文档库 最新最全的文档下载
当前位置:文档库 › 复数乘除法极坐标

复数乘除法极坐标

复数乘除法极坐标
复数乘除法极坐标

学之导教育中心教案

学生: 梁庭苇授课时间: 课时: 2 年级: 高二教师:廖

课题复数乘除法、极坐标

教学构架

一、知识回顾

二、错题再现

三、知识新授

四、知识小结

教案内容

一、知识回顾

1、几何证明选讲

二、错题再现

1、如图ABC中,D是AB的三等分点,//

DE BC,//

EF BC,2

AF=,则AB=__________

F

E

D

A

B C

2、如图,在ABC中,AD是BC边上中线,AE是BC边上的高,DAB DBA

∠=∠

,18

AB=,12

BE=,则CE=__________.

本次内容掌握情况总结教师签字学生签字

3、如图所示,圆O 的直径AB=6,C 圆周上一点,BC=3,过C 作圆的切线l ,过A 作l 的垂线AD AD 分别与直线l 、圆交于点D 、E ,则∠DAC = __,线段AE 的长为 __.

4、如图所示,从圆O 外一点A 引圆的切线AD 和割线ABC ,已知AD=23,AC=6,圆O 的半径为3, 则圆心O 到AC 的距离为________.

.

5、如图所示,圆O 上一点C 在直径AB 上的射影为D ,CD=4,BD=8,则圆O 的半径等于 .

6、如图,四边形ABCD 内接于⊙O ,BC 是直径,MN 切⊙O 于A ,∠MAB=250,则∠D= ___ .

7.如图,AB 是圆O 的直径,直线CE 和圆O 相切于点C ,AD ⊥CE 于D ,若AD=1,∠ABC=300,

则圆O 的面积是______.

8.如图,⊙O 的割线PAB 交⊙O 于A 、B 两点,割线PCD 经过圆心O ,PE 是⊙O 的切线。已知PA=6, AB=3

17,PO=12,则PE=____ ⊙O 的半径是_______.

三、知识新授

(一)复数的乘除运算

(1)复数的乘法:(a+bi)(c+di)=

(2)共轭复数: a+bi 的共轭复数是

(3)复数的除法:(a+bi)÷(c+di)=

基础巩固

1、计算

(1)(3+4i)(3-4i) (2)(1+i)2 (3)(7-6i)(-3i) (4)

i -+1i 1 (5)i 43i 7++ (6)i i 2i 1-+?+-)()(

2、设a ∈R ,且2()a i i +为正实数,求a =

3、复数()221i i +=

4、复数 32(1)i i +=

5、设z 的共轭复数是z ,或z +z =4,z ·z =8,则

z

z 等于

6、复数31()i i -等于

7、复数

(2)12i i i

+-等于

8、复数

11212i i +-+-的虚部是

9、已知复数1z i =-,则2

1z z =-

10、已知复数z 与(z+2)2-8i 都是纯虚数,求z

11、已知z 1=5+10i,z 2=3-4i,

2111z 1z z += 求z

12、已知(1+2i)z =4+3i,求z 及

z z

13、已知复数z 1,z 2满足条件|z 1|=2,|z 2|=3,3z 1+2z 2=6,求z 1和z 2。

(三)极坐标

1、极坐标概念:

2、极坐标与直角坐标的互化公式:

基础巩固

1 将下列极坐标转化为直角坐标。 (1)(5,

3

2π);(2)(3,2π);(3)(4,6π);(4)(4,4π);(5)(3,0)

2、将下列直角坐标化为极坐标 (1)(-3,-1);(2)(3,3);(3)(0,35-);(4)(27,0);(5)(-2,-23)

(四)圆与直线的极坐标方程

基础巩固

1、把下列直角坐标方程化成极坐标方程:

(1)x=4; (2)y+2=0; (3)2x-3y-1=0; (4)x 2-y 2=16;

2、把下列极坐标方程化成直角坐标

(1)ρsin θ=2; (2)ρ(2cos θ+5sin θ)-4=0;

(3)ρ=-10cos θ; (4)ρ=2cos θ-4sin θ.

3、已知直线的极坐标方程为ρsin(θ+

4π)=2

2,求点A(2,47π)到这条直线的距离。

4、已知直线极坐标方程为ρsin(θ+

6π)=2,求极点在直线l 上的射影的极坐标。

5、在极坐标中,曲线ρ=-4sin θ和ρcos θ=1相交于点A ,B,求|AB|

6、在极坐标中,有定点A(1,2

π),点B 在直线l1:ρ(cos θ+sin θ)=0上运动,当线段AB 最短 时,点B 的极坐标是 。

四、知识小结

复数代数形式的乘除运算教案

复数代数形式的乘除运算教案 教学目标: 1 知识与技能:理解并掌握复数的代数形式的乘法与除法运算法则,深刻理解它是乘法运算的逆运算 2 过程与方法:理解并掌握复数的除法运算实质是分母实数化类问题 3 情感、态度与价值观:复数的几何意义单纯地讲解或介绍会显得较为枯燥无味,学生不易接受,教学时,我们采用讲解或体验已学过的数集的扩充的,让学生体会到这是生产实践的需要从而让学生积极主动地建构知识体系。 教学重点:复数代数形式的除法运算。 教学难点:对复数除法法则的运用。 课型:新知课 教具准备:多媒体 教学过程: 复习提问: 已知两复数z1=a+bi, z2=c+di(a,b,c,d是实数) 加法法则:z1+z2=(a+bi)+(c+di)=(a+c)+(b+d)i. 减法法则:z1-z2=(a+bi)-(c+di)=(a-c)+(b-d)i. 即:两个复数相加(减)就是 实部与实部,虚部与虚部分别相加(减) (a+bi )±(c+di) = (a±c) + (b±d)i

复数的加法运算满足交换律: z1+z2=z2+z1. 复数的加法运算满足结合律: (z1+z2)+z3=z1+(z2+z3) 讲解新课: 一.复数的乘法运算规则: 规定复数的乘法按照以下的法则进行: 设z1=a+bi,z2=c+di(a、b、c、d∈R)是任意两个复数,那么它们的积(a+bi)(c+di)=(ac-bd)+(bc+ad)i. 其实就是把两个复数相乘,类似两个多项式相乘,在所得的结果中把i2换成-1,并且把实部与虚部分别合并.两个复数的积仍然是一个复数. 探究: 复数的乘法是否满足交换律、结合律? 乘法对加法满足分配律吗? 二.乘法运算律: (1)z1(z2z3)=(z1z2)z3 证明:设z1=a1+b1i,z2=a2+b2i,z3=a3+b3i(a1,a2,a3,b1,b2,b3∈R). ∵z1z2=(a1+b1i)(a2+b2i)=(a1a2-b1b2)+(b1a2+a1b2)i, z2z1=(a2+b2i)(a1+b1i)=(a2a1-b2b1)+(b2a1+a2b1)i. 又a1a2-b1b2=a2a1-b2b1,b1a2+a1b2=b2a1+a2b1. ∴z1z2=z2z1. (2)z1(z2+z3)=z1z2+z1z3

复数概念坐标及运算

复数概念,坐标及其运算 1已知复数),(,)32(2,)1(5321R y x i x y z i y x z ∈-+=++-=,若21z z =,则 =x ,=y 2已知实数m 及x 满足0)12(2=-+--i m x i x ,则=m ,=x 3复数),(,|)|(22R y x i b a b a ∈++-为纯虚数的充要条件为 4若复数R b a ∈,,则复数i b b a a )26()54(22-+-++-表示的点在 象限 5已知复数z 满足1||=-i z ,则|1|-z 的取值范围是 6设复数)0,,(,≠∈+=b R b a bi a z ,满足|10|3|152|+=+z z ,则=z 7满足条件|43|||i i z +=-的复数z 在复平面对应的点的轨迹是 8若复数z 满足2|43|=-+i z ,则||z 的最小值与最大值分别是 9若)|,(,422R b a b a ∈=+,复数i b a z )2(++=,求||z 的取值范围 10复数i z i z i z 21,2,21321--=+-=+=,它们在复平面上的对应点是一个正方形的ABCD 的三个顶点,求第四个顶点D 对应的复数。 11虚数z 满足3||=z ,且 z a a z +是实数,则实数=a 12若虚数z 满足83=z ,则=+++2223z z z 满足n n i i )1()1(-=+的最小正整数n 是 12设虚数),(,R y x yi x z ∈+=,则满足5||=z 的z 共有 个 13计算=-+-++++200820082)11(1i i i i i

复数的基本知识

补充复数的基本知识: 1、虚数单位 由于在实数集R 内负数不能开平方,所以在实数集内方程012=+x 无解。引入虚数,虚数单位符号为j ,并规定 (1) 它的平方等于-1,即12-=j ; (2)j 可以和实数一起进行四则运算,原有的加、减运算规律仍然成立。 性质:j j =1;12-=j ;j j -=3;14=j 一般地,对于任意整数n ,有: 14=j n ;j j n =+14;124-=+j n ;j j n -=+34 2、复数集 定义:形如),(R b a bj a ∈+的数称为复数。 通常用大写拉丁字母Z 表示一个复数,即),(R b a bj a Z ∈+= 其中 a 称为复数Z 的实部,a Z =)Re(; b 称为复数Z 的虚部,b Z =)Im(; 举例:j 32+,j 51-+,j 3的实部、虚部? ??? ???????≠=≠???=+)0a ()0a ()0b ()0b (非纯虚数纯虚数虚数无理数有理数实数复数bj a 3、复数的相等及共轭复数 定义:如果两个复数的实部相等,虚部也相等,则称这两个复数相等,即 d b c,a dj c ==?+=+bj a 定义:如果两个复数的实部相等,虚部互为相反数,则称这两个复数互为

共轭复数。 复数bj a Z +=的共轭复数记作bj a Z -= 例:3j 2j,1++的共轭复数 注:b a bj a bj a 22))((+=-+ 4、复数的几何表示(复平面) 任何一个复数bj a +都可以由一对有序实数)b ,a (唯一确定;反之,任何一对有序实数)b ,a (都能唯一确定一个复数bj a +;因此,复数bj a Z +=与平面直角坐标系中的点)b ,a (Z 是一一对应关系。于是,可以在平面直角坐标系中用横坐标为a ,纵坐标为b 的点)b ,a (Z 表示复数bj a Z +=。 用来表示复数的直角坐标平面称为复平面。 复数bj a Z +=与复平面上的点)b ,a (Z 是一一对应关系。即 复数bj a Z +=?点)b ,a (Z 矢量(或向量):既有大小又有方向。矢量可以用带箭头的有向线段来表示,箭头的方向表示矢量的方向,线段的长度表示矢量的大小。如下图所示:

3.2.2 复数代数形式的乘除运算教学设计

《复数代数形式的乘除运算》的教学设计

i 2换成-1,并且把实部与虚部分别合并.两个复数的积仍然是一个复数. 例1 计算( )()12i i + ()()()2123i i -+ 例2 计算 (1-2i)(3+4i)(-2+i) 练习1 计算 )1)(23)(2()23)(1)(1(i i i i +--+ )]2)(1)[(21)(4() 2)](1)(21)[(3(i i i i i i ++-++- 2.复数乘法的运算律 对任意复数z 1、z 2、z 3∈C ,有 (1)z 1(z 2z 3)=(z 1z 2)z 3 (2)z 1(z 2+z 3)=z 1z 2+z 1z 3 (3)z 1(z 2+z 3)=z 1z 2+z 1z 3. 练习2 计算:(1)(3+4i) (3-4i) ; (2)(1+ i)2. 3.共轭复数 当两个复数的实部相等,虚部互为相反数时,这两个复数叫 做互为共轭复数虚部不等于0的两个共轭复数也叫做共轭虚数。 通常记复数z 的共轭复数为z 。 3.复数除法 满足(c+di)(x+yi)=(a+bi)的复数x+yi(x,y ∈R)叫复数a+bi 除以复数c+di 的 商,记为:(a+bi)÷(c+di)或者di c bi a ++. 除法法则 22 ()()[()]()()()a bi a bi c di ac bi di bc ad i c di c di c di c d ++-+?-+-==++-+ 222222 ()()ac bd bc ad i ac bd bc ad i c d c d c d ++-+-==++++. ∴(a +bi )÷(c +di )= i d c ad bc d c bd ac 2 222+-+++. 利用(c +di )(c -di )=c 2+d 2.于是将di c bi a ++的分母有理化得: 例3 计算(12)(34)i i +÷- 四、考点突破 由不同的小组完成相应的对照组,强化学生对复数的乘除运算法则的理解和掌握,同时与多项式乘法类比, 复数代数形式的乘法也满足相应的运算律及乘法公式。 [来源:学.科.网] 理解共轭复数的定义,了解共轭复数的一些性质,并会应用待定系数方法,方程思想解决复数问题。 类比已有的无理分式化简即分母有理化思想方法,(c +di )·(c -di )=c 2+d 2是正实数.所以可以分母实数化. 把这种方法叫做分母实数化法 强化巩固

定积分复数极坐标参数方程理

第三讲 定积分 微积分 【ME 恒学课堂之定积分微积分基础把控】 1. 和式()5 11i i y =+∑可表示为( ) A.(y 1+1)+(y 5+1) B.y 1+y 2+y 3+y 4+y 5+1 C.y 1+y 2+y 3+y 4+y 5+5 D.(y 1+1)(y 2+1)…(y 5+1) 2. 关于定积分3 321(2)x x dx -+?下列说法正确的是( ) 3. 求由曲线y=3e x 与直线x=2,y=3围成的图形的面积时,若选择x 为积分变量,则积分区间为________ 4. 下列各阴影部分面积s 不可以用()()b a s f x g x dx =-??? ??表示的是( ) A. B.

C. D.

5. 计算3 2 (32)= x dx +? 6. 定积分20162015(2016)= dx ? 7. 定积分2 1 ()= x dx -? 8. 用定积分的几何意义求 420 (16)=x dx -?的值 9. 曲线x y cos =与直线0=x ,π=x ,0=y 所围成平面图形面积等于________. 10. 若?=+1 02)2(dx k x ,则__________=k . 11. 根据?=π 200sin xdx 推断:求直线x=0,x=π2,y=0和正弦曲线y=sinx 所围 成的曲边梯形面积下列结论正确的是( ) A .面积为0 B .曲边梯形在x 轴上方的面积大于在x 轴下方的面积 C .曲边梯形在x 轴上方的面积小于在x 轴下方的面积 D .曲边梯形在x 轴上方的面积等于在x 轴下方的面积 12. 由曲线y =x 2,y =x 3围成的封闭图形面积为 13. 分如图所示,在一个长为π,宽为2的矩形OABC 内,曲线y =sinx(0≤x ≤π)与x 轴围成如图所示的阴影部分,向矩形OABC 内随机投一点(该点落在矩形OABC 内任何一点是等可能的),则所投的点落在阴影部分的 概率是( ) A. 1 π B.2 π C.3 π D.π4 14. 甲、乙两人进行一项游戏比赛,比赛规则如下:甲从区间[0,1]上随机等可能地抽取一个实数记为b ,乙从区间[0,1]上随机等可能地抽取一个实数记为c(b 、c 可以相等),若关于x 的方程x 2+2bx +c =0有实根,则甲获胜,否则乙获胜,

复数 教案(绝对经典)

复 数 复数的基本概念、复数相等的充要条件以及复数的代数运算是高考的热点,并且一般在前三题的位置,主要考查对复数概念的理解以及复数的加减乘除四则运算,难度较小. 【复习指导】 1.复习时要理解复数的相关概念如实部、虚部、纯虚数、共轭复数等,以及复数的几何意义. 2.要把复数的基本运算作为复习的重点,尤其是复数的四则运算与共轭复数的性质等.因考题较容易,所以重在练基础。 基础梳理 1.复数的有关概念 (1)复数的概念 形如a +b i (a ,b ∈R )的数叫作复数,其中a ,b 分别是它的实部和虚部.若b =0,则a +b i 为实数,若b ≠0,则a +b i 为虚数,若a =0且b ≠0,则a +b i 为纯虚数. (2)复数相等:a +b i =c +d i ?a =c 且b =d (a ,b ,c ,d ∈R ). (3)共轭复数:a +b i 与c +d i 共轭?a =c ,b =-d (a ,b ,c ,d ∈R ). (4)复平面 建立直角坐标系来表示复数的平面,叫作复平面.x 轴叫作实轴,y 轴叫作虚轴.实轴上的点都表示实数;除原点外,虚轴上的点都表示纯虚数;各象限内的点都表示非纯虚数. (5)复数的模 向量OZ →的模r 叫作复数z =a +b i 的模,记作__|z |__或|a +b i|,即|z |=|a +b i|=a 2+b 2. 2.复数的几何意义 (1)复数z =a +b i(a ,b ∈R )的模|z |=a 2+b 2,实际上就是指复平面上的点Z 到原点O 的距离;|z 1-z 2|的几何意义是复平面上的点Z 1、Z 2两点间的距离. (2)复数z 、复平面上的点Z 及向量OZ → 相互联系,即z =a +b i(a ,b ∈R )?Z (a ,b )?OZ → . 3.复数的四则运算 设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则 (1)加法:z 1+z 2=(a +b i)+(c +d i)=(a +c )+(b +d )i ; (2)减法:z 1-z 2=(a +b i)-(c +d i)=(a -c )+(b -d )i ; (3)乘法:z 1·z 2=(a +b i)·(c +d i)=(ac -bd )+(ad +bc )i ; (4)除法:z 1z 2 =a +b i c +d i =(a +b i )(c -d i )(c +d i )(c -d i )=(ac +bd )+(bc -ad )i c 2+d 2(c +d i ≠0).

复数乘除法公开课优秀教案

§3.2.2复数代数形式的乘除运算 【学习目标】 1.理解并掌握复数的代数形式的乘法与除法运算法则,深刻理解它是乘法运算的逆运算; 2.理解并掌握复数的除法运算实质是分母实数化类问题; 【重点难点】 重点:复数代数形式的除法运算. 难点:对复数除法法则的运用. 【学法指导】 复数乘法运算是按照多项式与多项式相乘展开得到,在学习时注意将2 i 换成1-;除法是乘法的逆运算,所以复数的除法运算可由乘法运算推导获得,但是也可由互为共轭复数的两个复数的乘积为实数,先将复数的分母实数化,再化简可得,学习时注意体会第二种方法的优势和本质. 【知识链接】 1.复数1z 与2z 的和的定义:()()()()i d b c a di c bi a z z +++=+++=+21; 2.复数1z 与2z 的差的定义:()()()()i d b c a di c bi a z z -+-=+-+=-21; 3.复数的加法运算满足交换律:1221z z z z +=+; 4.复数的加法运算满足结合律: ()()321321z z z z z z ++=++; 5.复数()R b a bi a z ∈+=,的共轭复数为bi a z -=. 【问题探究】 探究一、复数的乘法运算 引导1:乘法运算规则 设bi a z +=1、di c z +=2()R d c b a ∈,,,是任意两个复数,规定复数的乘法按照以下的法则进行: =?21z z 其实就是把两个复数相乘,类似两个多项式相乘,在所得的结果中把2 i 换成-1,并且 把实部与虚部分别合并.两个复数的积仍然是一个复数. 引导2:试验证复数乘法运算律 (1)1221z z z z ?=?

复数的三角形式及乘除运算

复数的三角形式及乘除运算 一、主要内容: 复数的三角形式,模与辐角的概念及几何意义,用三角形式进行复数乘除运算及几何意义. 二、学习要求: 1.熟练进行复数的代数形式与三角形式的互化,会求复数的模、辐角及辐角主值. 2.深刻理解复数三角形式的结构特征,熟练运用有关三角公式化复数为三角形式. 3.能够利用复数模及辐角主值的几何意义求它们的范围(最值). 4.利用复数三角形式熟练进行复数乘除运算,并能根据乘除运算的几何意义解决相关问题. 5.注意多种解题方法的灵活运用,体会数形结合、分类讨论等数学思想方法. 三、重点: 复数的代数形式向三角形式的转换,复数模及复数乘除运算几何意义的综合运用. 四、学习建议: 1.复数的三角形式是彻底解决复数乘、除、乘方和开方问题的桥梁,相比之下,代数形式在这些方面显得有点力不从心,因此,做好代数形式向三角形式的转化是非常有必要的. 前面已经学习过了复数的另两种表示.一是代数表示,即Z=a+bi(a,b ∈R).二是几何表示,复数Z 既可以用复平面上的点Z(a,b)表示,也可以用复平面上的向量 来表示.现在需要学习复数的三角表示.既用复数Z 的 模和辐角来表示,设其模为r ,辐角为θ,则Z=r(cosθ+isinθ)(r≥0). 既然这三种方式都可以表示同一个复数,它们之间一定有内在的联系并能够进行互化. 代数形式r= 三角形式 Z=a+bi(a,b ∈R) Z=r(cosθ+isinθ)(r≥0) 复数三角形式的结构特征是:模非负,角相同,余弦前,加号连.否则不是三角形式.三角形式中θ应是复数Z 的一个辐角,不一定是辐角主值. 五、基础知识 1)复数的三角形式 ①定义:复数z=a+bi (a,b ∈R )表示成r (cos θ+ i sin θ)的形式叫复数z 的三角形式。即z=r (cos θ + i sin θ) 其中z r = θ为复数z 的辐角。 ②非零复数z 辐角θ的多值性。 始边,向量oz → 所在的射线为终边的角θ叫复数z=a+bi 的辐角 以ox 轴正半轴为因此复数z 的辐角是θ+2k π(k ∈z ) ③辐角主值 表示法;用arg z 表示复数z 的辐角主值。 2π)的角θ叫辐角主值 02≤

13.2 复数的坐标表示(含答案)

【课堂例题】 例1.(1)在复平面内,描出下列复数的点:25,4,24,5,3i i i i +-+--; (2)写出向量,,,,OA OB OC OD AB 所表示的复数. 例2.计算下列复数的模: (1)34z i =+ (2)12z = + (3)4z i =- 例3.设z ∈C ,满足下列条件的点Z 的集合是什么? (1)||2z = (2)2||3z ≤≤ 课堂练习 1.已知复数,,{0,1,2,3,4,5,6,7,8,9}z a bi a b =+∈ (1)表示的复数对应的点在实轴上的有几个? (2)表示的复数对应的点在虚轴上的有几个? 2.复数2 (2)(16),z m m i m R =-+-∈在复平面上所对应的点在第四象限,求m 的取值范围. 3.计算下列复数的模 012cos15sin15,|23|3z i z i i =+=-+ 4.设z ∈C 且||3,|Re |2z z ≤≥,在复平面内,复数z 对应的点Z 的集合是什么图形?

【知识再现】 1.对于每一个复数,,z a bi a b R =+∈在复平面内可以找到唯一的点 及向量 与之对应,其中实数所对应的点都在 上,纯虚数所对应的点都在 上. 2.复数,,z a bi a b R =+∈的模||z = ,它的几何意义是 ,特别的,当复数z 是实数时,实数的模就是该实数的 . 【基础训练】 1.(1)若复数z 与复平面内的点(1,9)Z -对应,则复数z =______________; (2)(0,3)A -,则向量OA 所表示的复数z = . 2.计算下列复数的模: (1) |2|-= ; (2) | |33 += . 3.已知复数z 的模为3,若Re 2z =,则z = . 4.(1)已知(5,1),(3,2)OA OB ==,则AB 在复平面上所对应的复数是( ) A.2i -+ B.32i + C.23i - D.23i -+ (2)在复平面上,平行于y 轴的非零向量所对应的复数一定是( ) A.实数; B.虚数且非纯虚数; C.纯虚数; D.无法确定. 5.求实数m 取何值时,复数22 (815)(514)z m m m m i =-++--所对应的点Z 分别满足下列条件.(1)点Z 在虚轴上;(2)点Z 在第四象限. 6.根据下列条件,求复数z : (1)||z =Im 2Re z z =; (2)2||74z z i =-+. 7.设复数z ∈C ,在复平面内画出满足下列条件的复数z 的对应点Z 的集合所表示的图形: (1)1||2z ≤≤ (2)||3,|Im ||Re |z z z =≥

复数的代数形式的乘除运算优秀教案

3.2.2 复数地代数形式地乘除运算 授课人:姚晓燕授课班级:2014级14班 教学要求:掌握复数地代数形式地乘、除运算. 教学重点:复数地代数形式地乘除运算及共轭复数地概念 教学难点:乘除运算 教学过程: 一、知识回顾 复数地加/减运算法则:________________________________________________. 加法运算规律:对任意z 1,z 2,∈C.有交换律_____________________________. 加法运算规律:对任意z 1,z 2,z 3∈C.有结合律___________________________________. 1. 复数乘法运算:我们规定,复数乘法法则如下: 2. 设z 1=a+bi z 2=c+di 是任意两个复数,那么它们地乘积为:(a+bi )(c+di)=_____________. 想一想:复数地乘法与多项式地乘法有何不同?___________________________________._______________________________________________. 注意:两个复数地积是一个确定地复数 3. 应用举例1 计算 (3+4i)(-2-3i) 变式1:(1)若复数(1+b i)(2+i)是纯虚数(i 是虚数单位,b 是实数),则b 等于() A .2B.12C .-12 D .-2 变式2:计算 ⑴(1+i)2⑵(3+4i)(3-4i)

3.共轭复数 定义_____________________________________________________________. 记法:复数z=a+b i 地共轭复数记作______________________________________. 口答:说出下列复数地共轭复数 ⑴z=2+3i⑵z= -6i⑶z= 3 思考 :若z1 , z2是共轭复数,那么 ⑴在复平面内,它们所对应地点有怎样地位置关系? ⑵z1.z2是一个怎样地数? (3)z1与z2地模有何关系? 4.探究:复数地乘法是否满足交换律,结合律以及乘法对加法地分配律? 对任意复数z1=a+bi,z2=c+di,z3=m+ni 则z1·z2=(a+bi)(c+di)= 而z2·z1= (c+di)(a+bi)= ∴z1·z2= 同理可得: 5.乘法运算律 对任意z1 , z2 , z3∈C. 有 z1·z2=(交换律) (z1·z2)·z3= (结合律) z1(z2+z3)=(分配律) 6.复数地除法法则 探究:我们规定复数地除法是乘法地逆运算,试探究复数除法地法则. (a+bi) (c+di)=____________________________________________________(c+di≠0) 步骤—————————————————————————————————

复数的乘除法运算练习题(教师版)

复数的乘除法运算练习题(教师版) 1. i 为虚数单位,1i +1i 3+1i 5+1i 7等于( A ) A .0 B .2i C .-2i D .4i 2. 若a ,b ∈R ,i 为虚数单位,且(a +i)i =b +i ,则( D ) A .a =1,b =1 B .a =-1,b =1 C .a =-1,b =-1 D .a =1,b =-1 3. 在复平面内,复数i 1+i +(1+3i)2对应的点位于( B ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 4. 设复数z 的共轭复数是z ,若复数z 1=3+4i ,z 2=t +i ,且z 1·z 2是实数,则实数t 等于( A ) A.34 B.43 C .-43 D .-34 5. 若z =1+2i i ,则复数z 等于( D ) A .-2-i B .-2+I C .2-i D .2+i 6.复数11z i =-的共轭复数是( B ) A .i 2121+ B .i 2121- C .i -1 D .i +1 7. 若复数z 1=1+i ,z 2=3-i ,则z 1·z 2等于( A ) A .4+2i B .2+i C .2+2i D .3+i 8.设复数z 满足,2)1(i z i =-则z =( A ) (A )i +-1 (B )i --1 (C )i +1 (D )i -1 9.若复数z 满足24iz i =+,则在复平面内,z 对应的点的坐标是( C ) A.(2,4) B.(2,-4) C.(4,-2) D.(4,2) 10.复数的11 Z i =-模为( B ) (A )12 (B )2 (C (D )2 11.()3=( A ) (A )8- (B )8 (C )8i - (D )8i 12. i 是虚数单位,3(1)(2)i i i -++等于 ( D ) A .1+i B .-1-i C .1+3i D .-1-3i 13.已知复数512i z i =+(i 是虚数单位),则_________z =14.若bi a i i +=++)2)(1(,其中,,a b R i ∈为虚数单位,则a b += 4

复数乘除法、极坐标

学之导教育中心教案 学生: 梁庭苇授课时间: 课时: 2 年级: 高二教师:廖 课题复数乘除法、极坐标 教学构架 一、知识回顾 二、错题再现 三、知识新授 四、知识小结 教案内容 一、知识回顾 1、几何证明选讲 二、错题再现 1、如图ABC中,D是AB的三等分点,// DE BC,// EF BC,2 AF=,则AB=__________ F E D A B C 2、如图,在ABC中,AD是BC边上中线,AE是BC边上的高,DAB DBA ∠=∠ ,18 AB=,12 BE=,则CE=__________. 本次内容掌握情况总结 教师签字 学生签字 E B D C A

3、如图所示,圆O 的直径AB=6,C 圆周上一点,BC=3,过C 作圆的切线l ,过A 作l 的垂线AD AD 分别与直线l 、圆交于点D 、E ,则∠DAC = __,线段AE 的长为 __. 4、如图所示,从圆O 外一点A 引圆的切线AD 和割线ABC ,已知AD=23,AC=6,圆O 的半径为3, 则圆心O 到AC 的距离为________. . 5、如图所示,圆O 上一点C 在直径AB 上的射影为D ,CD=4,BD=8,则圆O 的半径等于 . 6、如图,四边形ABCD 内接于⊙O ,BC 是直径,MN 切⊙O 于A ,∠MAB=250,则∠D= ___ . 7.如图,AB 是圆O 的直径,直线CE 和圆O 相切于点C ,AD ⊥CE 于D ,若AD=1,∠ABC=300, 则圆O 的面积是______. 8.如图,⊙O 的割线PAB 交⊙O 于A 、B 两点,割线PCD 经过圆心O ,PE 是⊙O 的切线。已知PA=6, AB=3 1 7,PO=12,则PE=____ ⊙O 的半径是_______. A D B C E O A B C O D A B O D C O B A D C M N O B A D C E C O A B P D E

复数的应用

复数在初等数学中的应用 摘要: 本文介绍了复数的一些基本概念、性质、运算等。利用复数的性质来解决初等数学的基本问题,例如代数、几何向量等。一方面可以强化概念、揭示概念的内涵,准确把握概念之间的关系,透彻理解定理的条件;另一方面有助于培养学生的逆向思维能力,更有助于培养学生的数学技能。 关键字: 共轭复数;复数的模;复平面;复数方程 分数的引入,解决了在自然数集中不能整除的矛盾。负数的引入,解决了在正有理数集中不够减的矛盾。无理数的引入,解决了开方开不尽的矛盾。在实数集范围内,负数不能开平方,我们要引入什么数,才能解决这个矛盾呢? 实际上,早在16世纪时期,数学家们就已经解决了这个矛盾,而且形成了一整套完整的理论。因为这个新数不是实的数,就称为虚数单位,英文译名为imaginary number unit.所以,用“i ”来表示这个新数。 引入的新数必须满足一定的条件,才能进行相关的运算,虚数单位i 应满足什么条件呢?规定它的平方等于-1,即12-=i 因此出现了形如bi a z +=(R b a ∈,)的数。它就是我们所说的复数。 一、复数的有关概念 1、虚数单位i (1)它的平方等于1-,即 2i 1=-; (2)实数可以与它进行四则运算,进行四则运算时,原有的加、乘法运算仍然成立,即满足交换律与结合律. i 的乘方: 4414243*i 1,i i,i 1,i i,N n n n n n +++===-=-∈,它们不超出i b 的形式 2、复数a+bi(a, b ∈R)由两部分组成,实数a 与b 分别称为复数a+bi 的实部与虚部,1与i 分别是实数单位和虚数单位,当b=0时,a+bi 就是实数,当b ≠0时,a+bi 是虚数,其中a=0且b ≠0时称为纯虚数。

复数与极坐标方程练习

一..将下列极坐标方程转化为直角坐标方程 1.直线:()3l R πθρ= ∈ 2.曲线2:sin 2cos L ρθθ= 3.曲线C 的方程为)4πρθ=+ ,并确定圆心坐标和半径 4.圆C 的极坐标方程为2cos()6πρθ=- ,并确定圆心坐标和半径 5.圆C 的方程为4cos ρθ=,并确定圆心坐标和半径 6.直线的极坐标方程为 7.曲线C 的方程为θθρsin 4cos 2+=,并确定圆心坐标和半径 8.曲线 2C 的极坐标方程为sin()43πρθ+=. 9.已知椭圆C 的极坐标方程为 l 22)4sin(=θ+πρθθρ222sin 4cos 312+=

二.复数的运算 1.(2014辽宁2)设复数z 满足(2i)(2i)5z --=,则z =( ) A .23i + B .23i - C .32i + D .32i - 2. (2014山东1)已知,,i a b ∈R 是虚数单位. 若i a +=2i b -,则()2 i a b +=( ). A. 34i - B. 34i + C. 43i - D. 43i + 3.(2014陕西3)已知复数2i z =-,则z z ?的值为________. 4.(2012·湖北高考)若3+b i 1-i =a +b i(a ,b 为实数,i 为虚数单位),则a +b =________ 5.(2014广东2)已知复数z 满足()34i 25,z -=则z =( ). A.34i -- B. 34i -+ C. 34i - D. 34i + 6.(2014湖北2)i 为虚数单位,2 1i 1i -??= ?+??___________. 7.(2014浙江11)已知i 是虚数单位,计算 ()21i =1+i -____________. 8. (2014江苏2)已知复数()252i z =+(i 为虚数单位),则z 的实部为 . 9.(2014四川12)复数22i 1i -=+____________. 10.(2014北京9)若()()i i 12i x x +=-+∈R ,则x = . 11.(2014湖南文11)复数23i i +(i 为虚数单位)的实部等于 . 12.(教材习题改编)复数2+i 1-2i 的共轭复数是 13.(2012·安徽高考)复数z 满足(z -i)i =2+i ,则z =( ) A .-1-i B .1-I C .-1+3i D .1-2i 14.已知a +2i i =b +i(a ,b ∈R )其中i 为虚数单位,则a +b =________. 15.设a 是实数,且a 1+i +1+i 2是实数,则a =________. 16.(2012·山东高考)若复数z 满足z (2-i)=11+7i(i 为虚数单位),则z 为( ) A .3+5i B .3-5i C .-3+5i D .-3-5i 17.(2012·江苏高考)设a ,b ∈R ,a +b i =11-7i 1-2i (i 为虚数单位),则a +b 的值为________

复数的乘法及其几何意义教案

复数的乘法及其几何意义教案 教学目标 1.掌握用复数的三角形式进行乘法运算的法则及其推导过程. 2.掌握复数乘法的几何意义. 3.让学生领悟到“转化”这一重要数学思想方法. 4.培养学生探索问题、分析问题、解决问题的能力. 教学重点与难点 重点:复数的三角形式是本节内容的出发点,复数的乘法运算. 难点:复数乘法运算的几何意义,不易为学生掌握. 教学过程设计 师:前面我们学习了复数的代数形式的运算和复数的三角形式,请大家用5分钟的时间,完成以下两道题的演算. (利用投影仪出示) 1.(1-2i)(2+i)(4+3i); (5分钟后) 师:第1题检查了复数乘法运算,答案是25,第2题检查了复数的 请同学们再考虑下面一个问题:

如果把复数z1,z2分别写成 z1=r1(cosθ1+isinθ1),z2=r2(cosθ2+isinθ2). z1·z2这乘法运算怎样进行呢? 想出算法后,请大家在笔记本上演算,允许同学之间交换意见. (教师在教室里巡视,稍过几分钟,请一位已经做完的同学在黑板上写出推导过程) 学生板演: z1·z2=r1(cosθ1+isinθ1)·r2(cosθ2+isinθ2) =(r1cosθ1+ir1sinθ1)·(r2cosθ2+ir2sinθ2) =(r1r2cosθ1cosθ2-r1r2sinθ1sinθ2)+i(r1r2sinθ1cosθ2+r1r2cosθ1sin θ2) =r1r2[(cosθ1cosθ2-sinθ1sinθ2)+i(sinθ1cosθ2+cosθ1sinθ2] =r1r2[cos(θ1+θ2)+isin(θ1+θ2)]. 师:很好,你是怎样想出来的?为什么这样想? 生:我们已经学过复数的代数形式运算,因此把三角形式化为代数形式,按着代数形式的乘法运算法则就可以完成运算.根据数学求简的原则,运用三角公式把结果化简. 在已知的基础上发展和探索未知的东西,解题时,把未知转化成已知,这是重要的思想方法.我是根据这个思想才想出来的. 师:观察这个问题的已知和结论,同学们能发现有什么规律吗? 生:两个复数相乘,积的模等于各复数模的积,积的复角等于各复数的辐角的和. 师:利用这个结论,请同学们计算: 大家把计算过程写在笔记本上.

复数的基本知识文档

补充复数的基本知识: 1、虚数单位 由于在实数集R 内负数不能开平方,所以在实数集内方程012=+x 无解。引入虚数,虚数单位符号为j ,并规定 (1) 它的平方等于-1,即12-=j ; (2)j 可以和实数一起进行四则运算,原有的加、减运算规律仍然成立。 性质:j j =1;12-=j ;j j -=3;14=j 一般地,对于任意整数n ,有: 14=j n ;j j n =+14;124-=+j n ;j j n -=+34 2、复数集 定义:形如),(R b a bj a ∈+的数称为复数。 通常用大写拉丁字母Z 表示一个复数,即),(R b a bj a Z ∈+= 其中 a 称为复数Z 的实部,a Z =)Re(; b 称为复数Z 的虚部,b Z =)Im(; 举例:j 32+,j 51-+,j 3的实部、虚部? ??? ?????? ?≠=≠???=+)0a ()0a ()0b ()0b (非纯虚数纯虚数虚数无理数有理数 实数复数bj a 3、复数的相等及共轭复数 定义:如果两个复数的实部相等,虚部也相等,则称这两个复数相等,即 d b c, a dj c ==?+=+bj a

定义:如果两个复数的实部相等,虚部互为相反数,则称这两个复数互为共轭复数。 复数bj a Z +=的共轭复数记作bj a Z -= 例:3j 2j, 1++的共轭复数 注:b a bj a bj a 22))((+=-+ 4、复数的几何表示(复平面) 任何一个复数bj a +都可以由一对有序实数)b ,a (唯一确定;反之,任何一对有序实数)b ,a (都能唯一确定一个复数bj a +;因此,复数bj a Z +=与平面直角坐标系中的点)b ,a (Z 是一一对应关系。于是,可以在平面直角坐标系中用横坐标为a ,纵坐标为b 的点)b ,a (Z 表示复数bj a Z +=。 用来表示复数的直角坐标平面称为复平面。 复数bj a Z +=与复平面上的点)b ,a (Z 是一一对应关系。即 复数bj a Z +=?点)b ,a (Z 矢量(或向量):既有大小又有方向。矢量可以用带箭头的有向线段来表示,箭头的方向表示矢量的方向,线段的长度表示矢量的大小。如下图所示:

高二数学复数的定义和复数的坐标表示(教师版)

学科教师辅导讲义 年级:高二辅导科目:数学课时数: 课题复数的概念和复数的坐标表示 教学目的 1、理解复数集、复数的代数形式、实部与虚部的概念; 2、理解两个复数相等的概念; 3、理解复数与向量之间的关系,为用向量的方法处理复数的加减法打下基础; 4、掌握复数模的概念,理解复数的模与向量模的关系,复数模与实数绝度值的关系。 教学内容 【知识梳理】 1.虚数单位i: ()1它的平方等于1-,即21 i=-; ()2实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立. 2.i与-1的关系:i就是1-的一个平方根,即方程21 x=-的一个根,方程21 x=-的另一个根是i-. 3.i的周期性:41n i i +=, 421 n i+=-, 43n i i +=-, 41 n i=. 4.复数的定义:形如(,) a bi a b R +∈的数叫复数,a叫复数的实部,b叫复数的虚部.全体复数所成的集合叫做复数集,用字母C表示 5.复数的代数形式: 复数通常用字母z表示,即(,) z a bi a b R =+∈,把复数表示成a bi +的形式,叫做复数的代数形式. 6.复数与实数、虚数、纯虚数及0的关系:对于复数(,) a bi a b R +∈,当且仅当0 b=时,复数(,) a bi a b R +∈是实数a;当0 b≠时,复数z a bi =+叫做虚数;当0 a=且0 b≠时,z bi =叫做纯虚数;当且仅当0 a b ==时,z就是实数0 7.复数集与其它数集之间的关系:N Z Q R C 苘苘 8.两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等.这就是说,如果a,b,c,d R ∈,那么a bi c di +=+?a c=,b d =

复数乘除法教案

陈仓高级中学高二数学备课组集体教案 课题 §3.2.2复数代数形 式的乘除运算 撰写人 三维目标 1.知识与技能目标 理解并掌握复数的代数形式的乘法与除法运算法则,深刻理解它是乘法运算的逆运算;并掌握复数的除法运算实质是分母实数化类问题; 2.过程与方法目标 通过学习使学生进一步理解算理,提高对运算法则合理性的认识。 3.情感态度价值观 培养学生严密的推理能力,周到细密的计算能力. 重难点 重点: 复数代数形式的除法运算 难点: 对复数除法法则的运用. 课件名称 复数代数形式的乘除运算 上课时间 教学过程 【知识链接】 1.复数1z 与2z 的和的定义:()()()()i d b c a di c bi a z z +++=+++=+21; 2.复数1z 与2z 的差的定义:()()()()i d b c a di c bi a z z -+-=+-+=-21; 3.复数的加法运算满足交换律:1221z z z z +=+; 4.复数的加法运算满足结合律: ()()321321z z z z z z ++=++; 5.复数()R b a bi a z ∈+=,的共轭复数为bi a z -=. 【问题探究】 探究一、复数的乘法运算 引导1:乘法运算规则 设bi a z +=1、di c z +=2()R d c b a ∈,,,是任意两个复数,规定复数的乘法按照以下的法则进行: =?21z z 其实就是把两个复数相乘,类似两个多项式相乘,在所得的结果中把2i 换成-1,并且 把实部与虚部分别合并.两个复数的积仍然是一个复数.

引导2:试验证复数乘法运算律 (1)1221z z z z ?=? (2)()()321321z z z z z z ??=?? (3)()3121321z z z z z z z ?+?=+? 点拨:两个复数相乘,类似两个多项式相乘,在所得的结果中把2i 换成-1,并且把实部与虚部分别合并.两个复数的积仍然是一个复数. 探究二、复数的除法运算 引导1:复数除法定义: 满足()()()bi a yi x di c +=++的复数()R y x yi x ∈+,叫复数bi a +除以复数di c + 的商,记为:()()di c bi a +÷+或者 di c bi a ++()0≠+di c . 引导2:除法运算规则: 利用()()22d c di c di c +=-+.于是将di c bi a ++的分母有理化得: 原式=22 ()()[()]()()()a bi a bi c di ac bi di bc ad i c di c di c di c d ++-+?-+-==++-+ 222222 ()()ac bd bc ad i ac bd bc ad i c d c d c d ++-+-==++++. ∴(a +bi )÷(c +di )=i d c a d bc d c bd ac 2222+-+++. 点拨:利用初中我们学习的化简无理分式时,都是采用的分母有理化思想方法,而复数di c +与复数di c -,相当于我们初中学习的23+的对偶式23-,它们之积为1是有理数,而()()2 2d c di c di c +=-+是正实数.所以可以分母实数化. 把这种方法叫做分母实数化法 【典例分析】 例1计算()()()i i i +-+-24321 引导:可先将前两个复数相乘,再与第三个复数相乘. 点拨:在复数的乘法运算过程中注意将2 i 换成-1. 例2计算:(1)()()i i 4343-+ ; (2)() 21i +. 引导:按照复数乘法运算展开即可. 点拨:注意体会互为共轭复数的两个复数的乘积是一个实数,记住一些特殊形式代数式的运算结果,便于后续学习的过程中的化简、代换等.

复数、极坐标参数方程

1.复数2(12)i -的共轭复数是 _____ . 2.设复数z 满足(2)12z i i +=-(为虚数单位),则z =___________ 3.已知i 为虚数单位,复数z 满足(1-i)z =2,则z = . 4. 已知复数z 满足13=++i z ,则z 的最大值是___________ 5.已知圆的极坐标方程为4cos ρθ= , 圆心为C , 点 P 的极坐标为4,3π?? ??? , 则|CP | = ___________. 6.已知曲线C 的参数方程为x t y t ?=??=? ?(t 为参数),C 在点()1,1处的切线为l ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则l 的极坐标方程为_____________. 7.在平面直角坐标系xoy 中,直线l 的参数方程为? ??=+=t y t x 21 (t 为参数),曲线C 的参数方程为???==θ θtan 2tan 22y x (θ为参数),试求直线l 与曲线C 的普通方程,并求出它们的 公共点的坐标.

8.在直角坐标系xOy 中,直线l 的方程为x -y +4=0,曲线C 的参数方程为??? x =3cos α,y =sin α (α为参数). (1)已知在极坐标(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为? ????4,π2,判断点P 与直线l 的位置关系; (2)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值. 9.在直角坐标系xoy 中以O 为极点,x 轴正半轴为极轴建立坐标系.圆1C ,直线2 C 的极坐标方程分别为4sin ,cos 4πρθρθ??==-= ?? ?. (I)求1C 与2C 交点的极坐标; (II)设P 为1C 的圆心,Q 为1C 与2C 交点连线的中点.已知直线PQ 的参数方程为()3312 x t a t R b y t ?=+?∈?=+??为参数,求,a b 的值.

相关文档
相关文档 最新文档