOV 30H,#0FFH D1: MOV 31H,#0FFH D2: DJNZ 31H,D2 DJNZ 30H,D1 RET END 方波输出 程序介绍:口输出高电平,延时后再输出低电 平,循环输出产生方波。实际应用中例如:波形发生器。

程序实例(): ORG 0000H MAIN: ;直接利用口产生高低电平地形成方波步移位 ;显示个,十,百,千算机的内部计算都是二进 制,而二进制每除一个2,实际上是向右移一次。所以为了计算方便,我们选择取6个数,最后在算除法的时候,只需要用单片机自带的右移位命令移2次就行了。 27 十六进制六位数加法(数码显示) 程序实例: ORG 0000H MAIN: ADNUMBER EQU 30H ;AD转换值 ADDNUMBER EQU 31H ;加数值1

ADL EQU 32H ;// ADH EQU 33H ;ADL转换高低位值 DISL EQU 34H ;// DISH EQU 35H ;显示高低位值 ADDTOTAL EQU 36H ;第一次AD转换值ADDJW EQU 37H ;加法进位数 ADDHOLD EQU 38H ADDFLAG EQU 39H ;加标志 ENDFLAG EQU 40H ;赋初值//////////////////////////////////////////// MOV ADDHOLD,#00H MOV ADDNUMBER,#00H MOV ADL,#00H MOV ADH,#00H MOV DISL,#00H

汇编语言程序设计复习

知识点 第一章基础知识 (1)正负数的补码表示, 掌握计算机中数和字符的表示; eg.假设机器字长为8位,[+3]补=00000011B,[-3]补= 11111101 H 。 十六进制数0FFF8H表示的十进制正数为65528D,表示的十进制负数为-8D。 8位二进制数被看成是带符号补码整数时,其最小值是-128,最大值是 127 。 第二章80x86计算机组织 (1)中央处理机CPU的组成和80x86寄存器组,重点:专用寄存器,段寄存器 eg: IP寄存器中保存的是?代码段中的偏移地址FLAGS标志寄存器中共有几位条件状态位6位,有几位控制状态位2位,标志寄存器分为哪2类?陷阱标志,中断标志。 (2)存储单元的地址和内容每一个字节单元给以一个唯一的存储器地址,称为物理地址;一个存储单元中存放的信息称为该存储单元的内容。存储器地址的分段,(低位字节存放)低地址,(高位字节存放)高地址;实模式下逻辑地址、选择器和偏移地址;物理地址的表示段基地址加上偏移地址。 eg.如果SS=6000H,说明堆栈段起始物理地址是_____60000H___。 已知字节(00018H)=14H,字节(00017H)=20H,则字(00017H)为__1420H______。 如果(SI)=0088H,(DS)=5570H,对于物理地址为55788H的内存字单元,其内容为0235H,对于物理地址为5578AH的内存字单元,其内容为0E60H,那么执行指令LDS SI,[SI]以后,(SI)= 0235H ,(DS)= 0E60H . 第三章80x86的指令系统和寻址方式 与数据有关的寻址方式(立即寻址方式,寄存器寻址方式,直接寻址方式,寄存器间接寻址方式,寄存器相对寻址方式,基址变址寻址方式,相对基址变址寻址方式)和与转移地址有关的寻址方式(段内直接寻址,段内间接寻址,段间直接寻址,段间间接寻址)。数据传送指令(通用数据传送指令、累加器专用传送指令、输入输出指令)、算术指令(加法指令、减法指令(*加减指令对4个标志位的影响[of,cf,sf,zf])、乘法指令(*乘法指令的要求:目的操作数必须是累加器)、除法指令(*被除数在累加器中,除法指令执行完以后,商和余数在?))、逻辑指令(逻辑运算指令(*XOR,AND,OR,TEST指令及指令执行后对标志位的影响)、移位指令)、串处理指令(与REP相配合工作的MOVS、STOS、LODS 指令,与REPE/REPZ和REPNE/REPNZ联合工作的CMPS、SCAS指令)、控制转移指令(无条件转移指令、条件转移指令、循环指令、子程序调用指令、中断)。eg.【习题3.8】假定(DS)=2000H,(ES)=2100H,(SS)=1500H,(SI)=00A0H,

相关文档