文档库 最新最全的文档下载
当前位置:文档库 › 概率论期中练习题目

概率论期中练习题目

概率论期中练习题目
概率论期中练习题目

1.已知,5.0)(=A P ,

2.0)(=B A P 4.0)(=B P , 求

(1) )(AB P ; (2) )(B A P -; (3) )(B A P ?; (4) )(B A P .

(1) 因为,B B A AB =+ 且AB 与B A 是不相容的, 故有)()()(B P B A P AB P =+

于是)(AB P )()(B A P B P -=2.04.0-=;2.0= (2) )(A P )(1A P -=5.01-=,5.0=

)(B A P -)()(AB P A P -=2.05.0-=;3.0=

(3) )(B A P )()()(AB P B P A p -+=2.04.05.0-+=;7.0=

(4) )(B A P )(B A P =)(1B A P -=7.01-=.3.0=

2. 观察某地区未来5天的天气情况, 记i A 为事件: “有i 天不下雨”, 已知

),()(0A iP A P i = .5,4,3,2,1=i 求下列各事件的概率:

(1) 天均下雨; (2) 至少一天不下雨; (2) 至少一天不下雨; 解 显然510,,A A A 是两两不相容事件且,5

0S A i i ==

??

?

??+==i i A P S P 50)(1 ∑==

50)(i i

A P ∑=+=5

1

)()(i A iP A P )(160

A P =

于是

,161)(0=

A P ,16

)(i

A P i = ,5,4,3,2,1=i 记(1),(2),(3)中三个事件分别为,,,C

B A 则 (1) )(A P )(0A P =,16

1=

(2) )(B P ??? ??==i i A P 51 )(10A P -=,1615

=

(3) )(C P ??

?

??==i i A P 30 ∑==

3

)(i i

A P .167

=

3. 将15名新生(其中有3名优秀生)随机地分配到三个班级中, 其中一班4名, 二班5名, 三班6名, 求:

(1) 每一个班级各分配到一名优秀生的概率; (2) 3名优秀生被分配到一个班级的概率.

解 15名优秀生分别分配给一班4名, 二班5名, 三班6名的分法有:

66511415C C C !

6!5!4!

15=

(种). (1)

将3名优秀生分配给三个班级各一名, 共有3!种分法, 再将剩余的12名新生分配

给一班3名, 二班4名, 三班5名, 共有5

549312

C C C !

5!4!3!

12=(种)分法. 根据乘法法则, 每个班级分配到一名优秀生的分法有:

!5!4!3!12!3?

!

5!4!

12=

(种), 故其对应概率P !6!5!4!

15!5!4!12=

!15!6!12=91

24=

.2637.0= (2) 用i A 表示时间 “3名优秀生全部分配到i 班”).3,2,1(=i

1A 中所含基本事件个数1m 5

11112C C ?=!6!5!

12= 2A 中所含基本事件个数2m 28412C C ?=!6!4!2!

12= 3A 中所含基本事件个数3m 58412C C ?=!

5!4!3!

12=

由(1)中分析知基本事件的总数,!

6!5!4!

15=

n 所以 )(1A P n

m 1=!6!5!4!15!6!5!12=!15!

12!4=

.00879.0= )(2A P n m 2=

!6!5!4!

15!6!4!2!12=!15!2!5!12=

.02198.0= )(3A P n m 3=!6!5!4!

15!5!4!3!12=!

15!3!6!12=

.04396.0= 因为321,,A A A 互不相容, 所以3名优秀生被分配到同一班级的概率为: )(A P )(321A A A P =)()()(321A P A P A P ++=.07473.0=

注: 在用排列组合公式计算古典概率时, 必须注意在计算样本空间S 和事件A 所包含的

基本事件数时, 基本事件数的多少与问题是排列还是组合有关, 不要重复计数, 也不要遗漏.

4. 在1~2000的整数中随机地取一个数, 问取到的整数既不能被6整除, 又不能被8整除的概率是多少?

解 设A 为事件 “取到的数能被6整除”, B 为事件 “取到的数能被8整除”, 则所求概率为

)(B A P )(B A P =)(1B A P -=)}.()()({1AB P B P A P -+-=

由于<3336

2000,334< 故得.2000333

)(=A P

由于

,25082000= 故得.2000

250

)(=B P 又由于一个数同时能被6与8整除, 就相当于能被24整除. 因此, 由84

24200083<<.2000

83

)(=AB P 于是所求概率为

P ??? ??-+-=200083200025020003331.43=

5. (讲义例3) 货架上有外观相同的商品15件, 其中12件来自产地甲, 3件来自产地乙. 现从15件商品中随机地抽取两件, 求这两件商品来自同一产地的概率.

解 从15件商品中取出两件商品, 共有2

15C 种取法, 且每种取件总数

.1051

214

152

15=??=

=C n 同理, 事件{1=A 两件商品来自产地甲}包含基本事件数 ,661

211

122

121=??==C k 事件{2=A 两件商品来自产地乙}包含基本事件数 .32

32==C k

1A 与2A 互斥. 所以, 事件A 包含基本事件数.6921=+=k k k

于是, 所求概率 .35

2310569)(===

n k A P 6. 设某光学仪器厂制造的透镜, 第一次落下时打破的概率为1/2, 若第一次落下未打破, 第二次落下打破的概率为7/10, 若前两次落下未打破, 第三次落下打破的概率为9/10. 试求透镜落下三次而未打破的概率.

以)3,2,1(=i A i 表示事件“透镜第i 次落下打破”, B 表示事件“透镜落下三次而未打

破”. 为,321A A A B = 故有

)(B P )(321A A A P =)|()|()(213121A A A P A A P A P =

??? ??-??? ??

-??? ??-=10911071211.200

3= 7. 已知,3.0)(=A P 4.0)(=B P ,,5.0)|(=B A P 试求

).|(),|(B A B A P B A B P

由乘法公式, )(AB P )()|(B P B A P =4.05.0?=,2.0=

因此)|(A B P )()(A P AB P =3.02.0=

,32

= 又因为,B A B ? 所以,)(B B A B = 从而 )|(B A B P )

())((B A P B A B P =

)()()()(AB P B P A P B P -+=2.04.03.04.0-+=,54

= )|(B A B A P )|(B A AB P =)|(1B A AB P -=)()(1B A P AB P -

=5.02.01-=.5

3

=

8. 一袋中装有10个球, 其中3个黑球、7个白球,从中先后随意各取一球(不放回),求第二次取到的是黑球的概率.

解 这一概率, 我们前面在古典概型中已计算过, 这里我们用一种新的方法来计算.

将事件 “第二次取到的是黑球” 根据第一次取球的情况分解成两个互不相容的部分, 分别计算其概率, 再求和. 记,A B 为事件 “第一、二次取到的是黑球”, 则有

)(B P )()(B A P AB P +=)|()()|()(A B P A P A B P A P +=

由题设易知,103)(=A P ,107)(=A P ,92)|(=A B P ,9

3)|(=A B P 于是)(B P 9310792103?+?=

.10

3= 9. 已知甲、乙两袋中分别装有编号为1, 2, 3, 4的四个球. 今从甲、乙两袋中各取出一球, 设=A {从甲袋中取出的是偶数号球}, =B {从乙袋中取出的是奇数号球}, =C {从两袋中取出的都是偶数号球或都是奇数号球}, 试证C B A ,,两两独立但不相互独立.

证明 由题意知, .2/1)()()(===C P B P A P 以,i j 分别表示从甲、乙两袋中取出球的号数, 则样本空间为}.4,3,2,1;4,3,2,1|),{(===j j i S

由于S 包含16个样本点, 事件AB 包含4个样本点:),3,4(),1,4(),3,2(),1,2( 而BC AC ,都各包含4个样本点,所以.4/116/4)()()(====BC P AC P AB P

于是有),()()(B P A P AB P =),()()(C P A P AC P =),()()(B P A P AB P =因此C B A ,,两两独立. 又因为,?=ABC 所以,0)(=ABC P 而,8/1)()()(=C P B P A P 因),()()()(C P B P A P ABC P ≠故C B A ,,不是相互独立的.

10. 加工某一零件共需经过四道工序, 设第一、二、三、四道工序的次品率分别是2%, 3%, 5%, 3%, 假定各道工序是互不影响的, 求加工出来的零件的次品率.

解 本题应先计算合格品率, 这样可以使计算简便.

设4321,,,A A A A 为四道工序发生次品事件, D 为加工出来的零件为次品的事件, 则D 为产品合格的事件, 故有,4321A A A A D =

)()()()()(4321A P A P A P A P D P =%)31%)(51%)(31%)(21(----=%;60.87%59779.87≈= )(1)(D P D P -=%.40.12%60.871=-=

11. (讲义例5) 某一城市每天发生火灾的次数X 服从参数8.0=λ的泊松分布, 求该城市一天内发生3次或3次以上火灾的概率.

解 由概率的性质, 得

}3{1}3{<-=≥X P X P }2{}1{}0{1=-=-=-=X P X P X P

???

? ??++-=-!28.0!18.0!08.012108

.0e

.0474.0≈

12. 某公司生产的一种产品300件. 根据历史生产记录知废品率为0.01. 问现在这300件产品经检验废品数大于5的概率是多少?

解 把每件产品的检验看作一次伯努利试验, 它有两个结果: =A {正品},=A {废品}.检验300件产品就是作300次独立的伯努利试验. 用X 表示检验出的废品数, 则

),01.0,300(~b X

我们要计算}.5{>X P

对,01.0,300==p n 有,3==np λ 于是, 得

==>6)01.0,300;(}5{k k b X P ∑

=-=5

0)01.0,300;(1k k b .!313

5

-=∑

-≈e k k k

查泊松分布表, 得

.08.0916082.01}5{=-≈>X P

13.设)4,1(~N X , 求 .}2|1{|},6.10{),5(≤-≤

解 这里,1=μ,2=σ 故

???≤-=≤=21}5{)5(X P X P F ?

?

?-215)

2(215Φ=???

??-Φ=查表得 ??

?

??-Φ-??? ??-Φ=≤<210216.1}6.10{X P )5.0()3.0(-Φ-Φ=

)]5.0(1[6179.0Φ--=;3094.0)6915.01(6179.0=--=

}31{}2|1{|≤≤-=≤-X P X P ?

??-≤

-=2

1

1X P 2?

??≤1 1)1(2)1()1(-Φ=-Φ-Φ=.6826.018413.02=-?=

14. 设)1,0(~N X , 求2X Y =的密度函数.

记Y 的分布函数为),(x F Y 则}.{}{)(2x X P x Y P x F Y ≤=≤=

显然, 当0

当0≥x 时, }{)(2x X P x F Y ≤=.1)(2}{-Φ=<<-=x x X x P 从而2

X Y =的分布函数为??

???<≥-Φ=0,00

,1)(2)(x x x x F Y

于是其密度函数为?????<≥='=0,00),(1)()(x x x x x F x f Y Y ?.0,00,21

2/??

?

??<≥=-x x e x x π

15 (讲义例2) 把一枚均匀硬币抛掷三次, 设X 为三次抛掷中正面出现的次数, 而Y 为正面

出现次数与反面出现次数之差的绝对值, 求),(Y X 的概率分布及),(Y X 关于Y X ,的边缘分布.

),(Y X 可取值(0,3),(1,1),(2,1),(3,3)

,8/1)2/1(}3,0{3====Y X P

,8/3)2/1(3}1,1{3

====Y X P

,8/3}1,2{===Y X P ,8/1}3,3{===Y X P

故),(Y X 的概率分布如右表.

从概率分布表不难求得),(Y X 关于

Y X ,的边缘分布.

,8/1}0{==X P ,8/3}1{==X P ,8/3}2{==X P ,8/1}3{==X P ,8/68/38/3}1{=+==Y P

,8/28/18/1}3{=+==Y P

16 设二维随机变量的联合概率分布为

求,1{≤Y X P 解 }0,1{≥≤Y X P

}1,1{}0,1{=-=+=-==Y X P Y X P }1,1{}0,1{==+==+Y X P Y X P .4.002.01.01.0=+++=

}0,1{}2,1{)0,0(=-=+-=-==Y X P Y X P F .4.01.03.0=+=

二维连续型随机变量及其概率密度 17.设),(Y X 的概率分布由下表给出,求

}0,0{},0,0{≤≤=≠Y X P Y X P |}.||{|},{},0{y X P Y X P XY P ===

解 {P ,05.00=+ }0,0{=≠Y X P }0,0{}1,0{==+-===Y X P Y X P ,3.02.01.0=+=

}1,1{}0,0{|}||{|-==+====Y X P Y X P Y X P }1,1{-==+Y X P .6.01.03.02.0=++=

18 设随机变量,12

7

)(),(~=X E x f X 且

?

??≤≤+=其它,010,

)(x b ax x f ,

求a 与b 的值, 并求分布函数)(x F .

由题意知

,12

)()(1

=+=

+=

?

?

+∞

-b a

dx b ax dx x f

?

?

+=

=

+∞

-1

)()()(dx b ax x dx x xf X E ,12

723=+=

b a 解方程组得,1=a .2/1=b 当10<≤x 时, 有 ,2

221)()(20x

x dt t dt t f x F x x

+=??? ??

+==

?

?

-

所以.1,110),(2

1

0,0)(2??

???

≥<≤+<=x x x x x x F

19. 有2个相互独立工作的电子装置, 它们的寿命)2,1(=k X k 服从统一指数分布,其概率密度为

?????≤>=-0,

00

,1)(/x x e x f x θθ,.0>θ

若将这2个电子装置串联联接组成整机, 求整机寿命(以小时计)N 的数学期望.

)2,1(=k X k 的分布函数为,0,00

,1)(/?

?

?≤>-=-x x e x F x θ },min{21X X N =的分布函数为,0,00

,1)](1[1)(/22

min ?

?

?≤>-=--=-x x e x F x F x θ 因而N 的概率密度为,0,

00,2)()(/2min

min ?????≤>='=-x x e x F x f x θ

θ 于是N 的数学期望为.2

2)()(0

/2min θ

θ

θ=

=

=

?

?

+∞

-+∞

-dx e x

dx x xf N E x

随机变量函数的数学期望 20 设),(Y X 的联合概率分布为:

求).(),(),(XY E Y E X E

解 要求)(X E 和),(Y E 需先求出X 和Y 的边缘分布. 关于X 和Y 的边缘分布为

4/14/331P X 8

/18/38/38/13

210P Y

则有2

3413431)(=?+?

=X E 2

3

813832831810)(=?+?+?+?=Y E

)13(8

1

)03(0)31(83)21(83)11(0)01()(??+??+??+??+??+??=?Y X E

8

1

)33(0)23(?

?+??+.4/9=

21. 设随机变量X 在],0[π上服从均匀分布, 求

),(X E )(),(sin 2X E X E 及.)]([2X E X E -

解 根据随机变量函数数学期望的计算公式, 有

,21

)()(0

π

π

π

=

?

=

=

?

?

+∞

-dx x dx x xf X E ?

?

?=

=+∞

π0

1

sin )(sin )(sin dx dx x xf X E ,2|)cos (1

π

π=

-=

x

,3

1

)()(2

2

2

2

ππ

π

=

?

=

=

?

?

+∞

-dx x dx x f x X E

2

2

2)]([??? ?

?

-=-πX E X E X E ?

???? ?

?

-=

π

ππ0

2

12dx x .122π=

22. 设),,(~b a U X 求),(X E ).(X D

X 的概率密度为,,

0,1

)(?????<<-=其它b

x a a

b x f 而?

+∞

-=

dx x xf X E )()(?

-=

b a dx a b x ,2

b a += 故所求方差为 2

2

)]([)()(X E X E X D -=?

??

?

??+--=b

a b c dx a b x 2

2

21.12)(2a b -=

23. 设随机变量X 服从指数分布, 其概率密度为

?????≤>=-.0,

0,0,1)(/x x e x f x θθ

其中,0>θ 求).(),(X D X E

?

+∞

-=

dx x xf X E )()(?

+∞

-=

/1

dx e x x θθ

,0/0/θθθ

=+-=?+∞

-+∞-dx e xe x x ?

+∞

-=

dx x f x X E )()(2

2

?

+∞

-=

/2

1

dx e

x

x θ

θ

?

+∞

-+∞-+

-=0

/0

/22dx xe e

x x x θθ

,22θ=

于是22)]([)()(X E X E X D -=.2222θθθ=-= 即有,)(θ=X E .)(2θ=X D

24. 设),(~p n b X , 求).(),(X D X E

X 表示n 重伯努利试验中 “成功” 的次数. 若设

n i i i X i ,,2,1,0,1 =?

??=次试验失败如第次试验成功如第

则∑==

n

i i

X

X 1

是n 次试验中 “成功” 的次数, 且i X 服从10-分布.

,}1{)(p X P X E i i ===,)(2p X E i =

故 22)]([)()(i i i X E X E X D -=2p p -=)1(p p -= n i ,,2,1 = 由于n X X X ,,,21 相互独立, 于是

np X E X E n

i i ==∑=1)()(, ∑==

n

i i

X D X D 1

)()().1(p np -=

《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()())))Y X X F y P Y y P X y y y y y =≤=≤ =≤- - 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

2019线性代数与概率统计随堂练习答案

第一章行列式·1.1 二阶与三阶行列式 1.(单选题) 计算?A.; B.; C.; D.. 参考答案:A 2.(单选题) 行列式?A.3; B.4; C.5; D.6. 参考答案:B 3.(单选题) 计算行列式. A.12; B.18; C.24; D.26. 参考答案:B 4.(单选题) 计算行列式?A.2; B.3; C.0; D..

第一章行列式·1.2 全排列及其逆序数 1.(单选题) 计算行列式? A.2; B.3; C.; D.. 参考答案:C 2.(单选题) 计算行列式? A.2; B.3; C.0; D.. 参考答案:D 第一章行列式·1.3 阶行列式的定义 1.(单选题) 利用行列式定义,计算n阶行列式:=? A.; B.;

C.; D.. 参考答案:C 2.(单选题) 计算行列式展开式中,的系数。A.1, 4; B.1,-4; C.-1,4; D.-1,-4. 参考答案:B 第一章行列式·1.4 行列式的性质 1.(单选题) 计算行列式=? A.-8; B.-7; C.-6; D.-5. 参考答案:B 2.(单选题) 计算行列式=? A.130 ; B.140; C.150; D.160. 参考答案:D 3.(单选题) 四阶行列式的值等于多少? A.;

B.; C.; D.. 参考答案:D 4.(单选题) 行列式=? A.; B.; C.; D.. 参考答案:B 5.(单选题) 已知,则?A.6m; B.-6m; C.12m; D.-12m. 参考答案:A 一章行列式·1.5 行列式按行(列)展开 1.(单选题) 设=,则? A.15|A|; B.16|A|; C.17|A|; D.18|A|. 参考答案:D

概率论复习题及答案

概率论与数理统计复习题 一.事件及其概率 1. 设,,A B C 为三个事件,试写出下列事件的表达式: (1) ,,A B C 都不发生;(2),,A B C 不都发生;(3),,A B C 至少有一个发生;(4),,A B C 至多有一个发生。 解:(1) ABC A B C =?? (2) ABC B =?? (3) A B C ?? (4) BC AC AB ?? 2. 设B A ,为两相互独立的随机事件,4.0)(=A P ,6.0)(=B P ,求(),(),(|)P A B P A B P A B ?-。 解:()()()()()()()()0.76P A B P A P B P AB P A P B P A P B ?=+-=+-=; ()()()()0.16,(|)()0.4P A B P AB P A P B P A B P A -=====。 3. 设,A B 互斥,()0.5P A =,()0.9P A B ?=,求(),()P B P A B -。 解:()()()0.4,()()0.5P B P A B P A P A B P A =?-=-==。 4. 设()0.5,()0.6,(|)0.5P A P B P A B ===,求(),()P A B P AB ?。 解:()()(|)0.3,()()()()0.8,P AB P B P A B P A B P A P B P AB ==?=+-= ()()()()0. 2P A B P A B P A P A B = -=-=。 5. 设,,A B C 独立且()0.9,()0.8,()0.7,P A P B P C ===求()P A B C ??。 解:()1()1()1()()()0.994P A B C P A B C P ABC P A P B P C ??=-??=-=-=。 6. 袋中有4个黄球,6个白球,在袋中任取两球,求 (1) 取到两个黄球的概率; (2) 取到一个黄球、一个白球的概率。 解:(1) 24210215C P C ==;(2) 11462 108 15 C C P C ==。 7. 从0~9十个数字中任意选出三个不同的数字,求三个数字中最大数为5的概率。 解:12153 101 12 C C P C ==。

概率论基础复习题及答案

《概率论基础》本科 填空题(含答案) 1. 设随机变量ξ的密度函数为p(x), 则 p(x) ≥0; ?∞ ∞ -dx x p )(= 1 ;Eξ=?∞ ∞ -dx x xp )(。 考查第三章 2. 设A,B,C 为三个事件,则A,B,C 至少有一个发生可表示为:C B A ;A,C 发生而B 不发生可表示 C B A ;A,B,C 恰有一个发生可表示为:C B A C B A C B A ++。 考查第一章 3. 设随机变量)1,0(~N ξ,其概率密度函数为)(0x ?,分布函数为)(0x Φ,则)0(0?等于π 21,)0(0Φ等 于 0.5 。 考查第三章 4. 设随机变量ξ具有分布P{ξ=k}=5 1 ,k=1,2,3,4,5,则Eξ= 3 ,Dξ= 2 。 考查第五章 5. 已知随机变量X ,Y 的相关系数为XY r ,若U=aX+b,V=cY+d, 其中ac>0. 则U ,V 的相关系数等于 XY r 。 考查第五章 6. 设),(~2 σμN X ,用车贝晓夫不等式估计:≥<-)|(|σμk X P 211k - 考查第五章 7. 设随机变量ξ的概率函数为P{ξ=i x }=i p ,...,2,1=i 则 i p ≥ 0 ;∑∞ =1 i i p = 1 ;Eξ= ∑∞ =1 i i i p x 。 考查第一章 8. 设A,B,C 为三个事件,则A,B,C 都发生可表示为:ABC ;A 发生而B,C 不发生可表示为:C B A ;A,B,C 恰有一个发生可表示为:C B A C B A C B A ++。 考查第一章 9. )4,5(~N X ,)()(c X P c X P <=>,则=c 5 。 考查第三章

概率论试题及答案

试卷一 一、填空(每小题2分,共10分) 1.设是三个随机事件,则至少发生两个可表示为______________________。 2. 掷一颗骰子,表示“出现奇数点”,表示“点数不大于3”,则表示______________________。 3.已知互斥的两个事件满足,则___________。 4.设为两个随机事件,,,则___________。 5.设是三个随机事件,,,、, 则至少发生一个的概率为___________。 二、单项选择(每小题的四个选项中只有一个是正确答案,请将正确答案的番号填在括号内。每小题2分,共20分) 1. 从装有2只红球,2只白球的袋中任取两球,记“取到2只白球”,则()。 (A) 取到2只红球(B)取到1只白球 (C)没有取到白球(D)至少取到1只红球 2.对掷一枚硬币的试验, “出现正面”称为()。 (A)随机事件(B)必然事件 (C)不可能事件(D)样本空间 3. 设A、B为随机事件,则()。 (A) A (B) B (C) AB(D) φ 4. 设和是任意两个概率不为零的互斥事件,则下列结论中肯定正确的是()。 (A) 与互斥(B)与不互斥 (C)(D) 5. 设为两随机事件,且,则下列式子正确的是()。 (A) (B) (C)(D) 6. 设相互独立,则()。 (A) (B) (C)(D) 7.设是三个随机事件,且有,则 ()。 (A) 0.1 (B) 0.6 (C) 0.8 (D)0.7 8. 进行一系列独立的试验,每次试验成功的概率为p,则在成功2次之前已经失败3次的概率为()。 (A) p2(1–p)3(B) 4 p (1–p)3 (C) 5 p2(1–p)3(D) 4 p2(1–p)3 9. 设A、B为两随机事件,且,则下列式子正确的是()。 (A) (B) (C) (D) 10. 设事件A与B同时发生时,事件C一定发生,则()。

概率论练习题

概率论练习题 一、在某城市中,共发行三种报纸A 、B 、C 。在这城市的居民中,订购A 的占45%, 订购B 的占35%,订购C 的占30%,同时订购A 、B 的占10%,同时订购A 、C 的占8%,同时订购B 、C 的占5%,同时订购A 、B 、C 的占3%,试求下列百分率:(1)只订购A 的;(2)订购A 及B 的;(3) 只订购一种报纸的;(4)正好订购两种报纸的;(5)至少订购一种报纸的;(6)不订购任何报纸的。 二、在区间(0,1)中随机地取两个数,试求取得的两数之积不大于9 2,且该两数之和不大于1的概率。 三、某工厂甲、乙、丙三个车间生产同一种产品。各个车间的产量分别占全厂总 产量的25%、35%和40%,各车间产品的次品率分别是5%、4%和2%。 (1)求全厂产品的次品率; (2)如果从全厂产品中抽取一种产品,恰好是次品,问这件次品是甲车间生产 的概率是多少? 四、四、由长期统计资料得知,某一地区在4月份下雨(记为事件A )的概率为 154,刮风(记为事件B )的概率为 157,既刮风又下雨的概率为10 1。求)|(B A P 、)|(A B P 和)(B A P . 五、甲、乙、丙三人同时独立地向某飞机射击。设击中的概率分别是0.4、0.5和0.7。如果只有一人击中,则飞机被击落的概率为0.2,如果有两人击中,则飞机被击落的概率为0.6;如果三人都击中,则飞机一定被击落。求飞机被击落的概率。 六、已知15件同类型的零件中有两件次品。在其中取3次,每次取1件,作不 放回抽样。以ξ表示取出次品的件数。(1)求ξ的分布律;(2)求ξ的分布函

数。 七、设连续型随机变量X 的分布函数为 2 2,0,()0,0.x A Be x F x x -??+>=??≤? 试求(1)系数A 和B ;(2)随机变量X 的概率密度;(3)随机变量X 落在区间 内的概率。 八、连续型随机变量ξ的概率密度为 ?????≥<-=1||01||1)(2 x x x A x f 试求:(1)系数A ; (2)ξ落在)2 1,21(-内的概率; (3)ξ的分布函数。 九、设随机变量X 在(0,1)内服从均匀分布, (1)求X e Y =的概率密度 (2)求X Y ln 2-=的概率密度

概率论套练习题及答案

《概率论与数理统计》 同步练习册 学号________ 姓名________ 专业________ 班级________

省电子技术学校继续教育部二O一O年四月

练习一 一、选择题 1.设A,B,C表示三个随机事件,则A B C表示 (A)A,B,C中至少有一个发生;(B)A,B,C都同时发生;(C)A,B,C中至少有两个发生;(D)A,B,C都不发生。2.已知事件A,B相互独立,且P(A)=0.5,P(B)=0.8,则P(A B)= (A) 0.65 ; (B) 1.3; (C)0.9; (D)0.3。3.设X~B(n,p),则有 (A)E(2X-1)=2np;(B)E(2X+1)=4np+1;(C)D(2X+1)=4np(1-p)+1;(D)D(2X-1)=4np(1-p)。4.X的概率函数表(分布律)是 xi -1 0 1 pi 1/ 4 a 5/12 则a=() (A)1/3;(B)0;(C)5/12;(D)1/4。5.常见随机变量的分布中,数学期望和差一定相等的分布是 (A)二项分布;(B)标准正态分布;(C)指数分布;(D)泊松分布。 二、填空题 6.已知:A={x|x<3} ,B={x|2

7. 已知电路由电池A 与两个并联电池B 和C 串联而成,各电池工作与否相互独立。设电池A ,B ,C 损坏的概率均为0.2。则整个电路断电的概率是______________________. 三、证明题 8. 设随机变数ξ具有对称的分布密度函数)(x p ,即),()(x p x p -=证明:对任意的,0>a 有(1)-= -=-2 1)(1)(a F a F ? a dx x p 0 )(; (2)P (1 )(2)-=ξ。

第一章 概率论的基本概念练习题

第一章 概率论的基本概念练习题 1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。试写出样本空间及事件C B A ,,中的样本点。 2. 在掷两颗骰子的试验中,事件D C B A ,,,分别表示“点数之和为偶数”,“点数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。试写出样本空间及事件 D C B A BC C A B A AB ---+,,,,中的样本点。 3. 以C B A ,,分别表示某城市居民订阅日报、晚报和体育报。试用C B A ,,表示以下事件: (1)只订阅日报; (2)只订日报和晚报; (3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。 4. 甲、乙、丙三人各射击一次,事件321,,A A A 分别表示甲、乙、丙射中。试说明下列事件所表示的结果:2A , 32A A +, 21A A , 21A A +, 321A A A , 313221A A A A A A ++. 5. 设事件C B A ,,满足Φ≠ABC ,试把下列事件表示为一些互不相容的事件的和: C B A ++,C AB +,AC B -. 6. 若事件C B A ,,满足C B C A +=+,试问B A =是否成立?举例说明。 7. 对于事件C B A ,,,试问C B A C B A +-=--)()(是否成立?举例说明。 8. 设 31)(=A P ,21 )(=B P ,试就以下三种情况分别求)(A B P : (1)Φ=AB , (2)B A ?, (3) 81 )(=AB P . 9. 已知 41)()()(===C P B P A P ,161 )()(==BC P AC P ,0)(=AB P 求事件C B A ,,全不发生的概率。 10. 每个路口有红、绿、黄三色指示灯,假设各色灯的开闭是等可能的。一个人骑车经过三个路口,试求下列事件的概率:=A “三个都是红灯”=“全红”; =B “全绿”; =C “全黄”; =D “无红”; =E “无绿”; =F “三次颜色相同”; =G “颜色全不相同”; =H “颜色不全相同”。 11. 设一批产品共100件,其中98件正品,2件次品,从中任意抽取3件(分三种情况:一次拿3件;每次拿1件,取后放回拿3次;每次拿1件,取后不放回拿3次),试求: (1)(1)取出的3件中恰有1件是次品的概率; (2)(2)取出的3件中至少有1件是次品的概率。 12. 从9,,2,1,0 中任意选出3个不同的数字,试求下列事件的概率: {}501与三个数字中不含=A ,{}502或三个数字中不含=A 。 13. 从9,,2,1,0 中任意选出4个不同的数字,计算它们能组成一个4位偶数的概率。 14. 一个宿舍中住有6位同学,计算下列事件的概率: (1)6人中至少有1人生日在10月份;

概率论课后习题答案

习题1解答 1、 写出下列随机试验的样本空间Ω: (1)记录一个班一次数学考试的平均分数(设以百分制记分); (2)生产产品直到有10件正品为止,记录生产产品的总件数; (3)对某工厂出厂的产品进行检查,合格的记为“正品”,不合格的记为“次品”,如连续查出了2件次品就停止检查,或检查了4件产品就停止检查,记录检查的结果; (4)在单位圆内任意取一点,记录它的坐标、 解:(1)以n 表示该班的学生人数,总成绩的可能取值为0,1,2,…,100n ,所以该试验的样本空间为 {|0,1,2,,100}i i n n Ω==、 (2)设在生产第10件正品前共生产了k 件不合格品,样本空间为 {10|0,1,2,}k k Ω=+=, 或写成{10,11,12,}.Ω= (3)采用0表示检查到一个次品,以1表示检查到一个正品,例如0110表示第一次与第四次检查到次品,而第二次与第三次检查到的就是正品,样本空间可表示为 {00,100,0100,0101,0110,1100,1010,1011,0111,1101,1110,1111}Ω=、 (3)取直角坐标系,则有22 {(,)|1}x y x y Ω=+<,若取极坐标系,则有 {(,)|01,02π}ρθρθΩ=≤<≤<、 2.设A 、B 、C 为三事件,用A 、B 、C 及其运算关系表示下列事件、 (1) A 发生而B 与C 不发生; (2) A 、B 、C 中恰好发生一个; (3) A 、B 、C 中至少有一个发生; (4) A 、B 、C 中恰好有两个发生; (5) A 、B 、C 中至少有两个发生; (6) A 、B 、C 中有不多于一个事件发生、

概率统计练习题答案

概率统计练习题答案 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

《概率论与数理统计》练习题 2答案 考试时间:120分钟 题目部分,(卷面共有22题,100分,各大题标有题量和总分) 一、选择题(10小题,共30分) 1、A 、B 任意二事件,则A B -=( )。 A 、B A - B 、AB C 、B A - D 、A B 答案:D 2、设袋中有6个球,其中有2个红球,4个白球,随机地等可能地作无放回抽样,连 续抽两次,则使P A ()=1 3成立的事件A 是( )。 A 、 两次都取得红球 B 、 第二次取得红球 C 、 两次抽样中至少有一次抽到红球 D 、 第一次抽得白球,第二次抽得红球, 答案:B 3、函数()0 0sin 01 x F x x x x ππ

A 、ξη= B 、2ξηξ+= C 、2ξηξ= D 、~(2,)B p ξη+ 答案:D 5、设随机变量12,,,n ξξξ???相互独立,且i E ξ及i D ξ都存在(1,2, ,)i n =,又 12,,, ,n c k k k ,为1n +个任意常数,则下面的等式中错误的是( )。 A 、11n n i i i i i i E k c k E c ξξ==??+=+ ???∑∑ B 、11n n i i i i i i E k k E ξξ==??= ???∏∏ C 、11n n i i i i i i D k c k D ξξ==??+= ???∑∑ D 、()111n n i i i i i D D ξξ==??-= ???∑∑ 答案:C 6、具有下面分布密度的随机变量中方差不存在的是( )。 A 、()150050x x x e x ?-≤?=?>? B 、( )2 6 2x x ?-= C 、()312 x x e ?-= D 、()() 42 1 1x x ?π= + 答案:D 7、设随机变量的数学期望和方差均是1m +(m 为自然数),那么 (){}041P m ξ<<+≥( )。 A 、 11m + B 、1m m + C 、0 D 、1m 答案:B 8、设1, , n X X 是来自总体2(, )N μσ的样本, 2 211 11, (),1n n i n i i i X X S X X n n --==--∑∑则以下结论中错误的是( )。 A 、X 与2n S 独立 B 、 ~(0, 1)X N μ σ -

第一章 概率论的基本概念习题答案

第三章 多维随机变量及其分布习题答案 3. 220,(1)(1),4,(,),0.5940, x y x y e e c F x y --<<+∞?--==? ? 其它 . 4. 2012.4(2),()0,X x x x f x ≤≤?-=??,其它201 2.4(34),()0,Y y y y y f y ≤≤?-+=? ? 其它. 5. ???=,0,4),(y x f ,),(其它G y x ∈???+=,0,48)(x x f X ,05.0其它<≤-x ?? ?-=, 0,22)(y y f Y 其它10<≤y . 6. (1) (|)(1),0,1,;,m m n m n P Y m X n C p p n m n -===-=≤否则(|)0P Y m X n ===; (2)(,)(1)/!,0,1,;,m m n m n n P Y m X n C p p e n n m n λλ--===-=≤否则(|)0P Y m X n ===. 7. 10. ⑴0y ≥时|0 ,(|)0 0,x X Y x e f x y x -≥?=?

11. ⑴放回抽样 ⑵ 不放回抽样 X 的条件分布律与上相同,再结合联合分布律可以看出: 放回抽样时独立,不放回抽样时不独立。 12. 1c = ; 当10x -<<时,|1/2,||(|)0, Y X x y x f y x -<-?=? ? 其它 ; 当| |1y <时,|1/(1||),1|| (|)0,X Y y x y f x y --<<-?=? ? 其它 . 13. ⑴ (2|2)5/16,(3|0)1/5P X Y P Y X ====== ; ⑶ ⑷ . ;0.375 . 16. ? ? ?<≥-=--00 ,0,)1()(6/3/z z e e z f z z Z . 17. ⑴(2)30 3!,()00,t T t t e f t t ->?=?≤? ;⑵(3)50()00,t T t t e f t t ->?=?≤?.

概率统计试题及答案

<概率论>试题 一、填空题 1.设 A 、B 、C 是三个随机事件。试用 A 、B 、C 分别表示事件 1)A 、B 、C 至少有一个发生 2)A 、B 、C 中恰有一个发生 3)A 、B 、C 不多于一个发生 2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。则P(B )A U = 3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7,U 则α= 4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为 5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为 6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)k P X k A k ===???则 A=______________ 7. 已知随机变量X 的密度为()f x =? ??<<+其它,01 0,x b ax ,且{1/2}5/8P x >=,则a = ________ b =________ 8. 设X ~2 (2,)N σ,且{24}0.3P x <<=,则{0}P x <= _________ 9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为80 81 ,则该射手的命中率为_________ 10.若随机变量ξ在(1,6)上服从均匀分布,则方程x 2 +ξx+1=0有实根的概率是 11.设3{0,0}7P X Y ≥≥= ,4 {0}{0}7 P X P Y ≥=≥=,则{max{,}0}P X Y ≥= 12.用(,X Y )的联合分布函数F (x,y )表示P{a b,c}X Y ≤≤<= 13.用(,X Y )的联合分布函数F (x,y )表示P{X a,b}Y <<=

华工网络线性代数与概率统计随堂练习答案-全

1.计算?() A. B. C. D. 答题: A. B. C. D. (已提交) 2.行列式? A.3 B.4 C.5 D.6 答题: A. B. C. D. (已提交) 3.利用行列式定义计算n阶行列式:=?( ) A. B. C. D. 答题: A. B. C. D. (已提交)

4.用行列式的定义计算行列式中展开式,的系数。A.1, 4 B.1,-4 C.-1,4 D.-1,-4 答题: A. B. C. D. (已提交) 5.计算行列式=?() A.-8 B.-7 C.-6 D.-5 答题: A. B. C. D. (已提交) 6.计算行列式=?() A.130 B.140 C.150 D.160 答题: A. B. C. D. (已提交) 7.四阶行列式的值等于() A. B.

C. D. 答题: A. B. C. D. (已提交) 8.行列式=?() A. B. C. D. 答题: A. B. C. D. (已提交) 9.已知,则?A.6m B.-6m C.12m D.-12m 答题: A. B. C. D. (已提交) 10.设=,则? A.15|A| B.16|A| C.17|A| D.18|A| 答题: A. B. C. D. (已提交)

11. 设矩阵,求=? A.-1 B.0 C.1 D.2 答题: A. B. C. D. (已提交) 12. 计算行列式=? A.1500 B.0 C.—1800 D.1200 答题: A. B. C. D. (已提交) 13. 齐次线性方程组有非零解,则=?() A.-1 B.0 C.1 D.2 答题: A. B. C. D. (已提交) 14. 齐次线性方程组有非零解的条件是=?()A.1或-3 B.1或3 C.-1或3 D.-1或-3 答题: A. B. C. D. (已提交)

概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。 2. 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中 随机地取一个球,求取到红球的概率。

概率论与数理统计期末考试试题库及答案

概率论与数理统计

<概率论>试题 一、填空题 1.设 A 、B 、C 是三个随机事件。试用 A 、B 、C 分别表示事件 1)A 、B 、C 至少有一个发生 2)A 、B 、C 中恰有一个发生 3)A 、B 、C 不多于一个发生 2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。则P(B )A = 3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7,则α= 4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为 5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为 6.设离散型随机变量X 分布律为{}5(1/2) (1,2,)k P X k A k ===???则A=______________ 7. 已知随机变量X 的密度为()f x =? ??<<+其它,010,x b ax ,且{1/2}5/8P x >=,则a =________ b =________ 8. 设X ~2(2,)N σ,且{24}0.3P x <<=,则{0}P x <= _________ 9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为 8081 ,则该射手的命中率为_________ 10.若随机变量ξ在(1,6)上服从均匀分布,则方程x 2+ξx+1=0有实根的概率是 11.设3{0,0}7P X Y ≥≥=,4{0}{0}7 P X P Y ≥=≥=,则{max{,}0}P X Y ≥= 12.用(,X Y )的联合分布函数F (x,y )表示P{a b,c}X Y ≤≤<= 13.用(,X Y )的联合分布函数F (x,y )表示P{X a,b}Y <<=

考研概率论与数理统计课后答案习题

1 第一章 事件与概率 1.写出下列随机试验的样本空间。 (1)记录一个班级一次概率统计考试的平均分数(设以百分制记分)。 (2)同时掷三颗骰子,记录三颗骰子点数之和。 (3)生产产品直到有10件正品为止,记录生产产品的总件数。 (4)对某工厂出厂的产品进行检查,合格的记上“正品”,不合格的记上“次品”,如连续查出2个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。 (5)在单位正方形内任意取一点,记录它的坐标。 (6)实测某种型号灯泡的寿命。 解 (1)}, 100,,1,0{n i n i ==Ω其中n 为班级 人数。 (2)}18,,4,3{ =Ω。 (3)},11,10{ =Ω。 (4)=Ω{00,100,0100,0101,0110,1100,1010,1011,0111,1101,0111,1111},其中 0表示次品,1表示正品。 (5)=Ω{(x,y)| 0

2 (1)A 发生,B 与C 不发生。 (2)A 与B 都发生,而C 不发生。 (3)A ,B ,C 中至少有一个发生。 (4)A ,B ,C 都发生。 (5)A ,B ,C 都不发生。 (6)A ,B ,C 中不多于一个发生。 (7)A ,B ,C 至少有一个不发生。 (8)A ,B ,C 中至少有两个发生。 解 (1)C B A ,(2)C AB ,(3)C B A ++,(4)ABC ,(5)C B A , ( 6 ) C B C A B A ++或 C B A C B A C B A C B A +++, (7)C B A ++, ( 8 ) BC AC AB ++或 ABC BC A C B A C AB ??? 3.指出下列命题中哪些成立,哪些不成立,并作图说明。 (1)B B A B A = (2)AB B A = (3)AB B A B =?则若, (4)若 A B B A ??则, (5)C B A C B A = (6) 若Φ =AB

概率论与数理统计练习题及答案

概率论与数理统计习题 一、选择题(在每个小题四个备选答案中选出一个正确答案,填在题末的括号中) 1.设)4,5.1(~N X ,且8944.0)25.1(=Φ,9599.0)75.1(=Φ,则P{-2=? ≤?,则q=_____ (A)1/2 (B)1 (C)-1 (D)3/2 4.事件A ,B 为对立事件,则_____不成立。 (A) ()0P AB = (B) ()P B A φ= (C) ()1P A B = (D) ()1P A B += 5.掷一枚质地均匀的骰子,则在出现奇数点的条件下出现3点的概率为____ (A)1/3 (B)2/3 (C)1/6 (D)3/6 6.设(|)1P B A = ,则下列命题成立的是_____ A . B A ? B . A B ? C.A B -=Φ D.0)(=-B A P 7.设连续型随机变量的分布函数和密度函数分别为()F x 、()f x ,则下列选项中正确的 是_____ A . 0()1F x ≤≤ B .0()1f x ≤≤ C.{}()P X x F x == D.{}()P X x f x == 8.设 ()2~,X N μσ,其中μ已知,2σ未知,1234,,,X X X X 为其样本, 下列各项不是 统计量的是____ A.4114i i X X ==∑ B.142X X μ+- C.4 22 1 1 ()i i K X X σ==-∑ D.4 2 1 1()3i i S X X ==-∑ 9.设,A B 为两随机事件,且B A ?,则下列式子正确的是_____ A . ()()P A B P A += B .()()P AB P A =

概率论练习册

第一章 概率论的基本概念 §1.1 -1.2 一、选择题 1.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为( ) A 、甲种产品滞销,乙种产品畅销 B 、甲乙两种产品均畅销 C 、甲种产品滞销 D 、甲种产品滞销或乙种产品畅销 2.设必然事件123456{,,,,,}ωωωωωωΩ=其中(1,2,3,4,5,6)i i ω=是基本事件,事件 1235{,,,}A ωωωω=,24{,}B ωω=,123{,,}C ωωω=,则下列选项正确的是( ) A 、A B ? B 、B A = C 、A C -与B C -互斥 D 、A C -与B 逆 二、填空题 1.同时掷两颗骰子,记录两颗骰子的电数之和,则样本空间Ω= . 2.上题中,设事件A 表示“点数之和为偶数”,事件B 表示“点数之和大于7” 事件C 表示“点数之和为小于5的偶数”,则A B ?= ,A B -= , AB = ,A B C ??= 。 三、设事件A 、B 、C 分别表示某运动员参加的三个项目,用A 、B 、C 的运算关系表示下列事件: (1)该运动员只参加A 项目,不参加B 、C 项目; (2)该运动员参加A 、B 两项目,不参加C 项目; (3)该运动员参加全部三个项目; (4)该运动员三个项目都不参加; (5)该运动员仅参加一项; (6)该运动员至少参加一项; (7)该运动员至多参加一项; (8)该运动员至少参加两项.

§1.3 一、从5双不同的鞋中任取4只,求其中恰有一双配对以及其中至少有两只配对的概率. 二、将n只球随机地放入() N N n ≥个盒子中去,试求每个盒子最多有一只球的概率. 三、随机的向由 1 01, 2 y x <<<所围成的正方形内掷一点,点落在该正方形内任何 区域的概率与区域面积成正比,求原点与该点的连线与x轴的夹角小于3 4 π的概率. 四、将三个球随机地放入4个杯子中去,求杯子中球的最多个数分别为1,2,3的概率.

概率统计试题及答案(本科完整版)

一、 填空题(每题2分,共20分) 1、记三事件为A ,B ,C . 则用A ,B ,C 及其运算关系可将事件,“A ,B ,C 中只有一个发生”表示为 . 2、匣中有2个白球,3个红球。 现一个接一个地从中随机地取出所有的球。那么,白球比红球早出现的概率是 2/5 。 3、已知P(A)=0.3,P (B )=0.5,当A ,B 相互独立时, 06505P(A B )_.__,P(B |A )_.__?==。 4、一袋中有9个红球1个白球,现有10名同学依次从袋中摸出一球(不放回),则第6位同学摸出白球的概率为 1/10 。 5、若随机变量X 在区间 (,)a b 上服从均匀分布,则对a c b <<以及任意的正数0e >, 必有概率{}P c x c e <<+ =?+?-?e ,c e b b a b c ,c e b b a 6、设X 服从正态分布2 (,)N μσ,则~23X Y -= N ( 3-2μ , 4σ2 ) . 7、设1128363 X B EX DX ~n,p ),n __,p __==(且= ,=,则 8、袋中装有5只球,编号为1,2,3,4,5,在袋中同时取出3只,以X 表示取出3只球中的最大号码。则X 的数学期望=)(X E 4.5 。 9、设随机变量(,)X Y 的分布律为 则条件概率 ===}2|3{Y X P 2/5 . 10、设121,,X X Λ来自正态总体)1 ,0(N , 2 129285241?? ? ??+??? ??+??? ??=∑∑∑===i i i i i i X X X Y ,当常数 k = 1/4 时,kY 服从2χ分布。 二、计算题(每小题10分,共70分) 1、三台机器因故障要人看管的概率分别为0.1,0.2,0.15,求: (1)没有一台机器要看管的概率 (2)至少有一台机器不要看管的概率 (3)至多一台机器要看管的概率 解:以A j 表示“第j 台机器需要人看管”,j =1,2,3,则: ABC ABC ABC U U

概率论与数理统计课后习题及答案

习题八 1. 已知某炼铁厂的铁水含碳量在正常情况下服从正态分布N,.现在测了5炉铁水,其含碳量(%)分别为 问若标准差不改变,总体平均值有无显着性变化(α=) 【解】 0010 /20.025 0.025 : 4.55;: 4.55. 5,0.05, 1.96,0.108 4.364, (4.364 4.55) 3.851, 0.108 . H H n Z Z x x Z Z Z α μμμμ ασ ==≠= ===== = - ===- > 所以拒绝H0,认为总体平均值有显着性变化. 2. 某种矿砂的5个样品中的含镍量(%)经测定为: 设含镍量服从正态分布,问在α=下能否接收假设:这批矿砂的含镍量为. 【解】设 0010 /20.005 0.005 : 3.25;: 3.25. 5,0.01,(1)(4) 4.6041 3.252,0.013, (3.252 3.25) 0.344, 0.013 (4). H H n t n t x s x t t t α μμμμ α ==≠= ==-== == - === < 所以接受H0,认为这批矿砂的含镍量为. 3. 在正常状态下,某种牌子的香烟一支平均1.1克,若从这种香烟堆中任取36支作为样本;测得样本均值为(克),样本方差s2=(g2).问这堆香烟是否处于正常状态.已知香烟(支)的重量(克)近似服从正态分布(取α=). 【解】设 0010 /20.025 2 0.025 : 1.1;: 1.1. 36,0.05,(1)(35) 2.0301,36, 1.008,0.1, 6 1.7456, 1.7456(35) 2.0301. H H n t n t n x s x t t t α μμμμ α ==≠= ==-=== == === =<= 所以接受H0,认为这堆香烟(支)的重要(克)正常. 4.某公司宣称由他们生产的某种型号的电池其平均寿命为小时,标准差为小时.在实验室测试了该公司生产的6只电池,得到它们的寿命(以小时计)为19,18,20,22,16,25,问这些结果是否表明这种电池的平均寿命比该公司宣称的平均寿命要短设电池寿命近似地

概率论与数理统计练习题集及答案

概率论与数理统计练习题集及答案 一、选择题: 1.某人射击三次,以i A 表示事件“第i 次击中目标”,则事件“三次中至多击中目标一次”的正确表示为( ) (A )321A A A ++ (B )323121A A A A A A ++ (C )321321321A A A A A A A A A ++ (D )321A A A 2.掷两颗均匀的骰子,它们出现的点数之和等于8的概率为( ) (A ) 365 (B )364 (C )363 (D )36 2 3.设随机事件A 与B 互不相容,且0)(,0)(>>B P A P ,则( ) (A ))(1)(B P A P -= (B ))()()(B P A P AB P = (C )1)(=+B A P (D )1)(=AB P 4.随机变量X 的概率密度为???<≥=-00 )(2x x ce x f x ,则=EX ( ) (A )21 (B )1 (C )2 (D )4 1 5.下列各函数中可以作为某随机变量的分布函数的是( ) (A )+∞<<∞-+=x x x F ,11)(2 1 (B )?????≤>+=0 001)(2 x x x x x F (C )+∞<<∞-=-x e x F x ,)(3 (D ) +∞<<∞-+=x x x F ,arctan 21 43)(4π 6.已知随机变量X 的概率密度为)(x f X ,令X Y 2-=,则Y 的概率密度 )(y f Y 为( )

(A ))2(2y f X - (B ))2(y f X - (C ))2 (21y f X -- (D ))2 (2 1y f X - 7.已知二维随机向量),(Y X 的分布及边缘分布如表 h g p f e d x c b a x p y y y X Y Y j X i 61818121321,且X 与Y 相互独立,则=h ( ) (A )81 (B )8 3 (C )4 1 (D )3 1 8.设随机变量]5,1[~U X ,随机变量)4,2(~N Y ,且X 与Y 相互独立,则=-)2(Y XY E ( ) (A )3 (B )6 (C )10 (D )12 9.设X 与Y 为任意二个随机变量,方差均存在且为正,若 EY EX EXY ?=,则下列结论不正确的是( ) (A )X 与Y 相互独立 (B )X 与Y 不相关 (C )0),cov(=Y X (D )DY DX Y X D +=+)( 答案: 1. B 2. A 3.D 4.A 5.B 6. D 7. D 8. C 9. A 1.某人射击三次,以i A 表示事件“第i 次击中目标”,则事件“三次中恰好击中目标一次”的正确表示为( C ) (A )321A A A ++ (B )323121A A A A A A ++

相关文档