文档库 最新最全的文档下载
当前位置:文档库 › 人教版新目标九年级数学上册垂径定理(1)导学案

人教版新目标九年级数学上册垂径定理(1)导学案

人教版新目标九年级数学上册垂径定理(1)导学案
人教版新目标九年级数学上册垂径定理(1)导学案

人教版新目标九年级数学上册垂径定理(1)导

学案

-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

闵集中学九年级垂径定理(1)导学案(38)

班级: 上课时间:姓名:评价

学习目标:

1、研究圆的轴对称性,并利用它探究垂径定理及其推论.

2、会用垂径定理及其推论解决一些有关证明,计算和作图问题

导学过程:

一、课前导学

如图所示,①、②分别为圆形工件和T形尺,CD所在的直线垂直平分AB、AB的长小于

圆形工件的直径,你能用T形尺找出圆形工件的圆心吗?

二、课堂导学

活动1:用纸剪一个圆,沿着圆的任意一条直径对折,重复做几次,你发现了什么?

由此你能得到什么结论.

结论:_________________________________________________________

活动2:如图AB是⊙O的一条弦,作直径CD.使CD⊥AB于E,那么,

图(3)是轴对称图形码若是,它的对称轴是什么图中有哪些相等的线段和弧为什么

思考:垂直于弦的直径有什么性质(垂径定理)

__________________________________________________________________

辨一辨:上图中是否有AE=BE, = , =

活动3:观察思考:如上图

①若CD是直径,且平分弦AB(非直径),能否得到CD⊥AB,且平分和

②若直线CD⊥弦AB,且平分AB,能否得到CD经过圆心且平分与

③若CD是直径,且平分,能否得到CD⊥AB且平分AB?

总结归纳:

对于一个圆和一条直线,如果一条直线具备:

①经过圆心,②垂直于弦,③平分弦(不是直径),④平分弦所对的优弧,

⑤平分弦所对的劣弧,

五个条件中的任何两个,那么也就具备其它三个.

三、应用举例

例1、如图在⊙O中,弦AB长为8cm,圆心O到AB的距离(弦心距)OE为3cm,求⊙O的半径.

变式一:在⊙O中,直径为10cm,弦AB的长为8cm,求圆心O到AB的距离.

变式二:在⊙O中,直径为10cm,圆心O到AB的距离为3cm,求弦AB的长.

变式三,在⊙O,弦AB=8cm,OE⊥AB交于F,弓形高EF=2cm,求⊙O的半径

变式四:若圆心到弦的距离为d,圆的半径为R,弦长为a,则三者之间的关系是

_____________.

做一做:平分已知弧AB(四等分已知弧AB)

A B

D

C

O

A B

E

C

D

O

A B

E

E O

C

D

2

四、课堂练习

1、如上图AB是⊙O的直径,弦CD⊥AB于E,若AB=20,CD=16,则BE=______.

2、AC是⊙O的直径,∠BAC=300,弦AB=10cm,则⊙O的半径为________.

4、在半径为6cm的⊙O中,两弦AB⊥CD于E,若CE=3cm,DE=7cm,则

AB=________.

3

圆第2课垂径定理导学案

圆第2课垂径定理导学案 第2课时 24.1.2 垂直于弦的直径 [学习目标] 1.理解圆的轴对称性; 2.掌握垂径定理及其推论,能用垂径定理及其推论进行有关的计算和证明. 知识链接 一、知识链接(阅读课本P81-82完成以下内容) 1.圆的对称性:圆既是图形也是图形,对称轴是,有条;对称中心是 2.垂径定理:垂直于弦的,并且平分弦所对的弧。 3.垂径定理推论:平分弦(非直径)的直径 二、自主学习[Tip:辅助线的常用作法:连半径,过圆心向弦作垂线段。] 1.如图1,如果AB为⊙O的直径,弦CD⊥AB,垂足为E,那么下列结论中,?错误的 是(). A.CE=DE B.BC=BD C.∠BAC=∠BAD D.AC>AD (图1) (图2) (图3) (图4) 2.如图2,⊙O的直径为10,圆心O到弦AB的距离OM的长为3,则弦AB的长是()A.4 B.6 C.7 D.8 3.如图3,已知⊙O的半径为5mm,弦AB=8mm,则圆心O到AB的距离是() A.1mm B.2mm C.3mm D.4mm 4.如图4,OE⊥AB、OF⊥CD,如果OE=OF,那么_______(只需写一个正确的结论) 二、合作探究 1.如图6,AB是O的直径,弦CD^AB,垂足为E,如果AB=20,CD=16,那么线段OE的 长为(

A. 10 B. 8 C. 6 D.4 A (图6) (图7) (图8)(图9) 2.如图7,在O中,若AB^MN于点C, AB为直径,试填写出三个你认为正确的结论: ,, . 3. P为⊙O内一点,OP=3cm,⊙O半径为5cm,则经过P点的最短弦长为;最长弦长 为. 4. 如图8,P为⊙O的弦AB上的点,PA=6,PB=2,⊙O的半径为5,则OP= . 第 1 页共 1 页) 5. 泸州市某居民区一处圆形下水管道破裂,修理人员准备更换一段新管道.如图9所示,污水水面宽度为60 cm,水面至管道顶部距离为10 cm,问修理人员应准备内径多大的管道? 解:连接OA,过O作OE⊥AB,垂足为E,交圆于F 【课堂检测】 1、如图2-1,在⊙O中,点C是弧AB的中点,∠A=50°,则∠BOC等于 度. 图2-1 图2-2 2、如图2-2所示,已知AB为⊙O的直径,且AB⊥CD,垂足为M,CD=8,AM=2, 则OM= . 3、⊙O的半径为5,弦AB的长为6,则AB的弦心距长为 .

人教版九年级数学上册垂径定理

初中数学试卷 垂径定理 一.选择题 ★1.如图1,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,那么弦AB 的长是( ) A .4 B .6 C .7 D .8 ★★2.如图2,⊙O 的半径为5,弦AB 的长为8,M 是弦AB 上的一个动点,则线段OM 长的最小值为( ) A .2 B .3 C .4 D .5 ★★3.过⊙O 内一点M 的最长弦为10 cm ,最短弦长为8cm ,则OM 的长为( ) A .9cm B .6cm C .3cm D .cm 41 ★★4.如图3,小明同学设计了一个测量圆直径的工具,标有刻度的尺子OA 、OB 在O 点钉在一起,并使它们保持垂直,在测直径时,把O 点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为( ) A .12个单位 B .10个单位 C .1个单位 D .15个单位 ★★5.如图4,O ⊙的直径AB 垂直弦CD 于P ,且P 是半径OB 的中点,6cm CD ,则直径AB 的长是( ) A .23cm B .32cm C .42cm D .43cm ★★6.下列命题中,正确的是( ) A .平分一条直径的弦必垂直于这条直径 B .平分一条弧的直线垂直于这条弧所对的弦 C .弦的垂线必经过这条弦所在圆的圆心 D .在一个圆内平分一条弧和它所对的弦的直线必经过这个圆的圆心 ★★★7.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为( ) A .5米 B .8米 C .7米 D .53米

★★★8.⊙O 的半径为5cm ,弦AB//CD ,且AB=8cm,CD=6cm,则AB 与CD 之间的距离为( ) A . 1 cm B . 7cm C . 3 cm 或4 cm D . 1cm 或7cm ★★★9.已知等腰△ABC 的三个顶点都在半径为5的⊙O 上,如果底边BC 的长为8,那么BC 边上的高为( ) A .2 B .8 C .2或8 D .3 二.填空题 ★1.已知AB 是⊙O 的弦,AB =8cm ,OC ⊥AB 与C ,OC=3cm ,则⊙O 的半径为 cm ★2.在直径为10cm 的圆中,弦AB 的长为8cm ,则它的弦心距为 cm ★3.在半径为10的圆中有一条长为16的弦,那么这条弦的弦心距等于 ★★4.已知AB 是⊙O 的弦,AB =8cm ,OC ⊥AB 与C ,OC=3cm ,则⊙O 的半径为 cm ★★5.如图1,⊙O 的直径AB 垂直于弦CD ,垂足为E ,若∠COD=120°,OE =3厘米,则CD = 厘米 O 图 4E D C B A ★★6.半径为6cm 的圆中,垂直平分半径OA 的弦长为 cm. ★★7.过⊙O 内一点M 的最长的弦长为6cm ,最短的弦长为4cm ,则OM 的长等于 cm ★★8.已知AB 是⊙O 的直径,弦CD ⊥AB ,E 为垂足,CD=8,OE=1,则AB=____________ ★★9.如图2,AB 为⊙O 的弦,⊙O 的半径为5,OC ⊥AB 于点D ,交⊙O 于点C , 且CD =l ,则弦AB 的长是 ★★10.某蔬菜基地的圆弧形蔬菜大棚的剖面如图3所示,已知AB =16m ,半径OA =10m ,则中间柱CD 的高度为 m ★★11.如图4,在直角坐标系中,以点P 为圆心的圆弧与轴交于A 、B 两点,已知P(4,2) 和A(2,0),则点B 的坐标是 ★★12.如图5,AB 是⊙O 的直径,OD ⊥AC 于点D ,BC=6cm ,则OD= cm ★★13.如图6,矩形ABCD 与圆心在AB 上的圆O 交于点G 、B 、F 、E ,GB=10,EF=8,那么 B A P O y x

《垂径定理》教学设计课题

《垂径定理》教学设计

单位:登封市大金店二中 授课教师:唐海广 《垂径定理》教学设计 一、学生起点分析 学生的知识技能基础:学生在七、八年级已经学习过轴对称图形的有关概念和性质,等腰三角形的对称性,以及本节定理的证明要用到的三角形全等的知识,在本章前两节课中也已经初步理解了圆的轴对称性和圆弧的表示等知识,具备探索证明几何定理的基本技能. 学生活动经验基础:在平时的学习中,学生已掌握探究图形性质的不同手段和方法,具备几何定理的分析、探索和证明能力. 二、教学任务分析 该节内容为1课时.圆是一种特殊图形,它是轴对称图形,学生通过类比等腰三角形的轴对称性,能利用圆的轴对称性探索、证明得出圆的垂径定理及其逆

定理.具体地说,本节课的教学目标是: 知识与技能 1.利用圆的轴对称性研究垂径定理及其逆定理; 2.运用垂径定理及其逆定理解决问题. 过程与方法 1.经历运用圆的轴对称性探索圆的相关性质的过程,进一步体会和理解研究几何图形的各种方法. 情感与态度 1. 培养学生类比分析,猜想探索的能力. 2. 通过学习垂径定理及其逆定理的证明,使学生领会数学的严谨性和探索精神,培养学生学习实事求是的科学态度和积极参与的主动精神.教学重点:利用圆的轴对称性研究垂径定理及其逆定理. 教学难点:垂径定理及其逆定理的证明,以及应用时如何添加辅助线.三、教学设计分析 本节课设计了四个教学环节: 类比引入,猜想探索,知识应用,归纳小结. 第一环节类比引入 活动内容: 1.等腰三角形是轴对称图形吗? 2.如果将一等腰三角形沿底边上的高对折, 3.如果以这个等腰三角形的顶角顶点为圆心,腰长为半径画 圆,得到的图形是否是轴对称图形呢?

中考数学专题模型—【专题2】垂径定理的模型研究(教师版)

【专题2】垂径定理的性质与运用 【回归概念】 垂径定理:垂径定理是数学几何(圆)中的一个定理,它的通俗的表达是:垂直于弦的直径平分弦且平分这条弦所对的两条弧。数学表达为:如图,直径DC垂直于弦AB,则AE=EB,弧AD等于弧BD(包括优弧与劣弧),半圆CAD=半圆CBD。垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。一条直线,在下列5条中只要具备其中任意两条作为条件,就可以推出其他三条结论。称为知二推三。1.平分弦所对的优弧;2.平分弦所对的劣弧(前两条合起来就是:平分弦所对的两条弧);3.平分弦(不是直径);4.垂直于弦;5.过圆心。 【规律探索】 1.垂径定理及其推论实质是指一条直线满足:⑴过圆心⑵垂直于弦⑶平分弦⑷平分弦所对的优弧⑸平分弦所对的劣弧五个条件中的两个,那么可推出其中三个,注意解题过程中的灵活运用; 2.圆中常作的辅助线是过圆心作弦的垂线; 3.垂径定理常用作计算,在半径r弦a弦心d和弦h中已知两个可求另外两个。方法:垂径定理的巧用主要体现在求点的坐标、解决最值问题、解决实际问题等.解题时,巧用弦的一半、圆的半径和圆心到弦的垂线段三条线段组成的直角三角形,然后借助勾股定理,在这三个量中知道任意两个,可求出第三个. 【典例解析】: ①用垂径定理求点的坐标 【例题1】(2019?山东威海?3分)如图,⊙P与x轴交于点A(﹣5,0),B(1,0),与y轴的正半轴交于点C.若∠ACB=60°,则点C的纵坐标为() A133B.23C.2D.2+2

【思路导引】连接PA ,PB ,PC ,过P 作PD ⊥AB 于D ,PE ⊥BC 于E ,根据圆周角定理得到∠APB =120°,根据等腰三角形的性质得到∠PAB =∠PBA =30°,由垂径定理得到AD =BD =3,解直角三角形得到PD =3,PA =PB =PC =23,根据勾股定理得到CE =2 2 PC PE -=124-=22,于是得到结论. 【解答】解:连接PA ,PB ,PC ,过P 作PD ⊥AB 于D ,PE ⊥BC 于E , ∵∠ACB =60°, ∴∠APB =120°, ∵PA =PB , ∴∠PAB =∠PBA =30°, ∵A (﹣5,0),B (1,0), ∴AB =6, ∴AD =BD =3, ∴PD =3,PA =PB =PC =23, ∵PD ⊥AB ,PE ⊥BC ,∠AOC =90°, ∴四边形PEOD 是矩形, ∴OE =PD =3,PE =OD =2, ∴CE =2 2 PC PE -=124-=22, ∴OC =CE+OE =22+3, ∴点C 的纵坐标为22+3, 故选:B . ②巧用垂径定理解决最值问题(对称思想) 【例题2】如图,AB ,CD 是半径为5的⊙O 的两条弦,AB =8,CD =6,MN 是直径,AB ⊥MN 于点E ,CD ⊥MN 于点F ,P 为直线EF 上的任意一点,求PA +PC 的最小值.

垂径定理导学案-(2)

B A D C 弓弓 弓 弓 ←→ (2)垂直于弦的直径自学案 课型:新课主备人:吴剑红学生姓名:家长签字: 【教学目标】 ①通过观察实验,使学生理解圆的轴对称性 ②掌握垂径定理,理解其证明,并会用它解决有关的计算与证明问题 ③掌握辅助线的作法——过圆心作一条与弦垂直的线段. 【教学重点】垂径定理及其应用 【教学难点】垂径定理的证明 【教学方法】探究发现法 【教学设计】 一、【情景创设】 1.实例:我国隋代工匠李春建造的赵州桥(如图)。因它位于现在的历史文化名城河北省赵 县(古称赵州)而得名,是世界上现存最早、保存最好 的巨大石拱桥,距今已有1400多年历史,被誉为“华 北四宝之一”,它的结构是当时世界桥梁界的首创,这 充分显示了我国古代劳动人民的创造智慧。 (图1) 2.导入:赵州桥的桥拱呈圆弧形的(如图1),它的跨度(弧所对的弦长)为米,拱高(弧的中点到弦AB的距离,)为米。请问:桥拱的半径(即AB所在圆的半径)是多少 通过本节课的学习,我们将能很容易解决这一问题。 二、【自主探究】 活动一:把一个圆沿着它的任意一条直径对折,重复几次,你发现了什么由此你能得到什么结论 可以发现 活动二:如图,AB是⊙O的一条弦,作直径CD,使CD⊥AB,垂足为E. 你能发现图中有那些相等的线段和弧为什么 线段弧 理由:如图 我们把这个结论称为

探索发现:垂径定理三种语言 (一 )图形: (二)文字: (三).符号:如图,∵ ∴ 抢答: 1、如上图,已知CD是⊙O的直径,弦AB⊥ CD于E,AB=8,则AE= , BE= ⌒⌒ AD= ,AC=_____ 2、判断下列图形,能否使用垂径定理 活动三:应用定理计算 1、如图,在⊙O中弦AB的长为8cm,圆心O到AB的距离OE=3cm,求⊙O的半径。 【变式1】如上图,⊙O的直径为10,圆心O到弦AB的距离OE的长为3,则弦AB的长是()A.4 B.6 C.7 D.8 【变式2】如图,已知⊙O的半径为13mm,弦AB=10mm,则圆心O到AB的距离是()A.3 mm B.4 mm C. 12 mm D. 5 mm 【变式3】半径为4cm的⊙O中,弦AB=4cm, 那么圆心O到弦AB的距离是。 【变式4】如图,⊙O的半径OC为6cm,弦AB垂直平分OC,则弦AB的长是。 【变式5】如图,AB 为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为() O C D B A O C D B A O C D B A O C D E O A B C D E

《垂径定理》教学设计教(学)案

《垂径定理》教学设计 单位:登封市大金店二中 授课教师:唐海广

《垂径定理》教学设计 一、学生起点分析 学生的知识技能基础:学生在七、八年级已经学习过轴对称图形的有关概念和性质,等腰三角形的对称性,以及本节定理的证明要用到的三角形全等的知识,在本章前两节课中也已经初步理解了圆的轴对称性和圆弧的表示等知识,具备探索证明几何定理的基本技能. 学生活动经验基础:在平时的学习中,学生已掌握探究图形性质的不同手段和方法,具备几何定理的分析、探索和证明能力. 二、教学任务分析 该节容为1课时.圆是一种特殊图形,它是轴对称图形,学生通过类比等腰三角形的轴对称性,能利用圆的轴对称性探索、证明得出圆的垂径定理及其逆定理.具体地说,本节课的教学目标是: 知识与技能 1.利用圆的轴对称性研究垂径定理及其逆定理; 2.运用垂径定理及其逆定理解决问题. 过程与方法 1.经历运用圆的轴对称性探索圆的相关性质的过程,进一步体会和理解研究几何图形的各种方法. 情感与态度 1. 培养学生类比分析,猜想探索的能力. 2. 通过学习垂径定理及其逆定理的证明,使学生领会数学的严谨性和探索精神,培养学生学习实事的科学态度和积极参与的主动精神. 教学重点:利用圆的轴对称性研究垂径定理及其逆定理. 教学难点:垂径定理及其逆定理的证明,以及应用时如何添加辅助线.三、教学设计分析 本节课设计了四个教学环节:

类比引入,猜想探索,知识应用,归纳小结. 第一环节类比引入 活动容: 1.等腰三角形是轴对称图形吗? 2.如果将一等腰三角形沿底边上的高对折,可以发现什么结论? 3.如果以这个等腰三角形的顶角顶点为圆心,腰长为半径画 圆,得到的图形是否是轴对称图形呢? 活动目的: 通过等腰三角形的轴对称性向圆的轴对称性过渡,引导学生思考,培养学生类比分析的能力. 第二环节猜想探索 活动容: 1.如图,AB是⊙O的一条弦,作直径CD,使CD⊥ AB,垂足为M. (1)该图是轴对称图形吗?如果是,其对称轴是什么? (2)你能图中有哪些等量关系?说一说你的理由. 条件:①CD是直径;②CD⊥AB 结论(等量关系):③AM=BM; ④⌒AC=⌒BC;⑤⌒AD=⌒BD. 证明:连接OA,OB,则OA=OB. 在Rt△OAM和Rt△OBM中, ∵OA=OB,OM=OM, ∴Rt△OAM≌Rt△OBM. ∴AM=BM. ∴点A和点B关于CD对称. ∵⊙O关于直径CD对称, ∴当圆沿着直径CD对折时, 点A与点B重合, ⌒AC和⌒BC重合,⌒AD和⌒BD重合.

北师大版数学九年级下册第三章3.3(1)垂径定理(导学案,无答案)(最新整理)

O C E D O 一、教学目标 3.3(1)垂径定理 1. 利用圆的轴对称性研究垂径定理及其逆定理; 2. 运用垂径定理及其逆定理解决问题. 二、教学重点和难点 重点:利用圆的轴对称性研究垂径定理及其逆定理. 难点:垂径定理及其逆定理的证明,以及应用时如何添加辅助线三、教学过程 (一)情境引入: 1.如图,AB 是⊙O 的一条弦,作直径 CD ,使 CD ⊥AB ,垂足为 M . (1) 该图是轴对称图形吗?如果是,其对称轴是什么? (2) 你能图中有哪些等量关系? (3) 你能给出几何证明吗?(写出已知、求证并证明) (二)知识探究: 【探究一】通过上面的证明过程,我们可以得到: 1. 垂径定理 2. 注意: ①条件中的“弦”可以是直径;②结论中的“平分弧”指平分弦所对的劣弧、优弧。 ③定理中的两个条件缺一不可—— , . 3. 给出几何语言 ? 如图,已知在⊙O 中,A B 是弦,C D 是直径,如果 CD⊥AB,垂足为 E, 那么 AE= , AC C ? = , B D = 4. 辨析:判断下列图形,能否使用垂径定理? B B D O C C D A A E B O

B O A 【探究二】 1. 如图,AB 是⊙O 的弦(不是直径),作一条平分 AB 的直径 CD ,交 AB 于点 M . (1) 下图是轴对称图形吗?如果是,其对称轴是什么? (2) 图中有哪些等量关系?说一说你的理由. 2. 垂径定理的推论: 3. 辨析:“平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.”如果该定理 少了“不是直径”,是否也能成立? 反例: C D 4. 如图,在⊙O 中,AB 是弦(不是直径),CD 是直径, C ? ? (1)如果 AE=BE 那么 CD AB, AC = BD = ? ? ? (2)如果 AC = BC 那么 CD AB ,AE BE , B D = ? ? ? (3)如果 AD = BD 那么 CD AB ,AE BE , AC = (三)典例讲解: 1. 例:如图,一条公路的转弯处是一段圆弧(即图中 ⌒ ,点 0 是⌒ 所在圆的圆心),其中 CD CD CD =600m ,E ⌒ 为 上的一点,且 CD OE ⊥CD ,垂足为 F ,EF =90m.求这段弯路的半径. 2. 如果圆的两条弦互相平行,那么这两条弦所夹的弧相等吗?为什么? A E B O

垂径定理练习题及答案

垂径定理 一.选择题 ★1.如图1,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,那么弦AB 的长是( ) A .4 B .6 C .7 D .8 答案:D ★★2.如图,⊙O 的半径为5,弦AB 的长为8,M 是弦AB 上的一个动点,则线段OM 长的最小值为( ) A .2 B .3 C .4 D .5 答案:B ★★3.过⊙O 内一点M 的最长弦为10 cm ,最短弦长为8cm ,则OM 的长为( ) A .9cm B .6cm C .3cm D .cm 41 答案:C ★★4.如图,小明同学设计了一个测量圆直径的工具,标有刻度的尺子OA 、OB 在O 点钉在一起,并使它们保持垂直,在测直径时,把O 点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为( ) A .12个单位 B .10个单位 C .1个单位 D .15个单位 答案:B ★★5.如图,O ⊙的直径AB 垂直弦CD 于P ,且P 是半径OB 的中点,6cm CD ,则直径AB 的长是( ) A . B . C . D .

答案:D ★★6.下列命题中,正确的是() A.平分一条直径的弦必垂直于这条直径 B.平分一条弧的直线垂直于这条弧所对的弦 C.弦的垂线必经过这条弦所在圆的圆心 D.在一个圆内平分一条弧和它所对的弦的直线必经过这个圆的圆心 答案:D ★★★7.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为( ) A.5米 B.8米 C.7米 D.53米 答案:B ★★★8.⊙O的半径为5cm,弦AB//CD,且AB=8cm,CD=6cm,则AB与CD之间的距离为( ) A. 1 cm B. 7cm C. 3 cm或4 cm D. 1cm 或7cm 答案:D ★★★9.已知等腰△ABC的三个顶点都在半径为5的⊙O上,如果底边BC的长为8,那么BC边上的高为( ) A.2 B.8 C.2或8 D.3 答案:C 二.填空题 ★1.已知AB是⊙O的弦,AB=8cm,OC⊥AB与C,OC=3cm,则⊙O的半径为 cm 答案:5 cm ★2.在直径为10cm的圆中,弦AB的长为8cm,则它的弦心距为 cm 答案:3 cm ★3.在半径为10的圆中有一条长为16的弦,那么这条弦的弦心距等于 答案:6 ★★4.已知AB是⊙O的弦,AB=8cm,OC⊥AB与C,OC=3cm,则⊙O的半径为 cm 答案:5 cm ★★5.如图,⊙O的直径AB垂直于弦CD,垂足为E,若∠COD=120°,OE=3厘米,则CD =厘米

初中数学九年级24.1.2垂径定理导学案(一)

C B D O A 垂径定理导学案(一) 【学习目标】1.根据圆的对称性探究垂径定理,掌握垂径定理. 2.利用垂径定理解决一些实际问题. 【学习关键】区分“垂径定理”的题设与结论。 【导学过程】 一.创设情景 引入新课 如图,1 400 多年前,我国隋代建造的赵州石拱桥主桥拱是圆弧形,它的跨度(弧所对的弦长)是 37 m ,拱高(弧的中点到弦的距离)为 m ,求赵州桥主桥 拱的半径(精确到 m ).(书本82页例题) 二、新知导学 (一)探究一:用纸剪一个圆,沿着圆的任意一条直径所在的直线对折,你发现了什么 结论:圆是_____对称图形,_______________是它的对称轴。 (二)探究二: 如图,AB 是⊙O 的一条弦,作直径CD ,使CD ⊥AB ,垂足为E . (1)如图是轴对称图形吗如果是,其对称轴是什么 (2)用折叠法猜测图中有哪些相等的线段和弧如何验证 相等的线段:______________ 相等的弧: _____=______;_____=______。 垂径定理: 文字语言:垂直于弦的直径_______,并且__________________。(题设,结论) 符号语言:∵CD 是⊙O_____,AB 是⊙O______,且CD__AB 于E ∴____=_____,_____=______,_____=______。 (三) 探究三:用垂径定理解决问题 已知:⊙O 中,弦AB 的长为8cm ,圆心O 到AB 的距离为3cm , 求⊙O 的半径。 归纳:圆中常用辅助线——作弦心距,构造Rt △.弦(a )、 半径(r )、弦心距(d ),三个量关系为 。 (四) 探究四:垂径定理的推论 文字语言:平分弦( )的直径_______,并且______ ______。 符号语言:∵AB 是⊙O_____, _____=______ ∴____=_____,_____=______,_____=______。 (五)利用新知 问题回解 赵州桥AB=8,CD=2,求半径。书本82页例题 三、巩固练习,拓展提高 1.如图,两圆都以点O 为圆心,求证:AC=BD 2.已知:⊙O 中弦AB ∥CD 。 求证:AC =BD 3.圆的平行两条弦长分别为6cm 、8cm,圆的半径为5cm, 求平行两弦之间的距离 四、我的收获 C E D O

九年级数学垂径定理

初三数学垂径定理、圆心角、弧、弦、弦心距间的关系知识精讲 一. 本周教学内容: 垂径定理、圆心角、弧、弦、弦心距间的关系 [学习目标] 1. 理解由圆的轴对称性推出垂径定理,概括理解垂径定理及推论为“知二推三”。(1)过圆心,(2)垂直于弦,(3)平分弦,(4)平分劣弧,(5)平分优弧。已知其中两项,可推出其余三项。注意:当知(1)(3)推(2)(4)(5)时,即“平分弦的直径不能推出垂直于弦,平分两弧。”而应强调附加“平分弦(非直径)的直径,垂直于弦且平分弦所对的两弧”。 2. 深入理解垂径定理及推论,为五点共线,即圆心O,垂足M,弦中点M,劣弧中点D,优弧中点C,五点共线。(M点是两点重合的一点,代表两层意义) C O A B M D 3. 应用以上定理主要是解直角三角形△AOM,在Rt△AOM中,AO为圆半径,OM为弦AB的弦心距,AM为弦AB的一半,三者把解直角形的知识,借用过来解决了圆中半径、弦、弦心距等问题。无该Rt△AOM时,注意巧添弦心距,或半径,构建直角三角形。 4. 弓形的高:弧的中点到弦的距离,明确由定义知只要是弓形的高,就具备了前述的(4)(2)或(5)(2)可推(1)(3)(5)或(1)(3)(4),实际可用垂径定理及推论解决弓形高的有关问题。 5. 圆心角、弧、弦、弦心距四者关系定理,理解为:(1)圆心角相等,(2)所对弧相等,(3)所对弦相等,(4)所对弦的弦心距相等。四项“知一推三”,一项相等,其余三项皆相等。源于圆的旋转不变性。即:圆绕其圆心旋转任意角度,所得图形与原图象完全重合。 ()()()() 1234 ??? O B' M' A' B M A 6. 应用关系定理及推论,证角等,线段等,弧等,等等,注意构造圆心角或弦心距作为辅助线。 7. 圆心角的度数与弧的度数等,而不是角等于弧。

垂径定理教学设计

垂径定理教学设计 第1篇:垂径定理教学设计垂径定理教学设计 教学目标: 1.使学生理解圆的轴对称性 2.掌握垂径定理 3.学会运用垂径定理解决有关的证明、计算问题。过程与方法 1.通过观察、动手操作培养学生发现问题、分析问题、解决问题的能力 2.锻炼学生的逻辑思维能力,体验数学来源于生活又用于生活。情感、态度与价值观 通过联系、发展、对立与统一的思考方法对学生进行辩证唯物主义观点及美育教育。 教学重点:垂径定理及应用教学难点: 垂径定理的理解及其应用教学用具:圆形纸片,小黑板教学过程: 一、创设情景:地震造成我们小区的圆柱形供水管道损坏,现在工人师傅要为我们换管道,如图,他测量出管道有积水部分的最大深度是3CM,水面的宽度为6CM,这个工人师傅想了又想,也不知道该用多大的水管来替换,你能帮他解决这个问题吗? 二、引入新课---揭示课题:

1、运用教具与学具(学生自制的圆形纸片)演示,让每个学生都动手实验,把圆形纸片沿直径对折,观察两部分是否重合,通过实验,引导学生得出结论:(1)圆是轴对称图形 (2)经过圆心的每一条直线(注:不能说直径)都是它的对称轴 (3)圆的对称轴有无数条(4)圆也是中心对称图形.(出示教具演示)。 2、请同学们在自己作的圆中作图:(1)任意作一条弦AB;(2)作直径CD垂直弦AB垂足为E。(出示教具演示)引导学生分析直径CD与弦AB此时的关系,说明直径CD垂直于弦AB的,并设问:垂直于弦的直径它除了上述性质外,是否还有其他性质呢?导出本节课的课题. 三、讲解新课---探求新知 (1)实验--观察--猜想:让学生将上述作好的圆沿直径CD对折,观察重合部分后,发现有哪些线段相等、弧相等,并得出猜想:在圆O中,CD是直径,AB是弦,CD垂直AB于E.那么AE=BE ,弧AC=弧BC,弧AD=弧BD.(2)证明:引导学生用“叠合法”证明此定理(3)对定理的结构进行分析(4)结合图形用几何语言表述(5)垂径定理的变式 四、定理的应用: 例1:(2008哈尔滨中考)如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交 ⊙O于点C,且CD=1,则弦AB的长是___________ 练习

初中数学垂径定理中考题精选

初中数学垂径定理练习 一.选择题(共13小题) 1.(2015?大庆模拟)如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为() A.cm B.9 cm C.cm D.cm 2.(2015?东河区一模)如图,⊙O过点B、C,圆心O在等腰直角三角形的ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为() A.6B.13 C.D.2 3.(2015?上城区一模)一张圆心角为45°的扇形纸板和一张圆形纸板分别剪成两个大小相同的长方形,若长方形长和宽的比值为2:1,则扇形纸板和圆形纸板的半径之比为() A.2:1 B.:1 C.2:1 D.:1 4.(2014?乌鲁木齐)如图,半径为3的⊙O内有一点A,OA=,点P在⊙O上,当∠OPA 最大时,PA的长等于() A.B.C.3D.2 5.(2014?安溪县校级二模)如图,在5×5正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是()

A.点P B.点Q C.点R D.点M 6.(2014?简阳市模拟)如图,⊙O的半径为5,若OP=3,则经过点P的弦长可能是() A.3B.6C.9D.12 7.(2014?宝安区二模)如图,将半径为6的⊙O沿AB折叠,与AB垂直的半径OC交于点D且CD=2OD,则折痕AB的长为() A.B.C.6D. 8.(2014?河北区三模)如图,以(3,0)为圆心作⊙A,⊙A与y轴交于点B(0,2),与x轴交于C、D,P为⊙A上不同于C、D的任意一点,连接PC、PD,过A点分别作AE⊥PC 于E,AF⊥PD于F.设点P的横坐标为x,AE2+AF2=y.当P点在⊙A上顺时针从点C运到点D的过程中,下列图象中能表示y与x的函数关系的图象是()

垂径定理学案、教学设计

24.1.2垂直于弦的直径导学案 广水市实验中学张运才 【学习目标】 1.理解圆的轴对称性. 2.理解垂径定理及其推论,并能应用它们解决有关弦的计算和证明问题. 【学习重点】垂直于弦的直径的性质、推论以及证明. 【学习难点】利用垂直于弦的直径的性质解决实际问题. 【学习过程】 【我能行】学生自学课本P80---P81,按照提示思考下面问题: (一)情景导入:观看赵州桥视频。聪明的同学们,你能求出赵州桥桥拱所在圆的半径吗? (二)自主探究:先自主探究,后小组交流。 探究一:把一个圆沿着它的任意一条直径所在的直线对折,重复几次,你发现了什么?由此你能得出什么结论? 我发现: (1)把圆纸片沿着它的任意一条直径所在的直线对折叠时,两个半圆. (2)上面的实验说明:圆是____ __,对称轴是经过圆心的每一条____ ___.圆有条对称轴. 探究二:请同学们按下面的步骤做一做: 第一步,把一个⊙O对折,使圆的两半部分重合,得到一条折痕CD; 第二步,在⊙O上任取一点A,过点A作CD折痕的垂线,再沿垂线折叠,得到新的折痕,其中点E 是两条折痕的交点,即垂足; 第三步,将纸打开,新的折痕与圆交于另一点B,画出折痕AB、CD.观察你所折纸片:(1)在上述的操作过程中,由圆的轴对称性你能得到哪些相等的线段和相等的弧? (2)你能用一句话概括上述结论吗? (3)请作出图形并用符号语言表述这个结论. 练习:如下图,哪些能使用垂径定理?为什么? 【交流学】先独立完成,后小组交流。 1.垂径定理结构:条件:①直径CD过圆心O②CD⊥AB结论:③AE=BE ④弧AC= 弧BC ⑤弧AD=弧BD.如果交换定理的题设和结论的部分语句,如①③作为题设,②④⑤作为结论,命题成立吗?例如在⊙O中,CD是直径,AB是的弦,CD与AB交于点E.如果AE=BE,那么CD与AB垂直吗?注意分情况讨论: (1)若AB是⊙O的直径,CD与AB垂直吗?为什么? (2)若AB不是⊙O的直径,CD与AB垂直吗?为什么? 思考:你能用一句话概括上述结论吗? 推论: 如果交换定理的题设和结论的部分语句,会有一些什么样的新结论呢?它们成立吗? 发现:

人教版九年级数学讲义垂径定理(含解析)(2020年最新)

第11讲垂径定理 知识定位 讲解用时:3分钟 A、适用范围:人教版初三,基础一般 B、知识点概述:本讲义主要用于人教版初三新课,本节课我们主要学习垂径定 理及其相关推论,着重理解垂径定理及其相关推论在实际问题以及几何图形中的 应用,掌握关于垂径定理部分题型的常见辅助线的做法,能够结合勾股定理进行熟练计算。本节课的难点是垂径定理及其推论在几何图形中的应用,涉及的知识点较多,考查的内容较广,具有一定的综合性。希望同学们认真学习,为后面圆 的其他内容理解奠定良好基础。 知识梳理 讲解用时:15分钟 垂径定理及其推论 (1)垂径定理 如果圆的一条直径垂直于一条弦,那么这条直径平分这条弦,并且平 分这条弦所对的弧。 (2)相关推论 ①如果圆的直径平分弦(这条弦不是直径),那么这条直径垂直于这 条弦,并且平分这条弦所对的弧; ①如果圆的直径平分弧,那么这条直径就垂直平分这条弧所对的弦; ①如果一条直线是弦的垂直平分线,那么这条直线经过圆心,并且平 分这条弦所对的弧;

①如果一条直线平分弦和弦所对的一条弧,那么这条直线经过圆心, 并且垂直于这条弦; ①如果一条直线垂直于弦,并且平分弦所对的一条弧,那么这条直线 经过圆心,并且平分这条弦。 总结:在圆中,对于某一条直线“经过圆心”、“垂直于弦”、“平分弦”、“平分弦所对的弧”这四组关系中,如果有两组关系成立,那么其余两组关 系也成立。

课堂精讲精练 【例题1】 下列判断中,正确的是()。 A.平分一条弦所对的弧的直线必垂直于这条弦 B.不与直径垂直的弦不能被该直径平分 C.互相平分的两条弦必定是圆的两条直径 D.同圆中,相等的弦所对的弧也相等 【答案】C 【解析】本题考查了垂径定理及圆心角、弧、弦、弦心距之间关系的定理 同时平分一条弦所对优弧、劣弧的直线必垂直于这条弦,故A错误; 任意两条直径互相平分,故B错误; 同圆中,相等的弦所对的优弧、劣弧分别相等,故D错误。 讲解用时:3分钟 解题思路:根据垂径定理及圆心角、弧、弦、弦心距之间关系的定理逐项排除。 教学建议:基本概念题,逐项排除。 难度:3 适应场景:当堂例题例题来源:无年份:2018 【练习1】 下列说法正确的个数是()。 ①垂直于弦的直线平分弦;①平分弦的直线垂直于弦;①圆的对称轴是直径;①圆的对称轴有无数条;①在同圆或等圆中,如果两条弦相等,那么这两条弦所对 的优弧和劣弧分别相等。 A.1个B.2个C.3个D.4个 【答案】B 【解析】本题主要考查了垂径定理以及圆的基本性质, ①垂直于弦的直径平分弦;故错误; ①平分弦(不是直径)的直径垂直于弦;故错误;

垂径定理教学设计

第三章圆 《垂径定理》教学设计说明 广东省佛山市华英学校罗建辉 一、学生起点分析 学生的知识技能基础:学生在七、八年级已经学习过轴对称图形的有关概念和性质,等腰三角形的对称性,以及本节定理的证明要用到的三角形全等的知识,在本章前两节课中也已经初步理解了圆的轴对称性和圆弧的表示等知识,具备探索证明几何定理的基本技能. 学生活动经验基础:在平时的学习中,学生已掌握探究图形性质的不同手段和方法,具备几何定理的分析、探索和证明能力. 二、教学任务分析 该节内容为1课时.圆是一种特殊图形,它是轴对称图形,学生通过类比等腰三角形的轴对称性,能利用圆的轴对称性探索、证明得出圆的垂径定理及其逆定理.具体地说,本节课的教学目标是: 知识与技能 1.利用圆的轴对称性研究垂径定理及其逆定理; 2.运用垂径定理及其逆定理解决问题. 过程与方法 1.经历运用圆的轴对称性探索圆的相关性质的过程,进一步体会和理解研究几何图形的各种方法. 情感与态度 1. 培养学生类比分析,猜想探索的能力. 2. 通过学习垂径定理及其逆定理的证明,使学生领会数学的严谨性和探索精神,培养学生学习实事求是的科学态度和积极参与的主动精神.教学重点:利用圆的轴对称性研究垂径定理及其逆定理.

教学难点:垂径定理及其逆定理的证明,以及应用时如何添加辅助线. 三、教学设计分析 本节课设计了四个教学环节: 类比引入,猜想探索,知识应用,归纳小结. 第一环节 类比引入 活动内容: 1.等腰三角形是轴对称图形吗? 2.如果将一等腰三角形沿底边上的高对折, 3.圆,得到的图形是否是轴对称图形呢? 活动目的: 通过等腰三角形的轴对称性向圆的轴对称性过渡,引导学生思考,培养学生类比分析的能力. 第二环节 猜想探索 活动内容: 1.如图,AB 是⊙O 的一条弦,作直径CD ,使CD ⊥AB ,垂足为M . (1)该图是轴对称图形吗?如果是,其对称轴是什么? (2)你能图中有哪些等量关系?说一说你的理由. 条件:① CD 是直径;② CD ⊥AB 结论(等量关系):③AM =BM ; ④⌒AC =⌒BC ;⑤⌒AD =⌒BD . 证明:连接OA ,OB ,则OA =OB . 在Rt △OAM 和Rt △OBM 中, ∵OA =OB ,OM =OM ,

2013年中考数学试题分类汇编:圆的垂径定理

2013中考全国100份试卷分类汇编 圆的垂径定理 1、(2013年潍坊市)如图,⊙O 的直径AB=12,CD 是⊙O 的弦,CD ⊥AB ,垂足为P ,且BP :AP=1:5,则CD 的长为( ). A.24 B.28 C.52 D.54 答案:D . 考点:垂径定理与勾股定理. 点评:连接圆的半径,构造直角三角形,再利用勾股定理与垂径定理解决. 2、(2013年黄石)如右图,在Rt ABC 中,90ACB ∠=,3AC =,4BC =,以点C 为 圆心,CA 为半径的圆与AB 交于点D ,则AD 的长为 A. 95 B. 245 C. 185 D. 52 答案:C 解析:由勾股定理得AB =5,则sinA =4 5,作CE ⊥AD 于E ,则AE =DE ,在Rt △AEC 中,sinA =CE AC ,即453 CE =,所以, CE =125,AE =95,所以,AD =185 3、(2013河南省)如图,CD 是 O 的直径,弦AB CD ⊥于点G ,直线EF 与O 相切与 点D ,则下列结论中不一定正确的是【】 (A )AG BG = (B )AB ∥EF (C )AD ∥BC (D )ABC ADC ∠=∠ 【解析】由垂径定理可知:(A )一定正确。由题可知:EF CD ⊥,又因为AB CD ⊥,所以AB ∥EF ,即(B )一定正确。因为 ABC ADC ∠∠和所对的弧是劣弧AC ,根据同弧所对的圆周角相等 可知(D )一定正确。 【答案】C 4、(2013?泸州)已知⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,且AB=8cm ,则AC 的长为( ) C A B

九年级数学上垂径定理练习题

B F E O D C A 垂径定理综合训练习题 一、垂径定理在证明上的应用 1、如图,AB 、CD 都是⊙O 的弦,且AB ∥CD ,求证: 弧AC = 弧BD 。 2.如图,CD 为⊙O 的弦,在CD 上截取CE=DF ,连结OE 、OF ,并且它们的延长⊙O 于点A 、 B 。 (1)试判断△OEF 的形状,并说明理由;(2)求证:? AC =? BD 。 3、如图,在⊙O 中,AB 为⊙O 的弦,C 、D 是直线AB 上两点,且AC =BD 求证:△OCD 为等腰三角形。 4、如图,F 是以O 为圆心,BC 为直径的半圆上任意一点,A 是 的中点, AD ⊥BC 于D ,求证:AD=2 1 BF. 二、垂径定理在计算上的应用(一)求半径,弦长,弦心距 1、 在直径为52cm 的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深 度为16cm ,那么油面宽度AB 是________cm. A B C D O A B C D O O A E F

变式 2.在直径为52cm 的圆柱形油槽内装入一些油后,,如果油面宽度是48cm ,那么油的最大深度为________cm 2:如图为一圆弧形拱桥,半径OA = 10m ,拱高为4m ,求拱桥跨度AB 的长。 3、如图,已知在⊙O 中,弦CD AB =,且CD AB ⊥,垂足为H ,AB OE ⊥于E ,CD OF ⊥于F . (1)求证:四边形OEHF 是正方形. (2)若3=CH ,9=DH ,求圆心O 到弦AB 和CD 的距离. 4、如图所示,在Rt △ABC 中,∠C =900,AC =3,BC =4,以点C 为圆心,CA 为半径的圆与AB 、BC 分别交于点D 、E ,求AB 和AD 的长。 (二)、度数问题 1、已知:在⊙O 中,弦cm 12=AB ,O 点到AB 的距离等于AB 的一半,求:AOB ∠的度数和圆的半径。. A C B D O C A D E

初三数学垂径定理讲义

学科教师辅导讲义 体系搭建 一、知识梳理

二、知识概念 垂径定理 1、内容:垂直于弦的直径平分这条弦,并且平分这条弦所对的两段弧 2、逆定理:平分弦(不是直径)的直径垂直于这条弦,并且平分这条弦所对的两段弧 3、推论:弦的垂直平分线经过圆心,并且平分这条弦所对的弧 平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧 在同圆或者等圆中,两条平行弦所夹的弧相等 4、使用条件:一条直线,在下列4条中只要具备其中任意两条作为条件,就可以推出其他三条结论 (1)平分弦所对的弧 (2)平分弦 (不是直径) (3)垂直于弦 (4)经过圆心 考点一:垂径定理及其推论 例1、下列说法不正确的是() A.圆是轴对称图形,它有无数条对称轴 B.圆的半径、弦长的一半、弦上的弦心距能组成一直角三角形,且圆的半径是此直角三角形的斜边C.弦长相等,则弦所对的弦心距也相等 D.垂直于弦的直径平分这条弦,并且平分弦所对的弧 例2、如图,AB是⊙O的直径,CD⊥AB,∠ABD=60°,CD=2,则阴影 部分的面积为() A.B.π C.2πD.4π

例3、如图,在5×5正方形网格中,一条圆弧经过A,B,C三点,已知点A 的坐标是(﹣2,3),点C的坐标是(1,2),那么这条圆弧所在圆的圆心坐标 是() A.(0,0)B.(﹣1,1) C.(﹣1,0)D.(﹣1,﹣1) 例4、如图,AB是⊙O的弦,C是AB的三等分点,连接OC并延长交⊙O于点 D.若OC=3,CD=2,则圆心O到弦AB的距离是() A.6B.9﹣ C.D.25﹣3 例5、如图,⊙O的半径为5,弦AB=8,则圆上到弦AB所在的直线距离为2的点 有()个. A.1B.2C.3D.0 考点二:应用垂径定理解决实际问题 例1、李明到某影剧城游玩,看见一圆弧形门如图所示,李明想知道这扇门的相关数据.于是她从景点管理人员处打听到:这个圆弧形门所在的圆与水平地面是相切的,AB=CD=40cm,BD=320cm,且AB,CD与水平地面都是垂直的.根据以上数据,请你帮助李明计算出这个圆弧形门的最高点离地面的高度是多少?

九年级数学上垂径定理练习题

B F E O D C A O D C B A A B C D O 垂径定理综合训练习题 一、垂径定理在证明上的应用 1、如图,AB 、CD 都是⊙O 的弦,且AB ∥CD ,求证: 弧AC = 弧BD 。 2.如图,CD 为⊙O 的弦,在CD 上截取CE=DF ,连结OE 、OF ,并且它们的延长⊙O 于点A 、 B 。 (1)试判断△OEF 的形状,并说明理由;(2)求证:? AC =? BD 。 3、如图,在⊙O 中,AB 为⊙O 的弦,C 、D 是直线AB 上两点,且AC =BD 求证:△OCD 为等腰三角形。 4、如图,F 是以O 为圆心,BC 为直径的半圆上任意一点,A 是的中点,AD ⊥BC 于D ,求证:AD=2 1 BF. 二、垂径定理在计算上的应用(一)求半径,弦长,弦心距 1、 在直径为52cm 的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深 度为16cm ,那么油面宽度AB 是________cm. 变式2.在直径为52cm 的圆柱形油槽内装入一些油后,,如果油面宽度是48cm ,那么油的最大深度为________cm 2:如图为一圆弧形拱桥,半径OA = 10m ,拱高为4m ,求拱桥跨度AB 的长。 3、如图,已知在⊙O 中,弦CD AB =,且CD AB ⊥,垂足为H ,AB OE ⊥于E ,CD OF ⊥于F . (1)求证:四边形OEHF 是正方形. (2)若3=CH ,9=DH ,求圆心O 到弦AB 和CD 的距离. 4、如图所示,在Rt △ABC 中,∠C =900,AC =3,BC =4,以点C 为圆心,CA 为半径的圆与AB 、BC 分别交于点D 、E ,求AB 和AD 的长。 (二)、度数问题 1、已知:在⊙O 中,弦cm 12=AB ,O 点到AB 的距离等于AB 的一半,求: AOB ∠的度数和圆的半径。. 已知:⊙O 的半径1=OA ,弦AB 、AC 的长分别是2、2、 3. 求BAC ∠的度数。 (三)、相交问题 如 图,已知⊙O 的直径AB 和弦CD 相交于点E ,AE=6cm ,EB=2cm ,∠BED=30°, 求CD 的长. (四)平行问题 (南京市)如图2,矩形ABCD 与圆心在AB 上的⊙O 交于点G 、B 、F 、E , GB =8cm ,AG =1cm ,DE =2cm ,则EF = cm . 变式一:圆内两条互相平行的弦AB 、CD ,其中AB =16cm ,CD =12cm ,圆的半径为10,求AB 、CD 间的距离。 2、 如图,圆柱形水管内原有积水的水平面宽 CD=20cm ,水深GF=2cm .若水面上升2cm (EG=2cm ),则此时水面宽AB 为多少? (五)同心圆问题 O A B C D E A C B D O A B C D O C A D E

相关文档
相关文档 最新文档